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ABSTRACT

In this paper, we propose a novel geometric approach for
solving camera calibration efficiently. Our camera calibration
procedure is implemented on planar objects with rectangles
on them. Images of the planar object are taken from different
views where corner features are extracted. The geometric re-
lationship between the rectangle corners is utilized to reduce
the number of extrinsic unknown parameters. This process
can further reduce the complexity of the optimization space
greatly and thus enable our approach to be more accurate and
more efficient than other geometric approaches. Experimen-
tal results on synthetic images and real images witness the
advantage of our approach over state-of-the-art approaches.

Index Terms— Camera calibration, geometric approach

1. INTRODUCTION

Due to the crucial significance of camera calibration, it has
been thoroughly studied and lots of approaches have been
proposed during last decades. A comprehensive classification
and detailed description have been conducted in [1]. Gen-
erally, camera calibrating methods can be divided into two
groups, algebraic methods and geometric methods in terms
of whether the energy function to be minimized is based on
algebraic distances or geometric distances [2]. The main dif-
ference is that geometric methods have a reasonable geomet-
ric interpretation while algebraic ones are not statistically or
geometrically meaningful.

Representative algebraic methods are DLT [3], normal-
ized DLT [4]. Other well known approaches are the model
using vanishing points [5] and the model proposed by Zhang
[6]. The advantage of algebraic methods is that they have an-
alytical solutions while the disadvantage of them is that they
cannot solve lens distortions. Thus algebraic approaches are
always used as initialization of geometric methods which al-
ways rely on non-linear iteration methods to achieve their op-
timal goals. Such two-step method was first introduced in [7],
where Maximum Likelihood Estimation was applied to mini-
mize the geometric error between corners of planar quadran-
gles and their corresponding image points. Other approaches
such as [8] based on properties of circles can also perform
well.

The common point about nearly all the geometric methods
is that they all need to compute the rotational angles during
projection which involves the computation of differentiation
on trigonometric functions. As we all know, this computation
is so expensive that it limits the application of such methods in
resource-limited systems. Another limitation of these models
is that they introduce a large number of extrinsic parameters
and make the optimization space extremely complex.

In this paper, we propose a geometric approach which
doesn’t rely on the differentiation computation of trigonomet-
ric functions. Furthermore, we only have 3 extrinsic param-
eters in one image but not 6 extrinsic parameters in existing
geometric approaches. Thus, the unknown parameters in our
model is approximately half of existing methods such that un-
der same circumstances, our approach is much less complex
than others and can be optimized more efficiently. The paper
is organized as follows. Section 2 covers the camera model
and traditional representations. Section 3 describes our model
and corresponding solutions. The detailed implementation of
our approach is presented in section 4. Section 5 provides
our experimental results on both synthetic images and real
images.

2. CAMERA MODEL AND CLASSICAL
REPRESENTATIONS

The pinhole camera assumes that all the rays from objects are
mapped onto images through the camera lens center. Assume
a point in 3D world is denoted by w = (X,Y,Z) and the
corresponding image coordinate is denoted by ¢ = (x,y). If
represented by homogeneous coordinates, they become w =
(X,Y,Z,1) and ¢ = (x,y,1). Then the transformation be-
tween w and q is denoted by

vq = Pw, D

where 1 is an scale factor and P € R3** is the product of
intrinsic matrix K;,; and extrinsic matrix K.,;. The intrinsic
matrix is given by

King = |0 ﬁ 2, 2



where (c1,cq) denote the coordinates of the camera center,
« and 8 denote focal distances along horizontal and vertical
axes respectively, and s denotes the skew parameter. The ex-
trinsic matrix K,; is composed of 6 parameters, including 3
rotational parameters and 3 translation parameters. Then the
goal of camera calibration is to estimate all the unknowns in
the intrinsic matrix K;,,;.

The classic geometric approach estimates the above un-
knowns by minimizing the following energy function.
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where ¢; ;, denotes the measurement in the images, M de-
notes the number of images, /N denotes the number of fea-
tures in one image, v, P and w are the same as above. For M
images, the total number of unknown parameters is 5 + 6.
Thus the above energy function is optimized in the space S €
R5T6M  Furthermore, the optimization process includes the
computation of the differentiation on trigonometric functions.

3. OUR MODEL AND THE CORRESPONDING
SOLUTION

3.1. Basic model

Our model requires at least one square or one rectangle in
each object plane while the size of squares or the rectangles is
arbitrary. Figure 1 shows the projection from one object plane
to the image plane. O, denotes the camera center. The image
plane is denoted by p. while the object plane is represented
by p,,. Without loss of generality, we assume the shape in
the plane is a square. Four corners of the square are denoted
by p1,p2, p3, p4 respectively in the anticlockwise direction.
Additionally, p!, ph,p4,p}y denote the corresponding image
points of p1, p2, p3, pa-

The intrinsic parameters in our model are the same as
classic models, including (o, 3, s, ¢1,c2). Instead of the ro-
tational parameter or the translation parameters, the extrinsic
parameters in our model are three distances from the camera
center to any three corners of the object square. Here let’s
assume the three corners are pi, ps,ps in Figure 1 and the
corresponding distances are denoted by /1, l2, l3 respectively.
The four vectors u] , 17%, 173>, s represents the directions from
the camera center to the four image corners (or object cor-
ners) which can be easily computed from intrinsic parameters
and corner image coordinates.

The geometrical properties of squares give us 6 con-
straints on the distances and vectors;

b} — lwd|| = D |[lay — lswh|| = D
|lsuh — lyus|| = D ||lauws — Liut|| = D

llhut — lwd]| = V2D ||lhub — s = V2D (4)
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Fig. 1. Projection From 3D World to Image Plane

where D denotes the edge length of the object square. How-
ever, the exact value of D is unimportant because it only af-
fects the extrinsic parameters in our model but has little in-
fluence on our intrinsic parameters. [, is not regarded as un-
known parameter since it can be represented by [y, [, 3 and
D which is illustrated in the following part.

3.2. Analysis on our model

Assume the Euclidean coordinate center is located at point po,
with positive z axis along the direction of P2ps and positive y
axis along the direction of ZTpl) . The z axis is perpendicular to
the xy—plane. Under such coordinate system, the coordinates
of camera center is denoted by (¢, Yo, 20). Then we can have
the following equations:

5=af+ys+ 2
If =a3+ (yo— D)* + 23
13 =(vo—D)*+yi + 2§
I3 = (20— D)’ + (yo — D)* + 2§ (5)

From the above, we can infer that 12 = 12 + 13 — I2.

For M images, the total number of unknown variables
to be optimized in our model is 5 + 3M which is approx-
imately half of the unknown variables in classical geomet-
ric approaches. Moreover, since there are not rotational pa-
rameters in our model, numerical calculation of trigonomet-



ric function is unnecessary. Thus, our model can reduce the
computation complexity greatly.

3.3. Extended model

In practice, planes like checkerboard with many regular
square printed on one plane are utilized in order to increase
the robustness. Here we extend our geometric model from
one square to regular square group. Assume a corner in object
planes are denoted by p; ;, where (¢, j) denotes the horizontal
and vertical coordinates of corner p; ; respectively on condi-
tion that the center of object plane coordinate is the corner
p11. Then the corresponding image point is represented by
p;’ ;- In this way, the energy function can be formulated as
follows:

By = |[liy1,juit1y — lijuig|* — D?
By = |[lijr1uig4i — ligui|* — D?
By = |[lis1,j1tit1g41 — liguig|* — 2D?

Ey = |llijyruijii — iy jtargl|> —2D*  (6)

where [;; can be represented by l11, /12,022 and D. wu;; de-
notes the direction vector from camera center to p;; in images.
The Gaussian-Newton method is utilized in our approach to
find the optimal solution.

4. EXPERIMENTAL RESULTS AND ANALYSIS

All our experiments are tested in MATLAB R2010b on a PC
with 3.1GHz Intel Core i5 CPU and 4GB memory. Both syn-
thetic images and real images are used in the comparison.

4.1. Synthetic images free from noise

The checkerboard used in our simulation has 10x8 squares.
The edge length of each square is 5cm. The parameters of
simulated camera are as follows: « = 8 = 500,s = 0.5,¢; =
405, co = 295. Image resolution is 800x600. The rotation
transformation is represented by 3 angles around z,y and z
axes respectively. The value of three angles can be —30°, 15°
or 45°. Translation transformation is also performed. Sample
synthesized images are shown in Figure 2.

In our experiment, we relied on TOOLBOX released by
Bouguet in [9] to extract corners of squares in the checker-
board patterns. Details of our results are shown in Table 1.
Observed from the results, our method outperforms the tradi-
tional one in both average value and standard deviation. The
average running time per trial of our method is 10.675 sec-
onds, while the average running time per trial of traditional
method is 21.31 seconds which verifies our judgment that our
method is faster than the classical method.

Fig. 2. Sample Synthetic Images without noise

Table 1. Results on synthetic images without noise

Number (a, B) s (c1,c2)
tra(mean) (500.32,500.41) | 0.530 | (403.94,293.98)
3 imgs our(mean) (499.95, 500.24) 0.590 (404.01, 293.79)
tra(o) (0.94,0.91) 0.380 (0.73,0.67)
our(c) (1.01, 1.18) 0.705 (0.53, 1.07)
tra(mean) (500.30, 500.31) 0.440 (404.27, 293.89)
4imgs | our(mean) | (500.05,500.23) | 0.485 | (403.96,294.21)
tra(o) 0.66,051) 0410 {0.70,0.35)
our(o) (0.56, 0.60) 0.255 (0.39,0.34)
tra(mean) (500.17,500.29) | 0.475 | (404.03,293.99)
5 imgs our(mean) (500.30, 500.33) 0.535 (403.86, 294.23)
tra(o) (0.69, 0.78) 0.215 (0.52,0.34)
our(c) (0.65, 0.83) 0310 (0.55, 0.42)
tra(mean) (500.30, 500.28) 0.520 (404.12,294.12)
6imgs | our(mean) | (499.99,500.22) | 0.630 | (403.82,294.30)
tra(o) (0.63, 0.62) 0.265 (0.63, 0.35)
our(o) (0.54,0.61) 0.165 (0.25,0.23)
tra(mean) (500.30, 500.31) | 0.595 | (404.28,293.97)
10 imgs our(mean) (500.02, 500.20) 0.560 (403.85, 294.15)
tra(o) (0.40, 0.33) 0.200 (0.45, 0.20)
our(c) (0.32,0.34) 0.075 (0.12,0.15)

4.2. Synthetic images with noise added

In the second test, white Gaussian noise is added to our syn-
thetic images. The white Gaussian noise in this part has the
following property: mean = 0, variance = 0.1. Sample images
are shown in Figure 3. Detailed results are shown in Table 2.

By observing the result table, we can find that our method
is still able to have a satisfactory result even when the noise
level is so high. In this experiment, the average running time
of our method is about 5.48 seconds while that of classical
method is about 9.41 seconds.

4.3. Real Images

The resolution of the images used in our experiment is
1296 x972. Our checkerboard consists of 9x7 squares whose
edges have a length of 35 mm each. The checkerboard was
printed and pasted on a wood-board. Fifteen pictures of the
checkerboard was taken from different perspectives. Four
sample images are shown in Figure 4.

Comparison results between our model and the classical



Fig. 3. Sample Synthetic Images with noise added

Table 2. Results on synthetic images with noise added

Number (e, B) s (c1,c2)
tra(mean) (500.75, 500.26) | 1.015 | (402.77,295.32)
3 imgs our(mean) | (501.24,501.42) | 0.545 | (404.28,294.68)
tra(o) (4.50, 3.60) 2.235 (3.56,4.21)
our(o) (4.95,5.03) 1.805 (2.47, 3.48)
tra(mean) (499.52,499.44) | 0.555 | (403.72,293.73)
4 imgs our(mean) (499.93, 501.09) 0.355 (403.75, 294.61)
tra(o) (3.01, 2.70) 1.360 (2.21, 1.98)
our(o) (3.29, 3.08) 1.095 (1.41, 1.65)
tra(mean) (498.55,498.37) | 0.280 | (404.12,294.25)
5 imgs our(mean) | (500.11,500.48) | 0.245 | (403.52,294.63)
tra(o) (2.87,2.54) 0.690 (1.98, 1.28)
our(o) (2.96, 2.44) 0.970 (0.99, 1.24)
tra(mean) (498.84,499.11) | 0.775 | (404.17,293.66)
6 imgs our(mean) (500.31, 500.47) 0.410 (403.78, 294.30)
tra(o) (2.66, 2.47) 0.815 (1.30, 0.96)
our(o) (2.65, 2.40) 0.795 (1.11, 1.19)
tra(mean) (498.30,498.77) | 0.835 | (403.65,293.24)
10imgs | our(mean) | (500.46,500.88) | 0.360 | (403.81,294.42)
tra(o) (2.19,1.97) 0.765 (1.20, 0.87)
our(o) (2.01, 1.69) 0.405 (0.70, 0.62)

one are shown in Figure 5. The left part of Figure 5 shows
the difference of computed focal distance while the right part
shows the difference of computed camera center. The aver-
age running time of our method is 13.95 seconds, meanwhile
the average running time of the traditional method is 17.67
seconds.

5. CONCLUSION

In this paper, we have proposed a novel geometric method for
camera calibration. Three or more images of a planar pattern
from arbitrary view are required in our method. Our approach
involves no trigonometric function, hence it’s more efficient.
Observed from the above experimental results and analysis,
we can conclude that our method is more accurate and more
efficient than the existing geometric methods. Lens distortion
is not handled here, it can be a future direction.
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Fig. 5. Results in real images
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