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Here we propose a score-informed monaural source separation system to extract every » Source separation problem 2 (t
tone from a mixture of piano tone signals. Two sinusoidal models in our earlier work are » To extract every tone from a mixture of piano tone signals. %1 (tn)
employed in the above-mentioned system to represent piano tones: the General Model » Major difficulty is to resolve overlapping partials, e.g. octaves. MY
and the Piano Model. The General Model, a variant of sinusoidal modeling, can represent a Pressing the keys Tone1 |@
single tone with high modeling quality, yet it fails to separate mixtures of tones due to the simultaneously ,
overlapping partials. The Piano Model, on the other hand, is an instrument-specific model Y& R2(tn)
tailored for piano. Its modeling quality is lower but it can learn from training data ))) > > M}MW —» Sj‘;‘:;‘;i‘zn o
(consisting entirely of isolated tones), resolve the overlapping partials and thus separate o P Tone 2 °
the mixtures. We formulate a new hierarchical Bayesian framework to run both Models in i h Key Key Key Microphone "‘::X:gf
the source separation process so that the mixtures with overlapping partials can be » Given't _‘."t 123 _ 9 .
separated with high quality. The results show that our proposed system gives robust and » Scored-informed. Pitch and duration of each tone in the mixture are known. X3(tn)
accurate separation of piano tone signal mixtures (including octaves) while achieving » Training data. The pitches in the mixture should reappear as isolated tones L
significantly better quality than those reported in related work done previously. in the target recording. These isolated tones serve as the training data. Tone 3 [

» Without pedaling. Both mixture and training data are performed without pedaling.

General Model (GM) Piano Model (PM)
» Frame-wise sinusoidal model to represent piano tones [SW13a]. » Sinusoidal model to represent piano tones in an entire duration Source
» The estimated kth tone at rth frame [SW13b]. The estimated kth tone --

A M . o _ Mk .
Xk,r [l] = mk=1 W[l] (ak,m,r COS(Zﬂfk,mtl) + ﬁk,m,r Sln(ZT[fk,mtl))- Xk (tn) - Zm=1 a(tn’ ks ‘Pk,m) ) COS(Zﬂfk.mtn + ¢k,m) where Envelope
. . R K . a(t,; cy, =b c,.)3km expf—A, .t} — Invariant ~ Parameters
» The estimated mixture at rth frame §,.[[] = Zk_lxk,r [1]. ( '% k ‘p’;"g dk'm( ) {bgk'mgi p{/l k’"i n PM Prm To be .
. i ) . - - . EXPL—Yk,mlns) aNd QPrm = k,mr Ak,ms Ak,ms- i i en
» The estimated mixture in the matrix form Y = HG where H is the _ _ R K para{;‘,eters Fre‘jﬁ‘enc'es estimated
frequency matrix, and G is the amplitude matrix. » The estimated mixture §(t,) = Zk=1xk(tn — Tk)- ! Phas;m¢
. km
» Goal: To estimate the GM parameters ©,, = {H, G} of the mixture y. » Goal: To estimate the PM parameters W and ¥, y. Varying PN _ Intensity c;
» The overlap-and-add method is used to reconstruct the entire » Invariant PM parameters ¥y are invariant to instances of the same pitch.  parameters Timeshift ~ Given estTi?nZ‘:ed
signal from GM » Varying PM parameters ‘Py,W may vary across instances. Y, v Tx
» Pro: High modeling quality, » Pro: Able to resolve overlapping partials.

» Con: Unable to resolve overlapping partials (H is rank-deficient). » Con: Medium modeling quality.

The Bayesian framework Training and source separation

» The hierarchical Bayesian framework first runs PM and then GM inthe  » Training stage. Given the training data X, find the most probable value of the invariant PM parameters @; of
source separation process so that the mixtures with overlapping p (] X0).

partials can be separated with high quality. » Source separation stage. Given the mixture y, the training data X and the invariant PM parameters ¥,

» If overlapping partials are present, the frequency matrix H in GM is source separation functions in two steps:
rank-deficient and there are many peaks in the likelihood function. » Source separation with PM. Given y and W, find the most probable value of the varying PM parameters "I:'W of

» Given the estimated PM parameters and the training data, we can set p(Pyvly, Pp).
the prior distributions of the GM parameters to favor the proper » Source separation with GM. Giveny, X, ®, y and Wy, estimate the prior distribution p(0,|X, ®, y, ;) and find the MAP

regions of values. solution of the GM parameters @y ofp(®y|Y, X, ‘T’y,v, ‘T’n). Estimating the GM parameters under the Bayesian

— — — — framework is called Bayesian General Model (Bayes-GM).
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This schematic diagram shows that an appropriate prior gives the desirable MAP solution.

Data set and experimentalsetup  _§  __ Resuts

» The data set contains 25 mixtures. Each mixture was generated by mixing the » Evaluation on modeling quality

isolated tones in the recorded piano databases (RWC and [SW13b]), taken from 4 » The quality to represent an isolated tone before mixing.

different pianos. » Average SNRs of PM and Bayes-GM: 11.15 dB and 17.38 dB. Average SNR: Bayes-GM is much higher than PM.
» The pitches in each mixture correspond to a chord randomly selected from 11 » Comparing with other systems for separation quality

piano pieces in the RWC database. » Li’s system [LWWO09] assumes that the amplitude envelope of each partial from the same note tends to be
» The number of tones (represented by K) in the mixtures ranges from 1 to 6. similar (known as common amplitude modulation (CAM)).

» 1 tone (8 mixtures), 2 tones (6), 3 tones (5), 4 tones (4), 5 tones (1) and 6 tones (1). » Both PM and Bayes-GM outperform Li’s system.
» These 25 mixtures consist of 62 tones. 7 mixtures contain one pair of octaves, 2 > Asignificant improvement is in the octave cases. o 1

(K = 5and K = 6) contain 2 pairs of octaves. _ % i’ 10
» For the training data, two instances of each pitch are available. | EESE L %
» The first 0.5 seconds of the mixtures and the training data were used. All mixtures 1088 1351 6.63 %ﬁ € 5 E

2<K<6 10.97 13.15 540 EP=—"—— ¢ —— PM .
» SNR = 1010g10(2n Xp (tn)?/ Zn(xk (tn) — X (tn))z) K =5 11.08 11.57 017 K=5K=6 < “i" Eaves-GM ‘ ____________ -
» Demo: http://www.cse.cuhk.edu.hk/~khwong/www2/conference/ismir2015/ismir2015.html K=6 13.39 15.43 1.74 0 y I2 3 — ; 5
Upper tones in octaves 10.95 12.77 1.57 Number of tones K
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