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Abstract—Edge detection is a fundamental problem in com-
puter vision and has been explored for many decades. Due
to the rapid development of machine learning techniques and
their applications to image processing, there is a proliferation
of neural network-based approaches to solve the edge detection
problem. These methods have good performance and even out-
perform human beings. Most of the existing neural network-
based systems use the convolutional network or its variant.
They usually produce thick edges and the application of non-
maximum-suppression to suppress the edge is necessary. In this
paper, we explore another type of neural network called the
conditional generative adversarial network (cGAN) to address
the edge detection problem. cGAN is an innovative framework
to do the image synthesis task. It can generate an image close
to the real one. After training, our network can produce an
edge map that contains more detailed information and thinner
edges compared to the state-of-the-art methods that require the
well-known non-maximum-suppression for post-processing. The
proposed approach is able to produce a high quality edge map
directly without further processing. Our solution is computation
efficient. It can achieve a speed of 59 and 26 frames per
second (fps) for an image resolution of 256x256 and 512x512,
respectively.

I. INTRODUCTION

Edge detection is a crucial element in many computer vision
tasks. It aims to extract the boundaries of the objects in natural
images. The edge information can be used in many image
processing applications, such as texture removal [30], semantic
segmentation [4] and object proposal [32].

Even though the edge detection problem has been explored
for a number of decades, there is still a large room for
improvement. Usually, an edge can be defined to be semanti-
cally meaningful. Many of the existing methods are trying to
capture semantic information for better results. Some examples
of the pioneering work are Sobel detector [18] and Canny
detector [7]. They are based on the gradient of colour or
brightness to predict the contour. Later work like [24] and [1]
uses hand craft features to distinguish the foreground contour
from the background. Machine learning-based methods are
also popular. They aim to capture more complex semantic
representations from the images and make edge prediction
better, for examples [11] and [10].

More recent approaches employ neural networks. Due to
the success of the convolutional networks in various computer
vision tasks like image classification [27], neural network has
been shown to have a powerful capability to extract high
level features. Some examples are DeepEdge [5], DeepCou-
tours [16], N4 field [13], DCAN [8], HED [28] and RCF [23].
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Fig. 1. We have built a simple generator network based on UNET [25] to
produce the edge map. Two samples of the resulting edge images are shown.
The results of RCF [23] and HED [28] are denoted by RCF6 and HED6 in
the above figures. Since RCF and HED produce multiple outputs, we only
compare the final output of both networks. It is obvious that our results contain
more detailed information. Our method is able to produce thinner edges even
without the application of non-maximum suppression.

They can achieve better results than previous methods that
solve the problem in an analytical way.

Most neural network-based methods use convolutional net-
work or its variant and usually contain pooling layers. The
pooling layer reduces the resolution of the feature map by
filtering out the small details using a 2x2 smoothing filter.
This step is useful in saving computer and graphic card
memory. However, it causes feature loss. Useful features may
be discarded while pooling.

Instead of training a hierarchical convolutional network to
extract meaningful features for the prediction of the final
result, researcher has recently proposed a different type of
network to generate the results more directly. This network
is known as the GAN [14] network. GAN network is fun-
damentally different from convolutional network in way that
it simultaneously trains two adversarial models. One is a
generator and the other is a discriminator. After training, the
generator is be able to generate the target result.

Many common computer vision tasks, like edge detection,
can be formulated as an image to image transformation prob-
lem. Given a natural image, we would like to compute an
edge map as the output. The work described in cGAN [17]
shows that the GAN framework is good at solving this kind
of problems.

In this paper, we explore the cGAN framework to tackle
the edge detection problem. We first try to train the vanilla
cGAN with dataset BSD500 [2]. Since the original BSD500
dataset is a small one, we use augmentation to enlarge the size
of the dataset similar to the method described in HED [28].
After training, the generator of cGAN can achieve an optimal



dataset scale (ODS) score upto 0.749, and an optimal image
scale (OIS) score up to 0.777. Moreover, if we apply the
multiscale image prediction scheme, we can further improve
the ODS to 0.772 and OIS to 0.797. The results are comparable
to other machine learning-based methods, such as HED [28],
(ODS=0.788, OIS=0.808). Fig 1 shows the comparison of our
method with other neural network-based approaches.

Our paper is organized as follows. Section 2 discusses
the background of our work. In Section 3, the theory and
design methodology are described. The implementation details
and experimental results are illustrated in Section 4. The
conclusion is found in Section 5.

II. RELATED WORK

There is a proliferation of researches in the application of
neural networks to computer vision problems, especially in
image classification. They have great improvement over the
traditional approaches that tackle the problem analytically.
It is believed that the hierarchical structure of the convo-
lutional network has a powerful capability to capture high
level features, such as semantic and context features. These
features are important for image classification, so as the edge
detection problem. Recent work based on neural network, such
as HED [28], and RCF [23], shows that their results are better
than previous algorithms. Machine learning-based methods,
like the solutions by Doller [11] [10], also show significant
improvements.

Instead of only using the features from the last layer of
the trained convolutional neural network like the previous
methods [5] [8] [13] [16], HED [28] tends to use the
features from each stage of convolutional layers to get a
better result. RCF [23] goes one step forward. It employs
all features from the convolutional layers to improve the
performance. Both HED [28] and RCF [23] apply a deeply
supervised method [20] to maximize their ability to capture
image features. The labels are not only used to supervise
the prediction but are also used to supervise hidden status.
After each training step, their networks are able to optimize
the hidden features and predictions. However, the problem
is that adding so many semantic features also brings too
much background information into the fused features. The final
prediction contains too much detailed background information
that is hard to be removed. Both RCF and HED require the
use of non-maximum-suppression for post-processing in order
to remove the background details from the final results and,
at the same time, make the resulting edges thinner.

In recent years, there is a new branch of neural network
structure, known as the generative adversarial network (GAN)
[14]. Such a technique has been successfully applied to image
synthesis problems. There are a number of variants of GAN
network. One is called the conditional GAN structure. It has
been shown that it is good at handling many image generation
tasks [17]. More specifically, GAN consists of two networks.
One is the generator (G) and the other is the discriminator
(D). After training, the generator (G) can produce images that
are very close to the real images in the dataset. Inspired by

this property, we apply cGAN to solve the edge detection
problem. Our approach is similar tothe pix2pix method [17].
It is shown in a later section that our trained cGAN generator
can output a high quality edge map even without the non-
maximum-suppression procedure.

III. THEORY

A. The adversarial network

The generative adversarial network is a new approach and
has beenn recently getting more attention. It is different from
the conventional convolutional neural network in a way that
there are two networks operating simultaneously in the GAN
structure. One is known as the generator represented by G
while the other is known as the discriminator represented by
D [14]. We define the images from the dataset as real images
and the images produced by the generator are fake images.
The objective of D is to distinguish whether the input image
is real or not while the goal of G is to produce a fake image
that looks similar to the real one. Actually, the GAN is hard
to train. Therefore, researchers devised an alternative method
called the conditional GAN (cGAN) to alleviate the problem.
Recently, cGAN has been successfully applied to generating
images [17] in many real-life applications. Inspired by this
paper, we have adopted their framework [17] to solve the
edge detection problem. An overview of our edge detection
algorithm can be found in Fig 2.

Fig. 2. Instead of directly predicting whether y or y∗ is real or fake, our
discriminator is used to predict whether a pair of (x, y), or (x, y∗) is real
pair or faker. This is different from the original version in [17]. We use the
generator to map input image from x to y.

B. The Proposed Method

Our cGAN framework is similar to the one described in
[17]. In our design, we do not feed any noises to input z of the
generator as shown in Fig. 2. In vanilla GAN, G is the mapping
noise z to one label image y in dataset, i.e. G : z → y. D is



trained to detect fake images. The objective of vanilla GAN
can be expressed as

LGAN = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[1− log(D(G(z)))] (1)

GAN is hard to be implemented because equation 1 cannot
provide sufficient weight gradient information for the genera-
tor to learn well [14] when training starts. Instead of mapping
z to label image y in the geneartion process, conditional
GAN maps real image x in the dataset to y. The objective
of conditional GAN can be expressed as

LcGAN = E(x,y)∼pdata(x,y)[logD(x, y)]

+ Ex∼pdata(x)[log(1−D(x,G(x)))] (2)

According to the literature in [17], adding L1 distance
measurement to the cGAN objective function is beneficial
for training. Since the generator targets to predict the edge
map, there are only two classes in the map. The positive class
represents the edges while the negative class represents the
background. Normally, most of the pixel values belong to the
negative class in one edge map. When calculating the loss, we
need to balance the errors from both the positive and negative
classes. We have implemented this idea using the L1 distance,
which is formulated as

L1 =


α‖G(xi)− yi‖, ifyi > η

0, 0 < yi ≤ η
β‖G(xi)− yi‖, otherwise

(3)

If the corresponding pixel value yi in the label is greater than
η, it is set to 0.5 in our program. Then one hyper parameter
α is used to enlarge the L1 error of the pixel value xi in the
positive class of the predicted edge map. If yi equals to zero,
it is a background pixel. Likewise, another hyper-parameter β
is applied to reduce the negative log-likelihood error. Inspired
by RCF [23] and HED [28], we compute the hyper parameter
α based on the number of positive and negative class labels.
Below shows the equations of these parameters.

α = 1 +
Y −

Y + + Y −

β =
Y +

Y + + Y − (4)

Our final objective loss function can be expressed as

Lobj = argmin
G

max
D

[LcGAN + λL1] (5)

Here, we use weight λ, which is set to 100.0, to enlarge L1
distance [17].

Modified UNET

Fig. 3. We follow the UNET [25] framework in the design of our generator.
We have simplified the decoder part of the original UNET by directly
concatenating all the hierarchical features at each stage. The modified network
can achieve similar results as the original UNET. All the convolutional layers
in our network output features having the same size as in the input stage.

C. Our Network Architecture

Our generator is modified from the UNET [25] framework
and is shown in Fig 3. The classical VGG16 [27] configuration
is used in our discriminator. It is changed in a way that there
is only one neuron in the output layer, as our network is only
required to distinguish real and fake images. The other parts
are built according to the vanilla VGG16 [27] structure.

The pix2pix network has already demonstrated that the
UNET structure is sufficient for the image generation task
[17]. However, UNET has a symmetric structure. If it contains
N convolutional layers for encoding, there are also N decon-
volutional layers for decoding in the network. Besides, UNET
needs to combine corresponding features in the convolutional
and deconvolutional layer. The feature sizes should be the
same. Otherwise, cropping or padding is required to fulfill
such a requirement. In other words, we need to maintain N
pairs of conv-deconv layer having the same feature size.

To simplify the procedure, feature propagation is discarded
in the deconvolutional layer and a skip layer is used to combine
all the hierarchical features into a single deep feature cube.
To ensure that all feature sizes are the same, we simply apply
cropping and padding operation to resize all the feature maps
to the input size.

We have changed the deconvolutional layer to a periodic
shuffle layer, which is similar to settings in [26]. The
advantage of using a shuffle layer is that it contains no
additional variables, making the model size smaller. We have
also modified the convolutional layer in the fifth stage in our
proposed network. We use a dilated convolutional layer to
fill up some of the holes into the convolutional kernel. In this
way, the dilated layer can extract semantic information without
reducing the resolution of the feature map. [31].

IV. EXPERIMENTS

We used the BSD500 [2] dataset to evaluate our generator.
It is a widely adopted benchmark in edge detection. There are
totally 500 examples in the dataset, in which 200 for training,
200 for testing, and 100 for validation. Since the dataset
is small, many researchers in the previous projects, such as



RCF [23] and HED [28], suggest to use the augmentation
method to enlarge the dataset. In this paper, we applied the
same augmentation strategy as HED [28] by rotating and
scaling the images. Finally, we obtained a total of 28800
examples for training. We also generated multiscale images
to form a pyramid for edge detection. The final prediction
was an average of all the multiscale predictions.

Fig. 4. The precision-recall curves of the algorithms under comparison.
BSD500 dataset [2] was adopted in the evaluation. Both of our single-scale
and multiscale approaches achieved good performances that were comparable
to the other latest methods.

To compare with other edge detection methods, we used
the same evaluation metric to illustrate our edge detection
results. Normally, a threshold is necessary to produce the final
edge map when an edge probability map is given. There are
various methods to determine the threshold, out of which two
well-known evaluation metrics can be used. The first one is
called the optimal dataset scale (ODS), which applies a fixed
threshold for all edge probability maps. The second one is
known as the optimal image scale (OIS), which tries to apply
different thresholds to the images and then selects the optimal
one from the trial values. For both ODS and OIS, we used F-
measure to compare the algorithm performances. The formula
can be expressed as ( 2·Precision·Recall

Precision+Recall ).
Figure 4 shows the precision-recall curve and Table I shows

the scores of the methods under comparison. The proposed
method outperformed a number of tradiational methods. It
was able to achieve a score similar to other state-of-the-art
detectors. Our single-scale model got a F-measure score of
0.749, which was quite close to DeepEdge [5] and DeepCon-

tour [8]. Our multiscale method got a score of 0.772, which
was comparable to that of the HED [28] approach.

TABLE I
A COMPARISON ON THE PERFORMANCES OF THE LATEST EDGE

DETECTION ALGORITHMS USING BSDS500 [2] DATASET. † DENOTES
THE COMPUTATION TIME WITH GPU

Method ODS OIS FPS
Canny [7] .611 .676 28
EGB [12] .614 .658 10
MShift [9] .598 .645 1/5

gPb-UCM [1] .729 .755 1/240
Sketch Tokens [21] .727 .746 1

MCG [3] .744 .777 1/18
SE [11] .743 .763 2.5

OEF [15] .746 .770 2/3
DeepContour [8] .757 .776 1/30†

DeepEdge [5] .753 .772 1/1000†

HFL [6] .767 .788 5/6†

N4-Fields [13] .753 .769 1/6†

HED [28] .788 .808 30†

RDS [22] .792 .810 30†

CEDN [29] .788 .804 10†
MIL+G-DSN+MS+NCuts [19] .813 .831 1

RCF [23] .806 .823 30†

RCF-MS [23] .811 .830 8†

GAN-EDGE (Ours) .749 .777 26†

GAN-EDGE-MS (Ours) .772 .797 1/18†

V. CONCLUSION

In this paper, we have devised an innovative edge detection
algorithm based on generative adversarial network. Our ap-
proach achieved ODS and OIS scores on natural images that
are comparable to the state-of-the-art methods. Our model is
computation efficient. It took 0.016 seconds to compute the
edges from an image having a resolution of 224×224×3 with
GPU. For a 512× 512× 3 image, it took 0.038 seconds. Our
algorithm is devised based on the UNET and the conditional
generative adversarial neural network (cGAN) architecture.
It is totally different from the convolutional networks in a
way that cGAN can produce an image which is close to
the real one. Therefore, the edges resulting from the cGAN
generator is much thinner compared to that from the existing
convolutional networks. Even without using any pre-trained
network parameters, the proposed method is still able to
produce high quality edge images.
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