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Abstract

Spreadsheets have introduced two advantages not typically available in user interfaces to logic
programs: the exploratory use of a computer and a two-dimensional interface. In this paper we
show that not only spreadsheets, but also tables (in the sense of relational databases) have these
valuable features. We compare spreadsheets and tables, giving possibly the first clear distinction
between the two and suggest a common generalization. We show that tables, as a user interface for
logic programs, can be derived from a dataflow model of queries (which we call TuplePipes), which
provides also the buffering needed when Prolog is interfaced with a relational database. We report on
Tupilog, a prototype implementation of logic programming allowing four query modes, one of which
is TuplePipes.

1 Introduction

Suppose you want to use a computer to construct a complex data object satisfying a large number of
constraints, such as a schedule or a budget. There are two ways of going about it — a planned way and
an improvised way. The planned way has been established longest in computing: make sure you have
available in advance all constraints and process them all in one go. If you forgot something, then you
will discover this when you have reconstructed the solution from the output, and you can have another
try. This cycle has been speeded up enormously with the transition from batch processing to the use of
interactive terminals, but is still slow compared to the other, more recently developed alternative, which
we now describe.

Since the advent of personal computers and spreadsheet software you have an alternative that we call
the improvised way. Here you don’t need to know in advance all constraints; you can discover them by
looking at an unsatisfactory solution which itself suggests the lacking constraints. Spreadsheets allow
you to proceed in an exploratory fashion, trying this, trying that, doodling with your data until you hit
upon a satisfactory solution.

Let us now consider how logic programming caters to the planned and improvised ways of using
a computer. Logic programming can be summarized as a way of using a computer where the relation
between input and output is defined in predicate logic and where a suitable interpreter uses this definition
together with given input data to construct the corresponding output. Although this principle allows both
planned and improvised modes, common Prolog implementations have all followed the first option,
requiring the user to irrevocably terminate the query before showing the answer substitution. But, as
was shown in [7], the spreadsheet user interface allows logic programming to be used in improvised
mode.

In this paper we show that the potential of logic programming for the improvised, exploratory mode
of computer use is not exhausted by the spreadsheet interface. In addition,tablesare a medium suitable
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name test 1 test 2 test 3 savg

ayre 69 47 49 55
bell 74 76 84 78
coe 82 82 85 83
dare 58 56 90 68
eames 82 72 71 75
fixx 44 56 41 47
gore 81 59 91 77

tavg 70 64 73 69

Table 1: A display which can be a spreadsheet or a table.

for doodling with data. We show that tables also provide logic programming with a congenial user
interface for an exploratory mode of computer use.

Here is a brief overview of this paper. To start with, it is important to make clear the difference
between spreadsheets and tables; this is the topic of the next section. The close connections between
tables, relational databases and logic programming are the topic of section 3. In section 4 we show
how incremental queries, the mechanism used in [6] to make exploratory computer use possible in the
framework of logic programming, can be adapted to tables as well as to spreadsheets. As tables give
a relational model of data, it is important to connect the common operations on relations to the goals
of logic programming; this we do in section 5. Finally, we devote a section to a short description of
Tupilog, an implementation of the TuplePipes concept, which has allowed us to experiment with the
ideas developed in this paper.

2 Stacks, spreadsheets and tables

Spreadsheets and tables are closely related, yet have significant conceptual differences. Spreadsheets
are isotropic: the horizontal and vertical directions play the same role. In a table, the rows and columns
are essentially different. This is because a table represents a relation in the sense of the relational data
model: each row is a tuple of the relation represented by the table and each column is an attribute.

Consider as an example the display in Table 1, showing the result of seven students in three tests,
together with averages per student and per test.

If the display is a table, then it represents a relation. In the mathematical sense, an n-ary relation is
a set of n-tuples. These tuples are listed in the rows of the table, except for the top and bottom rows,
which play a special role. The relation in the example is a five-place relation, consisting of seven five-
tuples. Thus we see that in the table the rows and columns play different roles. Also, the averages for
the students (s-avg ) are part of the relation, but those for the tests (t-avg ) are not. If the display
in Table 1 is regarded as a spreadsheet, we do not make such distinctions: rows and columns have the
same status.

Spreadsheets got to computers before tables did, exploding into the vacuum of the initially empty
niche for exploratory computer use. As a result there are many spreadsheet programs available and only
a few based on tables. We have used WATFILE, a table-based data manipulation system originated by
J.W. Graham at the University of Waterloo and subsequently developed at the Computer Systems Group
in Waterloo, mainly by a group under Terry Wilkinson [8].

For many applications the relational data model is the natural one and these are better served by
tables than by spreadsheets. Yet, because of the predominant position of spreadsheet programs, such
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applications are often forced into the, for them, less appropriate spreadsheet model. Because logic
programming is compatible with the relational data model, it should come as no surprise that tables are
a natural user interface for logic programs. The next section will establish the necessary connections
between tables, logic programs, and relational data bases.

But, in [7] it was shown that spreadsheets are also a natural user interface for logic programs. To
resolve this apparent contradiction, we need some additional explanation. In a table, the relation relates
the various attributes of the tuples. In a spreadsheet, there are constraints between the cells. Note that,
though “constraint” is often used in the context of spreadsheets, it also means “relation”. Thus, one
way of distinguishing spreadsheets from tables is to say that in a table the constraints only go in the
horizontal direction, whereas in a spreadsheet they go either way.

Imagine a table with very long tuples, much too long to fit on a screen. It may well be that the con-
straints within such a tuple can be visualized better when its elements are displayed in a two-dimensional
array. That is, such a big tuple is a little spreadsheet by itself. According to this view, a table becomes a
stack of spreadsheets. Such an object amounts to acommon generalization of spreadsheets and tables,
which we shall refer to as astack.

It relates the spreadsheet interface for logic programs presented in [7] to the table interface to be
developed in the present paper. Stacks may also serve as a basis for improved ad-hoc spreadsheet
software: often spreadsheets become very large, not because the constraints extend over large distances,
but because the large spreadsheets consist of many small ones next to each other. In such a situation a
stack is more appropriate than either a table or a spreadsheet.

3 Tables, logic programs, and relational databases

A logic program can be regarded as a virtual relational database: one in which not all tuples are stored
explicitly, but are typically generated on demand by means of the rules stored in the program. Goal
statements to logic programs play the role of database queries, with Query-By-Example as the query
language in spirit closest to logic programming.

This compatibility of logic programming with the relational data model suggests that Prolog be
interfaced to a relational database serving as a back end. Then the relations in the database can be
presented to the Prolog user as built-in predicates, having the same status as the ones for arithmetic
have. But Prolog’s backtracking control causes it to request the tuples from the database one at a time
so that such a scheme would not be usable without buffering.

One could of course regard such buffering as a low-level implementation detail to be kept out of
sight in a discussion on user interfaces. However, a query can be viewed as a dataflow network, in such
a way that the network is conceptually helpful to the user, and can be regarded as an implementation of
the buffering required when interfacing Prolog to a relational database.

In the dataflow network representing a query, the goals are nodes and are connected in series by
channels transmitting partial answer substitutions. All goals to the left of a certain channel form a query
in their own right. If this partial query succeeds (and it must, if the entire query is to succeed), then
there are answer substitutions, and these are transmitted through that channel.

Let us illustrate the dataflow model with an example based on the data in Table 1. When we view
these data as a relational table, then the relation has five arguments:name, testl , test2 , test3 ,
ands-avg . But, as is often handier in practice, we can single out one attribute, in this case the name,
as primary key and use binary relations to relate each of the other attributes to it. We call these binary
relationstl , relating the name totestl ; t2 andt3 are similarly defined. With these relations we can
build up a table as in Table 1 step by step by means of a query with several goals; see Figure 1 for an
example.
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t1(Name, Test1) & Test1>60

t2(Name, Test2) & Test2>60

t3(Name, Test3) & Test3<80

74 76

69ayre
Name Test1

bell
Name Test1 Test2

82eames 72

Name Test1 Test2

71

Test3

Figure 1: A query and its dataflow network; a single tuple in each pipe.

Each answer substitution is a tuple of variables, each possibly with a binding. The dataflow channel
familiar to most people is the “pipe” of UNIX, so that we see tuples flowing through pipes. Hence the
name ”tuplepipes” for our prototype implementation described in a later section.

In a dataflow network, the nodes can be scheduled in such a way that

• the pipes are kept as empty as possible. Then there is at most one tuple in each pipe, which
corresponds to the way Prolog evaluates queries. This regime is not suitable for interfacing with
a database back end as there is no buffering and tuples are extracted from the database one at a
time.

• the pipes are allowed to hold a fairly long sequence of tuples. This sequence is then the buffer
required for an economical interface to a database back end for logic programs. We advisedly do
not say “Prolog”, as this does not correspond to the way Prolog evaluates queries.

But, however nodes are scheduled, the dataflow model itself already determines the sequence of
tuples that flow through each pipe at one time or another. It is this sequence that we are interested in: it
is the sequence of all answers to the query formed by the goals upstream from the pipe.This sequence
of tuples is a table. Thus the query can be viewed as the first goal generating a table and each next goal
transforming the table determined by its input pipe to the table determined by its output pipe, which is
the input pipe of the next goal. (See Figure 2.)
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4 Incremental queries for a tabular interface

In conventional Prolog, the user can only see an answer substitution when the query is irrevocably
terminated. Should the user have forgotten about a constraint, then there is no alternative but to start
over.

Although this may be convenient from the implementer’s point of view, it is certainly not so for
the user who wants to use Prolog in an exploratory mode to construct a complex data object, such as
a budget or a schedule, subject to many constraints. Then one typically does not know explicitly in
advance all constraints the output should satisfy; when confronted with a candidate output, the user
may find it unsatisfactory and may be reminded of a constraint that was omitted. An implementation
where the query may be continued after display of a preliminary answer substitution, does allow such
exploratory computer use. We call such a facility anincremental query interface. It was first proposed
in [6], applied to spreadsheets in [7], and further developed in [5].

Semantically, incremental queries present no difficulties. They are based on the observation that, for
a query to succeed, every initial segment of it has to succeed as well. Each of these is a query in its own
right, and has an answer substitution if it succeeds. The only difference between a conventional query
interface and an incremental one is that the former has a single command for the distinct functions of
displaying the answer substitution so far and for terminating the query; in the latter these functions have
separate commands.

In an incremental query, the user can view a goal as an operator for changing the previous answer
substitution to the next. When there are many variables in an answer substitution arranged in a two-
dimensional matrix, then we can think of them as the cells of a spreadsheet. The goals then specify
relations between these cells. For further information we refer to [7].

Let us now consider the consequences of incremental queries for the dataflow model. The usual
batch type queries of Prolog correspond to complete execution, without possibility for interaction, of
the entire network: the first and only thing the user sees is the rightmost pipe. If the query is incremental,
then the user can see the pipes’ contents, as they are filled from left to right. In other words, theuser
can view each goal as an operator that changes the previous pipe into the next one. This is the key
concept of both spreadsheets and TuplePipes as user interfaces for logic programs. In the spreadsheet
case, it is a single tuple in spreadsheet form that is transformed by a goal. In the TuplePipes case, it is
the sequence of all answer tuples, that is, a table that is transformed by a goal. Thus, TuplePipes are
intimately interactive in a way similar to that of spreadsheet programs or of WATFILE: the user can
decide on the basis of the current state of the display what action to take next; i.e. what goal to enter
next to effect the desired operation on the current table.

5 Relational operations

In TuplePipes, every additional, incrementally processed, goal is an operator acting on a table, yielding
a new table. Special cases of these operators correspond to standard relational operations, such as join,
selection, and projection. But in general, the goal atoms of logic programming provide a flexible and
powerful repertoire corresponding to infinitely many relational operations. Although we believe that the
standard operations are of little practical importance, it is useful to consider them once and to satisfy
oneself that they are available in the context of logic programming. We give examples to illustrate how
joins, selections, and projections can be done in logic programming. The examples are based on the
data introduced in Table 1, assuming that the available relations are the binarytl , t2 , andt3 used in
Figure 1 and Figure 2.
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t1(Name, Test1) & Test1>60

t2(Name, Test2) & Test2>60

t3(Name, Test3) & Test3<80

74
82

76
82

69ayre
bell 74

Name Test1

82 72

bell
coe

eames

Name Test1 Test2

82eames 72

Name Test1 Test2

71

Test3

more ...

Figure 2: A query and its dataflow network; all tuples in each pipe; each pipe a table.

Consider the query

? tl(Name,Testl) & t2(Name,Test2);

View this query as a dataflow network consisting of a node for each of the goals with a pipe between
them. Then the sequence of the tuples in this pipe constitutes the input table for the second goal and
this goal performs ajoin on this table. In the query

? t1(Name,Testl) & Testl>60;

the second goal performs aselectionon its input table. A goal, like this one, that does not introduce a
new variable is restricted to performing selections. But a goal, like in the previous example, that does
introduce a new variable, can perform selection as well as join. The data in Table 1 are untypical in that
the second goal in the first example performs a join only, without any selection.

In most logic programming systems, projections can only be done by introducing a predicate and
defining it by means of an additional rule; it cannot be done in a query only. For example, in

new(Name,Avg) <-
tl(Name,Test1) &
t2(Name,Test2) &
t3(Name,Test3) &
avg(Testl,Test2,Test3,Avg);
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? new(Name,Avg);

the output of the query considered as dataflow network is a table which is the projection of the table in
Table 1 onto the first and last columns.

In conventional Prolog, the user has to be in planned mode, so it does not matter much that projec-
tions have to be prepared in advance by adding the required rules. In TuplePipes, however, where the
user is improvising a long incremental query it is a serious handicap to have to interrupt a query every
time one has to do a projection. We have therefore incorporated a facility to allow the user to perform
the projection, and to name the result, as part of the query. We do this by entering a right arrow followed
by a new predicate symbol and those arguments to be included in the projection. For example, again
with the data of the previous examples,

? t1(Name,Testl) &
t2(Name,Test2) &
t3(Name,Test3) &

We look at the table; find it contains unsuitable tuples.

Test1>60 &

Another look shows that the table is still not what we want.

Test2>70 &

All unwanted tuples have been removed; we take the averages for the remaining students.

avg(Test1,Test2,Test3,Avg) &

This table is the one we want, worthy of being enshrined in a relation of its own. But we are no longer
interested in individual test results, so we project. The resulting table is namednew.

new(Name,Avg) &

Oops! We forgot to exclude averages that are too high. Note that as a result of the projection we are
now operating on a table withNameandAvg as only columns. We continue with a goal that selects.

Avg < 80 &

And so on. . . Note that the projection and naming operation fit well in the logic programming frame-
work, because the query up to and including the operation reads just like the rule that is normally needed
to prepare for the same operation. The only difference is that now the conclusion of the rule is to the
right of the conditions, and the direction of the arrow is changed accordingly.

Note that the expression

-> new(Name,Avg)

is a component of the query in the same sense that a goal is: they are both operations on tables. After

-> new(Name,Avg)

the TuplePipes query may continue with the table consisting only of the columns Name and Avg.
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6 Tupilog, the implementation

The TuplePipes project reported here is part of a continuing effort to make the full power of video
monitors available for exploratory computer use by means of a logic programming language. The first
effort in this direction was the project reported in [7], done at ICOT. Its contributions were the first
implementation of incremental queries, and of a spreadsheet interface based on answer substitutions.
See [3] for an alternative approach based on assertions. This project allowed a first glimpse of the
possibilities of exploratory programming in logic. However, the hardware (a VT100 terminal connected
to a DEC10 computer) made it difficult to go beyond the glass teletype kind of user interface.

In the TuplePipes project we had available more powerful equipment (at least from the user interface
point of view): a personal computer with a mouse. The additional novelty was the requirement to
demonstrate tables rather than spreadsheets.

The implemented system is basically Prolog with four different query modes which can be classified
in single-answer modes and all-answer modes. Each of the classes is subdivided into two variants: one
that is not incremental and one that is. Thus we have four possibilities in all:

• a non-incremental, single-answer mode, which corresponds to the only mode provided by most
Prolog implementations,

• a non-incremental, all-answer mode, as provided by Turbo Prolog,

• an incremental, single-answer mode corresponding to the one of the system reported in [7],

• the main component of this project, the only one deserving the name TuplePipes: the incremental,
all-answer mode.

Thus we should distinguish between TuplePipes, the name of the dataflow model giving rise to
tables, and the implemented system, which we call Tupilog, and which has TuplePipes as one of its four
modes of interaction.

It is this last mode that exploits best the many windows provided by our computer system. Initially
there is one window, which we call the meta window in which you can enter, in Prolog query format,
a goal specifying the initiation of any of the four modes. Let us suppose it is the incremental, all-
answer mode. As a result an initially empty new window appears, in which the goals of the incremental
query will be displayed. As soon as the first increment is entered in that window, a new window
appears containing the table resulting from the first goal. Every next goal entered in the query window
transforms the table into a new one, which then takes its place in the table window. Typically, the table
window does not hold all of the table. Scrolling allows you to select the visible part.

You can create other modes, each with its own set of windows. You can use the mouse to rearrange
the windows, to change their dimensions, and to bring selected ones to the foreground.

The system consists of four meta interpreters, one for each mode, implemented in about 250 clauses
(about 1000 lines, including comments) of ALS Prolog [2]. We use meta-level constants to name object-
level variables. At the meta level we have implemented operations on table columns, such as summing,
averaging, and sorting. These operations are logically intractable within the object level, but provide
no difficulty when there is a clear distinction between object and meta levels. Also, this distinction
facilitates the implementation of the projection operation described in the previous section.

Of the four meta interpreters, the only one we need to say a bit more about in this paper is the one
for TuplePipes. We list here its top level, sufficient to specify the computational model.

% nodes(GoalList,InPipe,outPipe) :
% InPipe (OutPipe) is the stream of tuples

8



% through the input (output) pipe of the
% dataflow nodes corresponding to GoalList.

nodes([],Pipe,Pipe).

nodes([Goal|Goals],InPipe,OutPipe) :-
node(Goal,InPipe,Pipe),
nodes(Goals,Pipe,OutPipe).

% node(Goal,InPipe,OutPipe) :
% InPipe (OutPipe) is the stream of tuples
% through the input (output) pipe of the
% dataflow node corresponding to Goal.
%
% allAnswers(Goal,Tuple,Pipe) :
% Pipe is the sequence of answers to Goal
% with Tuple applied to it as substitution.

node(_,[],[]).
node(Goal,[Tuple|Tuples],OutPipe) :-

allAnswers(Goal,Tuple,OutPipe1),
node(Goal,Tuples,OutPipe2),
append(OutPipe1,OutPipe2,OutPipe).

Most input and output, especially with the mouse, was implemented directly in about 2000 lines of
Microsoft C (including comments), bypassing the I/O of ALS Prolog, but using its C interface routines.
To facilitate the manipulation of the windows and the interface to the mouse, the “C Utility Library”
(supplied by Essential Software, Inc.) was used. It all runs on an IBM XT/286 under PC/DOS.

It is important to distinguish TuplePipes, the conceptual user interface, from Tupilog, the imple-
mentation. The implementation is described here without going into details because it is useful only as
prototype allowing us to demonstrate the intended user interface.

For a more serious implementation, one thinks of course of the And-parallel languages such as
Parlog, Concurrent Prolog, and GHC, if only because of the large amount of effort spent on their imple-
mentation. These languages are relevant because they allow one to implement dataflow networks based
on logic. But these networks are a very special case of what And-parallel languages can do in general.

TuplePipes are themselves a special case of dataflow networks. Yet, as we have argued, they support
a large part of what many users want to do with their computer. This combination of conditions strongly
suggests not to rely on the general power of And-parallel languages, but to use a special-pupose imple-
mentation such as Tupilog with a computational model inspired on the processor for logic programs in
[1] and in [4].

7 Conclusions

It is interesting to see how far software lags behind hardware. A case in point is the transition from
teletypes to video monitors as terminals for computers. The monitors allow a superior, two-dimensional
interface. Yet, although teletypes have long disappeared, much software is still line-oriented, using the
monitor as a “glass teletype”.
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Strikingly, this not only holds for languages like Pascal and C, but also for interactive languages
like Prolog and Lisp. And it not only holds for old-fashioned terminals like the VT100, but also for
workstations. Their innovation has been to provide multiple windows. But each of these contains. . . a
little glass teletype.

We feel that logic programming has learned from what’s happening in the outside world, where the
first experiments in exploratory computer use were conducted with spreadsheets, which also pioneered a
step away from the glass teletype. On the other hand, logic programming has contributed to the outside
world, showing that spreadsheets and table-based software can be interfaces to logic specifications
expressing directly the user’s requirements, making it easier to verify that all those numbers that come
pouring out are indeed a solution of the problem at hand and not of something else.

Modeling spreadsheets and tables in logic helps to bring out their differences and similarities. Our
analysis, and our notion of their common generalization, the stack, may be new, and is a consequence
of the need to use them as a two-dimensional interface for logic programs.
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