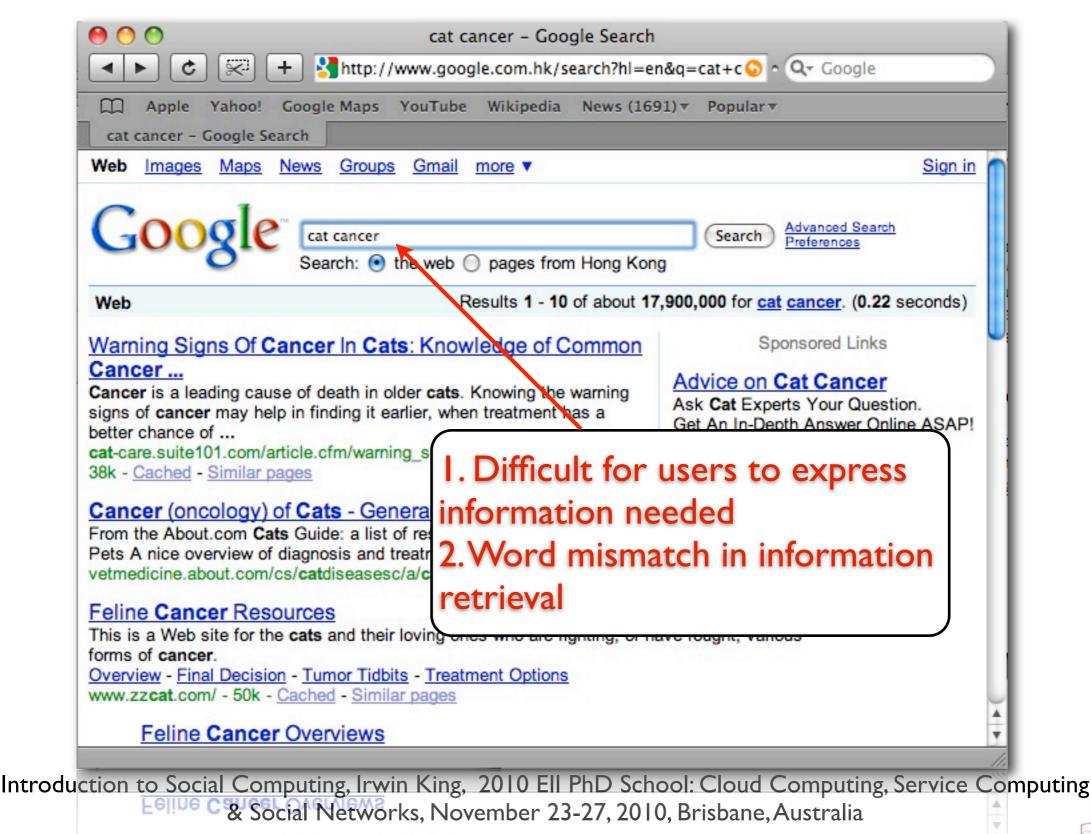
Introduction to Social Computing Query Suggestion

Irwin King

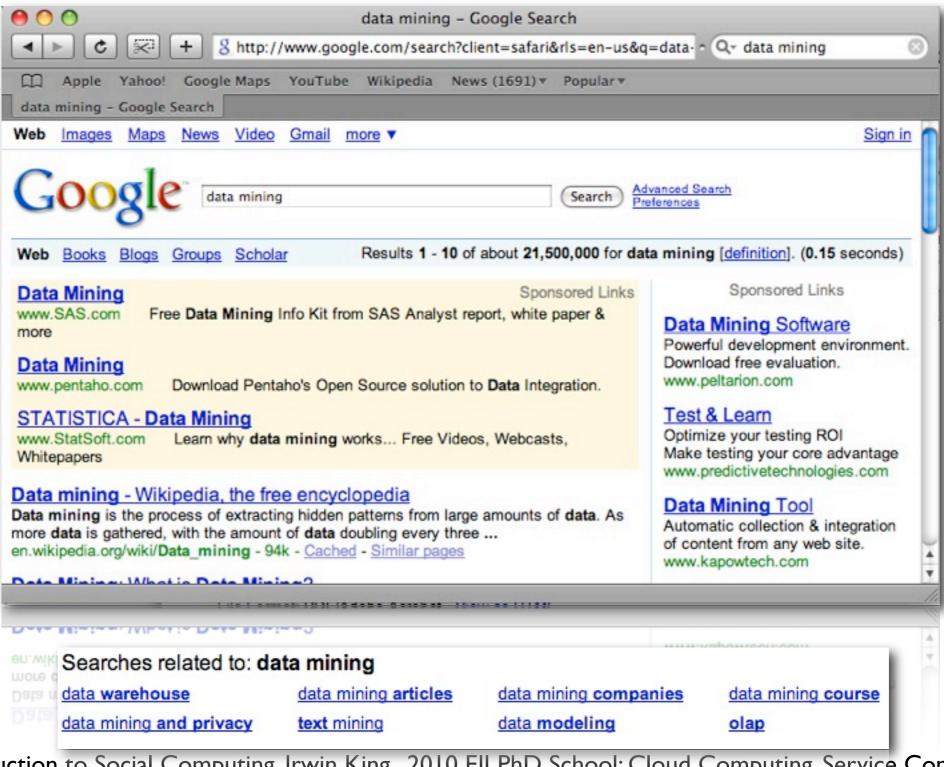
ATT Labs, Research & Department of Computer Science and Engineering The Chinese University of Hong Kong


> king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king

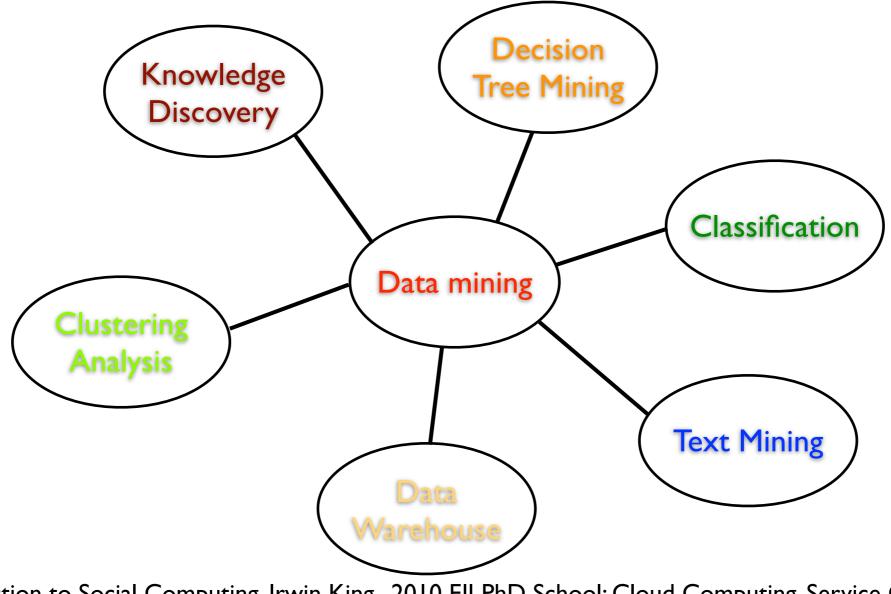
©2010 Irwin King. All rights reserved.

Motivation

www.zzcat.com/ - 50k - Cached - Similar pages


Motivation

		cer – Google Searc		_
▲ ► ৫ 🐖	+ Mattp://www.go	ogle.com.hk/search	?hl=en&q=c♀ ^ Q+ Google	
Apple Yahoo	o! Google Maps YouTub	e Wikipedia New	rs (1691)▼ Popular▼	
cat cancer - Google	Search			72:55
('how could I have pre	cat has cancer there are o evented this?'), and it eline_cancer2.pdf - Similar to: cat cancer		Iderment and even guilt.	
feline squamous	squamous cell	dogs and	feline oral squamous	- 1
cell cancer	carcinoma cats	cats	cell carcinoma	- 1
<u>cat cancer</u> symptoms	cat lymph nodes	radiation therapy cats	lymphoma in cats	- 1
	G000000 1 2 3 4 5 6 cat cancer	informa	ate to express tion needed to inform information	
Search wit		ols - <u>Search Help</u> - <u>D</u>	issatisfied? Help us improve	1


Motivation

Challenges

• Word mismatch: people often use different words to describe concepts in their queries than authors use to describe the same concepts in their documents.

Challenges

- Queries contain ambiguous and new terms
 - apple: "apple computer" or "apple pie"?
 - NDCG:?

- Users tend to submit short queries consisting of only one or two words
 - almost 20% one-word queries
 - almost 30% two-word queries
- Users may have little or even no knowledge about the topic they are searching for!

Classes of Suggestion Relevance

[Jones, 2006]

- Precise rewriting
 - The rewritten form of query matches user's intent
- Approximate rewriting
 - The rewritten form has a direct close relationship to the topic described by the initial query
- Possible rewriting
 - The rewritten form either has some categorical relationship to the initial query or describes a complementary product
- Clear mismatch
 - The rewritten form has no clear relationship to user's intent

Example Queries and Query-suggestion

Class	Score	Examples		
Precise	1	automotive insurance	↦	automobile insurance
rewriting		corvette car	\mapsto	chevrolet corvette
		apple music player	\mapsto	apple ipod
		apple music player	\mapsto	ipod
		cat cancer	\mapsto	feline cancer
		help with math homework	\mapsto	math homework help
Approximate	2	apple music player	\mapsto	ipod shuffle
rewriting		personal computer	\mapsto	compaq computer
		hybrid car	\mapsto	toyota prius
		aeron chair	\mapsto	office furniture
Possible	3	onkyo speaker system	\mapsto	yamaha speaker system
rewriting		eye-glasses	↦	contact lenses
		orlando bloom	\mapsto	johnny depp
		cow	\mapsto	pig
		ibm thinkpad	\mapsto	laptop bag
Clear	4	jaguar xj6	\mapsto	os x jaguar
mismatch		time magazine	\mapsto	time and date magazine

Typical Query Suggestion

Global analysis

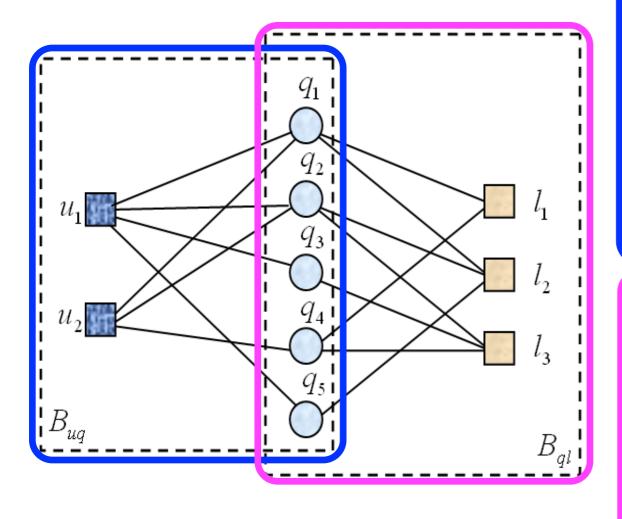
- Selects expansion terms on the basis of the information on the whole document set
- Relatively robust
- Expensive in terms of disk space and computer time
- Local analysis
 - Formulate expansion terms based on top-ranked results
 - Relatively efficient
 - Perform badly for queries with few relevant documents

Query Suggestion Using Clickthrough Data

Query logs recorded by search engines

$\langle u, q, l, r, t \rangle$

Table 1: Samples of search engine clickthrough data


ID	Query	URL	Rank	Time
358	facebook	http://www.facebook.com	1	2008-01-01 07:17:12
358	facebook	http://en.wikipedia.org/wiki/Facebook	3	2008-01-01 07:19:18
3968	apple iphone	http://www.apple.com/iphone/	1	2008-01-01 07:20:36

 Users' relevance feedback to indicate desired/preferred/ target results

Joint Bipartite Graph

$$B_{uq} = (V_{uq}, E_{uq})$$

$$V_{uq} = U \cup Q$$

$$U = \{u_1, u_2, ..., u_m\}$$

$$Q = \{q_1, q_2, ..., q_n\}$$

$$E_{uq} = \{(u_i, q_j) | \text{ there is an edge from } u_i \text{ to } q_j\}$$
is the set of all edges.
The edge (u_i, q_j) exists in this bipartite graph
if and only if a user u_i issued a query q_j .

$$P_{uq} = (V_u - F_u)$$

$$B_{ql} = (V_{ql}, E_{ql})$$

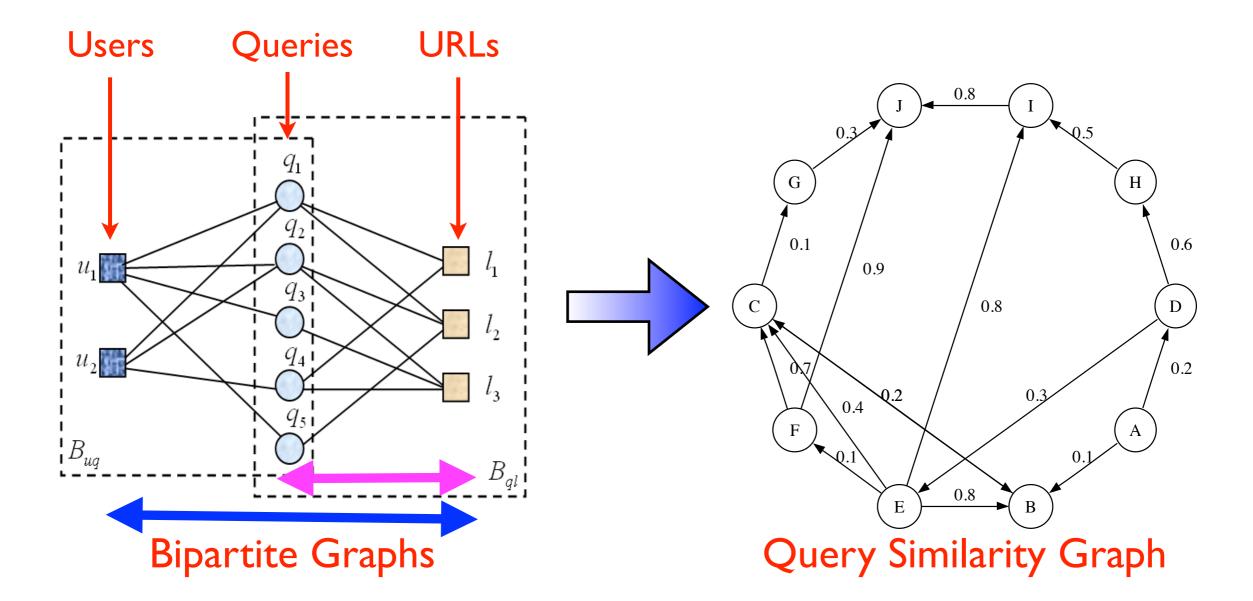
$$V_{ql} = Q \cup L$$

$$Q = \{q_1, q_2, ..., q_n\}$$

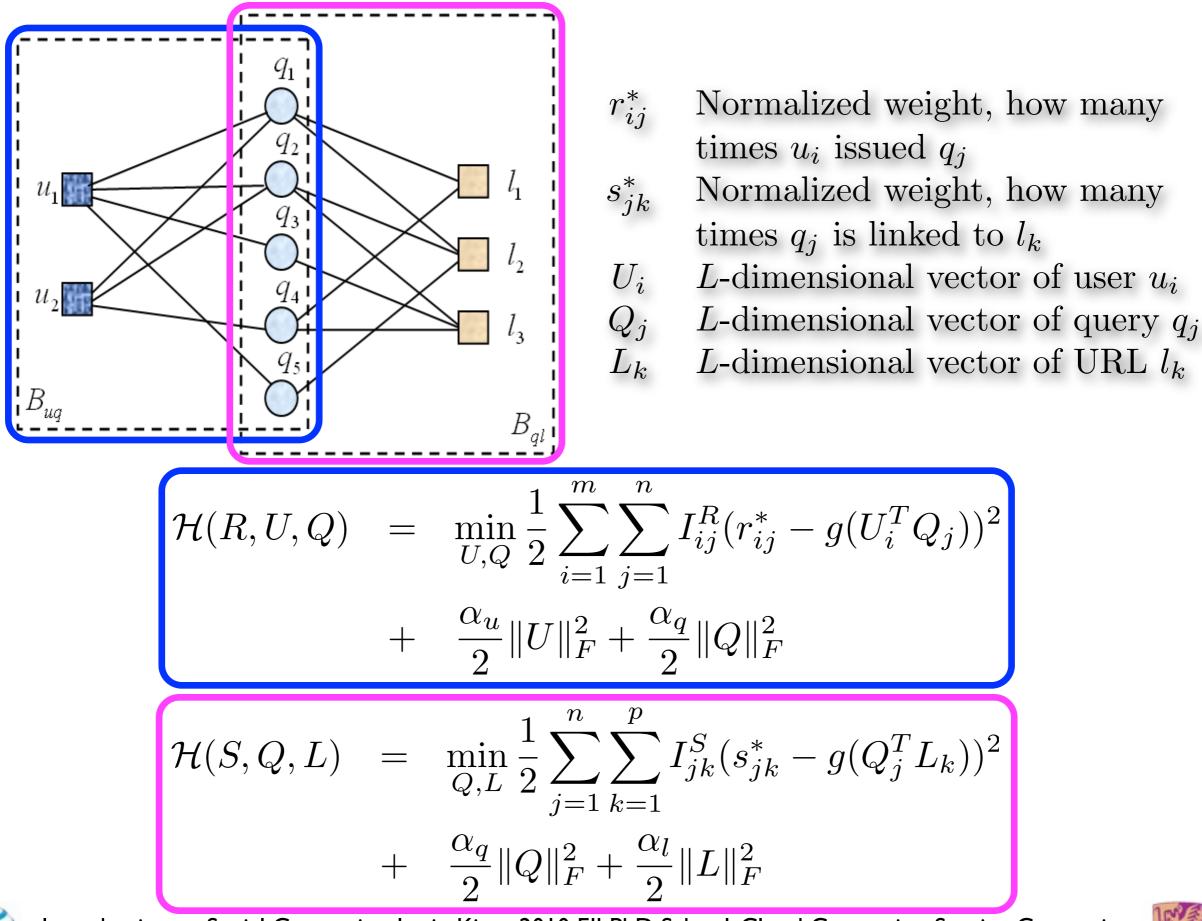
$$L = \{l_1, l_2, ..., l_p\}$$

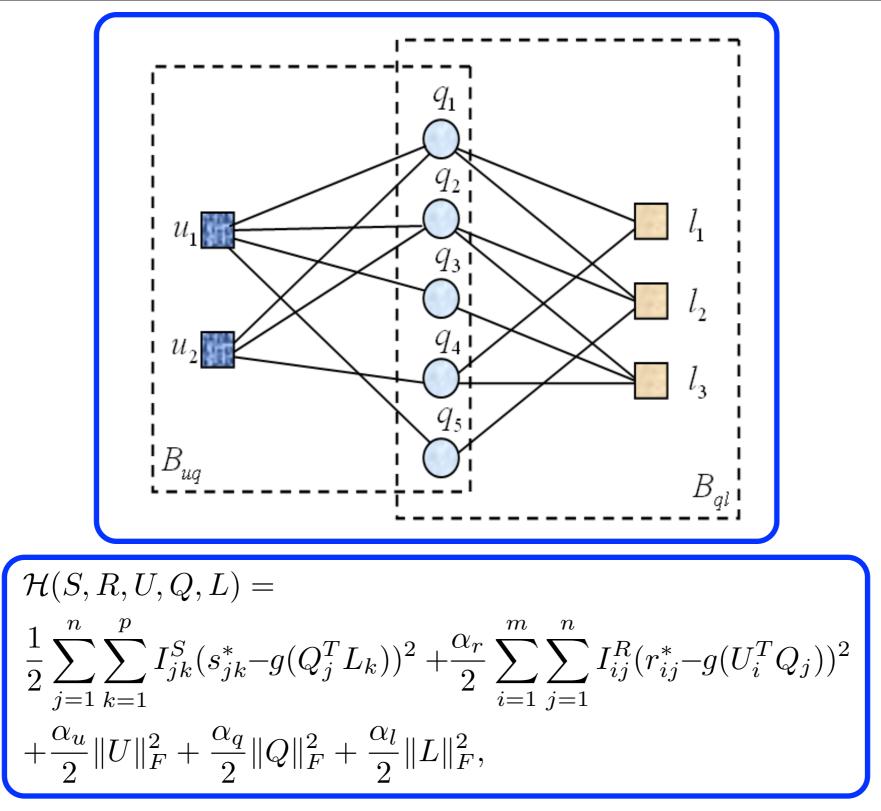
$$E_{ql} = \{(q_i, l_j) | \text{ there is an edge from } q_i \text{ to } l_j\}$$
is the set of all edges.

The edge (q_j, l_k) exists if and only if a user u_i clicked a URL l_k after issuing an query q_j .


Key Points

- Two-level latent semantic analysis
- el Consider the use of a joint user-query and query-URL bipartite graphs for query suggestion
 - Use matrix factorization for learning query features in constructing the Query Similarity Graph
 - Use heat diffusion for similarity propagation for query suggestions


Level



- Queries are issued by the users, and which URLs to click are also decided by the users
- Two distinct users are similar if they issued similar queries
- Two queries are similar if they are issued by similar users

• A local minimum can be found by performing gradient descent in U_i , Q_j and L_k

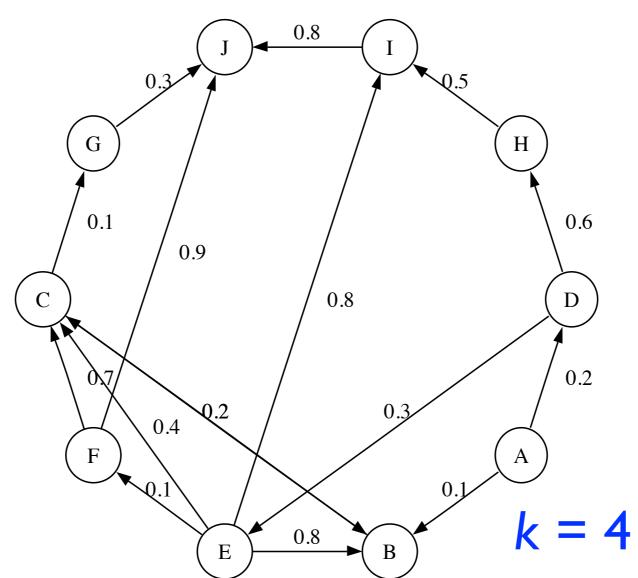
Gradient Descent Equations

$$\frac{\partial \mathcal{H}}{\partial U_i} = \alpha_r \sum_{j=1}^n I_{ij}^R g'(U_i^T Q_j) (g(U_i^T Q_j) - r_{ij}^*) Q_j + \alpha_u U_i,$$

$$\frac{\partial \mathcal{H}}{\partial Q_j} = \sum_{k=1}^p I_{jk}^S g'(Q_j^T L_k) (g(Q_j^T L_k) - s_{jk}^*) L_k$$

$$+ \alpha_r \sum_{i=1}^m I_{ij}^R g'(U_i^T Q_j) (g(U_i^T Q_j) - r_{ij}^*) U_i + \alpha_q Q_j,$$

$$\frac{\partial \mathcal{H}}{\partial \mathcal{H}} = \sum_{i=1}^n Q_i = T_i$$


$$\frac{\partial \mathcal{H}}{\partial L_k} = \sum_{j=1} I_{jk}^S g'(Q_j^T L_k) (g(Q_j^T L_k) - s_{jk}^*) Q_j + \alpha_l L_k,$$

Only the *Q* matrix, the queries' latent features, is being used to generate the query similarity graph!

Query Similarity Graph

- Similarities are calculated using queries' latent features
- Only the top-k similar neighbors (terms) are kept

Similarity Propagation

- Based on the Heat Diffusion Model
- In the query graph, given the heat sources and the initial heat values, start the heat diffusion process and perform *P* steps
- Return the Top-N queries in terms of highest heat values for query suggestions

Heat Diffusion Model

- Heat diffusion is a physical phenomena
- Heat flows from high temperature to low temperature in a medium
- Heat kernel is used to describe the amount of heat that one point receives from another point
- The way that heat diffuse varies when the underlying geometry varies

$$\rho C_P \frac{\partial T}{\partial t} = Q + \nabla \cdot (k \nabla T)$$

Density

 $\frac{\partial T}{\partial t}$

k

 C_P Heat capacity and

constant pressure

Change in temperature

over time

- *?* Heat added
 - Thermal conductivity
- T Temperature gradient
- $' \cdot \mathbf{v}$ Divergence

Heat Diffusion Process

Similarity Propagation Model

$$\frac{f_{i}(t + \Delta t) - f_{i}(t)}{\Delta t} = \alpha \left(-\frac{\tau_{i}}{d_{i}} f_{i}(t) \sum_{k:(q_{i},q_{k})\in E} w_{ik} + \sum_{j:(q_{j},q_{i})\in E} \frac{w_{ji}}{d_{j}} f_{j}(t) \right) (\mathbf{I})$$

$$\mathbf{f}(1) = e^{\alpha \mathbf{H}} \mathbf{f}(0) \qquad (\mathbf{2})$$

$$\mathbf{H}_{ij} = \begin{cases} w_{ji}/d_{j}, & (q_{j},q_{i})\in E, \\ -(\tau_{i}/d_{i})\sum_{k:(i,k)\in E} w_{ik}, & i=j, \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathbf{f}(1) = e^{\alpha \mathbf{R}} \mathbf{f}(0), \quad \mathbf{R} = \gamma \mathbf{H} + (1 - \gamma) \mathbf{g} \mathbf{1}^{T} (\mathbf{4})$$

- α Thermal conductivity
- $\begin{array}{ll} d_i & \text{Heat value of node } i \\ & \text{at time } t \end{array}$
- $f_i(t)$ Heat value of node iat time t
- w_{ik} Weight between node *i* and node *k*
- $\mathbf{f}(0)$ Vector of the initial heat distribution
- f(1) Vector of the heat distribution at time 1
 - au_i Equal to 1 if node *i* has outlinks, else equal to 0
 - $\begin{array}{ll} \gamma & \text{Random jump parameter,} \\ & \text{and set to } 0.85 \end{array}$
 - **g** Uniform stochastic distribution vector

Discrete Approximation

- Compute $e^{\alpha \mathbf{R}}$ is time consuming
- We use the discrete approximation to substitute

$$\mathbf{f}(1) = \left(\mathbf{I} + \frac{\alpha}{P}\mathbf{R}\right)^{P}\mathbf{f}(0)$$

- For every heat source, only diffuse heat to its neighbors within *P* steps
- In our experiments, P = 3 already generates fairly good results

Query Suggestion Procedure

- For a given query **q**
- I. Select a set of n queries, each of which contains at least one word in common with q, as heat sources
- 2. Calculate the initial heat values by

$$f_{\hat{q}_i}(0) = \frac{|\mathcal{W}(q) \cap \mathcal{W}(\hat{q}_i)|}{|\mathcal{W}(q) \cup \mathcal{W}(\hat{q}_i)|}$$

- 3. Use $\mathbf{f}(1) = e^{\alpha \mathbf{R}} \mathbf{f}(0)$ to diffuse the heat in graph
- 4. Obtain the Top-N queries from $\mathbf{f}(1)$

Physical Meaning of α

- If set α to a large value
 - The results depend more on the query graph, and more semantically related to original queries, e.g., travel => lowest air fare
- If set α to a small value
 - The results depend more on the initial heat distributions, and more literally similar to original queries, e.g., travel => travel insurance

Experimental Dataset

Data Source	Clickthrough data from AOL search	After Pre- Processing
Collection Period	March 2006 to May 2006 (3 months)	
Lines of Logs	19,442,629	
Unique user IDS	657,426	192,371
Unique queries	4,802,520	224,165
Unique URLs	1,606,326	343,302
Unique words		69,937

Pre-processing

- Computer set-up Intel Pentium D CPU, 3.0 Gz, Dual Core with IG memory
- Keep valid words which contains only 'a', 'b',..., 'z' and spaces
- Remove those queries which appear less than three times

Query Suggestions

Table 2: Examples of LSQS Query Suggestion Results (k = 50)

			Suggestions			
Testing Queries	$\alpha = 10$			$\alpha = 1000$		
	Top 1	Top 2	Top 3	Top 4	Top 5	
michael jordan	michael jordan shoes	michael jordan bio	pictures of michael jordan	nba playoff	nba standings	
travel	travel insurance	abc travel	travel companions	hotel tickets	lowest air fare	
java	sun java	java script	java search	sun microsystems inc	virtual machine	
global services	0	global technical services	staffing services	temporary agency	manpower professional	
walt disney land	world of disney	disney world orlando	disney world theme park	disneyland grand hotel	disneyland in california	
intel	intel vs amd	amd vs intel	pentium d	pentium	$\operatorname{centrino}$	
job hunt	jobs in maryland	monster job	jobs in mississippi	work from home online	monster board	
photography	photography classes	portrait photography	wedding photography	adobe elements	canon lens	
internet explorer	ms internet explorer	internet explorer repair	internet explorer upgrade	microsoft com	security update	
$_{\rm fitness}$	fitness magazine	lifestyles family fitness		womens health magazine	family fitness	
m schumacher	schumacher	red bull racing	formula one racing	ferrari cars	formula one	
solar system	solar system project	solar system facts	solar system planets	planet jupiter	mars facts	
sunglasses	replica sunglasses	cheap sunglasses	discount sunglasses	safilo	marhon	
search engine	audio search engine	best search engine	search engine optimization	song lyrics search	search by google	
disease	grovers disease	liver disease	morgellons disease	colic in babies	oklahoma vital records	
pizzahut	pizza hut menu	pizza coupons	pizza hut coupons	papa johns pizza coupon	papa johns	
health care	health care proxy	universal health care	free health care	great west healthcare	uhc	
flower delivery	global flower delivery	online florist	flowers online	send flowers	virtual flower	
wedding	wedding guide	wedding reception ideas	wedding decoration	unity candle	centerpiece ideas	
astronomy	astronomy magazine	astronomy pic of the day	star charts	space pictures	comet	

Comparisons

Table 3: Comparisons between LSQS and SimRank

	Top 1	Top 2	Top 3	Top 4	Top 5
		jaguar			
LSQS	jaguar cat	jaguar commercial	jaguar parts	jaguarundi	leopard
SimRank	american black bear	bottlenose dolphin	leopard	margay	jaguarundi
apple					
LSQS	apple computers	apple ipod	apple diet	apple vacations	apple bottom
SimRank	ipod troubleshooting	apple quicktime	apple ipods	apple computers	apple software

Table 4: Accuracy Comparisons

Accuracy	LSQS	$\mathbf{SimRank}$
By Experts	0.8413	0.7101
By ODP	0.6823	0.5789

ODP, Open Directory Project, see http://dmoz.org

Impact of Parameter k

To test the extend of similarity needed

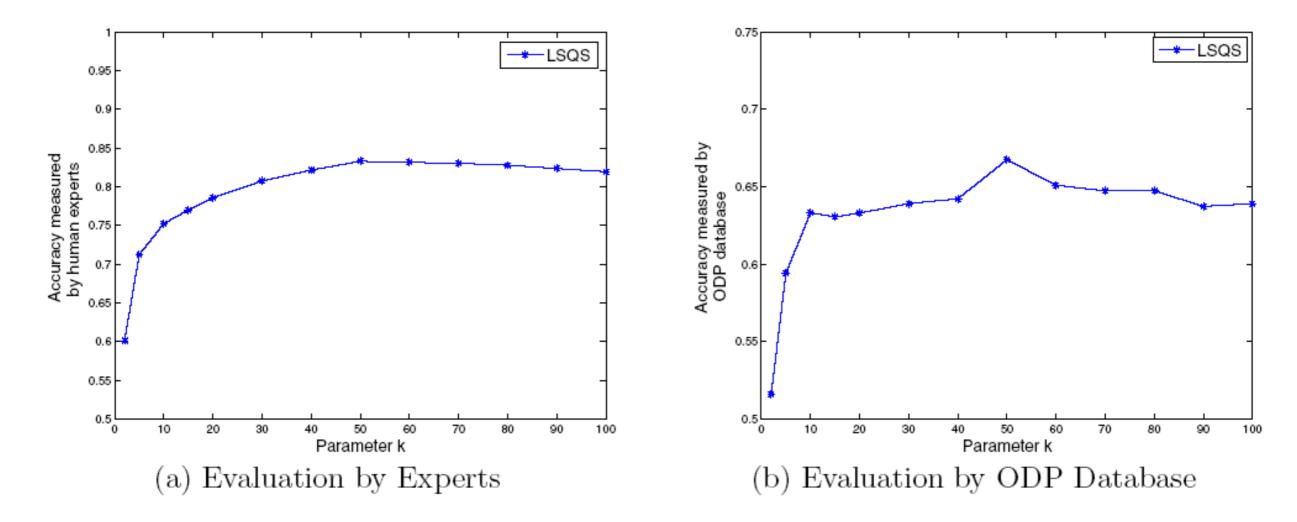


Figure 2: Impact of Parameter k (P = 3)

Impact of Parameter P

To test the propagation influence

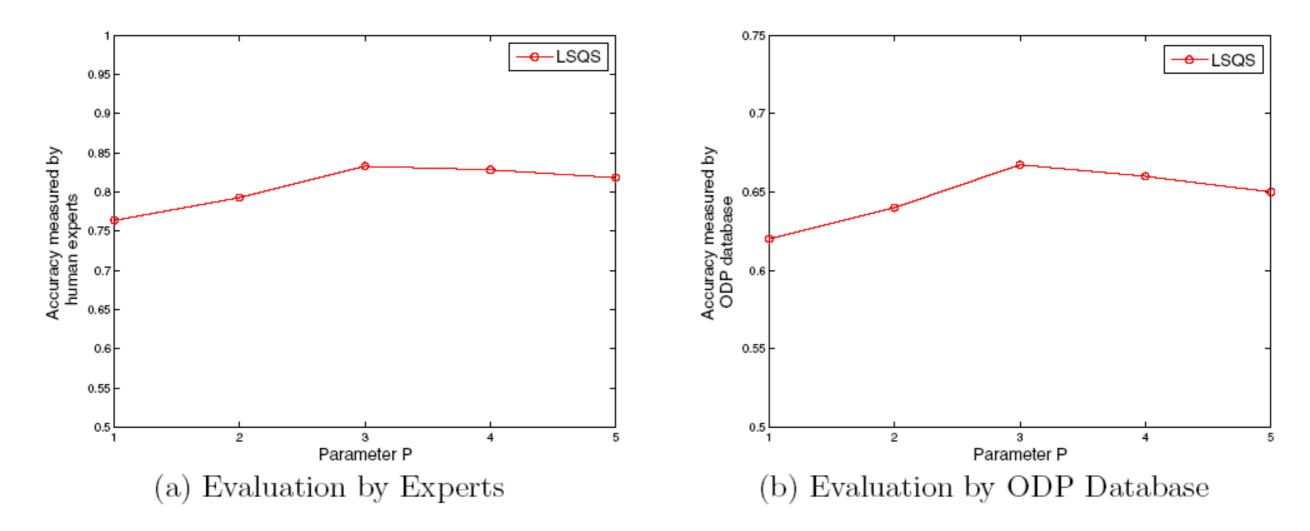


Figure 3: Impact of Parameter P (k = 50)

Efficiency Analysis

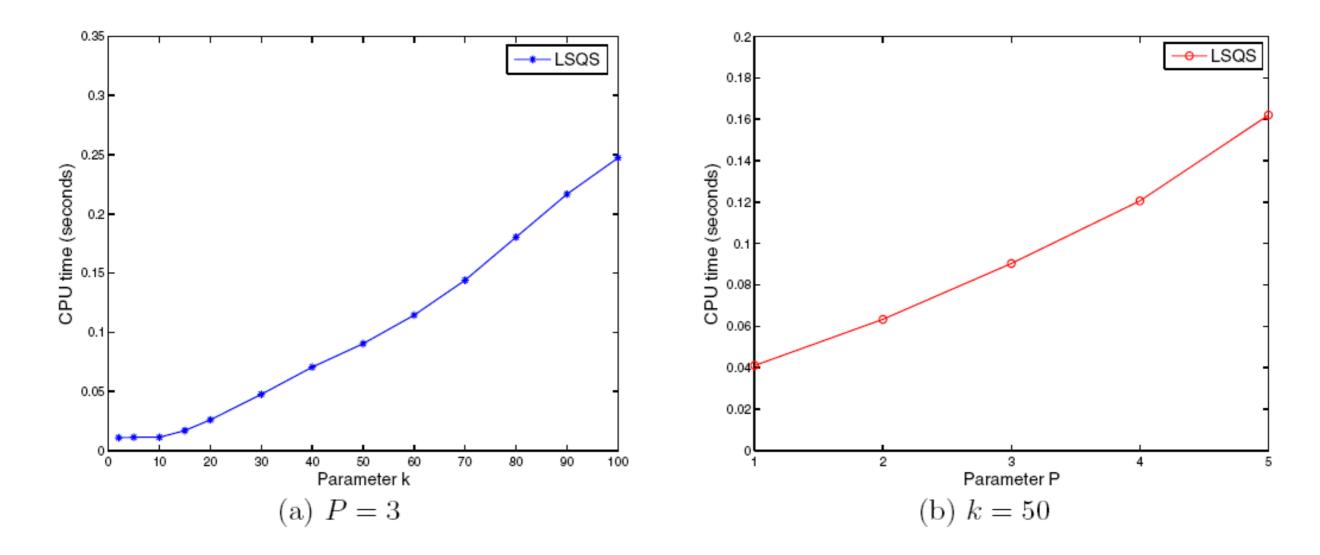


Figure 4: Efficiency Analysis

Complexity Analysis

• Complexity of the gradient descent calculation of function ${\cal H}$ is

$$\frac{\partial \mathcal{H}}{\partial U}$$
, $\frac{\partial \mathcal{H}}{\partial Q}$, and $\frac{\partial \mathcal{H}}{\partial L} = O(\rho_R d)$, $O(\rho_R d + \rho_S d)$, and $O(\rho_S d)$

Complexity of the heat diffusion method is

 $O(h \cdot k^3)$

References

- S. Cucerzan and R.W.White. Query suggestion based on user landing pages. In SIGIR, pages 875–876, 2007.
- H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Query expansion by mining user logs. IEEE Trans. Knowl. Data Eng., 15(4):829–839, 2003.
- W. Gao, C. Niu, J.-Y. Nie, M. Zhou, J. Hu, K.-F. Wong, and H.-W. Hon. Cross-lingual query suggestion using query logs of different languages. In SIGIR, pages 463–470, 2007.
- R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitutions. In L. Carr, D. D. Roure, A. Iyengar, C.A. Goble, and M. Dahlin, editors, WWW, pages 387–396. ACM, 2006.
- H. Ma, H. Yang, I. King, and M. R. Lyu. Learning latent semantic relations from clickthrough data for query suggestion. In CIKM, pages 709–718, 2008.
- Q. Mei, D. Zhou, and K.W. Church. Query suggestion using hitting time. In CIKM, pages 469–478, 2008.
- J. Xu and W. B. Croft. Query expansion using local and global document analysis. In SIGIR, pages 4–11, 1996.

Quick! What's another word for Thesaurus?

http://www.blifaloo.com/humor/thesaurus.php

Q & A

