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Abstract 

 
Processing of stereo images has become more and 

more important in recent years because of the 
availability of various stereo displaying devices. In 
particular, stabilizing of stereo images is important 
and useful especially when the images are obtained 
from cameras held by inexperienced hands or placed 
on unstable platforms. In this paper, we propose a new 
frame warping method for such a problem. Most video 
stabilization methods to date use 2-D geometric 
transform to approximate the changes between frames.  
However, these methods fail when there is a large 
depth variation between the foreground and the 
background in the scene. We try to solve this by 
estimating the 3-D motion parameters of the cameras 
by tri-focal tensor and the Extended Kalman filter. And 
use the motion parameters to stabilize the images. We 
test the method using synthetic and real images and 
the results show that the performance of our proposed 
method is accurate even if the background contains 
large relative depth variations.  
 
 
1. Introduction 
 

3-D video input and display, especially stereo 
videos, have received significant attention in research 
and becomes more and more important in recent years. 
It is largely because of the developments of new 3-D 
display devices. In this paper, we study the 
stabilization of such video clips from handheld 
cameras or on mobile platforms because they are easily 
degraded by parasitic motions. The common causes are 
camera mechanical vibrations or random motion from 
a person holding the camera. This is a well known 

problem and different video stabilization techniques 
have been developed to stabilize and reduce the 
annoyance of such undesirable motion effects.  

Some hardware approaches use motion sensors such 
as accelerometers, gyroscopes, dampers and active 
optical system to detect and compensate for the 
parasitic camera motion. This solution is relatively 
more costly, whereas processing of the video sequence 
using computer vision provides a much cheaper way to 
handle the unstable videos. In this approach, we follow 
the assumptions of the general stabilization framework. 
The parasitic motions do not modify the individual 
frame content and blurring is not usually taking place. 
2-D global motion model is commonly used [1, 2]. 
However, we use the 3-D motion model for the reasons 
mentioned later in this paper. Inter-frame motion 
parameters can be estimated by phase correlation, 
global matching cost function, or feature tracking in 
[4]. The Kalman filtering is used in [3] to filter out the 
parasitic motions. 
 
2. Problem setting 
 
2.1. Image System 
 

In our system, the state vector st is defined as a 6-
dimensional vector, and the global motion model Mt is 
modeled as 4*4 rigid transform twist motion model [8] 
which consists of a rotational matrix Rt and a 
translational vector Tt.  K is the intrinsic parameters and 
E is the 3*4 rigid transformation between 2 stereo 
cameras. Both K and E are found in the camera 
calibration.  For simplicity, the cameras used in our 
system are assumed to be identical. pm,t and pm,t’ is the 
left and right image coordinates respectively.  
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Fig. 1,  The geometric model used in this study 
 

The relationship between the 3-D world and its 
projection on both images are as below, 
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2.2. Motion Model 
 

When the background has large relative depth 
variation, the transformation between frames in the 
video is not able to be approximated by simple 2-D 
geometric transform, such as affine transformation 
applied in [4]. In this case, estimating a full 3-D model 
of the scene including depth is necessary. According to 
the study of Morimoto and Chellappa in [9], more 
complex models may perform worse than simple 
models due to their sensitivity to tracking errors, hence 
we would use the 3-D model with the help of stereo 
images to eliminate such errors and estimate the 
intentional motion model. 
 
3. Methodology 
 

3.1. Feature Tracking 
 

In our study, we use the Kanade-Lucas-Tomasi 
(KLT) tracker in [5] to extract features from the left 
and right image sequences independently. We assume 
they are contaminated by Gaussian noise only. Outliers 
are filtered off in the next step. 

 
3.2. Stereo Correspondences 
 

First, we match the points putatively based on their 
normalized correlations. Then we use the eight-point 
algorithm in [6], the matched points and the Random 
Sample Consensus (RANSAC) robust estimator in [7] 
to compute the fundamental matrix F. Since we have 
the intrinsic parameters K, we could calculate the 
required extrinsic parameters E from F with the 
method mentioned in [6]. Stereo correspondences are 
then found by the guided search.  

 
3.3. Motion estimations 
 

The parameters are estimated by the smoothing 
Kalman filter which is mentioned in [8] under the idea 
of [3]. Trifocal tensor is used to constrain the 2-D 
positions of the feature points in every three views in 
the measurement model. Since trifocal tensor is used, 
hence the computation steps of 3-D models are 
eliminated. The base pair is the first stereo image 
sequence pair. The pair is the two views of the trifocal 
tensors. The left image at time t is used as the third 
view of the trifocal tensor for the left side. Similarly, 
the right image at t is used as the third view of another 
trifocal tensor. The illustration of the trifocal tensors in 
our stereo system is shown in Fig. 2.  

 
Fig. 2,  Illustration of the trifocal tensors in our stereo system 
 

Tt(·) is the trifocal tensor point transfer function. vt 
is the noise of the measurement yt which is defined as, 

( ) tttt vMTy +=  (4) 
The tensors can be expressed in tensor notation as,  
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at base frame. a and a’ are the extrinsic parameters of 
the left and the right camera at image sequence time t 
respectively. The epipole e12 is estimated in the 
initialization step. lm is calculated from (9). It is the 
line passing through the mth feature point in the image 
sequence of the right camera in the base frame. 
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Then we estimate the state vector st using the 
Kalman Filtering algorithm mentioned in [8]. The 
prediction equation of the state is shown in (10). H(·) 
is the measurement. Kt is the Kalman gain. The update 
equation of the state is shown in (11), 

1ˆˆ −
− = tt ss  (10) 
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3.4. Frame Warping 
 

Resulting compensation parameters [3], which are 
used to compute the warped frames, are given by,  
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The transformed coordinates in frame can be 
calculated as, 
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Letting vrurfrs 323133 ++= , we have,  
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s could also be expressed as the following, 
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When the background of the stereo images is far 
away from the camera, we could assume z  to be very 
large. Therefore, we could approximate the value of 
the transformed coordinates as,  
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If we have the background with small depth 
variations, we could approximate the value by letting 
z to be the estimate of all z  in current image pair. 
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A better performance could be achieved by 
applying dense depth map, which is also known as 
dense disparity map. We get the value of each pixel in 
the warp image by bi-linear interpolation. 
 
4. Experiment Results 

 
We have tested our algorithm on two kinds of video 

sequences. The first kind of sequences is generated by 
reprojecting a synthetic 3-D object onto images with 
added noise simulating the parasitic motion. The object 
is inside sphere of 23985 pixels in diameter and is 
92251 pixels away from the camera of focal length 848 
pixels. The standard deviation of noise for the parasitic 
translation and rotation are 100 pixels and 0.001 
radians respectively per frame. We have done 100 tests 
on only translational noises, 100 tests on only 
rotational noises, and 100 tests on mixed noises. The 
second kind of sequences, sequence B, is taken from a 
stereo camera. 

Fig. 3, fig. 4, fig. 5 and fig. 6 show the stabilization 
results of synthetic image sequence. The dots are 
features of the 3-D projected image background. The 
patterns appear to be more stable in the scene after the 
stabilization process. Fig. 7 shows frame 5, frame 18 
and frame 40 of a real indoor scene sequence B. Fig. 8 
shows that our tester tests the performance of the 
stereo videos. 

 

 
Fig. 3,   Test on synthetic camera 3-D parasitic translation motion. 
The upper row contains the original left images. The lower row 
contains the stabilized left images. They are relatively stable. 
 



 
Fig. 4, Test on synthetic camera 3-D parasitic rotational motion. The 
upper row contains the original left images. The lower row contains 
the stabilized left images. They are relatively stable. 
 

 
Fig. 5,  Test on synthetic camera 3-D parasitic mixed motion. The 
upper row contains the original left images. The lower row contains 
the stabilized left images. They are relatively stable. 
 

 
Fig. 6,  Test on synthetic camera 3-D parasitic mixed motion. The 
upper row contains the original right images. The lower row contains 
the stabilized right images. They are relatively stable. 
 

 

 

 
Fig. 7,  Three sequence frames (5, 18, 40) after (left) and before 
(right) stabilization. The checkerboard pattern wall appears to be 
motionless in stabilized sequence while it is vibrating in the original 
sequence. 

 
Fig. 8,   One of our testers is watching the stereo video. 
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5. Conclusion 
 

In our system, 
co bined with trifocal tensor and Kalman filter for our 
parameter estimations. Then we use the result and the 
frame warping method to stabilize our image 
sequences. We do not need to retrieve the disparity 
map from the stereo video because it is a complex task, 
but we estimate the approximation of the depth 
information for frame warping as in equation (18). We 
observed that the system could stabilize the video quite 
well even if this approximation is being used. 
However, we believe that the performance would be 
improved if we use the disparity map in the frame 
warping. This may be explored in the future. 
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