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Abstract. The Semi-Naive Bayesian network (SNB) classifier, a proba-
bilistic model with an assumption of conditional independence among the
combined attributes, shows a good performance in classification tasks.
However, the traditional SNBs can only combine two attributes into
a combined attribute. This inflexibility together with its strong inde-
pendency assumption may generate inaccurate distributions for some
datasets and thus may greatly restrict the classification performance of
SNBs. In this paper we develop a Bounded Semi-Naive Bayesian network
(B-SNB) model based on direct combinatorial optimization. Our model
can join any number of attributes within a given bound and maintains
a polynomial time cost at the same time. This improvement expands
the expressive ability of the SNB and thus provide potentials to increase
accuracy in classification tasks. Further, aiming at relax the strong in-
dependency assumption of the SNB, we then propose an algorithm to
extend the B-SNB into a finite mixture structure, named Mixture of
Bounded Semi-Naive Bayesian network (MBSNB). We give theoretical
derivations, outline of the algorithm, analysis of the algorithm and a set
of experiments to demonstrate the usefulness of MBSNB in classification
tasks. The novel finite MBSNB network shows a better classification
performance in comparison with than other types of classifiers in this
paper.

1 Introduction

Learning accurate classifiers is one of the basic problems in machine learning.
The Naive Bayesian network (NB) [8] shows a good performance in dealing with
this problem when compared with the decision tree learner C4.5 [13]. With an
independency assumption among the attributes, when given the class label, NB
classifies a specific sample into the class with the largest joint probability. This
joint probability can be decomposed into a multiplication form based on its
independency assumption.

The success of NB is somewhat unexpected since its independency assump-
tion typically does not hold in many cases. Furthermore, the so-called Semi-
Naive Bayesian networks are proposed to remedy violations of NB’s assumption
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by joining attributes into several combined attributes based on a conditional
independency assumption among the combined attributes. Some performance
improvements have been demonstrated in [6, 11].

However, two major problems exist for the SNB. First, typically,the tradi-
tional SNB can only combine two attributes into a combined attribute or it
will be computationally intractable [11]. This inflexibility is obviously a prob-
lem, since combining more attributes may generate better results. Second, the
conditional independency assumption among the joined attributes is still too
strong although it is looser than NB’s. These two problems restrict the expres-
sive ability of the SNB and therefore may model inaccurate distributions for
some datasets. How to solve these two problems effectively and efficiently be-
comes an important issue. To handle the first problem, in this paper, we develop
a Bounded-SNB model based on direct combinatorial techniques. By transform-
ing a learning problem into an integer programming problem, this model can
combine any number of attributes within a given bound and maintain a polyno-
mial time cost at the same time.

To solve the second problem, one possible way is to search an independence
or dependence relationship among the attributes rather than impose a strong
assumption on the attributes. This is the main idea of so-called unrestricted
Bayesian Network (BN) [12]. Unfortunately, empirical results have demonstrated
that searching an unrestricted BN structure does not show a better result than
NB [3, 4]. This is partly because that unrestricted BN structures are prone to
incurring overfitting problems [3]. Furthermore, searching an unrestricted BN
structure is generally an NP-complete problem [1]. Different from searching un-
restricted structures, in this paper, we upgrade the SNB into a mixture structure,
where a hidden variable is used to coordinate its components: SNB structures.
Mixture approaches have achieved great success in expanding its restricted com-
ponents expressive power and bringing a better performance.

In summary, in this paper, we use our B-SNB model to deal with the first
problem. We then provide an algorithm to perform the mixture structure upgrad-
ing on our B-SNB model. On one hand, the B-SNB model enables the mixture
a diversity, i.e., it is not necessary to limit the component structure into a SNB
with combined attributes consisting of less or equal than two attributes. On the
other hand, the mixture model expands the expressive ability for the B-SNB
model. This paper is organized as follows. In Section 2, we describe our B-SNB
model in detail. Then in Section 3, we discuss the mixture of B-SNB model
and give an induction algorithm. Experimental results to show the advantages
of our model are demonstrated in Section 4. Finally, we conclude this paper in
Section 5.

2 Bounded Semi-naive Bayesian Network

Our Bounded Semi-Naive Bayesian network model is defined as follows:

Definition 1. B-SNB Model : Given a set of N independent observations
D = {x1, . . . , xN} and a bound K, where xi = (Ai

1, A
i
2, . . . , Ai

n) is an n-
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dimension vector and A1, A2, . . . , An are called variables or attributes, B-SNB is
a maximum likelihood Bayesian network which satisfies the following conditions:

1. It is composed of m large attributes B1, B2, . . . , Bm, 1 ≤ m ≤ n, where
each large attribute Bl = {Al1 , Al2 , . . . , Alkl

} is a subset of attribute set:
{A1, . . . , An}.

2. There is no overlap among the large attributes and their union forms the
attributes set. That is, (1) Bi ∩ Bj = φ, for i �= j, and 1 ≤ i, j ≤ m; (2)
B1 ∪ B2 ∪ . . . ∪ Bm = {A1, A2, . . . , An}.

3. Bi is independent of Bj, for i �= j, namely, P (Bi, Bj) = P (Bi)P (Bj), for
i �= j, and 1 ≤ i, j ≤ m.

4. The cardinality of each large attribute Bl(1 ≤ l ≤ m) is not greater than
K. If each large attribute has the same cardinality K, we call the B-SNB
K-regular B-SNB.

Except for Item 4, the B-SNB model definition is the definition of the traditional
SNB. We argue that this constraint on the cardinality is necessary. K cannot be
set as a very large value, or the estimated probability for large attributes will
be not reliable. When using B-SNB for classification tasks, we first partition the
pre-classified dataset into some sub-datasets by the class label and then train
different B-SNB structures for different classes. From this viewpoint, Item 3 is
actually a conditional independence formulation, when given the class variable,
since this independency is assumed in the sub-database with a uniform class
label.

2.1 Learning the Optimal B-SNB from Data

In general, the optimal B-SNB estimated from a dataset D can be achieved in
two steps. The first step is to learn an optimal B-SNB structure from D; the
second step is to learn the optimal parameters for this optimal structure, where
B-SNB parameters are those probabilities of each large attribute, i.e., P (Bj). It
is easy to show that the sample frequency of a large attribute Bj is the maximum-
likelihood estimator for the probability P (Bj), when a specific B-SNB structure
is given (See the Appendix for the proof of Lemma 1). Thus the key problem in
learning the optimal B-SNB is the structure learning problem, namely how to
find the best m large attributes.

However the combination number for m large attributes in an n-dimension
dataset will be

∑
{k1,k2,...,kn}∈G Ck1

n Ck2
n−k1

...Ckn

n−∑n−1
i=1 ki

,G = {{k1, k2, ..., kn} :
∑n

i=1 ki = n, 0 ≤ ki ≤ K}. Such a large searching space for an optimal B-SNB
will make it nearly impossible to employ greedy methods especially when K is
set to some small values. To solve this problem, we firstly develop the following
two lemmas.

Lemma 1. The maximum log likelihood of a specific B-SNB S for a dataset D,
represented by lS , can be written into the following form lS = − ∑m

i=1 Ĥ(Bi),
where Ĥ(Bi) is the entropy of large attribute Bi based on the empirical distri-
bution of D.



118 K. Huang, I. King, and M.R. Lyu

Lemma 2. Let µ and µ
′

be two B-SNBs over dataset D. If µ
′

is coarser than
µ, then µ

′
provides a better approximation than µ over D.

The coarser concept is defined in this way: If µ
′

can be obtained by combining
the large attributes of µ without splitting the large attribute of µ, then µ

′
is

coarser than µ.
The details of the proof of Lemma 1 and Lemma 2 can be seen in Appendix.
According to Lemma 2, within a reasonable K bound, a higher “order” ap-

proximation will be superior to a lower “order” one. For example, it is more
accurate using P (a, b, c)P (d, e, f) to approximate P (a, b, c, d, e, f) than using
P (a, b)P (c)P (d, e, f) when each subitem probability can be estimated reliably.
In a K-B-SNB, K is the possible highest order for any large attributes. Thus
we should use as many K-large attributes as possible in constructing B-SNB.
Under this consideration, we fix all the large attributes to K large-attributes.
On one hand, searching K-regular B-SNBs can reduce the combination number
of large attributes to n!

(K!)[n/K] . On the other hand, this constraint enables us
to transform the optimization into an integer programming (IP) problem easily.
Further we can approximate the IP solution via linear programming techniques,
which can be solved in a polynomial time cost.

2.2 Transforming into Integer Programming Problem

We first describe our B-SNB optimization problem under Maximum Likelihood
Estimation criterion when the cardinality of each large attribute is constrained
to be exactly bound K.
B-SNB Optimization Problem: From the attributes set, find m = [n/K]
K-cardinality subsets, which satisfy the B-SNB conditions, to maximize the log
likelihood lS = − ∑m

i=1 Ĥ(Bi).
We write this B-SNB optimization problem into the following IP problem:

Min
∑

V1,V2,... ,VK

xV1,V2,... ,VK
Ĥ(V1, V2, . . . , VK), where,

(∀VK)
∑

V1,V2,... ,VK−1

xV1,V2,... ,VK
= 1, xV1,V2,... ,VK

∈ {0, 1} (1)

Here V1, V2, . . . , Vk represent any K attributes. Equation (1) describes that for
any attribute, it can just belong to one large attribute, i.e., when it occurs in
one large attribute, it must not be in another large attribute, since there is no
overlapping among the large attributes.

We approximate the solution of IP via Linear Programming (LP) method,
which can be solved in a polynomial time. By relaxing xV1,V2,... ,VK

∈ {0, 1} into
0 ≤ xV1,V2,... ,VK

≤ 1, the IP problem is transformed into an LP problem. Then
a rounding procedure to get the integer solution is conducted on the solution
of LP. It should be addressed that direct solving for IP problem is infeasible.
It is reported that IP problems with as few as 40 variables can be beyond the
abilities of even the most sophisticated computers.
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Approximating IP solution by LP may reduce the accuracy of the SNB while
it can decrease the computational cost to a polynomial one. Furthermore, shown
in our experiments, this approximation achieves a satisfactory prediction accu-
racy.

3 The Mixture of Bounded Semi-naive Bayesian Network

In this section, we first define the Mixture of Bounded Semi-Naive Bayesian
network (MBSNB) model, then we give the optimization problem of the MBSNB
model. Finally we conduct theoretical induction to provide the optimization
algorithm for this problem under the EM [7] framework.

Definition 2. Mixture of Bounded Semi-Naive Bayesian network model is de-
fined as a distribution of the form: Q(x) =

∑r
k=1 λkSk(x), where λk ≥ 0,

k = 1, . . . , r,
∑r

k=1 λk = 1, r is the number of components in the mixture struc-
ture. Sk represents the distribution of the kth component K Bounded Semi-Naive
network. λk can be called component coefficient.

Optimization Problem of MBSNB: Given a set of N independent obser-
vations D = {x1, x2, . . . , xN} and a bound K, find the mixture of K-Bounded-
SNB model Q, which satisfies Q = arg maxQ′

∑N
i=1 log Q′(xi).

We use a modified derivation process as [9] to find the solution of the above
optimization problem. According to the EM algorithm, finding the optimal
model Q of the above is equal to maximizing the following complete log-likelihood
function:

lc(x1,... ,N , z1,... ,N |Q) =
N∑

i=1

log
r∏

k=1

(λkSk(xi))
δk,zi

=
N∑

i=1

r∑

k=1

δk,zi(log λk + log Sk(xi)) (2)

where z is the choice variable which can be seen as the hidden variable to de-
termine the choice of the component Semi-Naive structure; δk,zi is equal to 1
when zi is equal to the kth value of choice variable and 0 otherwise. We utilize
the EM algorithm to find the solution of above log-likelihood formulation. First
taking the expectation with respect to z, we will obtain

E[lc(x1,... ,N , z1,... ,N |Q)] =
N∑

i=1

r∑

k=1

E(δk,zi |D)(log λk + log Sk(xi)), (3)

where E(δk,zi |D) is actually the posterior probability given the ith observation,

which can be calculated as: E(δk,zi |D) = P (zi|V = xi) = λkSk(xi)
∑

k′ λk′ Sk′ (xi)
. We

define γk(i) = E(δk,zi |D), Γk =
∑N

i=1 γk(i), P k(xi) = γk(i)
Γk

. Thus we obtain the
expectation:
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E[lc(x1,... ,N , z1,... ,N |Q)] =
r∑

k=1

Γk log λk +
r∑

k=1

Γk

N∑

i=1

P k(xi) log Sk(xi). (4)

Then we perform the Maximization step in Equation (4) with respect to the
parameters. It is easy to maximize the first part of Equation (4) by Lagrange
method with the constraint

∑r
k=1 λk = 1. We can obtain: λk = Γk

N , k = 1, . . . , r.

Table 1. Description of data sets used in the experiments

Dataset �Variables �Class �Train �Test
Xor 6 2 2000 CV-5
Vote 15 2 435 CV-5

Tic-tac-toe 9 2 958 CV-5
Segment 19 7 2310 30%

If we consider P k(xi) as the probability for each observation over the kth
component B-SNB, the latter part of Equation (4) is in fact a B-SNB network
optimization problem, which can be solved by our earlier proposed algorithm in
Section 2.

4 Experiments

To evaluate the performance of our B-SNB and MBSNB models, we conduct
a series of experiments on four databases, among which three come from the
UCI Machine learning Repository [10] and the other one dataset called Xor is
generated synthetically. In Xor, the class variable C is the result of xor operation
between the first two binary attributes and other four binary attributes are
created randomly. Table 1 is the detailed information for these four datasets.
We use the 5-fold Cross Validation (CV) method [5] to perform testing on these
datasets. We train a MBSNB model QCi

for each class Ci of every dataset.
And we use the Bayes formula: c(x) = arg maxCi

P (Ci)QCi(x) to classify a new
instance x. We compare B-SNB, MNSNB models with NB, Chow-Liu tree (CLT)
algorithm and C4.5 (CLT is a kind of competitive Bayesian classifier [2]). We set
the bound K for B-SNB and MBSNB as 2 and 3 to examine their performances.
Table 2 summarizes the prediction results of the main approaches in this paper.
2(3)-B-SNB and 2(3)-MBSNB means K is set as 2(3). It is observed that B-
SNB can improve the NB’s performance. Moreover B-SNB performance can be
further improved with the mixture upgrading. Since,B-SNB can be considered
as the special case of MBSNB, with mixture number equal to 1. We take the
highest accuracy rate as the one of MBSNB from the 2(3)-B-SNB and 2(3)-
MBSNB. This result is shown as MBSNB* in the last column of Table 2. We
can observe that this column almost demonstrates the best overall performance
in comparison with NB, CLT and C4.5.
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Table 2. Prediction Accuracy of the Primary Approaches in this paper(%)

Dataset NB CLT C4.5 2-B-SNB 3-B-SNB 2-MBSNB 3-MBSNB MBSNB*
Xor 54.50 100 100 100 99.50 99.50 99.50 100

Tic-tac-toe 70.77 73.17 84.84 72.65 78.39 88.33 79.38 88.33
Vote 90.11 91.26 94.18 92.40 92.64 93.10 94.00 94.00

Segment 88.29 91.33 90.61 91.90 89.16 91.47 90.90 91.90

5 Conclusion

In this paper, we propose a Bounded Semi-Naive Bayesian network based on di-
rect combinatorial optimization. Different with the traditional SNBs, this model
can combine any number of attributes within a given bound and maintain a
polynomial time cost at the same time. Furthermore, we upgrade it into a finite
mixture model. We designed a serious of experiments to demonstrate our model’s
advantages. The results show that this mixture model brings in an increase in
prediction accuracy.
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6 Appendix

Proof for Lemma 1:
Let S is a specific B-SNB with n variables or attributes which are represented
respectively by Ai, 1 ≤ i ≤ n. And this B-SNB’s large attributes are represented
by Bi, 1 ≤ i ≤ m. We use (B1, . . . , Bm) as the short form of (B1, B2, . . . , Bm).
The log likelihood over a data set can be written into the following:

lS(x1, x2, . . . , xs) =
s∑

j=1

log P (xj)

=
s∑

j=1

log(
m∏

i=1

P (Bi)) =
m∑

i=1

s∑

j=1

log P (Bi) =
m∑

i=1

∑

Bi

P̂ (Bi) log P (Bi)

The above term will be maximized when P (Bi) is estimated by P̂ (Bi), the empir-
ical probability for large attribute Bi. This can be easily obtained by maximizing
lS with respect to P (Bi). Thus,

lSmax =
m∑

i=1

∑

Bi

P̂ (Bi) log P̂ (Bi) = −
m∑

i=1

Ĥ(Bi)

Proof for Lemma 2:
We just consider a simple case, the proof for the general case is much similar.
Consider one partition as µ = (B1, B2, . . . , Bm) and another partition as

µ1 = (B1, B2, . . . , Bm−1, Bm1, Bm2), where
Bm1 ∩ Bm2 = φ and Bm1 ∪ Bm2 = Bm

According to the proof of Lemma 1 above, we have:

lSµmax
=

m∑

i=1

Ĥ(Bi) = −
m−1∑

i=1

Ĥ(Bi) − Ĥ(Bm) (5)

According to Entropy theory, Ĥ(XY ) ≤ Ĥ(X) + Ĥ(Y ). We can write Eq. (5)
into:

lSµmax
= −

m−1∑

i=1

Ĥ(Bi) − Ĥ(Bm) ≥ −
m−1∑

i=1

Ĥ(Bi) − Ĥ(Bm1) − Ĥ(Bm2)

= lSµ1 max
(6)
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