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Abstract—In sinusoidal modeling, a musical sound is repre-
sented by a sum of time-varying sinusoidals. Here, we propose
a sinusoidal model specifically designed for piano tones and
develop an iterative method to estimate the parameters of the
model. Our model assumes the following: (1) the input signals
are isolated piano tones, and (2) there may be more than one
instances of the same pitch. We also have designed a spectral
pick-peaking method to estimate the number of partials and the
partial frequencies of piano tones. Experiments on real piano
signals show that our model gives high modeling quality and
yields better quality in modeling than those reported in the
previous work.

Index Terms—Music signal processing, sinusoidal modeling,
piano sound.

I. INTRODUCTION

In sinusoidal modeling, a musical sound is represented
by a sum of time-varying sinusoidals. Sinusoidal modeling
is effective for the sounds generated from pitched musical
instruments such as piano because the vibrating system of a
pitched instrument vibrates at the resonant frequencies. The
goal of sinusoidal modeling is to estimate the parameter values
of each sinusoidal. Sinusoidal modeling is widely used in the
applications of signal analysis, music synthesis, audio effects,
audio coding, music transcription and music source separation
[1], [2]. Here, we propose a sinusoidal model specifically
designed for piano tones and develop an iterative method to
estimate the parameters of the model. In particular, we are
interested in applying sinusoidal modeling to address the prob-
lems of music source separation of piano music signals. This
paper is our preliminary work towards building a complete
music source separation system for extracting individual tones
from a mixture of piano tones.

There is numerous work using sinusoidal modeling to
address the problems of monaural music source separation [3],
[4], [5], [6], [7], [8], [9]. In our project, we make use of the
fact that the input signals are piano sounds. This allows us to
design a piano-specific sinusoidal model with high modeling
quality. Moreover, in piano music, a particular pitch rarely
appears only once. The tones of the same pitch share the same
frequency structure which can be captured by our sinusoidal
model. In this paper, we work on the following problem:
given instances of isolated piano tones with the same pitch,
the task is to estimate the parameters in our sinusoidal model
which represents these tones. The pitch of these tones has been

known in advance. It can be obtained by using pitch detection
algorithms [2].

The rest of the paper is organized as follows. Section II-A
gives a brief overview of sinusoidal modeling of music signals.
The properties of piano sounds, which is essential in designing
a piano-specific sinusoidal model, will be covered in Section
II-B. Our proposed sinusoidal model, will be presented in
Section III. Then, the parameter estimation will be examined
in Section IV. In Section V, we will present the experimental
results of our sinusoidal model on real piano signals and
compare our model to another model. A conclusion will be
given in Section VI.

II. BACKGROUND

A. Sinusoidal modeling

For a music signal, due to its time-varying property, it is
commonly analyzed in short-time segments called frames [2].
The duration of a frame is usually from 10 ms to 100 ms.
Each segment is multiplied by a window function to smooth
the boundaries across frames. A musical sound x is segmented
into frames as below:

xr[l] = w[l]x[(r − 1)D + l] (1)

where xr[l] is the rth frame at the local time index l where l =
0, 1, . . . L−1 and L is the window length, w[l] is the window
function, and D is the hop size. The typeface x denotes the
entire piano tone while the typeface x refers to the windowed
segment of a frame.

The signal of a frame can be represented by sinusoidal
modeling which uses a sum of sinusoidals to represent the
signal. Sinusoidal modeling is a well-established technique to
model audio signals including speech signals [10] and music
signals [1]. A frame-wise sinusoidal model of a musical sound
x̂r at the rth frame can be written as below:

x̂r[l] =

Mr∑
m=1

w[l] (αm,r cos(2πfm,rtl) + βm,r sin(2πfm,rtl))

(2)
where Mr is the number of sinusoidals, αm,r is the amplitude
of the cosine component, βm,r is the amplitude of the sine
component, fm,r is the frequency, tl is the time in seconds at
the index l so tl = l/fs and fs is the sampling frequency
in Hz. In sinusoidal modeling, the parameters Mr, αm,r,



βm,r and fm,r are usually fixed within a frame but they
can be different across frames. This models the time-varying
properties of music signals. To reconstruct or resynthesize the
entire signal from the sinusoidal model, the parameter values
between two frames can be estimated by some interpolation
methods such as [10]. Another reconstruction approach is to
overlap and add all estimated signals in the frames [2].

B. Properties of piano tones

When a piano key is pressed, the hammer hits the strings
of the corresponding key. Then the strings vibrate and the
energy transfers from strings to the soundboard, and the sound
radiates from the soundboard. The resulting sound can be
analyzed by using the spectrogram which shows how the
spectrum changes along the time. The spectrogram of a C4
piano tone is depicted in Figure 1. The spectrogram shows
that the piano tone consists of its frequency components
and noise. The frequency components, also called partials,
correspond to the resonance frequencies of the strings. The
frequency values of the partials in piano tones are stable
against time and also instances. In piano sound, the partials of
a tone are usually not exactly harmonic. If the partials are
exactly harmonic, the frequencies of the partials are exact
multiples of the fundamental frequency, and the frequency
ratios between the partials are 1 : 2 : 3 : 4 : 5 and so on.
For piano tones, the frequency ratios are slightly stretched.
The frequency ratios of the first five partials in Figure 1 are
1.0000 : 2.0000 : 3.0033 : 4.0075 : 5.0163. This phenomenon
is called inharmonicity and it is caused by the bending stiffness
of the strings [11]. Inharmonicity is perceptually significant
for the sound quality of pianos [11] so harmonicity cannot
be assumed for modeling piano tones. The spectrogram also
shows that the amplitude of each partial is time-varying. It
generally follows a rapid rise and then a slow decay.

Figure 1. Spectrogram of a C4 piano tone played moderately loud.

III. SIGNAL MODEL

According to previous section, the frequencies of the partials
for a piano tone are stable so the frequencies can be fixed
across frames. The number of partials can also be fixed for
a tone. Moreover, in piano music, a particular pitch rarely
appears only once. The tones of the same pitch share the same
partial frequencies. Then the problem of sinusoidal modeling
is formulated as follows: given multiple instances of isolated
piano tones with the same pitch, the task is to estimate the
parameters in our sinusoidal model which represents isolated
piano tones. We introduce the instance index i and rewrite the
model in (2) with fixed partial frequencies across frames and
instances:

x̂i
r[l] =

M∑
m=1

w[l]
(
αi
m,r cos(2πfmtl) + βi

m,r sin(2πfmtl)
)
(3)

where M is the number of partials, fm is the frequency of the
mth partial, and αi

m,r and βi
m,r are the amplitudes of the mth

partial of the ith instance at the rth frame. For the window
function w, the hamming window is used in this research. The
number of partials M of each pitch is assumed to be fixed.
The estimation of the number of partials will be discussed in
Section IV-A.

Then the observed tone is the sum of the estimated tone
and the noise term:

xi
r[l] = x̂i

r[l] + vir[l] (4)

where vir[l] is the noise component.
To estimate the parameters in each frame of an instance, it

is convenient to rewrite the model in (3) as the matrix form.
Let H be the frequency matrix of the piano tone and it is an
L-by-2M matrix in the form of

H[l, u] =

{
w[l] cos(2πfutl) if 1 ≤ u ≤M,

w[l] sin(2πfu−M tl) if M + 1 ≤ u ≤ 2M
(5)

so the matrix H contains two blocks. The left and right blocks
contain the cosine and sine terms respectively.

The amplitudes of the cosine and sine terms of the ith in-
stance at the rth frame can be expressed as a 2M -dimensional
vector gi

r as below

gir[u] =

{
αi
u,r if 1 ≤ u ≤M,

βi
u−M,r if M + 1 ≤ u ≤ 2M

(6)

which gives gi
r =

[
αi
1,r · · · αi

M,r βi
1,r · · · βi

M,r

]T
.

The estimated tone x̂i
r of the ith instance at the rth frame

can be written as
x̂i
r = Hgi

r. (7)

A series of x̂i
r at different frames can be written in the

matrix form X̂i which is the concatenation of the column
vectors x̂i

r so that X̂i =
[
x̂i
1 · · · x̂i

Ri

]
where x̂i

r is the rth
column of X̂i, X̂i is an L×Ri matrix and Ri is the number



of frames in the ith instance. Then the signal model in (7) is
rewritten as

X̂i = HGi (8)

where the matrix Gi is the amplitude matrix of the ith instance
and it is the concatenation of the column vectors gi

r so that
Gi =

[
ĝi
1 · · · ĝi

Ri

]
where ĝi

r is the rth column of Gi and
Gi is a 2M ×Ri matrix.

The estimated X̂i is related to observed Xi in the form of

Xi = X̂i +Vi (9)

where Vi is the noise matrix of the ith instance and each
element in Vi is modeled as the zero-mean Gaussian noise
with the variance σ2

V i . The noise variance σ2
V i is modeled to

be the same for all frames for simplicity, but each instance
has its own noise variance. The noise variances are grouped
into the noise variance vector σ2

V = [σ2
V 1 · · · σ2

V I ]
T.

All instances of X̂i in (8) can be written as

X̂ = HG (10)

where X̂ =
[
X̂1 · · · X̂I

]
and G =

[
G1 · · · GI

]
. The size

of the matrix X̂ is L×R and that of the matrix G is 2M ×R
where R =

∑I
i=1 R

i.
The goal of the parameter estimation is to estimate both the

frequency matrix H and the amplitude matrix G so that X̂
can be found and each instance can be reconstructed.

IV. PARAMETER ESTIMATION

A. Estimation of the number of partials
In the sinusoidal model, we have assumed that the number

of partials M of each tone is known. In this section, we
will show how M can be found. The values of M are
different for different pitches. Lower pitch usually has more
partials than the higher. In some research such as [4], [12],
M is dynamically estimated. However, this estimation is very
computationally intensive. As we have already known that the
signals are piano sounds, we estimate the average number of
partials required for each pitch from different pianos. Once M
for each pitch is determined, it will be fixed for all experiments
in Section V.

For each instance of tones with the same pitch, we estimate
the frequency values of partials up to fs/2 where fs is the
sampling frequency. The frequency estimation is done by our
proposed spectral peak-pick method tailored for piano tones.
Then we choose the number of the partials that contains 99.5%
of the power of all partials picked.

The steps for picking the spectral speaks are described
below:

1) Perform Discrete Fourier Transform (DFT) of a tone.
2) Find the first partial (fundamental frequency) f1:

a) Set fmid
1 to the equal-tempered fundamental fre-

quency of the pitch. For example, fmid
1 of the pitch

A4 is 440 Hz.
b) Set f1 to the frequency corresponding to the peak

of the magnitude spectrum in the frequency range
[2−1/48fmid

1 , 21/48fmid
1 ].

3) Set the inharmonicity coefficient B(0) = 0 which is
defined in (11) and (12).

4) Find fm for m ≥ 2 where fm is the frequency of the
mth partial:

a) Find fmid
m by

fmid
m = mf1

√
1 +m2B(q)

1 +B(q)
(11)

which is the general formula to model the inhar-
monicity effect for pianos [13, p. 363]. A typical
value for the inharmonicity coefficient B is 0.0004
in the middle range of piano keys.

b) Set fm to the frequency corresponding to the peak
of the magnitude spectrum in the frequency range
[2−1/48fmid

m , 21/48fmid
m ]. If 21/48fmid

m > fs/2, set
the upper bound to fs/2.

5) Update B

Bu =
(fu/uf1)

2 − 1

u2 − (fu/uf1)
2 (12)

Set B(q+1) to the median of all Bu for 1 ≤ u ≤ m.
6) Repeat the steps 4-5 until fmid

m > fs/2 so the frequencies
of all partials can be estimated.

B. Finding the initial guess of frequencies by peak-picking

The method of estimating both the frequency matrix H
and the amplitude matrix G, which will be discussed in the
next section, starts with an initial guess of the partial frequen-
cies. This initial guess can be found by using the frequency
estimation method in Section IV-A. Given an instance xi,
we first find the frequency spectrum by DFT, the peaks are
chosen by the iterative method described in Section IV-A. The
locations of the peaks are a set of frequencies {f i

m,PP} where
m = 1, . . . ,M . The initial guess of a partial frequency for
extracting a partial is the average of the frequency from peak-
picking of all instances. This gives the initial guess in the
form

f (0)
m =

1

I

I∑
i=1

f i
m,PP (13)

which will be used as the input for the extraction of partials
described in the next section.

C. Estimation of the frequency vector f and the amplitude
matrix G

The matrix X̂ is governed by the amplitude matrix G
and the frequency matrix H which depends on the frequency
vector f where f = [f1 · · · fM ]T. The goal of the parameter
estimation is to estimate f , G and σ2

V . The weighted least-
squares method is used to estimate these parameters. The
weights are the inverse of the noise variances σ2

V i . The
objective function to be minimized is written as

E(f ,G,σ2
V ) =

I∑
i=1

1

σ2
V i

∣∣∣∣∣∣Xi − X̂i
∣∣∣∣∣∣2
F

(14)



where || · ||F denotes the Frobenius norm. The summation
operation in (14) can be expressed in matrix form. Let ΣV be
the covariance matrix so that

ΣV = diag(σ2
V 11LR1 , . . . , σ2

V I1LRI ) (15)

where 1LRi denotes the LRi-dimensional column vector filled
with 1’s. Then (14) can be presented as

E(f ,G,σ2
V ) =

∣∣∣∣∣∣Σ−1/2
V

(
Xvec − X̂vec

)∣∣∣∣∣∣2 . (16)

In [14], an iterative least-squares scheme is developed to
alternatively update the frequencies and the amplitudes in the
general sinusoidal model in (2) for one single frame. Based on
this scheme, we propose a scheme to handle the frames of all
instances together by using iterative-reweighted least-squares
in [15], [16] to minimize the objective function in (16). The
minimization is achieved via the procedures summarized in
Figure 2:

1) Given f , update G.
2) Given f and G, update σ2

V .
3) Given G and σ2

V , update f .
4) Repeats steps 1 to 3 until convergence.

The iterative update starts with the input frequencies f (0)

found in (13) which are estimated by the peak-picking method
described in Section IV-B. We find that 100 iterations are good
for convergence. In the followings, each step will be discussed
in details.

Figure 2. The procedures of the parameter estimation.

1) Step 1: update the amplitude matrix G: In Step 1, the
frequency matrix H is calculated from f by (5). Given H and
the observed tones X, the sinusoidal model becomes a linear
model. Then the solution to (14) for updating G is

G← (HTH)HTX. (17)

Note that the noise variances σ2
V are not involved in updating

G because given H, each X̂i has its independent Gi.
2) Step 2: update the noise variances σ2

V : Given the
updated G in Step 1, the new estimate X̂ can be calculated
by

X̂← HG. (18)

Then each noise variance σ2
V i is estimated as follows

σ2
V i ←

1

LRi

∣∣∣∣∣∣Xi − X̂i
∣∣∣∣∣∣2
F
. (19)

3) Step 3: update the frequencies f : Given the updated G
and σ2

V , the aim is to update the frequency vector f . However,
the sinusoidal model is nonlinear with f . The nonlinear model
can be linearized by using Taylor’s expansion. In [14], [17], a
single frame of the sinusoidal model, in which X, X̂ and G
are only vectors instead of matrices, is linearized by Taylor’s
expansion. The Gauss-Newton method is used to update f .
Based on these work, we derive the update equation using
the weighted least-squares for f . The derivation involves two
steps. The first step is to vectorize the matrix X̂ and the second
step is to linearize the vectorized X̂.

The matrix equation X̂ = HG can be converted into a
vector equation by the vec operator [18, p. 428] and the
Kronecker product [18, p. 422]. We rewrite X̂ = HG as

X̂ = HGIR (20)

where IR is an R×R identity matrix. Vectorizing both sides
of (20) gives

X̂vec = vec(HGIR). (21)

Using the identity of the Kronecker product in [18, p. 429],
(21) can be written as a vector equation

X̂vec = (IR ⊗H)Gvec (22)

which is equivalent to

x̂1
1

x̂1
2
...
x̂i
r
...

x̂I
RI


︸ ︷︷ ︸

X̂vec

=



H 0 · · · 0 · · · 0
0 H 0
...

. . .
...

0 H 0
...

. . .
...

0 0 · · · 0 · · · H


︸ ︷︷ ︸

(IR⊗H)



g1
1

g1
2
...
gi
r
...

gI
RI


︸ ︷︷ ︸

Gvec

Note that each subvector x̂i
r in X̂vec is in the form x̂i

r = Hgi
r

which matches (7).
In the next step of the derivation, X̂vec is linearized by using

Taylor’s expansion so that

X̂vec(f) ≈ X̂vec(f
cur) + Z(f cur) (f − f cur) (23)



where f cur is the current estimate of the frequencies, f is
the vector of new frequencies to be estimated, and Z(f cur)
is Jacobian matrix evaluated at f cur and Z is in the form

Z =
∂X̂vec

∂f

=

[
∂x̂1

1

∂f

∂x̂1
2

∂f
· · · ∂x̂i

r

∂f
· · ·

∂x̂I
RI

∂f

]T
=

[
Z1

1 Z1
2 · · · Zi

r · · · ZI
RI

]T
(24)

where we let Zi
r = ∂x̂i

r/∂f and Zi
r is the L ×M Jacobian

matrix at the rth frame of the ith instance. An element Zi
r[l,m]

in Zi
r is

Zi
r[l,m] =

∂X̂i[l, r]

∂fm
= 2πtlw[l](−αi

m,r sin(2πfmtl) + βi
m,r cos(2πfmtl)).

(25)

Then Z can be computed from (25).
Using the results in [17, pp. 226, 260], the update equation

of f is

f ← f + (ZTΣ−1
V Z)−1ZTΣ−1

V (Xvec − X̂vec) (26)

in which Gauss-Newton method is used and where ΣV is the
covariance matrix in (15).

4) Summary of the parameter estimation: Here is the
summary of all update equations. The update starts with the
input frequencies f (0) defined in (13).

1) Given f , update G. Calculate H from f . Then

G← (HTH)HTX. (27)

2) Given f and G, update X̂ and σ2
V

X̂← HG (28)

σ2
V i ←

1

LRi

∣∣∣∣∣∣Xi − X̂i
∣∣∣∣∣∣2
F
. (29)

3) Given G and σ2
V , update f

f ← f + (ZTΣ−1
V Z)−1ZTΣ−1

V (Xvec − X̂vec) (30)

where Z is the Jacobian matrix and ΣV is the covariance
matrix.

4) Repeats steps 1 to 3 for 100 iterations. The outputs of the
extraction of partials are the frequencies f̂ , the amplitude
matrix Ĝ and the noise variances σ̂2

V .

V. EXPERIMENTS

A. Estimation of the number of partials

The piano tone database in [19] is used for estimating
the number of partials M as described in Section IV-A. The
database contains piano tones from 7 different pianos. Note
that this database will only be used in estimating M and it will
not be used in evaluating the performance of our sinusoidal
model in the next section. After picking all the partials, we
choose the number of the partials that contains 99.5% of the
power of all partials picked on average. The result is shown
in Figure 3.

Figure 3. The number of partials M of each pitch.

B. Evaluation on modeling quality

Experiments were performed to test the modeling quality
of our sinusoidal model. All data used in the experiments are
real signals of piano tones and they are not synthetic. Another
piano tone database from four different pianos were used
in our experiments. Three of the pianos are from the RWC
musical instrument sound database [20] including the grand
pianos of Steinway & Sons, Bösendorfer and Yamaha. The
remaining piano is a Yamaha Disklavier DU1A upright piano,
Mark III series of which we created a piano tone database.
Each piano key was played at three different levels of loudness
(soft, medium and loud) for each piano. Hence, three instances
of each pitch were obtained for each piano. Before performing
our experiments, we aligned the instances of a pitch from the
same piano in phase by using the cross-correlation method in
the following steps:

1) The instance with the medium loudness was selected to
be a reference. The onset of the instance was detected
by the onset algorithm in [21] and was fine-tuned in
our user interface developed in Matlab c⃝. This made the
instance to start at time zero.

2) Other instances of the pitch were aligned in phase
by time shifting the instances to maximize the cross-
correlation between the instances and the reference
instance. This alignment also made all instances to start
at time zero.

All tones in the piano tone database, including the RWC
database and our database, were downsampled from 44.1 kHz
to 11.025 kHz for faster processing. The first 0.5 second of
the tones were used in the experiments.

In the first experiment, there were 62 pitches randomly
selected from 11 piano pieces in the RWC music database
including the databases of classical music, jazz music and
music genre [20]. For each of these pitches, two instances of
different loudness levels were randomly selected from one of
the four pianos in the piano tone database described previously.
Hence, the number of instances I is equal to 2 and there



were 124 tones for evaluation. The parameter setting for
our sinusoidal model is that the window length is 11.61 ms
(L = 128) with 50% overlapping window.

The performance of our sinusoidal model is evaluated by
the signal-to-noise ratio (SNR) which is defined by

SNR = 10 log10

∑
n x(tn)

2∑
n(x(tn)− x̂(tn))2

(31)

where x(tn) is the isolated piano tone in the time domain and
x̂(tn) is the estimated tone in the time domain. The estimated
tone is reconstructed from X̂ by using the overlap-and-add
method in [2]. Higher SNR means higher quality of estimated
signals. The result shows that the average SNR of all the 124
tones is 17.62 dB which reflects a high modeling quality.

We also compared our sinusoidal model to a system of
monaural source separation (Li’s system) in [8] which is also
based on sinusoidal modeling. The implementation of Li’s
system is provided by the authors. All the 124 isolated tones in
the previous experiment were inputted to Li’s system to test the
modeling quality without any mixing. The true fundamental
frequency of each tone was supplied to Li’s system. The result
is shown in Table I. Our model performs better than Li’s
system for the average SNR.

Average SNR (dB)
Proposed Li

All 124 tones 17.62 14.84
Table I

COMPARISON OF OUR PROPOSED SINUSOIDAL MODEL AND LI’S SYSTEM.

VI. CONCLUSIONS AND DISCUSSIONS

Here, we have proposed a sinusoidal model specifically
designed for piano tones and have developed an iterative
method to estimate the parameters of the model. Our model
assumes the following: (1) the input signals are isolated piano
tones, and (2) there may be more than one instances of the
same pitch. Based on this formulation, we have developed a
sinusoidal model with fixed partial frequencies across frames
and instances. We also have designed a spectral pick-peaking
method to estimate the number of partials and the partial
frequencies of piano tones. Experiments show that our model
performs well and gives better modeling quality than those
reported in the previous work.

This paper is our preliminary work towards building a com-
plete music source separation system for extracting individual
tones from a mixture of piano tones. One of the challenges
in this project is to resolve the overlapping partials. We will
try to make use of the input signals known to be piano and
multiple instances of the same pitch to resolve the overlapping
partials.
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