
Draft for : Ying Kin Yu, Kin Hong Wong, Michael Ming Yuen Chang and Siu Hang Or, "Recursive Camera Motion Estimati

on with Trifocal Tensor", IEEE Transactions on Systems, Man and Cybernetics B, Volume 36,  Issue 5,  Oct. 2006  

 

1 

Abstract— We propose an innovative extended Kalman filter (EKF) algorithm for pose tracking 

using trifocal tensor. In the EKF, a constant velocity motion model is used as the dynamic system and 

the trifocal tensor constraint is incorporated into the measurement model. The proposed method has 

the advantages of those structure and motion (SAM) based approaches in that the pose sequence can 

be computed with no prior information on the scene structure. It also has the strengths of those 

model based algorithms in which no updating of 3D structure is necessary in the computation. This 

results in a stable, accurate and an efficient algorithm with low time and space complexity. 

Experimental results show that our approach outperformed other existing EKFs that tackle the same 

problem. An extension to the pose tracking algorithm has been made to demonstrate the application 

of the trifocal constraint to fast recursive 3D structure recovery. 

 

Index Terms: Pose Tracking, Augmented Reality, Kalman Filtering, Trifocal Tensor 

 

I. INTRODUCTION 

fast and robust pose acquisition algorithm is crucial to interactive applications such as augmented 

reality and robot navigation. An accurate pose estimation method is also important for the recovery of 

the 3D structure, since a high precision depth map can be constructed with an optimal pose sequence. This 

paper describes an innovative Kalman filter based approach to tackle the classic vision-based pose tracking 

problem. With no prior information about the 3D structure of the scene, the camera motion can be 

recovered from a monocular image sequence directly with the trifocal constraint. In addition to pose 

tracking, an extension of our algorithm has been made to solve the structure and motion (SAM) problem. 

The performance of the algorithm is demonstrated by inserting an artificial object into a real image 

sequence. 
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A. Previous work 

Broadly speaking, there are four major ways to solve the problem of pose tracking. Below is a brief 

illustration of different approaches. 

1) Marker based approaches 

To estimate the camera motion from an image sequence, a popular method is based on the visual marker 

detection and decoding techniques. In that, the scene for processing must contain a special pattern for pose 

estimation and camera calibration [31]. This technique has been widely used in augmented reality systems 

such as direct marketing in electronic commerce [34], tele-conferencing [33], entertainment [35] and 

manufacturing of door-locks [32]. The major weakness of the marker based approaches is that special 

preparation in the scene is required and thus not feasible for computing the camera motion from old video 

footages or ad-hoc sequences. 

2) Model based approaches 

An early approach to acquire the pose sequence from a video without markers is the three-point 

algorithms [23]. To increase the accuracy of the solutions, more points are needed and geometric 

information on the scene is required. This is known as the model based method. Horaud et al [24] estimated 

the pose of an object using four non-coplanar points. Another four-point algorithm is by Liu and Wong [25]. 

Lowe proposed an iterative method [26] to solve the pose estimation problem using N model points. The 

work [29] [30] uses the extended Kalman filter (EKF) to find the pose of the object based on a known CAD 

model from stereo images. The position and orientation are recovered in real-time and the results are 

applied to visual servoing of robot manipulators. Alternative model based approaches adopt genetic 

algorithms. Hati and Sengupta [27] used the genetic algorithm framework to estimate the extrinsic 

parameters of a camera. Yu et al [41] improved their approach by incorporating a mismatch filtering 

strategy into the genetic algorithm using composite chromosomes and the results are applicable to 

augmented reality. Toyama et al [28] took the advantages of the phenotypic forking genetic algorithm to 

find the pose from the edge images. In case that neither markers can be placed into the scene nor the scene 

structure is known, more general approaches based on the techniques of structure and motion is necessary. 

3) Structure and motion based approaches 

One of the most popular structure and motion (SAM) based approaches is the use of multiple view 

geometry [14] [15] [17], in particular the epipolar geometry. With the known correspondences between the 

two views of the same object, a constraint between these two views can be set up. The camera motion can 

be recovered from the resulting fundamental matrix up to a scale factor if the camera is fully calibrated. 

Some researchers extended this technique to three views or more [15]. Avidan and Shashua [42] made use 
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of the trifocal tensor to concatenate the fundamental matrices such that the camera matrices recovered from 

an image sequence are consistent with each other. Another variation of multiple view geometry is to relate 

the views taken by cameras of different camera models [18].  

 Factorization [19] [20] [21] is another general approach. The work in [19] demonstrates the concept 

under the assumption of orthographic projection. The factorization method has been extended to para-

perspective projection [21] and to handle the reconstruction and pose estimation of multiple independently 

moving objects [20]. Bundle adjustment is also an effective method to recover the motion and structure 

[16]. The idea is that it minimizes the re-projection error between the estimated model and the image 

measurements. The minimization procedure can be done in batch either by the well-known Newton’s or 

Levenberg-Marquardt iteration. A branch of it is the interleaved bundle adjustment as described in [16] and 

[22]. It breaks up the minimization problem into two steps so as to reduce the size of the Jacobian involved, 

resulting in speeding up the algorithm. These approaches tackle the problem either in a batch or with a 

robust statistical estimator, resulting in a certain degree of latency for interactive applications like 

augmented reality. 

4) Recursive structure and motion based approaches 

To minimize the latency, some researchers developed a partial bundle adjustment scheme [44] in that the 

structure and motion are computed every three views. However, more elegant recursive solutions to the 

SAM problem require the use of Kalman filters [11]. In [2] and [1], the iterated extended Kalman filter 

(IEKF) has been adopted to update the structure in Euclidean and projective framework respectively. 

However, real-time implementation of [1] is impossible since it involves the use of the RANSAC robust 

estimator in pose estimation. The series of methods in [3] [4] [5] [6] [7] [8] [9] [10] recover both the 

structure and motion simultaneously using Kalman filters. The work by Broida et al [5] is the ancestor of 

this series of researches. They applied a single full-covariance IEKF to recover the structure and pose of an 

object. Azarbayejani and Pentland described a method in [4] that makes significant improvements over [5]. 

An extension was made to recover the focal length of the camera in addition to the pose and structure. The 

pointwise structure is represented by one parameter per point such that the computation is over-determined 

at every frame when the number of features is larger than 7, resulting in a better convergence and stability 

of the filter. The most recent Kalman filter based methods are by Yu et al [8] [9] [10]. In [8] and [9], the 

full covariance extended Kalman filter (EKF) is decoupled such that the computation efficiency is increased 

as a tradeoff in accuracy. The authors then extended their work by adding the Interacting Multiple Model 

into the original formulation so as to keep the accuracy at least the same as the full covariance EKFs [10]. 

Soatto et al [43] applied the essential constraint in epipolar geometry to Kalman filter based motion 
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estimation so that the pose sequence can be computed directly from images. Similar techniques in SAM 

have also been applied to simultaneous localization and map-building for robot navigation [6], in which the 

concern is the demand of computation resources and the issue of repeatable localization.  

B. Our contributions 

This paper focuses on the recovery of camera motion from image sequences with no prior information 

about the scene. From the literature we encountered, we believe that we are the first to apply the trifocal 

tensor to recursive pose tracking and SAM problem. Here we summarize our contributions. 

Integration of the trifocal tensor constraint into Kalman filtering. The major contribution of the 

proposed approach is the incorporation of the trifocal tensor into the Kalman filtering formulation. This 

enables us to apply the strengths of the traditional multiple view geometry to recursive visual tracking. In 

the algorithm, the trifocal tensor point transfer function is used in the measurement model of the extended 

Kalman filter. That is apart from the dynamic system constraint on the motion of the camera, the trifocal 

constraint is also employed in the Kalman filtering cycle. With this additional constraint, the accuracy of 

the solution can be improved significantly.  

Independence of pose and 3D structure. A unique characteristic of the proposed algorithm is that the 

pose sequence is recovered directly in the computation. In other words, pose tracking is dependent of 

structure recovery in the algorithm. Unlike traditional recursive SAM algorithms, both the 3D structure and 

pose parameters are required to be updated from frame to frame simultaneously [3] [4] or in an interleaved 

manner [8]. This implies the search space of our problem is reduced from N+6, where N is the total number 

of available point features, to 12 (excluding the velocity parameters) in our implementation. The 

convergence rate of our filter can thus be increased. In addition, handling the changeable set of point 

features is easier than existing Kalman filter based methods as the 3D model features are not involved in the 

Kalman filtering cycle. 

Reduction of time and space complexity. The use of trifocal tensor point transfer function also 

contributes to the increase in speed and reduction in storage requirement while keeping the advantages of 

the full covariance EKF. The time and space complexity of the proposed approach are respectively O(N
2
) 

and O(N), which is much smaller than that of the traditional EKFs for the SAM problem [4] [5]. The 

corresponding time and space complexity for the traditional methods are O(N
3
) and O(N

2
) respectively. 

Besides pose tracking, the formulation has been extended to acquire the structure of the scene. An extra 

set of EKF is adopted to update the 3D model structure with the newly recovered pose. Since the EKF for 

pose estimation and structure updating are independent of each other, the accuracy is not affected, or on the 

contrary improved, even the computation of pose and structure is decoupled. Evaluations using both 
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synthetic data and real images on the proposed algorithm have been made. The results show that our 

algorithm has a better overall performance over the existing recursive SAM based approaches [4] [8]. Our 

method suits best the development of the next generation of augmented reality applications.  

C. Organization of the paper 

The rest of this paper is organized as follows. The geometry of our system is first introduced in section II. 

The overview of the proposed pose tracking algorithm is then described in section III. In section IV, the 

formulation of the extended Kalman filter is presented. In section V and VI, an extension of our algorithm 

to the structure and motion problem is illustrated. In section VII, the advantages of our recursive approach 

over existing methods are discussed. In section VIII, an empirical comparison among our approach, the 

EKF by Azarbayejani and Pentland [4] and the 2-step EKF by Yu et al [8] [9] is made using real and 

synthetic data. The results from these three approaches are analyzed. 

 

II. GEOMETRY OF THE SYSTEM 

 
Figure 1. The geometry of our system. 

 

The relationship between the 3D coordinates of a point in the scene structure and its 2D projection on the 

image plane can be related linearly as:
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Mt is the 3x4 camera projection matrix at time t. TO
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m zyxX ],,[= denotes the coordinates of the model 

point Xm with respect to the world coordinate frame. The actual image coordinates ],[ ,,, tmtmtm vup =  are 
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given by: 
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Assuming that the camera is calibrated with a fixed focal length f and the motion of the camera relative to 

the scene structure is rigid, the projective relation in (1) can be rewritten as:
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tR  is a 3x3 rotation matrix and 
tT  is a 3x1 translation vector. TC

tm

C

tm

C

tm

C

tm zyxX ],,[ ,,,, = represents the model 

point Xm with reference to the camera coordinate frame. Since the world and the camera center are the same 

initially in our case, O

mX  is equivalent to 
C

mX 1, .  

The parameters tR  and tT  compose of the pose sequence. The objective of the proposed pose tracking 

algorithm is to recover the camera motion, i.e. tR  and tT , at each time-step recursively given only the 

image measurements 
tmp ,  

 

III. ALGORITHM OVERVIEW 

Figure 2 shows the overview of the proposed pose tracking algorithm. The KLT tracker described in [13] 

is used to extract feature points and track them in the images. It is assumed that the point features extracted 

by the tracker are contaminated only by Gaussian noise and are reliable enough for pose estimation.  

 

 
Figure 2. The flowchart of the proposed recursive algorithm. 

 

To make the presentation clear, we denote the time-step of the algorithm by st and frame index of the 

image sequence by ft, where t is an integer. The algorithm is initialized by estimating the relative pose of the 
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first two image frames (f1, f2) using epipolar geometry. Specifically, the fundamental matrix is first 

computed using the 8-point algorithm [15] plus a RANSAC robust estimator [39]. The pose parameters, 
2R  

and 
2T , are then extracted from the fundamental matrix. This is actually an initial guess of the pose of 

image frame f2 and will be refined later in each Kalman filtering cycle. The translation vector 
2T  is 

recovered up to an unknown scale factor. As the RANSAC estimation procedure is used once in the 

initialization, it does not affect the speed of the algorithm too much. 

Starting from frame f3, the image measurements are processed by an extended Kalman filter (EKF). In 

each cycle, three images are input. Out of these input images, two of them are the images f1 and f2 in the 

sequence. They compose the base frames of the filter. The third input image is the image ft at the current 

time-step t. The EKF computes the pose of frame ft and, at the same time, refines the initial guess of the 

pose of frame f2. The loop continues until all the images are utilized.  

If the set of available point features is changing from frame to frame, the only additional procedure to 

handle the case is to find the set of features commonly appeared in all the three input images. These features 

are passed to the EKF as described previously. If the set of available features, say extracted from f1 , f2 and ft, 

falls below a predefined minimum size, the algorithm restarts by resetting the time-step to s1. The process 

followed is that frames ft-j and ft-j+1 are used to re-initialize the algorithm and become the base frames. A 

new filtering loop is then started from frame ft-j+2. Here j is the number of overlapping frames between two 

segments of the sequence. j is set to 1 in our implementation. With overlapping, the scale of the translation 

parameters of the previous segment and the next segment can be aligned. In practical applications like 

augmented reality, the difference in scale factor is not a concern as the output is the projection of 3D 

models. The algorithm stops when the end of the image sequence is reached. 

 

IV. THE EXTENDED KALMAN FILTER IMPLEMENTATION 

At each Kalman filtering cycle, the EKF estimates the pose of the scene with respect to the current frame 

ft and, at the same time, refines the scene’s pose with respect to frame f2. A detailed review on EKF and its 

derivations can be found in [11]. For the clarity of the presentation, it is assumed that the point features are 

observable in the whole image sequence.  

The state vector, denoted by wt, consists of two groups of parameters and is written as: 

T

tttt
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xt, yt and zt are respectively the translation parameters of the scene along the x, y and z axis. 
ttt zyx &&& ,,  are 
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their corresponding velocities. 
ttt γβα ,,  are respectively the Yaw, Pitch and Roll angle with 

ttt γβα &&& ,,  as 

their corresponding angular velocities. These 12 parameters represent the position, orientation, together 

with the motion of the camera at the current time-step. 222222 ,,,,, γβαzyx are the pose parameters of the 

scene with respect to frame f2.  

The importance of refining the pose at frame f2 is that the initial guess computed from the fundamental 

matrix may not be exact even with the RANSAC robust estimation procedure. As we are dealing with the 

pose tracking problem, the camera motion is relatively small in two consecutive image frames. This results 

in insufficient depth information to make an accurate estimate only with two images. 

The state transition and measurement equation of the filter are formulated as: 

ttt Aww '1 γ+= −                        (5) 

tttt vwg ')(' +=ε                       (6) 

t'γ  and 
t'ν  are zero mean Gaussian noise. 

t'ε

 

is an nx1 column vector representing the selected real 

measurements from the images. )(wg t
 is the nx1-output trifocal tensor point transfer function. Using the 

image measurements in the first two images and the pose parameters encoded in wt, the estimated 

coordinates of the feature points at frame ft can be computed as.  

[ ]
jk

ij
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T

tntntmtmtttt
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=

=
            (7) 

The above formulae are written in the tensor notation. jk

iT  is known as the trifocal tensor, which 

encapsulates the geometric relations among three views. For details, please refer to [15]. )(mU  and 

)(" mU are respectively the normalized homogenous 2D coordinates of the m
th

 feature in frame f1 and ft such 

that [ ] [ ]Tmm

T

mm fvfuvumU 1//1)( 1,1,1,1, ==  and [ ] [ ]Ttmtm

T

tmtm fvfuvumU 1//1)(" ,,,, == . 

Normalization is taken since we have made the assumption that Mt = I in the trifocal tensor jk

iT . With that, 

jk

iT  can be expressed more simply in tensor notation as: 

k

i

jkj

i

jk

i aaaaT "'"' 44 −=                     (8) 

j

ia'  and k

ia"  are the elements of the 3x4 camera matrices M2 and Mt that project the 3D structure from the 

world coordinate frame onto images f2 and ft respectively. The camera matrix can be transformed into the 

rotation matrix and the translation vector. The rotation matrix can be further converted to Yaw, Pitch, Roll 

angles. The required values can be obtained by decoding the state vector wt. 

 )(' ml  is a line passing through the corresponding point in image f2. This line must not be the epipolar 
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line and can be constructed as: 

[ ]
[ ] )(')('
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12e  is a rough estimate of the epipole in image f2, which is calculated in the initialization step, and 

[ ] [ ]Tmm

T

mm fvfuvumU 1//1)(' 2,2,2,2, == . Actually, )(' ml  is perpendicular to the line joining 12e  

and )(' mU , which is not necessarily the exact epipolar line through )(' mU . With this approximation, 12e can 

be constant in the Kalman filtering cycle.  

In equation (5), A is a 18x18 block diagonal state transition matrix, which is defined as: 
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The physical meaning of the above dynamic system is that the camera undergoes a constant velocity 

motion within a sampling period 
sT  and the initial guess of the scene’s pose with respect to frame f2 is close 

to the actual values. 

From the above dynamic system and measurement model, the four core Kalman filtering equations can be 

derived. The prediction equations for calculating the optimal estimates are: 

'
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The update equations for the corrections of estimates are: 
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T

wtt RgPggPK  

1,
ˆ

−ttw  and ttw ,
ˆ  are the estimates of state wt after prediction and update respectively. 1, −ttP  and ttP ,  are 

18x18 matrices. They are respectively the covariances of 1,
ˆ

−ttw  and ttw ,
ˆ . tR'  is the covariance of the image 

noise 
t'ν . It is a tuning parameter and is set according to the quality of the images. It can also be acquired 

during the process of camera calibration. 'tQ  is the covariance of the noise terms 
t'γ . K is the 18x2n 

Kalman gain matrix for the filter. wg∇  is the Jacobian of the non-linear observation equation gt(w) 
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evaluated at 
1,

ˆ
−ttw .  

This is the complete EKF formulation of the pose tracking algorithm. For Γ  images in the sequence, the 

camera motion of the whole sequence can be recovered after 2−Γ  Kalman filtering cycles. 

 

V. AN EXTENSION TO STRUCTURE AND MOTION 

With an optimal pose sequence recovered from the images, the scene structure can be computed 

accurately. Here we are going to extend our pose tracking algorithm to tackle the structure and motion 

problem recursively with the trifocal tensor. The flow of the proposed extension is outlined in figure 3. 

 

Figure 3. The flow of the recursive algorithm with the structure recovery extension.  

 

 The structure updating step is inserted into the main loop of the algorithm. Pose estimation and 

structure computation are interleaved. The pose tracking algorithm presented in section IV is employed to 

estimate the camera motion. A set of N extended Kalman filters (EKFs), each corresponds to a point in the 

scene structure, is used find out the 3D model. 

Initially, the structure of the scene is a planar model located at a distance zinit from the camera. zinit is the 

average depth of the model calculated by triangulating the point features in the first two images with the 

pose recovered in the initialization step. In this way, both the translation parameters and the 3D model are 

in the same scale factor. The 3D coordinates are computed by back-projecting the corresponding features 

from the first image to the camera coordinate frame according to the orthographic projection equation: 
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With the pose computed using frame ft, the structure is updated by making use of frame ft as the 

measurements. The computation of structure is dependent on the pose acquired. However, the pose 

estimation step is still standalone from the calculation of the scene structure.  
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VI. STRUCTURE ACQUISITION WITH EKFS 

The structure updating step consists of N identical EKFs, each corresponds to one model point in the 3D 

space. The structure is assumed to be static. The dynamic model of a 3D point and its measurement 

equation are:  

ttmtm XX γ+= −1,, ''                     (13) 

tmttm vXh += )'(,ε                    (14) 
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tν are the zero mean Gaussian noise. tm,ε

 

is the real measurement from the image sequence. 

)'( mt Xh  is the projection function, in which 
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tmX ,  is obtained by substituting suitable values into equation 

(15) and (3). X’m is a scalar that represents a model point: 
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Each model point is represented by a single parameter. Such a representation is made under the 

assumption that the measurements acquired by the camera are non-biased [4]. This is valid for most of the 

modern high-resolution image capturing devices. Intuitively, the 3D coordinates of the points are expressed 

in terms of the first images that the features appear. This measure reduces the computation time required for 

the EKFs and at the same time maintains the rigidity of the scene structure. Also, the computation is over-

determined at every frame when the number of features is larger than 7, resulting in a better convergence 

and stability. Detailed discussion about the advantages arising from this structure representation and the 

method to handle biased measurement can be found in [4]. 

With the dynamic model, the required equations can be derived. The prediction equations that provide an 

optimal estimate of the state at the next sample time are: 

tttmttm

ttmttm

Q
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The update equations that improve the previous estimate using the measurements acquired are: 
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1,,'ˆ
−ttmX  is the estimate of mX '  after prediction. 1,, −Λ ttm

 is the variance of 1,,'ˆ
−ttmX  and Qt is the variance 

of the noise term 
tγ , which is a scalar. The reason for incorporating a noise term having a considerable 

value into a static structure is that our initial structure is a planar model. Adjustment of the depth of the 

recovered model is necessary. W is known as the 1x2 Kalman gain matrix of the filter. Rt is a 2x2 

measurement noise covariance matrix. 
Xh∇  is the Jacobian of the non-linear projection function ht(X’) 

evaluated at 1,,'ˆ
−ttmX . The above formulation is enough to recover the 3D structure under the assumption 

that all point features are observable throughout the whole image sequence. The actual 3D structure is 

obtained by transforming X’m to the world coordinate frame using equation (15). 

In real images, the set of observable point features is changing from frames to frames in the sequence. 

When a new point feature appears at frame fa, the corresponding point in the 3D space is initialized by 

assuming its projection on that frame is orthographic. The initial position, expressed in camera coordinate 

frame, is computed according to equation (12). This is equivalent to setting parameter X’m equal to zinit in 

our structure representation. The structure parameter for that point is now expressed in terms of its image 

coordinates in frame fa. The relationship between the structure parameter X’m and world coordinate frame is: 
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                 (18) 

A new EKF is set up to refine its position in its camera coordinate frame with parameter X’m. The final 

position can be obtained by calculating its coordinates in the world frame using equation (18).  

When a point feature vanishes from the image sequence, the filter that corresponds to the point is 

removed. The 3D position of that feature will no longer be updated.  

 

VII. ADVANTAGES OF THE PROPOSED ALGORITHM 

A. The use of dynamic system and trifocal constraint 

The proposed pose tracking algorithm makes use of two important constraints: 1) the dynamic system 

constraint in Kalman filtering and 2) the trifocal tensor constraint. The former constraint represents the 

physical movement of the camera. It has been widely used in visual tracking for robotic applications. The 

latter one expresses the geometric relations among the point correspondences in three views, which is 

actually a constraint on the imaging system. Previously, the trifocal tensor, which is analogous to epipolar 

geometry, has been applied to 3D structure recovery and guided searching of point correspondences. The 
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computation is usually offline and takes a relatively long period of time to complete. Our new formulation 

allows the use of trifocal tensor in a recursive manner. The major advantage of trifocal tensor is its 

independence from the scene structure. By making use of the point transfer function, our EKF is able to 

compute the pose directly without first estimating the 3D structure. Another advantage is that it is less 

susceptible to degeneracy than the essential constraint in epipolar geometry. It has little restriction on the 

camera motion to be estimated. Since the computation of the 3D model is no longer needed, the speed, 

accuracy and stability can be increased compared to SAM based method for pose tracking. This is the 

strength of merging trifocal tensor with Kalman filtering. 

B. Speed of the algorithm 

The theoretical upper bounds on time and storage of the proposed pose tracking algorithm are O(N
2
) and 

O(N) respectively in terms of the number of available point features N. The upper bounds are still the same 

even the tracking algorithm is extended to recover the scene structure. The time and space complexity of 

traditional SAM based recursive algorithms that have the same functionality and comparable accuracy are 

O(N
3
) and O(N

2
) [4] [5] respectively. The improvement on computation and storage requirement is due to 

the use of the trifocal tensor point transfer function in the measurement model.  

Decoupled EKFs [8] [9] can achieve the same time and space complexity as our approach. Linear 

computation complexity can only be achieved if a good feature selection strategy is applied to choose a 

fixed number of feature points to the EKF for pose tracking. Indeed, the decoupling is regarded as a tradeoff 

between speed and accuracy. Our new pose tracking approach can improve the speed performance and at 

the same time keep the implementation as a full covariance EKF. This is contributed by the fact that pose 

estimation no longer depends on the 3D model structure. Structure updating while estimating the pose is not 

necessary and thus the complexity is reduced.  

C. Accuracy and stability 

The proposed tracking algorithm has a higher accuracy than existing SAM based methods. Unlike our 

pose estimation method that is independent of the 3D structure, the approaches using full covariance EKFs 

[4] [5] compute both the pose and structure within a single filter. It means that the solution space of our 

approach is smaller than such methods by N dimensions, where N is the number of point features in the 3D 

structure. In other words, the probability of encountering the local optima is minimized. Also, the trifocal 

constraint on images, in addition to the dynamic system constraint on motion, is added to the EKF. Thus, 

both the accuracy and convergence of the filter is improved. 

The decoupled EKFs [8] [9] that compute the pose and structure in an interleaved manner have the 

problem of retaining the relations between the camera motion and 3D structure. This type of recursive 
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algorithms should have a lower accuracy than traditional methods with full covariance EKFs and our new 

approach that have no dependency on the scene structure. This fact has been verified in the experiment in 

section VIII.  

D. Handling of the changeable set of point features 

It is straightforward to handle the changing set of point features in our pose tracking algorithm. Since 

point features are regarded as measurements in our formulation, it is somewhat arbitrary to add or remove 

an input to the EKF, provided that the additional feature is not an outlier or the number of point features 

falls below a minimum after the removal. For SAM based methods, it is important to keep track of the 

corresponding feature in the 3D structure properly. Incorrect addition or removal of a point feature could be 

hazardous since the final pose sequence is highly dependent on the correctness of the recovered structure. 

Some full covariance filters, say the one in [3], require a sub-filter to construct the initial condition of the 

newly appeared point feature before it is added to the main filter. The proposed algorithm does not have 

such a problem. 

 

VIII. EXPERIMENTS AND RESULTS 

A. Experiments with synthetic data 

The first experiment was conducted with synthetic data. A synthetic structure with 300 random feature 

points in 3D within a cube of volume of 0.13m
3
, centered at a place 0.33m away from the camera, was 

generated. The motion of the object was composed of three different segments, a pure translation section, a 

pure rotation section and a general motion section. The motion parameters were generated randomly from 

0.2 to 1.2 degrees per frame for the Yaw, Pitch, Row angle and 0.005 to 0.015 meters per frame for tx, ty and 

tz. The focal length of the camera was 6mm with a 2D zero mean Gaussian noise of 0.1 standard deviation. 

The length of each synthetic sequence is 99 frames. A total of 50 independent tests were carried out. The 

proposed algorithms, the EKF by Azarbayejani and Pentland [4] and the 2-step EKF by Yu et al [8] [9] 

were implemented in Matlab and run on a Pentium III 1GHz machine to estimate the camera motion. The 

results were compared and analyzed.  

Figure 4 shows the average total rotation and translation errors of the three approaches under the 50 test 

cases. For the plots in figure 4 to 7, the line with asterisk (*), triangle (/\) and circle (O) markers are for our 

proposed approach, the EKF by Azarbayejani and Pentland [4] and the 2-step EKF by Yu et al [8] [9] 

respectively. Here, the total rotation was calculated using the axis-angle representation. The difference 

between the actual and the recovered angle is the error. The total translation error was computed by 
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subtracting the recovered translation vector from the actual one and the magnitude was taken. From the 

plots, the proposed approach has a lower total rotation and translation errors than the other methods under 

comparison. Figure 5 shows the errors in terms of percentages. Our method achieves an average of 0.85% 

and 3.80% for rotation and translation respectively. To have a more detailed picture, the errors of each 

individual pose parameters were plotted. From figure 6, it can be seen that there is an obvious improvement 

on the accuracy of the Yaw, Pitch and Roll angle. For the each translation parameter, our algorithm has a 

comparable accuracy with the 2-step EKF but is much better than the EKF by Azarbayejani and Pentland. 

Table I shows the average errors of each pose parameter per frame of the three algorithms. Our approach 

has the lowest error for all the parameters except the translation tz, which is slightly (less than 15%) higher 

than that of the 2-step EKF. It is encouraging that our new formulation has reduced the errors by at least 

36% and 90% for the total translation and rotation respectively. The improvement on the accuracy is due to 

the use of trifocal tensor. A detailed explanation has been described in section VII.  

It is expected that the 2-step EKF by Yu et al should have a lower accuracy than the EKF by Azarbayejani 

and Pentland as the filter has been decoupled. On the contrary, it is found that the former approach 

performed better from the experimental results. Actually, both algorithms diverged in some test cases. It 

seems that the EKF by Azarbayejani and Pentland diverged to a greater extent, leading to a higher average 

error compared to the 2-step EKF.  

 

 

 

TABLE I 

THE AVERAGE ERROR OF EACH POSE PARAMETER 

 Roll Pitch Yaw tx  ty tz 
Total rotation 

 (% error) 

Total translation 

(% error) 

Our approach 0.0822 0.1769 0.5411 0.0067 0.0199 0.0210 0.2417 (0.8466%) 0.0306 (3.8015%) 

Azarbayejani's EKF 0.8296 2.1704 7.9952 0.0314 0.0673 0.0336 3.2283 (11.830%) 0.0871 (15.509%) 

Yu’s EKF 1.0856 2.5604 4.8386 0.0131 0.0406 0.0183 2.6504 (9.7289%) 0.0485 (8.1139%) 

 

A table showing the average errors of each pose parameter per frame of the 3 algorithms in the experiment. Note that the 

angular errors (i.e. the total rotation, the Roll, Pitch and Yaw angle error) are in degrees and the translation errors (i.e. the total 

translation, tx, ty and tz error) are in meters. The values in brackets are the percentage errors. 
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Figure 4. The average total rotation error (top, in degrees) and total translation error (bottom, in meters) versus frame number of 

the 3 algorithms. 

 

 

Figure 5. The average percentage of rotation error (top) and translation error (bottom) versus frame number of the 3 algorithms. 
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Figure 6. The average error of each recovered pose parameter versus frame number of the 3 algorithms. 
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The extension of our pose tracking approach has been applied to recover the synthetic structures. Figure 7 

shows the image residual errors against CPU time, which was calculated by re-projecting the recovered 3D 

structure onto the actual image with the computed pose sequence. The proposed approach has an average 

final error about 11 pixels per feature over 99 frames. Since a zero mean pixel noise of 0.1 standard 

deviation has been added to the images, it is expected that the root mean square error of a feature in the re-

projected structure is 13.86 pixels over 99 synthetic images. This means our approach just overfits a little 

compared to the 2-step EKF, which has an error of 4 pixels. The residual error of the EKF by Azarbayejani 

and Pentland is 25 pixels. Such an improvement is contributed by the fact that the estimation of pose in our 

algorithm is independent of the scene structure. The search space is reduced and the chance of locking into 

a local optimum is minimized. In addition, the results reveal that the problem of structure and pose 

ambiguities, which has been reported in [12], is alleviated with the incorporation of the trifocal constraint 

into the recursive algorithm. 

Table II shows the time needed to recover the camera motion when new image measurements were 

sequentially fed to the algorithms. The first step in creating this plot was to initialize the algorithm using the 

first 10 frames so that it can converge to a steady state. Then the succeeding 89 frames were sequentially 

fed to the algorithm and the required computation time is measured. The computation time of the 

algorithms remains roughly at a constant level over time. On average, our algorithm takes 1.56 seconds to 

compute the pose of the scene for each image. Its extension to structure recovery takes an addition of 0.11 

seconds, i.e. a total of 1.67 seconds, to recover both the pose and scene structure for 300 point features. 

Both of them outperformed the full covariance EKF by Azarbayejani and Pentland, which needs 2.60 

seconds to achieve the same task. However, the 2-step EKF takes only 0.42 seconds to process an extra 

image frame. The reason is that their EKF is decoupled, which is actually a tradeoff between speed and 

accuracy. Between the two full covariance EKFs under comparison, it can be concluded that the proposed 

approach performed better in terms of speed and accuracy. 
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Figure 7. The relationship between the CPU time and the image residual error. Note that the algorithms were implemented in 

Matlab with a Pentium III 1GHz machine and the time measurement is in seconds. 

 

 

B. Experiments with real images 

An experiment using real images was also performed. Three image sequences were used to test the 

proposed approach. The first sequence was taken in the laboratory. The images were captured while the 

camera was translating sideway on a rig. The length of the image sequence is 100 frames. The second 

sequence was recorded from a live TV programme. The stadium in the images is located in Athens and was 

holding the closing ceremony of the Olympic games 2004. The resolution of the images is 352 X 255. It 

lasts for 9 seconds and consists of 90 frames. The third one was captured from a DVD. The Grand Canyon 

in the northwestern Arizona was viewed from a helicopter. It is 5-second long and contains 50 images. 

Please refer to the attachment or visit the URL http://www.cse.cuhk.edu.hk/~vision/demo/tensorkalman/ to 

see the original sequences. The proposed algorithm was applied to track the camera motion. The recovered 

pose sequences were used to produce augmented reality videos 

Figure 8 and 9 show the results from the laboratory scene sequence. An augmented reality video was made 

successfully. A synthetic car, which is drawn by wire-frames, was placed in front of the yellow box. The 

motion of the car is consistent with the background scene. The plots in figure 9 illustrate the pose 

parameters acquired from the image sequence. It is reasonable that the recovered Yaw, Pitch and Roll angle 

are smaller than 1 degree, since the camera was translating horizontally with the viewing angle fixed.  

 

TABLE II 

TIME REQUIRED TO PROCESS AN EXTRA IMAGE MEASUREMENT 

 Our approach  Our extended approach Azarbayejani’s EKF Yu’s 2-step EKF 

Time required (in seconds) 1.56 1.67 2.60 0.42 

 

A table showing the average CPU time for the 4 algorithms to recover the pose and 3D structure when extra frames were 

added to the image sequence. 
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Figure 8. Results of inserting an artificial object into the laboratory scene sequence using the proposed approach. The left column: 

The 1
st
, 50

th
 and 100

th
 image of the sequence. The right column: A synthetic car, which is drawn by wire-frames, was augmented 

into the scene. 
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Figure 9. The pose sequence recovered from the laboratory sequence. The line with triangle (/\), circle (O) and square (口) 

markers on the left plot are for the translation parameters tx, ty and tz respectively while the line with triangle (/\), circle (O) and 

square (口) markers on the right plot are respectively for the Yaw, Pitch and Roll angle. 

 

 

The results from the Olympic stadium sequence are in figure 10 and 11. This time the synthetic car was 

put at the center of the stadium. The quality of the augmented reality sequence is quite good even the image 

resolution is not high. As the video was taken on a helicopter hovering on the stadium, the roof of the 

stadium and the top of the car can be seen. For the same reason, the motion of the scene mainly consists of 

rotation on the z-axis. It has been reflected in the recovered rotation parameters, which is shown in figure 

11.  

Figure 12 and 13 are the results from the Grand Canyon sequence. The camera motion is more arbitrary 

and the depth of the scene is larger than the previous sequences. As the camera is getting around the canyon, 

the major motion is translation along the x-axis and rotation on the pitch angle, which can be verified from 

figure 13. By inspecting the resulting augmented reality sequence, the synthetic object, which was placed on 

the slope, is synchronized with the movement of the background. The results are accurate and visually 

acceptable. 

The last two examples best demonstrate the advantages of SAM-based pose tracking algorithms over 

those marker-based approaches. Only the former methods are applicable to these sequences since the they 

were taken by the third parties and neither the scene structure is known nor markers can be placed. 
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Figure 10. Results of inserting an artificial object into the Olympic stadium sequence. The sequence was recorded from a live 

broadcast of the closing ceremony of the Athens Olympic games. The left column: The 1
st
, 45

th
 and 90

th
 image of the sequence. 

The right column: A synthetic car, which is drawn by wire-frames, was placed at the center of the stadium. 
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Figure 11. The pose sequence recovered from the Olympic stadium sequence. The line with triangle (/\), circle (O) and square (口
) markers on the left plot are for the translation parameters tx, ty and tz respectively while the line with triangle (/\), circle (O) and 

square (口) markers on the right plot are respectively for the Yaw, Pitch and Roll angle. 
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Figure12. Results of inserting an artificial object into the Grand Canyon sequence. The sequence was captured from a DVD. The 

left column: The 1
st
, 25

th
 and 50

th
 image of the sequence. The right column: A synthetic car, which is drawn by wire-frames, was 

placed on the slope. 
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Figure 13. The pose sequence recovered from the Grand Canyon sequence. The line with triangle (/\), circle (O) and square (口) 

markers on the left plot are for the translation parameters tx, ty and tz respectively while the line with triangle (/\), circle (O) and 

square (口) markers on the right plot are respectively for the Yaw, Pitch and Roll angle. 
 

IX. CONCLUSION 

A high-speed recursive pose tracking algorithm for augmented reality has been proposed in this paper. By 

merging the power of Kalman filtering and trifocal tensor, a significance improvement on the accuracy and 

computation efficiency of the algorithm has been achieved. The estimation of pose sequence is now 

independent of the scene structure with the trifocal tensor point transfer function in the measurement model. 

This also reduces the search space of the algorithm, resulting in a more accurate solution of the pose, an 

increase in speed and a simpler procedure to handle the changeable set of point features. Our new pose 

tracking approach has been extended to simultaneous recovery of structure and motion. With the proposed 

algorithm, the traditional problem of structure and pose ambiguities has been alleviated. Experimental 

results show that our approach outperformed other Kalman filter based methods with little overfitting 

problem. It is found that the average rotation error is less than one-tenth of the existing algorithms under 

comparison. The advantages of our algorithm have been demonstrated by applying it to produce an 

augmented reality video sequence.  

To pursue further, an efficient feature selection strategy could be added to find out a set of reliable point 

features for the proposed pose tracking algorithm in each time-step. It has been shown that it is effective to 

incorporate such a scheme into a model based pose tracking algorithm in visual servoring applications [29]. 

With feature selection, the algorithm can rely on a smaller number of point features in the images. As the 

time complexity can be independent of the number of available point features, the algorithm can be speeded 

up, provided that the computation overhead of the selection procedure is small. Also, the accuracy can be 

further enhanced as the outliers in the images are removed. It is believed that our formulation can be 
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realized in real-time at 30Hz with suitable implementation. 

From a theoretical aspect, a more sophisticated dynamic model that involves the use of twist 

representation and Lie groups [40] can be applied to estimate the camera motion. With that, the singularities 

due to the use of the Yaw, Pitch, Roll angles to represent rotations can be avoided. The observation model 

can be further linearized as the trigonometric functions are removed with the application of twist. In 

addition, the acceleration component can also be incorporated into the dynamic system elegantly so that the 

motion of the camera can be modeled more realistically. The Lie groups and their algebras are useful for 

transforming motion parameters from one coordinate frame into another. They can help upgrading our 

system from single camera to stereo. We are now working towards this direction. 
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