
Robust and Efficient Pose Tracking Using Perspective-Four-Point Algorithm and

Kalman Filter

Kin Hong Wong, Ying Kin Yu*, Ho Yin Fung, Ho

Chuen Kam

Department of Computer Science and Engineering line

The Chinese University of Hong Kong

*Hong Kong

e-mail: khwong@cse.cuhk.edu.hk, ykyu.hk@gmail.com

Kwun Pang Tsui

Department of Mechanical Engineering

The Chinese University of Hong Kong

Hong Kong

e-mail: warrentsui@outlook.com

Abstract—In this paper, we investigate the use of Kalman filter

to enable robust tracking based on an efficient pose estimation

algorithm, namely the four-point algorithm. Pose estimation is

very useful in vision-based system control, for example in

automatic driving and virtual reality inputs. Firstly, we have

implemented a four-point pose estimation method with a

personal computer. This estimation algorithm is supposed to

be the method that requires the least number of point features

for the generation of a unique solution. On the contrary,

existing three-point algorithms may give multiple solutions.

Then we have adopted a Kalman filter to enable robust

tracking. Kalman filter is computationally efficient and very

good at handling noise during tracking. The merge of these two

techniques make us able to build a high-speed and yet robust

system to be used in a wide variety of real applications.

Furthermore, we have shown that a linear Kalman filter can

be applied to filter off noises directly from the results of the

four-point algorithm. Simulated and real data tests were

performed and the results were satisfactory.

Keywords-automatic control; pose estimation; virtual reality

systems; kalman filter

I. INTRODUCTION

Computer vision-based pose estimation is useful in many
industrial applications such as natural user inputs for virtual
reality, machine assembly and automatic driving systems. In
this paper, we investigate an efficient and robust method of
pose estimation that uses only four feature points called four-
point algorithm by Liu and Wong [1]. It belongs to the
category of Perspective-n-Point approaches where n is equal
to 4. The four-point algorithm is the most efficient method
for pose estimation that requires the least number of features
to produce unique results. In contrast, the three-point
algorithm [2], which takes the minimum number of features
for pose estimation may suffer from the problem of multiple
solutions. Most four-point algorithms assume that the 3-D
model is known and one image is enough to identify the
object pose. During tracking, the object is moving and we
need to track the object pose continuously. Kalman filter is
then suggested in our project to achieve robust tracking. As
for applications of such a method, for example in automatic
driving, the model of a car in front of the camera is known.
We can apply Kalman filter to track its pose. In this work,
our attention is on how to use Kalman filter to enable robust

object tracking. The pose of an individual frame can be
acquired by the four-point pose estimation algorithm. We
have found that the linear Kalman filter is suitable for post-
processing to get an accurate pose sequence. It is the best
choice since the solution is optimal [3]. More specifically,
our system consists of two stages. Firstly, we need to have
the model of the target object and the camera is calibrated.
Then we track four feature points on the object using the
CAMSHIFT algorithm in OPENCV [4]. Finally, the data are
fed to the Kalman filter to enable robust tracking. From the
experiments, we revealed that Kalman filtering is an
effective strategy to reduce the noises in the tracking
problem. The overview of the system is shown in Figure 1.
The major contributions of this work are: (1) Our pose
estimation approach is computationally efficient because the
four-point algorithm involves no trigonometrically function.
In theory, it can be implemented using simple lightweight
computation machines or even Field Programmable Gate
Array (FPGA) hardware. It has been applied to object
tracking. (2) We show that Kalman filter can be used to
enable robust pose tracking with the four-point algorithm.
Unlike other pose tracking approaches that utilize extended
Kalman filter, our solution is optimal under Gaussian
assumption. The proposed system can acquire accurate pose
sequences from the input image data.

Figure 1. Overview of the four-point algorithm with Kalman filter.

This paper is divided into several parts: Section II
explains the background of our project. In Section III, the
theory and design methodology are discussed. The
implementation and testing results are illustrated in Section
IV. The conclusion is found in Section V.

Kin Hong Wong, Ying Kin Yu, Pang Kwan Tsui, Yin Fung Ho, and Ho Chuen Kam,"Robust and efficient pose
tracking using perspective-four-point algorithm and Kalman filter", 2017 International Conference on
Mechanical, System and Control Engineering (ICMSC 2017), St. Petersburg, Russia, during May 19-21, 2017.

II. BACKGROUND

Pose estimation is very useful in many engineering
applications such as robotics, virtual reality and automatic
part assembly. The four-point algorithm by Liu and Wong [1]
can obtain the pose of an object using merely four feature
points. Some research such as [5] and [6] extend this method
and its application in building a 3-D sketch table can be
found in [7]. A method to enhance its robustness is reported
in [8]. Recently, the four-point algorithm has been applied to
camera calibration in [9]. The Kalman filter is a recursive
algorithm for state estimation in stochastic systems. It has
been adopted for a numerous of applications since the 1960s.
With the assumptions that the system is linear and both the
process and measurement noise are Gaussian, the Kalman
filter gives an optimal estimate of the system state in the
sense of minimum-mean-square-error (MMSE), the
maximum likelihood (ML), and the maximum a posteriori
(MAP). The pose tracking problem that we are solving here
consists of the linear dynamic and measurement model. The
traditional form of linear Kalman filter is the most suitable
choice to estimate the object pose in a sequential manner.
Previously, Kalman filtering algorithms have been applied to
recover both the 3-D model and pose information of a
camera from an image sequence [10] [11]. The extended
Kalman filter is used to deal with the non-linear
measurement models in their work.

III. THEORY AND DESIGN

The overall setup is shown in Figure 2. The camera is
tracking an object with four features of a known model. A
CAMSHIFT algorithm is used to track these points and their
2-D image coordinates are fed to the four-point algorithm to
find the pose. The pose consists of six parameters including
translation (Tx, Ty, Tz) and rotation angles (θx, θy, θz)
around the X, Y, Z coordinate axes. Kalman filtering is then
applied to handle the pose tracking problem. Feature point
tracking is handled by the CAMSHIFT algorithm in
OPENCV [4]. The data are fed to the four-point algorithm
for pose estimation as described below.

Figure 2. The A target object is being tracked. The point features obtained

by the CAMSHIFT algorithm are shown in the picture. The 3-D (X,Y,Z)

position of each feature calculated by the four-point algorithm is also

shown.

Figure 3. The coordinate system of the 3-D model.

Figure 4. The perspective projection camera model

A. The Four-Point Algorithm

1) Problem definition:
Pose estimation is a method to determine the position and

orientation of an object using a single image with a known
object model. The four-point iterative pose estimation
algorithm [1] that we use can compute the pose of a rigid
body. Here is the description of this method. In Figures 3,
and 4, the object consists of four model points. When the
object center is the same as the camera center, the distances
between these points to the camera center form the model.

From the model, the relative distances 𝐷(𝑖, 𝑗) = |𝐴𝑖 −
𝐴𝑗| among these points should be found. At time t, these

feature points are extracted and tracked by an algorithm like
CAMSHIFT [4]. They are denoted by 𝑎1,𝑡 , 𝑎2,𝑡 , 𝑎3,𝑡 , 𝑎4,𝑡 .

With these image measurements and the focal length 𝑓 of the

camera, we can compute𝑙1,𝑡 , 𝑙2,𝑡 , 𝑙3,𝑡 , 𝑙4,𝑡 . The four lengths

can be converted to the rotation and translation of the object
easily by simple geometric calculations. In Figure 4, the
image points are denoted by 𝑎𝑛,𝑡 and the 3-D points are 𝐴𝑛,𝑡,

where n = 1,2,3,4. The four lengths can be converted to the

rotation and translation of the object easily by simple
geometric calculation. In Figure 4, the image points are
denoted by 𝑎𝑛,𝑡 and the 3-D points are 𝐴𝑛,𝑡 , where n =

1,2,3,4. The time index t is skipped for the sake of simplicity,
since the pose estimation process can be completed in one
time step. We see that a vector passing through the camera

center 𝑃 and the 3-D point A is 𝑃𝐴𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑙𝑛𝑢𝑛⃗⃗ ⃗⃗ .

Using the cosine rule described in [12], we can form the
following relation as follows.

𝐷𝑖,𝑗
2 = (𝐴𝑖 − 𝐴𝑗)

2
= 𝑙𝑖

2 + 𝑙𝑗
2 − 2𝑙𝑖

2𝑙𝑗
2(𝑢𝑖⃗⃗ ⃗ ∙ 𝑢𝑗⃗⃗ ⃗) (1)

The target is to find the length 𝑙𝑛 of the vector 𝑃𝐴𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . To

achieve this goal, we require the image measurements an and

focal length f, where n = 1,2,3,4. The unit vector of 𝑃𝐴𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ or

𝑃𝑎𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗ is 𝑢𝑛⃗⃗ ⃗⃗ . Hence, the distance between Ai and Aj is 𝐷𝑖,𝑗

2 =

𝑙𝑖
2 + 𝑙𝑗

2 − 2𝑙𝑖
2𝑙𝑗

2(𝑢𝑖⃗⃗ ⃗ ∙ 𝑢𝑗⃗⃗ ⃗). Assuming that the lengths predicted

are 𝑙𝑛
′ , the difference of the prediction and the true one is

𝑒(𝑖, 𝑗) = 𝐷𝑖,𝑗
2 − {𝑙𝑖

′2 + 𝑙𝑗
′2 − 2𝑙𝑖

′𝑙𝑗
′(𝑢𝑖⃗⃗ ⃗ ∙ 𝑢𝑗⃗⃗ ⃗)} (2)

By arbitrarily choosing six different combination of i and
j, we can obtain the following combinations to form these
error terms: 𝑒𝑎 = 𝑒(𝑖=1,𝑗=2), 𝑒𝑏 = 𝑒(𝑖=1,𝑗=3) , 𝑒𝑐 =
𝑒(𝑖=1,𝑗=4) , 𝑒𝑑 = 𝑒(𝑖=2,𝑗=3) , 𝑒𝑒 = 𝑒(𝑖=2,𝑗=4) , 𝑒𝑓 = 𝑒(𝑖=3,𝑗=4) .

As discussed in [1], multiple solutions may occur if only
these six constraints are used. To solve the problem, their
paper introduces an additional rule. As shown in Figure 5,

the projection of the vector 𝑉⃗ on 𝐴3,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗ is the scalar value r,

hence, 𝑟 = {(𝐴4,3
⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝐴3,1

⃗⃗ ⃗⃗ ⃗⃗ ⃗) ∙ (𝐴3,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗)} is based on the given

model with known 𝐴1,𝑡=0, 𝐴2,𝑡=0, 𝐴3,𝑡=0, 𝐴4,𝑡=0.

Figure 5. V is a vector perpendicular to the plane 𝐴1,𝑡, 𝐴2,𝑡, 𝐴3,𝑡, 𝐴4,𝑡, so r is

a constant irrespective of the pose of the object.

This projection scalar r is a constant irrespective to pose
and time t. If the guessed lengths are 𝑙𝑖

′ , we can find the
corresponding projection 𝑟′ as shown below.

𝑟′ = {[(𝑙3
′ 𝑢3⃗⃗⃗⃗ − 𝑙4

′ 𝑢4⃗⃗⃗⃗) × (𝑙1
′𝑢1⃗⃗⃗⃗ − 𝑙3

′ 𝑢3⃗⃗⃗⃗)] ∙ (𝑙2
′ 𝑢2⃗⃗⃗⃗ − 𝑙3

′ 𝑢3⃗⃗⃗⃗)}

Therefore, a new error term becomes.

𝑒𝑔 = 𝑟 − 𝑟′ (3)

𝑒𝑔 = {(𝐴4,3
⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝐴3,1

⃗⃗ ⃗⃗ ⃗⃗ ⃗) ∙ (𝐴3,2)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ }

− {[(𝑙3
′ 𝑢3⃗⃗⃗⃗ − 𝑙4

′ 𝑢4⃗⃗⃗⃗) × (𝑙1
′𝑢1⃗⃗⃗⃗ − 𝑙3

′ 𝑢3⃗⃗⃗⃗)]
∙ (𝑙2

′ 𝑢2⃗⃗⃗⃗ − 𝑙3
′ 𝑢3⃗⃗⃗⃗)}

Then seven constraints are established. Using
𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 , 𝑒𝑑, 𝑒𝑓 , 𝑒𝑔 and equation 3, we stack up all e’s to

form an error vector 𝐸 = [𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 , 𝑒𝑑, 𝑒𝑓 , 𝑒𝑔]
𝑇
.

2) Iterative processing

With error vector 𝐸 = [𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 , 𝑒𝑑, 𝑒𝑓 , 𝑒𝑔]
𝑇

, Jacobian

matrix 𝐽 =
𝜕𝐸

𝜕𝑙
 and Δ𝑙, we can use the Gauss-Newton method

to iteratively minimize the error. At iteration k, which is from
0 to maximum allowable k, we have

𝐿𝑘+1 = 𝐿𝑘 + Δ𝑙

𝐽(Δ𝑙) = 𝐸

and

𝐽(Δ𝑙) = 𝐸

This will find all lengths 𝑙(𝑛=1,2,3,4) and all 𝐴(𝑛=1,2,3,4) at

time t. Unlike other pose estimation approaches such as [10],
there is no need to use any trigonometric function during
execution. So potentially it can be implemented using very
simple hardware. Since it only uses four feature points, the
computation complexity is low. An extension of this
approach can use RANSAC scheme [13] to select groups of
points to make the calculation more robust.

B. Kalman Filter

1) Inputs to the Kalman filter
Since the object model of the four points is supposed to

be known at time t = 0, we can assume that the center of the
four points

𝐴𝑐𝑒𝑛𝑡𝑒𝑟,𝑡=0 = 𝑚𝑒𝑎𝑛(𝐴1,𝑡=0, 𝐴2,𝑡=0, 𝐴3,𝑡=0, 𝐴4,𝑡=0) . At

time t, the object is moved to a new position defined by
rotation Rt and translation Tt. After the four-point algorithm

is executed, the four 3-D points(𝐴1,𝑡=𝑡 , 𝐴2,𝑡=𝑡 , 𝐴3,𝑡=𝑡 , 𝐴4,𝑡=𝑡)

are found. It is then straight forward to find the pose of the
object. We assume that a rotation matrix Rt rotates all
features from time t to t+1 around the rotating center at
Acenter,t, which is the center of the object feature points at time
t. Only 3 points are needed in the computation. If all 4 points
are utilized, one can use pseudo inverse to obtain the rotation
Rt. Therefore, we can find Rt if (At, At+1) are found. With Tt =
Acenter,t, Rt and Tt are converted to a state vector of 6 elements

𝑧𝑡 = [𝑇𝑥, 𝑇𝑦 , 𝑇𝑧 , 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧]𝑡
𝑇
, which is the measurement input

for the Kalman filter.

2) Iterative Kalman filter algorithm
We adopted the Matlab Kalman toolbox in [14] for our

experiment. The detailed formulation of the Kalman filter
can be found in user manual of the toolbox. We employed
standard system and measurement noise setting for our tests.
The effects of tuning these parameters will be investigated in
future. The theory is described below. The basic transfer
functions are: 𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝑤𝑡 , and 𝑧𝑡 = 𝐻𝑥𝑡 + 𝑣𝑡 . From

the [3], 𝑥𝑡 = [𝑇𝑥, 𝑇𝑦 , 𝑇𝑧 , 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧 , 𝑇𝑥̇, 𝑇𝑦̇ , 𝑇𝑧̇ , 𝜃𝑥̇ , 𝜃𝑦̇ , 𝜃𝑧̇]𝑡
𝑇

, is

the state vector, t is the time index and z is the measurement.
The process transfer function is Matrix A, which describes
the dynamics of the system process. Matrix H describes the
observation model. It is an identity matrix in our case. P is

the error covariance matrix. w represents the process noise
with covariance Q. v is measurement noise with covariance
R. The Kalman filter consists of the prediction and update
step. One can refer to the other literature for the details. After
initialization, the two steps are executed for all
measurements up to zt to generate the stabilized state vector
xt.

IV. EXPERIMENTS AND RESULTS

In the simulation experiment, we would like to see how
the four point algorithm and Kalman filter are affected by
motion fluctuations. A simulation result is shown in Figures
6 and 7. The horizontal axes of these plots are the time steps.
These 2 figures help us explain our experimental procedures.
(1) We created a 3-D model of four points similar to that
shown in Figure 2. (2) We generated a ground truth motion
path gt(t) with certain variations for the object being tracked,
which are shown as the (+) lines in the figures. (3) Motion
fluctuation (for each of the six parameters of the pose) was
controlled by a noise factor 𝜂 of standard deviation 𝜎𝑛. The
observed motion obs(t) is shown as the (□) lines. (4) This
observed motion was used to generate the four image feature
positions. A 1-pixel standard deviation random noise was
added to the feature image positions to simulate the noise
encountered during the feature tracking process. (5) The
image features were processed by the four-point algorithm to
obtain the pose sequence 4p(t) depicted as the (*) lines. This
pose sequence 4p(t) was sent as the input for the Kalman
filter. (6) The outputs of the Kalman filter ko(t) are shown as
the (O) lines in the figures. We see that the Kalman filter
output ko(t) is closer to the ground truth motion path gt(t)
than that of the observed path obs(t) i.e. the input to the
system. This shows that the Kalman filter can filter some of
the motion fluctuations. To see how motion fluctuation is

related to the Kalman output, we performed the following
procedures. For each 𝜂 value, we carried out 100 tests and
each is indexed as j. In the j

th
 test, we ran the above steps

from 2 to 6 to obtain 𝑘𝑜(𝑗, 𝑡, 𝜂). We then calculated the

std()standard deviation 𝜎(𝑔𝑡−𝑘𝑜),𝜃,𝑗,𝜂 = {𝑠𝑡𝑑((𝑔𝑡(𝑡) −

 𝑘𝑜(𝑡, 𝜂))𝜃𝑥 + 𝑠𝑡𝑑((𝑔𝑡(𝑡) − 𝑘𝑜(𝑡, 𝜂))𝜃𝑦 + 𝑠𝑡𝑑((𝑔𝑡(𝑡) −

 𝑘𝑜(𝑡, 𝜂))𝜃𝑧}/3 for the rotation. We also computed

 𝜎(𝑔𝑡−𝑘𝑜),𝜃,𝜂 = 𝑚𝑒𝑎𝑛(𝜎𝑎,𝜃,𝑗) for all j. Similarly, we found

𝜎(𝑔𝑡−𝑘𝑜),𝑇,𝜂 = 𝑚𝑒𝑎𝑛(𝜎(𝑔𝑡−𝑘𝑜),𝑇,𝑗) for the translations. Based

on the this scheme, we also calculated 𝜎(𝑔𝑡−𝑜𝑏𝑠),𝜃,𝜂 and

𝜎(𝑔𝑡−𝑜𝑏𝑠),𝑇,𝜂 between gt(t) and obs(t). We plotted these 𝜎

values against the increasing 𝜂 in Figure 8. We found that

𝜎(𝑔𝑡−𝑜𝑏𝑠),𝑇(◇) and 𝜎(𝑔𝑡−𝑜𝑏𝑠),𝜃 (◇) are higher than

𝜎(𝑔𝑡−𝑘𝑜),𝑇(△) and 𝜎(𝑔𝑡−𝑜𝑏𝑠),𝜃(△), respectively, as 𝜂 increases.

It indicates that the Kalman filtered output ko is closer to the
ground truth gt motion that between the gt and obs (obs is
the input to the Kalman filter). The Kalman
filter is able to stabilize the system. More information of

this work can be found at

http://www.cse.cuhk.edu.hk/_khwong/papers.html.

.

Figure 6. A sample of the simulation results for translations (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) in

pixles verus time step t: observed obs(t)=(□), Kalman input 4pt(t)=(*),

Kalman output ko=(O),ground truth gt(t)=(+).

.

Figure 7. A sample of the simulation results for rotation angles (𝜃𝑥, 𝜃𝑦, 𝜃𝑧)
in degrees verus time step t: observed obs(t)=(□), Kalman input 4pt(t)=(*),

Kalman output ko=(O),ground truth gt(t)=(+).

.

Figure 8. Top: 𝜎̅(𝑔𝑡−𝑜𝑏𝑠),𝑇 = ◇, 𝜎̅(𝑔𝑡−𝑘𝑜),𝑇 =△ for translation verus η on

the horizontal axis. Each η unit represents 0.01 meters.

Bottom:𝜎̅(𝑔𝑡−𝑜𝑏𝑠),𝜃=◇, 𝜎̅(𝑔𝑡−𝑘𝑜),𝜃 =△ for rotation angles verus η on the

horizontal axis.Each 𝜂 unit represents 1 degree. It shows that the Kalman

filtered output is able to stabilize the system. Note: gt=ground truth,
obs=observation=input to the Kalman filter, ko=Kalman filter

output,T=Translation, θ=rotation angle

V. CONCLUSION

In this work, we have applied Kalman filter to increase
the robustness of a pose estimation algorithm called the four-
point algorithm. The four-point algorithm is an effective
method for determining the pose of an object using only four
model points. It is based on one image and the resulting
solution is unique. We take the advantages of the dynamic
system in the Kalman filtering framework to achieve robust
tracking of the object motion. The proposed method is useful
in many engineering applications such as vision-based
automatic driving. In the experiment, we see that the Kalman
filtering procedure is able to reduce noises in the system and
enable robust tracking of the object pose.

ACKNOWLEDGMENT

This work is supported by a direct grant (Project Code:
4055045) from the Faculty of Engineering of the Chinese
University of Hong Kong.

REFERENCES

[1] Man Lee Liu and Kin Hong Wong. Pose estimation using four
corresponding points. Pattern Recognition Letters, 20(1):69–74, 1999.

[2] Martin A Fischler and Robert C Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395,
1981.

[3] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan.
Estimation with applications to tracking and navigation: theory
algorithms and software. John Wiley & Sons, 2004.

[4] Itseez. (2015). opencv. http://opencv.org/. Accessed: 2016-03-04.

[5] Pengfei Sun, Changku Sun, Wenqiang Li, and Peng Wang. A new
pose estimation algorithm using a perspective-ray-based scaled
orthographic projection with iteration. PloS one, 10(7):e0134029,
2015.

[6] Zimiao Zhang, Shihai Zhang, and Qiu Li. Robust and accurate vision
based pose estimation algorithm based on four coplanar feature points.
Sensors, 16(12):2173, 2016.

[7] Alfredo Liverani, Alessandro Ceruti, and Gianni Caligiana. Tablet
based 3d sketching and curve reverse modelling. Int. Journ. of Comp.
Aided Engineering and Technology 8, 5(2-3):188–215, 2013.

[8] Zimiao Zhang, Bin Liu, and Yongxiang Jiang. A two-step pose
estimation method based on four non-coplanar points. Optik-
International Journal for Light and Electron Optics, 126(17):1520–
1526, 2015.

[9] Zhe Zhang and Kin Hong Wong. A novel geometric approach for
camera calibration. In Image Processing (ICIP), 2014 IEEE
International Conference on, pages 5806–5810. IEEE, 2014.

[10] Ying Kin Yu, Kin Hong Wong, and Michael Ming-Yuen Chang.
Recursive three-dimensional model reconstruction based on kalman
filtering. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 35(3):587–592, 2005.

[11] [11] Ying Kin Yu, Kin Hong Wong, Michael Ming-Yuen Chang, and
Or Siu Hang. Recursive camera-motion estimation with the trifocal
tensor. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 36(5):1081–1090, 2006.

[12] John Bird. Engineering mathematics. Routledge, 2003.

[13] Konstantinos G Derpanis. Overview of the ransac algorithm. Image
Rochester NY, 4(1):2–3, 2010.

[14] Jouni Hartikainen, Arno Solin, and Simo S ärkk ä. Optimal filtering
with kalman filters and smoothers. Department of Biomedica
Engineering and Computational Sciences, Aalto University School of
Science, 16th August, 2011.

