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ABSTRACT

Many existing monaural source separation systems use sinusoidal
modeling to represent pitched musical sounds during the sepa-
ration process. In these sinusoidal modeling systems, a musical
sound is represented by a sum of time-varying sinusoidal compo-
nents, and the goal of source separation is to estimate the parame-
ters of each component. Here, we propose an instrument-specific
sinusoidal model tailored for a piano tone. Based on our proposed
Piano Model, we develop a monaural source separation system to
extract each individual tone from mixture signals of piano tones
and at the same time, to identify the intensity and adjust the onset
of each tone for characterizing the nuance of the music perfor-
mance. The major difficulty of the source separation problem is
to resolve overlapping partials. Our solution collects the training
data from isolated tones to train our Piano Model which can cap-
ture the common properties across the reappearance of pitches that
helps to separate the mixtures. This approach enables high separa-
tion quality even for the case of octaves in which the partials of the
upper tone completely overlap with those of the lower tone. The
results show that our proposed system gives robust and accurate
separation of piano tone signal mixtures (including octaves), with
the quality significantly better than those reported in the previous
work.

1. INTRODUCTION

Many existing monaural source separation systems use sinusoidal
modeling to model pitched musical sounds [1, 2, 3, 4, 5]. In si-
nusoidal modeling, a musical sound is represented by a sum of
time-varying sinusoidals. Sinusoidal modeling is effective for the
sounds generated from pitched musical instruments such as piano
because the vibrating system of a pitched instrument vibrates at
the resonant frequencies. The goal of source separation based on
sinusoidal modeling is to estimate the parameter values of each
sinusoidal. Here, we propose an instrument-specific sinusoidal
model tailored for a piano tone. Based on our proposed Piano
Model (PM), we develop a monaural source separation system to
extract each individual tone from mixture signals of piano tones.
Specifically, tone extraction can be facilitated by estimating the
parameters in PM. In addition to source separation, PM can facil-
itate the analysis of nuance in an expressive piano performance.
Nuance can be defined as the subtle differences in manipulation
of sound parameters including attack, timing, pitch, loudness and
timbre that makes the music sound alive and human [6]. A major
obstacle to a computational analysis of musical nuances is that it is
often difficult to uncover relevant sound parameters from mixture

signals. This problem can be formulated as a source separation
problem.

The major difficulty of the source separation problem is to re-
solve overlapping partials. As music is usually not entirely dis-
sonant, it is common that some partials from different tones may
overlap with each other. For example, octave intervals often appear
in piano music. For an octave mixture, the frequencies of the upper
tone are totally immersed within those of the lower. Overlapping
partials cause a serious problem in separation because a sum of two
partials with the same frequency also gives a sinusoidal with that
same frequency; there are infinite ways to generate the resulting
sinusoidal, so the amplitude and the phase of an overlapped partial
cannot be uniquely determined and the overlapping partials cannot
be resolved. Hence, we cannot recover the original two partials if
only the resulting sinusoidal is given.

In the existing systems, assumptions are made to resolve over-
lapping partials according to the general properties of pitched mu-
sical sounds. For example, the spectral envelope of tones is as-
sumed to be smooth (as in [1, 3]). The information of neighboring
non-overlapping partials can also be utilized to estimate the pa-
rameters of an overlapping partial. Another assumption is that the
amplitude envelope of each partial from the same note tends to
be similar [4]. This is known as common amplitude modulation
(CAM). Non-overlapping partials are used to estimate the overlap-
ping partials of the same note by the property of CAM. However,
these assumptions may not be suitable for the source separation
of piano mixtures. For a piano tone, the spectral envelope may
not be smooth. Moreover, there may be lack of neighboring non-
overlapping partials. For example, the partials of the upper tone
in an octave are totally immersed within the frequencies of the
lower tone. In such cases, spectral smoothness and CAM cannot
be applied. Moreover, the assumption in CAM may not be applied
to piano sounds. In Figure 2 (c), the amplitude envelopes of the
same note are not similar. Harmonic Temporal Envelope Similar-
ity (HTES) tries to these problems by assuming that the amplitude
envelope of a partial evolves similarly among different notes of the
same musical instrument [5]. Overlapping partials of a note are re-
constructed by the non-overlapping partials of another note. How-
ever, the amplitude envelopes can vary significantly across pitches
in a piano [7]. Thus, HTES may not resolve the overlapping par-
tials of piano tones accurately.

Instead of formulating assumptions from the general proper-
ties of musical sounds, we make use of the fact that the input mix-
tures in question are piano music signals. This allows us to design
an instrument-specific model for the piano sound to accurately re-
solve overlapping partials. In piano music, a particular pitch rarely
appears only once. The tones of the same pitch share some com-
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Figure 1: The main steps of our source separation process.

mon characteristics which can be captured by PM. In particular,
we consider the case when the pitches in the mixtures reappear as
isolated tones in the target recording, and when the piano music
is performed without pedaling. The isolated tones are used as the
training data to train PM. This approach enables high separation
quality even for the case of octaves in which the partials of the
upper tone completely overlap with those of the lower tone.

The goals of our source separation system are to separate each
individual tone from the mixture signal and at the same time, to
identify the intensity and adjust the onset of each tone for charac-
terizing the nuance of the music performance. The intensity and
fine-tuned onset of a tone will be defined in Section 2.2. The main
steps in our source separation system are depicted in Figure 1. The
whole separation process is divided into the training stage and the
source separation stage. In the training stage, the inputs are the
isolated tones from the target recording being investigated. The
parameters in PM are estimated. PM contains two sets of param-
eters. (i) One set contains parameters invariant to instances of the
same pitch in the recording. (ii) Another set consists of param-
eters which may vary across instances. The goal of the training
stage is to estimate the invariant model parameters so that they can
be used in the source separation stage. If the invariant PM param-
eters of a mixture are known, only the varying PM parameters are
required to be estimated. In the source separation, the varying PM
parameters, which include the intensity and fine-tuned onsets, are
estimated. Signals of the individual tones in the mixtures can be
reconstructed by PM.

The rest of the paper is organized as follows. Our proposed
Piano Model with the properties of piano tones will be presented
in Section 2. Then, parameter estimations in the training stage
and the source separation will be examined in Sections 3 and 4
respectively. Section 5 will show the experimental results of our
source separation process on real piano signals including octaves
and compare our system to another system. A conclusion will be
given in Section 6.

2. SIGNAL MODEL

In this research, an individual tone (the sound of hitting one pi-
ano key) is considered as a particular sound source of the corre-
sponding pitch. When multiple piano keys are pressed, a mix-
ture signal is generated. We model a mixture signal as a sum
of its corresponding individual tones that can be expressed as
y(t) =

∑K
k=1 xk(t) where y(t) is the observed mixture signal in

the time domain, K is the number of tones in the mixture, xk(t) is
the kth individual tone in the mixture, and t is the time in seconds.
This model is called instantaneous linear mixing in the literature of
general source separation. The pitch of each xk(t) is given. This

Figure 2: Extracted partials of a C4 piano tone. The partials are
extracted by using the method in [11] with time-varying frequen-
cies. (a) The frequencies of the first nine partials against time. (b)
The amplitude of the first nine partials against time. The partial
index one corresponds to the fundamental frequency. (c) The am-
plitude of the first six partials against time. (d) The unwrapped
phase of the first six partials against time.

information can be obtained by using music transcription systems
[8]. The goal of our research is to recover the signal of each indi-
vidual tone xk(t) from the mixture signal y(t). For a piano tone,
it consists of a set of time-varying sinusoidals. We use a sum-of-
sinusoidal model to represent xk(t) - our proposed Piano Model
(PM). PM can capture the common properties across the reappear-
ance of pitches that helps to separate the mixtures. The model is
formulated according to the properties of piano tones.

2.1. Properties of piano tones

A piano tone consists of its frequency components and noise. The
frequency components, also called partials, are usually dominat-
ing over the noise and are stable against time. In piano sound,
the partials of a tone are usually not exactly harmonic. This phe-
nomenon is called inharmonicity and it is perceptually significant
for the sound quality of pianos [9]. Hence, the assumption of har-
monicity cannot be taken for modeling piano tones. The amplitude
of each partial generally follows a rapid rise and then a slow de-
cay. The rapid rise is the building up of the sound. The slow decay
is the damping of the sound and it is exponential-like [10]. Note
that each partial has its own rate of rising and decaying. The peaks
of the partials exhibit a general trend that a higher partial has a
weaker peak than a lower partial but there are irregularities. For
the piano tone in Figure 2 (b), the fundamental frequency has the
highest peak. The third partial is stronger than the second and the
fifth is stronger than the fourth. Figure 2 (d) shows the unwrapped
phase against time. The unwrapped phase is linear and the partials
can be considered as linear-phase signals.

2.2. Proposed Piano Model

Here, we propose PM to resolve the overlapping partials by ex-
ploring the common properties of recurring tones. PM employs
a time-varying sum-of-sinusoid signal model for piano tones, and
it describes a tone in an entire duration instead of a single analy-
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Figure 3: Envelope surface against peak amplitude of the time-
domain signal and time.

sis frame. For each partial, we aim to model the envelope surface
against intensity and time. The intensity of a tone can be mea-
sured by the peak amplitude of its time-domain signal. When the
key pressing velocity increases, the peak amplitude also increases
up to the physical limit of the piano [12]. The envelope surfaces of
the first, second, seventh and eighth partials are plotted in Figure
3. The surface is constructed from the extracted partials of the C4
tones from the same piano played with 12 hitting strengths. The
partial amplitude and the peak amplitude of the time-domain signal
are plotted in the scale that the maximum possible peak amplitude
of all input wave files is one.

It is observed that the same partial from various instances of
the pitch exhibits a similar shape of rising and decay. When the
peak amplitude of the signal increases, the whole partial is also
scaled up smoothly. However, this scaling is not the same for all
partials. The fact is that a loud note is not a linear amplification
of a soft note. High frequency partials are boosted significantly
when the key is hit heavily due to nonlinear material property of
the piano hammer [9, 7].

In PM, the values of certain parameters do not change across
instances of the same pitch. Parameters in the model are divided
into two sets: the invariant PM parameters (such as frequencies of
partials) and the varying PM parameters (such as the strength of
striking a piano key). The invariant PM parameters can be learned
from recurring occurrences of the same pitch. The learning process
will be fully discussed in Section 3. PM is expressed as below:

x̂k(tn) =

Mk∑
m=1

ak,m(tn) · cos(2πfk,mtn + φk,m) (1)

whereMk is the number of partials of the kth tone, fk,m and φk,m
are the frequency and the phase of the mth partial in the kth tone
respectively, and ak,m(tn) is the time-varying amplitude of the
partial and it is modeled as a bi-exponential mixture with a nonlin-
ear scaling factor:

ak,m(tn) =a(tn; ck,ϕk,m) (2)

=bk,m · (ck)dk,m

· ζk,m · (exp {−λk,mtn} − exp {−γk,mtn}) (3)

where bk,m is the relative amplitude of the mth partial; dk,m con-
trols the significance of the intensity factor ck; λk,m is the de-
cay rate; γk,m is the rising rate and γk,m > λk,m. These en-
velope parameters are grouped into the parameter set ϕk,m =
{bk,m, dk,m, λk,m, γk,m}. The intensity factor ck is assigned to
be the peak amplitude of the observed time-domain signal of the
tone. All αk,m, βk,m, γk,m, λk,m are positive. The term ζk,m is
the coefficient to normalize the peak of the bi-exponential function
(exp {−λk,mtn} − exp {−γk,mtn}) to one in order to stabilize
the optimization process in the parameter estimation. The term
ζk,m depends on λk,m and γk,m:

ζk,m =

(λk,m
γk,m

) λk,m
γk,m−λk,m

−
(
λk,m
γk,m

) γk,m
γk,m−λk,m

−1

(4)

where the derivation of the normalization coefficient is shown in
Appendix.

Substituting (2) into (1), we write the estimated signal of a
tone in the form

x̂k(tn) =

Mk∑
m=1

a(tn; ck,ϕk,m) · cos(2πfk,mtn + φk,m). (5)

The onset of each tone in the mixture may not be exactly the
same so a time-shift factor is introduced for each tone in the esti-
mated mixture ŷ(tn):

ŷ(tn) =

Mk∑
k=1

x̂k(tn − τk) (6)

where τk is the time shift in seconds. The estimated mixture is
related to the observed mixture as below:

y(tn) = ŷ(tn) + ε(tn) (7)

where ε(tn) is the noise term.
All parameters of PM for the kth tone can be grouped into

a parameter set ψk so ψk = {ϕk,m, fk,m, φk,m, ck, τk} which
can be divided into two sets: the invariant PM parameters ψk,I =
{ϕk,m, fk,m, φk,m} and the varying PM parameters ψk,V =
{ck, τk}. The invariant PM parameters contain parameters invari-
ant to instances of the same pitch in the recording. The varying PM
parameters consist of parameters which may vary across instances.
All ψk can be grouped into Ψ = {ψ1, . . . ,ψK}.

The role of the invariant PM parameters ψk,I and the varying
PM parameters ψk,V is shown in Table 1. The key idea is that
the invariant PM parameters are estimated from the training data.
Given a mixture, only the varying PM parameters of the mixture
are required to be estimated. Note that the varying PM parameters
including the intensity and the time shift are significant for charac-
terization of musical nuance. As mentioned before, when the key
pressing velocity increases, the peak amplitude of the tone in the
time domain also increases. Hence, the peak amplitude of the tone
can be used as the intensity factor so that the intensity of a tone
can be found. The inputs of our source separation system are the
mixtures with the onsets detected by a music transcription system.
However, existing music transcription systems may not be able to
estimate the onsets accurately, and the individual tones in a mix-
ture may not start to sound exactly at the same time. The time shift
can be used to obtain the fine-tuned onsets by adding the time shift
to the detected onset.
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Training Source
separation

Envelope

Given

Invariant parameters
PM ϕk,m = {bk,m, To be

parameters dk,m, λk,m, γk,m} estimated
ψk,I Frequencies fk,m

Phases φk,m
Varying Intensity ck

GivenPM To be
parameters Time shift τk

estimated
ψk,V

Table 1: Invariant PM parameters and varying PM parameters.

In PM, we have assumed that the number of partials Mk of
each tone is known. The values of Mk are different for differ-
ent pitches. Lower pitched tones usually have more partials than
the higher pitched tones. In some research such as [2, 13], Mk is
dynamically estimated. However, this estimation is very computa-
tionally intensive. As we know that the mixtures are piano signals,
we predetermine Mk. For each pitch in a piano database, we have
chosen the number of the partials that contains 99.5% of the power
of all partials on average. Note that this database will only be used
in estimating Mk and it will not be used in evaluating the perfor-
mance of our source separation system described in Section 5. The
number of partials Mk is fixed for all experiments. The details of
finding Mk can be found in [11].

3. TRAINING: PARAMETER ESTIMATION

This section will show how to use the training data to train our
proposed Piano Model (PM). The goal of the training stage is to
estimate the invariant PM parameters given the training data. The
major difficulty of estimating the invariant PM parameters is that
PM in (5) is nonlinear. A good initial guess, which is close to
the optimal solution, is crucial for accurately estimating the pa-
rameters. The procedures for finding a good initial guess will be
discussed in Sections 3.2 and 3.3. The main idea is to extract the
partials of each isolated tone in the training data, so that the initial
guess for the PM parameters for each partial can be found indepen-
dently. Before discussing how to find the initial guess, the problem
of estimating the invariant PM parameters will be formulated first.

3.1. Problem formulation for training

The goal of the training stage is to estimate the invariant PM pa-
rameters ΨI from the training data X by finding Ψ̂I that maxi-
mizes the likelihood p(X |ΨI). The invariant PM parameters ΨI
are divided into K sets so ΨI = {ψ1,I, . . . ,ψK,I}. Each ψk,I
corresponds to the invariant PM parameters of the pitch pk. The
maximum likelihood solution of ΨI is defined as Ψ̂I. Note that
each Xk is generated independently from others and Xk only de-
pends on ψk,I. This implies that maximizing p(X |ΨI) can be
done by maximizing each p(Xk|ψk,I) independently. Then the
training process is performed pitch-by-pitch and each Xk is pro-
cessed independently. Each Xk may contain more than one in-
stance. We introduce the index i to denote the quantities associated
with the ith instance and i = 1, . . . , Ik. In this section, the index k

is omitted for brevity. Hence,Xk is rewritten asX = {x1, . . . , xI}
and ψk,I is rewritten as ψI.

Each tone xi is represented by its PM estimate x̂i. Adding the
instance index i, we rewrite PM in (3) and (5) into

x̂i(tn) =

M∑
m=1

a(tn; ci,ϕm) · cos(2πfmtn + φm) (8)

where n = 0, . . . , N i− 1 and N i is the length of x̂i. The variable
ci is the intensity factor which is equal to the peak amplitude of the
time-domain signal xi so ci is known. Following (6), the observed
tone xi and the estimated tone x̂i are related by

xi(tn) = x̂i(t) + εi(tn) (9)

where εi(tn) is the noise term which is modeled as the zero-mean
Gaussian noise with the variance σ2

εi . Note that the time shift fac-
tor τ i in (6) is omitted by setting τ i = 0. It is because each xi is an
isolated tone so its onset can be detected by using onset detection
algorithms or manually annotated. Then xi can be adjusted to start
from the time zero.

In summary, the invariant PM parameters ψI =
{ϕm, fm, φm} are estimated in the training stage. The varying
PM parameters ψV = {ci, τ i} are given. The likelihood p(X|ψI)
is rewritten as p(X|ψI,σ

2
ε) to include the noise variances σ2

ε

where σ2
ε = {σ2

ε1 , . . . , σ
2
εI}. The likelihood p(X|ψI,σ

2
ε) is

expressed in the form

p(X|ψI,σ
2
ε) =

I∏
i=1

1(
2πσ2

εi

)Ni/2 exp

{
− 1

2σ2
εi

‖ xi − x̂i ‖2
}
.

(10)
The goal of the training stage is to find the optimal solution

ψ̂I. As PM is a nonlinear model, a good initial guess, which is
close to the optimal solution, is crucial for accurately estimating
the parameters. The initial guess is obtained by the following pro-
cedures:

1. Extract the partials from each xi by using the method in
[11]. (Section 3.2)

2. Given the extracted partials, find the initial guess of ψI for
PM. (Section 3.3)

3. Given the initial guess of ψI, find the optimal solution ψ̂I
for PM. (Section 3.4)

3.2. Extraction of partials with the General Model

In [11], we propose a framewise sinusoidal model, called General
Model (GM), to represent piano tones by extracting the partials. In
GM, a framewise sinusoidal model of the ith instance of a particu-
lar pitch x̂ir at the rth frame is represented by a sum of sinusoidals.
Here we converted the polar form in [11] into

x̂ir[l] =

M∑
m=1

w[l]
(
aim,r,GM cos

(
2πfm,GMtl + φim,r,GM

))
(11)

where M is the number of partials, fm,GM is the frequency of the
mth partial and it is fixed across frames and instances, aim,r,GM and
φim,r,GM are the amplitude and the phase of the mth partial of the
ith instance at the rth frame respectively, tl is the time in seconds
at the index l where l = 0, . . . L − 1 and L is the window length,
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and tl = l/fs and fs is the sampling frequency in Hz. Note that
the typeface x denotes the entire piano tone while the typeface x
refers to the windowed segment of a frame. The problem of sinu-
soidal modeling in GM is formulated as follows: given multiple
instances of isolated piano tones with the same pitch, the task is
to estimate the parameters in GM which represents isolated piano
tones. The observed tone, which is the sum of the estimated tone
and the noise term, is expressed as xir[l] = x̂ir[l] + vir[l] where
vir[l] is the noise term and it is modeled as the zero-mean Gaussian
noise with the variance σ2

V i . The noise variance is the same for all
frames for simplicity, but each instance has its own noise variance.

The extraction of partials with GM in [11] gives an estimate
of the frequency f̂m,GM of a partial, the amplitude âim,r,GM and the
phase φ̂im,r,GM of a partial for each frame, and the noise variance
σ̂2
V i . These estimates will be used to find the initial guess of each

partial for PM. The initial guess for frequency f̂ (0)
m is f̂m,GM while

the initial guess for the envelope parameters ϕm, the phase φm
and the noise variance σ2

ε will be discussed below.

3.3. Finding the initial guess for the Piano Model

3.3.1. Finding the initial guess ϕ(0)
m

The initial guess of the envelope parameters in PM is found by
fitting the envelope function to the amplitudes of each frame from
GM. Let t′r be the time at the center of the rth frame so that

t′r = ((r − 1)D + 0.5L) /fs (12)

where D is the hop size in samples. Define the envelope func-
tion at the center of the rth frame as aim,r(ϕm) = a(t′r; c

i,ϕm)
where a(·) is the envelope function defined in (3), and the inten-
sity ci, which is the peak amplitude of observed tone xi in the time
domain, is already known. Fitting aim,r(ϕm) with âim,r,GM using
weighted least-squares, we have the objective function

Eϕ(ϕm) =

I∑
i=1

Ri∑
r=1

1

σ̂2
V i

(
âim,r,GM − aim,r(ϕm)

)2
(13)

where the weights are the inverse of the variances σ̂2
V i . The ob-

jective function Eϕ can be minimized by using the trust-region-
reflective algorithm implemented in Matlab c©. Ten starting points
are randomly generated to minimize Eϕ. The best solution which
gives the smallest Eϕ will be chosen as the initial guess ϕ(0)

m for
estimating the PM parameters.

3.3.2. Finding the initial guess φ(0)
m

The phase φ̂im,r,GM in GM is the initial phase at the beginning of a
frame. In order to perform fitting as finding the initial guess ϕ(0)

m ,
the phase φ̂im,r,GM is shifted to the center of a frame. The centered
phase φ̂i,cent

m,r,GM is in the form

φ̂i,cent
m,r,GM = f̂mL/fs + φ̂im,r,GM. (14)

The objective function for finding the initial guess φ(0)
m is also

in the form of weighted least-squares which gives

Eφ(φm) =

I∑
i=1

Ri∑
r=1

1

σ̂2
V i

·

(
âim,r,GM cos(φ̂i,cent

m,r,GM)− âim,r,GM cos
(

2πf̂mt
′
r + φm

))2
(15)

where âim,r,GM cos(φ̂i,cent
m,r,GM) is the partial generated by the GM

estimate, and âim,r,GM cos
(

2πf̂mt
′
r + φm

)
is the partial gener-

ated by PM. The weights are also the inverse of the variances σ̂2
V i .

The objective function Eφ is again minimized by using the trust-
region-reflective algorithm. There are 30 starting points randomly
generated as Eφ is more sensitive to the starting points than Eϕ.
The best solution will be chosen as the initial guess φ(0)

m .

3.4. Parameter estimation of the Piano Model

For efficient computation, the maximum likelihood solution of ψI
will be approximated by the weighted least-squares solution. As-
suming that the noise variance in PM is directly proportional to
that in GM, this means that σ2

εi ∝ σ2
V i so the noise variance σ2

εi

in PM can be replaced by the noise variance σ̂2
V i in GM. Note that

the value of σ̂2
V i is fixed for finding ψ̂I. Replacing σ2

εi by σ̂2
V i and

omitting the constant terms, we can rewrite (10) as the following
objective function

Etrain(ψI) =

I∑
i=1

(
1

2σ̂2
V i

∣∣∣∣∣∣xi − x̂i
∣∣∣∣∣∣2) . (16)

Given the initial guess ψ(0)
I = {ϕ(0)

m , f̂
(0)
m , φ

(0)
m } for all m in

PM, parameter estimation of PM can be done by minimizing the
objective function Etrain in (16) by using the trust-region-reflective
algorithm. The outputs are the estimated invariant PM parameters
ψ̂I which will be used in the source separation process.

4. SOURCE SEPARATION: PARAMETER ESTIMATION

Given the invariant PM parameters Ψ̂I estimated in the previous
section and the mixture y, we perform the source separation by es-
timating the varying PM parameters Ψy,V for the mixture y. The
varying PM parameters Ψy,V include the intensity ck and the time
shift τk for each kth tone in the mixture. The output of this stage
is the estimated varying PM parameters Ψ̂y,V which maximize the
likelihood function of Ψy,V. With Ψ̂I and Ψ̂y,V in PM, the sig-
nals of each individual tone in the mixture can be reconstructed by
using PM.

The noise term ε(tn) in (7) is modeled as the zero-mean Gaus-
sian noise. Hence, the maximization of the likelihood is equivalent
to the minimization of the least-squares errors. Then given the
mixture y and the estimated invariant PM parameters Ψ̂I, the ob-
jective function for source separation with PM is

Esep(Ψy,V) = ||y − ŷ(Ψy,V)||2 . (17)

The goal of source separation with PM is to find the varying PM
parameters Ψ̂y,V which minimizeEsep in (17). The objective func-
tion Esep,PM can be minimized by using the trust-region-reflective
algorithm. There are 100 starting points randomly generated to
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minimize Esep. The best solution, which gives the smallest Esep,
will be chosen as the estimated varying PM parameters Ψ̂y,V.

5. EXPERIMENTS

Experiments were performed to test the modeling and separation
qualities of PM. All data used in the experiments are real signals
of piano tones and they are not synthetic. The piano tones were
used to generate mixtures from musical chords which include oc-
taves. The generation of mixtures will be discussed in Section 5.1.
In Section 5.2, the experimental results will be presented. The
input mixtures of our experiments were generated by mixing iso-
lated tones from the recorded piano databases. So the ground truth
of these testing mixtures is known. Then our separation method
was applied to these mixtures to separate them into the individual
tones. The estimated tones were compared with the input isolated
tones for evaluation.

5.1. Piano tone database and generation of mixtures

Piano tones from four different pianos were used in our experi-
ments. Three of the pianos are from the RWC musical instrument
sound database [14] including the grand pianos of Steinway &
Sons, Bösendorfer and Yamaha. The remaining piano is a Yamaha
Disklavier DU1A upright piano, Mark III series of which we cre-
ated a piano tone database. Each piano key was played at three dif-
ferent levels of loudness (soft, medium and loud) for each piano.
Hence, three instances of each pitch were obtained for each piano.
Before performing our experiments, we aligned the instances of a
pitch from the same piano in phase by using the cross-correlation
method in [11]. All tones, including our database and the RWC
database, were downsampled to 11.025 kHz for faster processing.

In the experiments, there are 25 mixtures randomly selected
from 11 piano pieces in the RWC music database including the
databases of classical music, jazz music and music genre [14]. The
lists of all the piano pieces and mixtures are shown in Appendix.
The RWC database provides the MIDI files of the transcribed per-
formance of these pieces. We extracted all chords from the MIDI
files. A chord is a set of simultaneous pitches. These chords pro-
vide the pitch information for the mixtures. In order to measure the
performance of our proposed system in real music, we randomly
selected the 25 mixtures from the extracted chords according to the
distribution of the number of pitches in these chords. The number
of tones K in our selected mixtures are ranging from 1 to 6 with
the counts 8, 6, 5, 4, 1 and 1. The 25 mixtures consist of 62 tones.
There are 9 mixtures containing at least one pair of octaves. Two
of them (K = 5 and K = 6) contain 2 pairs of octaves.

The procedures of generating a mixture are shown below.
Each mixture was generated by mixing its individual tones. The
pitches of the tones in a mixture correspond to the pitches of a se-
lected chord. All tones in a mixture were randomly selected from
the isolated tones in one of the four pianos described before and
the individual tones in a mixture come from the same piano. The
choices of loudness of a tone in a mixture are soft, medium and
loud. The loudness of each tone was assigned according to the
MIDI velocity in the MIDI files. When a particular loudness of
the tone was selected, the remaining two instances were put in the
training data. Hence, the number of instances Ik is equal to 2.
Random time shifts were added to the isolated tones in the range
of −10 ≤ τ ≤ 10 ms before mixing to test whether the time shift
can be estimated in PM. A mixture was formed by a summation of

the selected time-shifted isolated tones. The first 0.5 second of the
mixtures and the training data were used in the experiments.

5.2. Results

5.2.1. Evaluation criteria

The performance of our source separation system is evaluated by
the signal-to-noise ratio (SNR) which is defined by

SNR = 10 log10

∑
n x(tn)2∑

n(x(tn)− x̂(tn))2
(18)

where x(tn) is the time-shifted isolated tone in the time domain
before mixing and x̂(tn) is the estimated tone in the time domain.
The estimated tone is reconstructed from PM. Higher SNR means
higher quality of estimated signals.

The musical nuance is related to the estimated intensity ĉk and
the estimated time shift τ̂k. These two parameters will also be
examined. As intensity is at a relative scale, the accuracy of the
estimated intensity is evaluated by the absolute error ratio

ERc =

∣∣∣∣ck − ĉkck

∣∣∣∣ (19)

where ck is intensity of the input isolated tone, and ĉk is the es-
timated intensity of the tone. Lower absolute error ratio means
higher accuracy of the estimated intensity.

The accuracy of the estimated time shift τ̂k is evaluated by the
absolute error

Errτ = |τk − τ̂k| (20)

where τk is the time shift of the input isolated tone in seconds, and
τ̂k is the estimated time shift of the tone. The input time shift τk
has been added to the isolated tones from the piano databases as
described in Section 5.1.

5.2.2. Evaluation on modeling quality

Before evaluating the separation quality, we first evaluate the mod-
eling quality, i.e. the quality of PM to represent an isolated tone
before mixing. PM was used to find the estimated signals of the
time-shifted isolated tones before the tones were mixed into mix-
tures. The modeling quality provides a benchmark for the source
separation experiments. We will compare the performance differ-
ence before and after mixing.

The procedures of evaluation on the modeling quality are
shown in Figure 4 (a). For each mixture in the 25 mixtures de-
scribed in Section 5.1, the individual tone of the mixture was se-
lected from the isolated tone in the piano databases. Then a ran-
dom time shift was added to each isolated tone, and the shifted
tones were inputted into our source separation system. The out-
puts of our system were the estimated tones reconstructed from
PM. The estimated tones were compared to the shifted tones to
evaluate the modeling quality. If the parameters obtained in PM
are accurate, they can regenerate the original shifted tones in high
quality. The average SNR (SNR) is 11.15 dB which is satisfactory.

5.2.3. Evaluation on separation quality

After evaluating the modeling quality, we evaluate the separation
quality, i.e. the quality of PM to separate a mixture into its indi-
vidual tones. Figure 4 (b) illustrates the procedures of evaluation
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Figure 4: The procedures of evaluation on (a) modeling quality for
a tone, and (b) separation quality for a mixture.

SNR (dB) ∆SNR (dB)
All mixtures 10.88 -
2 ≤ K ≤ 6 10.97 -0.31

Upper tones in octaves 10.95 -0.37

Table 2: The average SNR of the 25 mixtures. The number of tones
in a mixture is denoted by K. The column of SNR is the average
SNR in dB. The column of ∆SNR is the average SNR difference
between modeling and source separation.

on the separation quality for one mixture. The quality is evaluated
with one mixture at a time. The steps are similar to those in evalua-
tion on the modeling quality. The difference starts from the shifted
tones. In evaluating the separation quality, the shifted tones were
mixed into a mixture by summing these tones. Then the mixture
signal was inputted into our proposed source separation system.
The outputs of our system were the estimated tones reconstructed
from PM. The estimated tones were compared to the input shifted
tones to evaluate the separation quality.

For the 25 mixtures, the average SNR is 10.88 dB. The results
are shown in Table 2. PM is able to reconstruct the upper tone in an
octave. The partials of the upper tone in an octave are completely
overlapping with the lower tone. Hence, the overlapping partials
were successfully resolved. The average SNR may not completely
illustrate the separation quality because high average SNR may be
due to high modeling quality. To evaluate the separation quality
effectively, the average SNR difference is used. The SNR differ-
ence between the modeling benchmark in Section 5.2.2 and the
separation is defined by

∆SNR=(SNR from modeling)− (SNR from separation) (21)

which measures the drop of SNR from the modeling benchmark
to the separation result. The average SNR difference, which is the
average of ∆SNR of different cases, is shown in Table 2. The
average SNR difference is small. This means that PM is robust to
overlapping partials.

In addition to SNR, we also evaluate the separation result by
the average absolute error ratio of intensity and the average abso-
lute error of the estimated time shift for 2 ≤ K ≤ 6. The average

Average absolute error
ratio of intensity ERc

Intensity ck Peak from PM
2 ≤ K ≤ 6 0.074 0.222

Table 3: The average absolute error ratio of intensity ERc

SNR (dB)
PM Li

All mixtures 10.88 6.63
K = 2 11.76 12.07

2 ≤ K ≤ 6 10.97 5.40
Upper tones in octaves 10.95 1.57

Table 4: Comparison of Li’s system and our proposed system PM.

absolute error ratio of intensity ERc is shown in Table 3. The er-
ror ratio is 0.074 for estimating the intensity. As the intensity ĉk
is used to estimate the peak amplitude of the individual tone in a
mixture, the accuracy of ĉk is compared to the peak amplitude of
the estimated tones from PM. The average absolute error ratio of
ĉk is lower than that of PM. This is because the peak amplitude of
the estimated tones from PM depend on all estimated parameters.
In the other hand, the estimation of ĉk is only based on the enve-
lope function defined in (3) so the estimation of ĉk is less sensitive
to the estimation error arisen from phases. As a result, ĉk is more
robust to estimate the peak amplitude of an individual tone in a
mixture.

The average absolute error of the estimated time shift Errτ for
2 ≤ K ≤ 6 is only 3.16 ms so the estimated time shift can give an
accurate fine-tuned onset.

5.2.4. Comparison with other system

In a recent system of monaural source separation in [4], Li,
Woodruff and Wang built their system (Li’s system) based on the
principle of common amplitude modulation reviewed in Section 1.
We compared Li’s system to our proposed source system for all
mixtures. The implementation of Li’s system is provided by the
authors. The true fundamental frequency of each tone was sup-
plied to Li’s system. The result is shown in Table 4. Our system
performs better than Li’s system for the average SNR. A signifi-
cant improvement is in the octave cases as shown in the table. Li’s
system is unable to resolve the overlapping partials of the upper
tones in octaves. Our system can resolve those overlapping par-
tials. The average SNR against the number of tones K is plotted
in Figure 5. Although Li’s system performs well for the number
of notes equal to 1 or 2, the average SNR of Li’s system decreases
much more rapidly than our system. Our system can make use of
the training data to give higher separation quality.

Some audio files in the experiments are selected for the
demonstration purpose. They are available at
http://www.cse.cuhk.edu.hk/~khwong/www2/
conference/dafx13/c2013_dafx13_demo.zip.

6. CONCLUSIONS

In this paper, we have proposed a monaural source separation sys-
tem to extract individual tones from mixture signals of piano tones.

DAFX-7

http://www.cse.cuhk.edu.hk/~khwong/www2/conference/dafx13/c2013_dafx13_demo.zip
http://www.cse.cuhk.edu.hk/~khwong/www2/conference/dafx13/c2013_dafx13_demo.zip


Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

Figure 5: Average SNR against the number of tones K for our
system and Li’s system.

We designed a Piano Model (PM) based on a sum of sinusoidal
components to represent piano tones. Based on this PM model, the
system is able to resolve overlapping partials in the source separa-
tion process. The recovered parameters (frequencies, amplitudes,
phases, intensities and fine-tuned onsets) of partials are essential
for thorough signal analysis and characterizations of musical nu-
ances. The experiments show that our proposed PM method gives
robust and accurate results in separation of signal mixtures even
when octaves are included. The separation quality is significantly
better than those reported in the previous work. However, when
measuring modeling quality used for sound reproduction of iso-
lated tones, our approach is still inferior to other methods such as
the framewise model in [4]. Our future direction is to combine
these two methods: our PM and our framewise model in [11] by
using a hierarchical Bayesian framework to achieve better perfor-
mances both in source separation and in sound reproduction.
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Appendix
A. DERIVATION OF THE NORMALIZATION

COEFFICIENT IN THE PIANO MODEL

The peak of the bi-exponential mixture

(exp {−λk,mtn} − exp {−γk,mtn}) (1)

is normalized to by the normalization coefficient ζk,m:

ζk,m (exp {−λk,mtn} − exp {−γk,mtn}) . (2)

In this appendix, our goal is to find ζk,m. Let

zk,m = exp {−λk,mtn} − exp {−γk,mtn} . (3)

Differentiate both sides and give

dzk,m
dtn

= −λk,m exp {−λk,mtn}+ γk,m exp {−γk,mtn} . (4)

Set dzk,m
dtn

into zero, then

λk,m exp {−λk,mtn} = γk,m exp {−γk,mtn} . (5)

Taking natural logarithms of both sides and rearranging the
terms,

tn = ln

(
λk,m

γk,m

) 1
λk,m−γk,m

(6)

Substitute tn into zk,m in (3),

zk,m =

(
λk,m

γk,m

) λk,m
γk,m−λk,m

−
(
λk,m

γk,m

) γk,m
γk,m−λk,m

. (7)

Then

ζk,m =

(λk,m

γk,m

) λk,m
γk,m−λk,m

−
(
λk,m

γk,m

) γk,m
γk,m−λk,m

−1

(8)

The second derivative of zk,m is

d2zk,m
dt2n

= λ2
k,m exp {−λk,mtn} − γ2

k,m exp {−γk,mtn} (9)

which implies that the condition for the maximum value also re-
quires γk,m > λk,m.

B. LIST OF PIANO PIECES AND MIXTURES

No. Title Composer Style
1 Piano Sonata in A major,

K.331/300i, 1st mvt.
Mozart,
Wolfgang
Amadeus

Classical

2 Variations on Ah Vous
Dirai-je Maman,
K.265/300e

Mozart,
Wolfgang
Amadeus

Classical

3 Piano Sonata no. 23 in F
minor, op.57
Appassionata, 1st mvt.

Beethoven,
Ludwig van

Classical

4 Traumerei from Suite
Kinderszenen, op.15

Schumann,
Robert

Classical

5 Nocturne no.2 in E[
major, op.9 no.2

Chopin,
Frederic

Classical

6 Etude in E major, op.10
no.3

Chopin,
Frederic

Classical

7 La Campanella from
Grandes Etudes de
Paganini

Liszt, Franz Classical

8 Three Gymnopedies no.1 Satie, Erik Classical
9 Clair de Lune from Suite

Bergamasque
Debussy,
Claude

Classical

10 Jive (Piano Solo) Nakamura,
Makoto

Jazz

11 For Two (Piano Solo) Nakamura,
Makoto

Jazz

12 Lounge Away (Piano
Solo)

Nagai, Takao Jazz

Table 1: Piano pieces from RWC database [1] for generation of
mixtures.
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C. LIST OF MIXTURES

No. K Pitches Octave Loudness
1 1 G2 - L
2 1 D]3 - S
3 1 D5 - M
4 1 D3 - S
5 1 D]6 - M
6 1 E4 - L
7 1 F4 - M
8 1 C5 - L
9 2 D]4, B4 0 M, M

10 2 G]4, C5 0 M, M
11 2 C4, C5 1 M, M
12 2 A3, C]5 0 S, L
13 2 E4, F]5 0 S, L
14 2 C4, F4 0 M, L
15 3 A]4, A]5, C]6 1 M, M, M
16 3 G4, E5, F5 0 M, L, L
17 3 B2, A]3, D]4 0 M, L, M
18 3 B1, D]4, G]4 0 S, M, M
19 3 E3, C4, C6 1 M, M, L
20 4 D4, F4, A4, D5 1 L, L, L, L
21 4 C3, G3, E4, G4 1 S, M, M, M
22 4 D3, G3, D4, A]4 1 S, M, M, L
23 4 A3, C]4, F]4, F]5 1 S, M, M, L
24 5 C3, G3, C4, E4, G4 2 M, M, M, M, M
25 6 F]3, C4, F4, C5, D5, F5 2 M, M, L, L, M, M

Table 2: List of the 25 mixtures. Loudness: “S” is soft; “M” is
medium; and “L” is loud.
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