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Abstract—In this paper, we investigate the use of Kalman filter 

to enable robust tracking based on an efficient pose estimation 

algorithm, namely the four-point algorithm. Pose estimation is 

very useful in vision-based system control, for example in 

automatic driving and virtual reality inputs. Firstly, we have 

implemented a four-point pose estimation method with a 

personal computer. This estimation algorithm is supposed to 

be the method that requires the least number of point features 

for the generation of a unique solution. On the contrary, 

existing three-point algorithms may give multiple solutions. 

Then we have adopted a Kalman filter to enable robust 

tracking. Kalman filter is computationally efficient and very 

good at handling noise during tracking. The merge of these two 

techniques make us able to build a high-speed and yet robust 

system to be used in a wide variety of real applications. 

Furthermore, we have shown that a linear Kalman filter can 

be applied to filter off noises directly from the results of the 

four-point algorithm. Simulated and real data tests were 

performed and the results were satisfactory. 

Keywords-automatic control; pose estimation; virtual reality 

systems; kalman filter 

I.  INTRODUCTION 

Computer vision-based pose estimation is useful in many 
industrial applications such as natural user inputs for virtual 
reality, machine assembly and automatic driving systems. In 
this paper, we investigate an efficient and robust method of 
pose estimation that uses only four feature points called four-
point algorithm by Liu and Wong [1]. It belongs to the 
category of Perspective-n-Point approaches where n is equal 
to 4. The four-point algorithm is the most efficient method 
for pose estimation that requires the least number of features 
to produce unique results. In contrast, the three-point 
algorithm [2], which takes the minimum number of features 
for pose estimation may suffer from the problem of multiple 
solutions. Most four-point algorithms assume that the 3-D 
model is known and one image is enough to identify the 
object pose. During tracking, the object is moving and we 
need to track the object pose continuously. Kalman filter is 
then suggested in our project to achieve robust tracking. As 
for applications of such a method, for example in automatic 
driving, the model of a car in front of the camera is known. 
We can apply Kalman filter to track its pose. In this work, 
our attention is on how to use Kalman filter to enable robust 

object tracking. The pose of an individual frame can be 
acquired by the four-point pose estimation algorithm. We 
have found that the linear Kalman filter is suitable for post- 
processing to get an accurate pose sequence. It is the best 
choice since the solution is optimal [3]. More specifically, 
our system consists of two stages. Firstly, we need to have 
the model of the target object and the camera is calibrated. 
Then we track four feature points on the object using the 
CAMSHIFT algorithm in OPENCV [4]. Finally, the data are 
fed to the Kalman filter to enable robust tracking. From the 
experiments, we revealed that Kalman filtering is an 
effective strategy to reduce the noises in the tracking 
problem. The overview of the system is shown in Figure 1. 
The major contributions of this work are: (1) Our pose 
estimation approach is computationally efficient because the 
four-point algorithm involves no trigonometrically function. 
In theory, it can be implemented using simple lightweight 
computation machines or even Field Programmable Gate 
Array (FPGA) hardware. It has been applied to object 
tracking. (2) We show that Kalman filter can be used to 
enable robust pose tracking with the four-point algorithm. 
Unlike other pose tracking approaches that utilize extended 
Kalman filter, our solution is optimal under Gaussian 
assumption. The proposed system can acquire accurate pose 
sequences from the input image data. 

Figure 1. Overview of the four-point algorithm with Kalman filter. 

This paper is divided into several parts: Section II 
explains the background of our project. In Section III, the 
theory and design methodology are discussed. The 
implementation and testing results are illustrated in Section 
IV. The conclusion is found in Section V.
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II. BACKGROUND 

Pose estimation is very useful in many engineering 
applications such as robotics, virtual reality and automatic 
part assembly. The four-point algorithm by Liu and Wong [1] 
can obtain the pose of an object using merely four feature 
points. Some research such as [5] and [6] extend this method 
and its application in building a 3-D sketch table can be 
found in [7]. A method to enhance its robustness is reported 
in [8]. Recently, the four-point algorithm has been applied to 
camera calibration in [9]. The Kalman filter is a recursive 
algorithm for state estimation in stochastic systems. It has 
been adopted for a numerous of applications since the 1960s. 
With the assumptions that the system is linear and both the 
process and measurement noise are Gaussian, the Kalman 
filter gives an optimal estimate of the system state in the 
sense of minimum-mean-square-error (MMSE), the 
maximum likelihood (ML), and the maximum a posteriori 
(MAP). The pose tracking problem that we are solving here 
consists of the linear dynamic and measurement model. The 
traditional form of linear Kalman filter is the most suitable 
choice to estimate the object pose in a sequential manner. 
Previously, Kalman filtering algorithms have been applied to 
recover both the 3-D model and pose information of a 
camera from an image sequence [10] [11]. The extended 
Kalman filter is used to deal with the non-linear 
measurement models in their work. 

III. THEORY AND DESIGN 

The overall setup is shown in Figure 2. The camera is 
tracking an object with four features of a known model. A 
CAMSHIFT algorithm is used to track these points and their 
2-D image coordinates are fed to the four-point algorithm to 
find the pose. The pose consists of six parameters including 
translation (Tx, Ty, Tz ) and rotation angles (θx, θy, θz ) 
around the X, Y, Z coordinate axes. Kalman filtering  is then 
applied to handle the pose tracking problem. Feature point 
tracking is handled by the CAMSHIFT algorithm in 
OPENCV [4]. The data are fed to the four-point algorithm 
for pose estimation as described below. 

 
Figure 2. The A target object is being tracked. The point features obtained 

by the CAMSHIFT algorithm are shown in the picture. The 3-D (X,Y,Z) 

position of each feature calculated by the four-point algorithm is also 

shown. 

 
Figure 3. The coordinate system of the 3-D  model. 

 

Figure 4. The perspective projection camera model 

A. The Four-Point Algorithm 

1) Problem definition: 
Pose estimation is a method to determine the position and 

orientation of an object using a single image with a known 
object model. The four-point iterative pose estimation 
algorithm [1] that we use can compute the pose of a rigid 
body. Here is the description of this method. In Figures 3, 
and 4, the object consists of four model points. When the 
object center is the same as the camera center, the distances 
between these points to the camera center form the model. 

From the model, the relative distances 𝐷(𝑖, 𝑗) = |𝐴𝑖 −
𝐴𝑗| among these points should be found. At time t, these 

feature points are extracted and tracked by an algorithm like 
CAMSHIFT [4]. They are denoted by  𝑎1,𝑡 , 𝑎2,𝑡 , 𝑎3,𝑡 , 𝑎4,𝑡 . 

With these image measurements and the focal length 𝑓 of the 

camera, we can compute𝑙1,𝑡 , 𝑙2,𝑡 , 𝑙3,𝑡 , 𝑙4,𝑡 . The four lengths 

can be converted to the rotation and translation of the object 
easily by simple geometric calculations. In Figure 4, the 
image points are denoted by 𝑎𝑛,𝑡 and the 3-D points are 𝐴𝑛,𝑡, 

where n = 1,2,3,4. The four lengths can be converted to the 



rotation and translation of the object easily by simple 
geometric calculation. In Figure 4, the image points are 
denoted by 𝑎𝑛,𝑡  and the 3-D points are 𝐴𝑛,𝑡 , where n = 

1,2,3,4. The time index t is skipped for the sake of simplicity, 
since the pose estimation process can be completed in one 
time step. We see that a vector passing through the camera 

center 𝑃 and the 3-D point A is 𝑃𝐴𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑙𝑛𝑢𝑛⃗⃗ ⃗⃗ . 

Using the cosine rule described in [12], we can form the 
following relation as follows. 

𝐷𝑖,𝑗
2 = (𝐴𝑖 − 𝐴𝑗)

2
= 𝑙𝑖

2 + 𝑙𝑗
2 − 2𝑙𝑖

2𝑙𝑗
2(𝑢𝑖⃗⃗  ⃗ ∙ 𝑢𝑗⃗⃗  ⃗)   (1) 

The target is to find the length 𝑙𝑛 of the vector 𝑃𝐴𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . To 

achieve this goal, we require the image measurements an and 

focal length f, where n = 1,2,3,4. The unit vector of 𝑃𝐴𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   or 

𝑃𝑎𝑛
⃗⃗ ⃗⃗ ⃗⃗  ⃗ is 𝑢𝑛⃗⃗ ⃗⃗ . Hence, the distance between Ai and Aj is 𝐷𝑖,𝑗

2 =

𝑙𝑖
2 + 𝑙𝑗

2 − 2𝑙𝑖
2𝑙𝑗

2(𝑢𝑖⃗⃗  ⃗ ∙ 𝑢𝑗⃗⃗  ⃗). Assuming that the lengths predicted 

are 𝑙𝑛
′ , the difference of the prediction and the true one is 

𝑒(𝑖, 𝑗) =  𝐷𝑖,𝑗
2 − {𝑙𝑖

′2 + 𝑙𝑗
′2 − 2𝑙𝑖

′𝑙𝑗
′(𝑢𝑖⃗⃗  ⃗ ∙ 𝑢𝑗⃗⃗  ⃗)} (2) 

By arbitrarily choosing six different combination of i and 
j, we can obtain the following combinations to form these 
error terms: 𝑒𝑎 = 𝑒(𝑖=1,𝑗=2), 𝑒𝑏 = 𝑒(𝑖=1,𝑗=3) , 𝑒𝑐 =
𝑒(𝑖=1,𝑗=4) , 𝑒𝑑 = 𝑒(𝑖=2,𝑗=3) , 𝑒𝑒 = 𝑒(𝑖=2,𝑗=4) , 𝑒𝑓 = 𝑒(𝑖=3,𝑗=4) . 

As discussed in [1], multiple solutions may occur if only 
these six constraints are used. To solve the problem, their 
paper introduces an additional rule. As shown in Figure 5, 

the projection of the vector 𝑉⃗  on 𝐴3,2
⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the scalar value r, 

hence, 𝑟 = {(𝐴4,3
⃗⃗ ⃗⃗ ⃗⃗  ⃗ × 𝐴3,1

⃗⃗ ⃗⃗ ⃗⃗  ⃗) ∙ (𝐴3,2
⃗⃗ ⃗⃗ ⃗⃗  ⃗)}  is based on the given 

model with known 𝐴1,𝑡=0, 𝐴2,𝑡=0, 𝐴3,𝑡=0, 𝐴4,𝑡=0.  

 

Figure 5. V is a vector perpendicular to the plane 𝐴1,𝑡, 𝐴2,𝑡, 𝐴3,𝑡, 𝐴4,𝑡, so r is 

a constant irrespective of the pose of the object. 

This projection scalar r is a constant irrespective to pose 
and time t. If the guessed lengths are 𝑙𝑖

′ , we can find the 
corresponding projection 𝑟′ as shown below. 

𝑟′ = {[(𝑙3
′ 𝑢3⃗⃗⃗⃗ −  𝑙4

′ 𝑢4⃗⃗⃗⃗ ) × (𝑙1
′𝑢1⃗⃗⃗⃗ −  𝑙3

′ 𝑢3⃗⃗⃗⃗ )] ∙  (𝑙2
′ 𝑢2⃗⃗⃗⃗ −  𝑙3

′ 𝑢3⃗⃗⃗⃗ )} 

Therefore, a new error term becomes. 
 

𝑒𝑔 = 𝑟 − 𝑟′ (3) 

𝑒𝑔 = {(𝐴4,3
⃗⃗ ⃗⃗ ⃗⃗  ⃗ × 𝐴3,1

⃗⃗ ⃗⃗ ⃗⃗  ⃗) ∙ (𝐴3,2)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  }

− {[(𝑙3
′ 𝑢3⃗⃗⃗⃗ − 𝑙4

′ 𝑢4⃗⃗⃗⃗ ) × (𝑙1
′𝑢1⃗⃗⃗⃗ − 𝑙3

′ 𝑢3⃗⃗⃗⃗ )]
∙ (𝑙2

′ 𝑢2⃗⃗⃗⃗ − 𝑙3
′ 𝑢3⃗⃗⃗⃗ )} 

Then seven constraints are established. Using 
𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 , 𝑒𝑑, 𝑒𝑓 , 𝑒𝑔  and equation 3, we stack up all e’s to 

form an error vector 𝐸 = [𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 , 𝑒𝑑, 𝑒𝑓 , 𝑒𝑔]
𝑇
. 

2) Iterative processing 

With error vector  𝐸 = [𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 , 𝑒𝑑, 𝑒𝑓 , 𝑒𝑔]
𝑇

, Jacobian 

matrix 𝐽 =  
𝜕𝐸

𝜕𝑙
 and Δ𝑙, we can use the Gauss-Newton method 

to iteratively minimize the error. At iteration k, which is from 
0 to maximum allowable k, we have 

𝐿𝑘+1 = 𝐿𝑘 + Δ𝑙 

𝐽(Δ𝑙) = 𝐸 

and 

𝐽(Δ𝑙) = 𝐸 

This will find all lengths 𝑙(𝑛=1,2,3,4) and all 𝐴(𝑛=1,2,3,4) at 

time t. Unlike other pose estimation approaches such as [10], 
there is no need to use any trigonometric function during 
execution. So potentially it can be implemented using very 
simple hardware. Since it only uses four feature points, the 
computation complexity is low. An extension of this 
approach can use RANSAC scheme [13] to select groups of 
points to make the calculation more robust. 

B. Kalman Filter 

1) Inputs to the Kalman filter 
Since the object model of the four points is supposed to 

be known at time t = 0, we can assume that the center of the 
four points  

𝐴𝑐𝑒𝑛𝑡𝑒𝑟,𝑡=0 = 𝑚𝑒𝑎𝑛(𝐴1,𝑡=0, 𝐴2,𝑡=0, 𝐴3,𝑡=0, 𝐴4,𝑡=0) . At 

time t, the object is moved to a new position defined by 
rotation Rt and translation Tt. After the four-point algorithm 

is executed, the four 3-D points(𝐴1,𝑡=𝑡 , 𝐴2,𝑡=𝑡 , 𝐴3,𝑡=𝑡 , 𝐴4,𝑡=𝑡) 

are found. It is then straight forward to find the pose of the 
object. We assume that a rotation matrix Rt rotates all 
features from time t to t+1 around the rotating center at 
Acenter,t, which is the center of the object feature points at time 
t. Only 3 points are needed in the computation. If all 4 points 
are utilized, one can use pseudo inverse to obtain the rotation 
Rt. Therefore, we can find Rt if (At, At+1) are found. With Tt = 
Acenter,t, Rt and Tt are converted to a state vector of 6 elements 

𝑧𝑡 = [𝑇𝑥, 𝑇𝑦 , 𝑇𝑧 , 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧]𝑡
𝑇
, which is the measurement input 

for the Kalman filter. 

2) Iterative Kalman filter algorithm 
We adopted the Matlab Kalman toolbox in [14] for our 

experiment. The detailed formulation of the Kalman filter 
can be found in user manual of the toolbox. We employed 
standard system and measurement noise setting for our tests. 
The effects of tuning these parameters will be investigated in 
future. The theory is described below. The basic transfer 
functions are: 𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝑤𝑡 , and 𝑧𝑡 = 𝐻𝑥𝑡 + 𝑣𝑡 . From 

the [3], 𝑥𝑡 = [𝑇𝑥, 𝑇𝑦 , 𝑇𝑧 , 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧 , 𝑇𝑥̇, 𝑇𝑦̇ , 𝑇𝑧̇ , 𝜃𝑥̇ , 𝜃𝑦̇ , 𝜃𝑧̇]𝑡
𝑇

, is 

the state vector, t is the time index and z is the measurement. 
The process transfer function is Matrix A, which describes 
the dynamics of the system process. Matrix H describes the 
observation model. It is an identity matrix in our case. P is 



the error covariance matrix. w represents the process noise 
with covariance Q. v is measurement noise with covariance 
R. The Kalman filter consists of the prediction and update 
step. One can refer to the other literature for the details. After 
initialization, the two steps are executed for all 
measurements up to zt to generate the stabilized state vector 
xt. 

 

IV. EXPERIMENTS AND RESULTS 

In the simulation experiment, we would like to see how 
the four point algorithm and Kalman filter are affected by 
motion fluctuations. A simulation result is shown in Figures 
6 and 7. The horizontal axes of these plots are the time steps. 
These 2 figures help us explain our experimental procedures. 
(1) We created a 3-D model of four points similar to that 
shown in Figure 2. (2) We generated a ground truth motion 
path gt(t) with certain variations for the object being tracked, 
which are shown as the (+) lines in the figures. (3) Motion 
fluctuation (for each of the six parameters of the pose) was 
controlled by a noise factor 𝜂 of standard deviation 𝜎𝑛. The 
observed motion obs(t) is shown as the (□) lines. (4) This 
observed motion was used to generate the four image feature 
positions. A 1-pixel standard deviation random noise was 
added to the feature image positions to simulate the noise 
encountered during the feature tracking process. (5) The 
image features were processed by the four-point algorithm to 
obtain the pose sequence 4p(t) depicted as the (*) lines.  This 
pose sequence 4p(t) was sent as the input for the Kalman 
filter. (6) The outputs of the Kalman filter ko(t)  are shown as 
the (O) lines in the figures. We see that the Kalman filter 
output ko(t) is closer to the ground truth motion path gt(t)  
than that of  the observed path obs(t) i.e. the input to the 
system. This shows that the Kalman filter can filter some of 
the motion fluctuations. To see how motion fluctuation is 

related to the Kalman output, we performed the following 
procedures. For each 𝜂 value, we carried out 100 tests and 
each is indexed as j. In the j

th
 test, we ran the above steps 

from 2 to 6 to obtain 𝑘𝑜(𝑗, 𝑡, 𝜂).  We then calculated the 

std()standard deviation 𝜎(𝑔𝑡−𝑘𝑜),𝜃,𝑗,𝜂 = {𝑠𝑡𝑑((𝑔𝑡(𝑡) −

 𝑘𝑜(𝑡, 𝜂))𝜃𝑥 + 𝑠𝑡𝑑((𝑔𝑡(𝑡) − 𝑘𝑜(𝑡, 𝜂))𝜃𝑦 + 𝑠𝑡𝑑((𝑔𝑡(𝑡) −

 𝑘𝑜(𝑡, 𝜂))𝜃𝑧}/3   for the rotation. We also computed 

 𝜎(𝑔𝑡−𝑘𝑜),𝜃,𝜂 = 𝑚𝑒𝑎𝑛(𝜎𝑎,𝜃,𝑗)  for all j. Similarly, we found 

𝜎(𝑔𝑡−𝑘𝑜),𝑇,𝜂 = 𝑚𝑒𝑎𝑛(𝜎(𝑔𝑡−𝑘𝑜),𝑇,𝑗) for the translations. Based 

on the this scheme, we also calculated 𝜎(𝑔𝑡−𝑜𝑏𝑠),𝜃,𝜂  and 

𝜎(𝑔𝑡−𝑜𝑏𝑠),𝑇,𝜂  between gt(t)  and obs(t). We plotted these 𝜎 

values against the increasing 𝜂 in Figure 8. We found that 

𝜎(𝑔𝑡−𝑜𝑏𝑠),𝑇(◇)  and 𝜎(𝑔𝑡−𝑜𝑏𝑠),𝜃 (◇) are higher than 

𝜎(𝑔𝑡−𝑘𝑜),𝑇(△) and 𝜎(𝑔𝑡−𝑜𝑏𝑠),𝜃(△), respectively, as 𝜂 increases. 

It indicates that the Kalman filtered output ko  is closer to the 
ground truth gt  motion that between the gt and obs  (obs  is 
the input to the Kalman filter). The Kalman 
filter is able to stabilize the system. More information of 

this work can be found at 

http://www.cse.cuhk.edu.hk/_khwong/papers.html. 

. 

Figure 6. A sample of the simulation results for translations (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) in 

pixles verus time step t: observed obs(t)=(□), Kalman input 4pt(t)=(*), 

Kalman output ko=(O),ground truth gt(t)=(+). 

. 

Figure 7. A sample of the simulation results for rotation angles (𝜃𝑥, 𝜃𝑦, 𝜃𝑧) 
in degrees verus time step t: observed obs(t)=(□), Kalman input 4pt(t)=(*), 

Kalman output ko=(O),ground truth gt(t)=(+). 



. 

Figure 8. Top: 𝜎̅(𝑔𝑡−𝑜𝑏𝑠),𝑇 = ◇, 𝜎̅(𝑔𝑡−𝑘𝑜),𝑇 =△ for translation verus η on 

the horizontal axis. Each η unit represents 0.01 meters. 

Bottom:𝜎̅(𝑔𝑡−𝑜𝑏𝑠),𝜃=◇, 𝜎̅(𝑔𝑡−𝑘𝑜),𝜃 =△ for rotation angles verus η on the 

horizontal axis.Each 𝜂 unit represents 1 degree. It shows that the Kalman 

filtered output is able to stabilize the system. Note: gt=ground truth, 
obs=observation=input to the Kalman filter, ko=Kalman filter 

output,T=Translation, θ=rotation angle 

V. CONCLUSION  

In this work, we have applied Kalman filter to increase 
the robustness of a pose estimation algorithm called the four-
point algorithm. The four-point algorithm is an effective 
method for determining the pose of an object using only four 
model points. It is based on one image and the resulting 
solution is unique. We take the advantages of the dynamic 
system in the Kalman filtering framework to achieve robust 
tracking of the object motion. The proposed method is useful 
in many engineering applications such as vision-based 
automatic driving. In the experiment, we see that the Kalman 
filtering procedure is able to reduce noises in the system and 
enable robust tracking of the object pose. 
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