
Multi-Stage Predict+Optimize
for (Mixed Integer) Linear Programs

Xinyi Hu1, Jasper C.H. Lee2, Jimmy H.M. Lee1, Peter J. Stuckey3

1Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

2Department of Computer Science, University of California, Davis, USA
3Department of Data Science and AI, Monash University, Clayton, Australia

{xyhu,jlee}@cse.cuhk.edu.hk, jasperlee@ucdavis.edu, peter.stuckey@monash.edu

Abstract

The recently-proposed framework of Predict+Optimize tackles optimization prob-
lems with parameters that are unknown at solving time, in a supervised learning
setting. Prior frameworks consider only the scenario where all unknown parameters
are (eventually) revealed at the same time. In this work, we propose Multi-Stage
Predict+Optimize, a novel extension catering to applications where unknown pa-
rameters are instead revealed in sequential stages, with optimization decisions made
in between. We further develop three training algorithms for neural networks (NNs)
for our framework as proof of concept, all of which can handle mixed integer linear
programs. The first baseline algorithm is a natural extension of prior work, training
a single NN which makes a single prediction of unknown parameters. The second
and third algorithms instead leverage the possibility of updating parameter predic-
tions between stages, and trains one NN per stage. To handle the interdependency
between the NNs, we adopt a sequential and parallelized versions of coordinate de-
scent for training. Experimentation on three benchmarks demonstrates the superior
learning performance of our methods over classical approaches.

1 Introduction

Constrained optimization problems can frequently model applications in everyday life, yet, the
parameters of the problem are unknown at the time of solving. Consider, for example, a real-world
application where hospital administrators need to schedule shifts for nurses, so as to minimize the
total costs for hiring nurses while meeting the patient load. Here, the shifts need to be decided before
the (real-time) patient demand is known, which requires predicting the demand when scheduling.

In the present work, we focus on the supervised learning setting, where unknown parameters can be
predicted using relevant features, and historical (features, parameters) pairs serve as training data for
the prediction model. The goal is to estimate the unknown parameters based on the related features,
such that when we solve the optimization problem using the estimated parameters, the resulting
solution is good even under the later-revealed true parameters.

Classic approaches, for example by learning predictors using (regularized) ℓ2 loss, do not neces-
sarily work well — low prediction error in parameter space does not guarantee good performance
of the estimated solution according to the optimization objective. The influential framework of
Predict+Optimize proposed by Elmachtoub and Grigas [9] instead uses the more effective regret
loss, which incorporates information about the optimization problem. However, the framework limits
the unknown parameters to appear only in the objective and not the constraints — if uncertainty
in constraints is mis-predicted, the resulting estimated solution might not even be feasible under
the true parameters. Recent works by Hu et al. [15, 16] thus propose a Two-Stage adaptation of

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Predict+Optimize, explicitly modelling 1) a prediction stage and 2) a recourse stage which corrects
infeasible solutions into feasible ones. The new two-stage framework is therefore applicable even
when the optimization constraints contain uncertainty.

However, the two-stage framework essentially assumes that all the unknown parameters are revealed
simultaneously, excluding applications where such information is gradually released and new de-
cisions need to be made across many stages (e.g. in a daily/weekly manner). Crucially, in these
applications, predictions can also be updated between stages, in light of the new information and past
committed actions. Consider again the example of scheduling shifts for nurses. A typical facility
might have an appointment system, with reservations closing the day before each working day. As
opposed to a two-stage modelling, a more practical approach would treat each day in a work week as
its own stage where new information (the precise appointments the next day) is learned, inducing
both new optimization decisions and updated predictions.

The concrete contributions of this paper are three-fold.

Framework We propose and formalize the new framework of Multi-Stage Predict+Optimize
(Section 3), where unknown parameters are revealed across multiple stages, inducing new optimization
decisions and updated parameter predictions.

Training algorithms The flexibility to update (future) parameter predictions in each stage intro-
duces intricate challenges to the training process, which should train a prediction model per stage.
The challenges are both in predictive power and in computation time. The performance of predictors
across stages are intertwined and interdependent: the “goodness” of a prediction depends on actions
in other stages, which in turn depends on predictions of those other stages. Such dependency can also
cause serialization issues that could drastically lengthen training time.

In Section 4, we propose three neural network training algorithms for our framework, assuming that
the optimization problems can be formulated as mixed integer linear programs (MILPs): 1) a baseline
algorithm that directly generalizes the two-stage algorithm of Hu et al. [16], training only a single
neural network predictor, 2) a sequential coordinate descent training algorithm which trains a neural
network model per stage, and each stage is considered a “coordinate”, and 3) a parallel version of
coordinate descent. These algorithms trade off between training time and predictive performance.

Empirical evaluation We apply these methods to three benchmarks (Section 5) to empirically
demonstrate their superior learning performance over classical training methods, as well as the
computation/prediction tradeoff between the proposed methods.

We note that there are other lines of work tackling similar settings, where unknown parameters in
optimizations are also revealed in a sequential fashion. Perhaps the most well-known is multi-stage
stochastic optimization [14, 30]. The main difference between our work and multi-stage stochastic
optimization is supervised vs unsupervised learning. Our framework (and Predict+Optimize in
general) has features that help making parameter predictions, whereas (non-contextual) stochastic
optimization does not and requires different techniques to tackle. See Appendix A.3 for a detailed
discussion on the connection and comparison between our framework and stochastic optimization.

Related Work We include a brief literature review here in the main body. See Appendix A for a
detailed exposition.

Elmachtoub and Grigas proposed the influential framework of Predict+Optimize [9], with lots
of followup work in the community on improving computational efficiency [23, 24], predictive
accuracy [7, 18, 22], on types of applicable optimization problems [12, 17, 36], and applying to
specific real-world scenarios [6, 34, 35]. More recently, Hu et al. [15, 16] proposed adaptations of
the framework to handle uncertainty in optimization constraints, including the Two-Stage framework
which our work is most related to.

Predict+Optimize also sits in a broader line of work on decision-focused learning, including works that
learn prediction models for unknown parameters but with different goals/loss measures [25, 28], as
well as other works that invent techniques for differentiating through optimization problems [1, 2, 36].

2

HU Xinyi



Outside of decision-focused learning, our work is also somewhat related to (multi-stage) stochastic
programming [14, 30]. The main difference, again, is supervised vs unsupervised learning. See
Appendix A.3 for a more detailed comparison.

2 Background — Two-Stage Predict+Optimize

In this section, we describe Two-Stage Predict+Optimize [16], which is prerequisite to understanding
our contributions. Without loss of generality, the framework is stated for minimization problems.

A parameterized optimization problem (Para-OP) P (θ) is defined as finding:

x∗(θ) = argmin
x

obj(x, θ) s.t. C(x, θ)

where x is a vector of decision variables, θ is a vector of parameters, obj is a function mapping
decisions x and parameters θ to a real objective value that is to be minimized, and C is a set of
constraints that must be satisfied over x under parameters θ. We call x∗(θ) an optimal solution under
parameters θ, and obj(x∗(θ), θ)) the optimal value under parameters θ. When the parameters are all
known, a Para-OP is just a classical optimization problem (OP).

In the Predict+Optimize setting (from the original framework [9], to the two-stage framework [16],
and to our multi-stage framework later on), each instantiation of the true parameter vector θ has an
associated feature matrix A. These features are relevant information that can help a model predict θ.

In the following, we number the stages by 0 and 1 in Two-Stage Predict+Optimize [16] to make the
framework look more similar to the multi-stage framework we propose later in Section 3.

Stage 0 The practitioner uses a prediction model, which takes in a feature matrix A, to compute a
vector of estimated parameters θ̂. The Stage 0 solution x̂0 is then computed as

x̂(0) = argmin
x

obj(x, θ̂) s.t. C(x, θ̂)

The Stage 0 solution x̂(0) should be interpreted as a form of soft commitment that can be modified in
Stage 1, subject to a penalty.

Stage 1 The true parameters θ are revealed, and the practitioner wishes to compute an updated
Stage 1 solution x̂(1) from x̂(0), subject to a (problem-specific) penalty function Pen(x̂(0) → x̂(1), θ)
which depends on both the softly-committed Stage 0 x̂(0), the final Stage 1 solution x̂(1) and the true
parameters θ. More specifically, the Stage 1 solution x̂(1) is computed as

x̂(1) = argmin
x

obj(x, θ) + Pen(x̂(0) → x, θ) s.t. C(x, θ)

The Stage 1 solution x̂(1) should be interpreted as a hard-committed final action, and note that it is
guaranteed to be feasible under the true parameters θ.

The prediction θ̂ is evaluated using the post-hoc regret [16], which is the sum of two terms: (a) the
difference in objective between the true optimal solution x∗(θ) and the final Stage 1 solution x̂(1)

under the true parameters θ, and (b) the penalty incurred by modifying x̂(0) to x̂(1). Formally, the
post-hoc regret function PReg(θ̂, θ) (for minimization problems) is:

PReg(θ̂, θ) = obj(x̂(1), θ)− obj(x∗(θ), θ) + Pen(x̂(0) → x̂(1), θ)

The goal of a prediction model is to make predictions θ̂ so as to minimize the post-hoc regret. We
emphasize again that the main difference between Predict+Optimize frameworks and stochastic
programming frameworks is that in Predict+Optimize, a prediction model has access to features
relevant to the true parameters in order to make a prediction. Stochastic programming, on the other
hand, frequently operates solely at the level of the distribution over the true parameters.

3



3 Multi-Stage Predict+Optimize

In this section, we present our new framework of Multi-Stage Predict+Optimize, which models
applications where unknown parameters are revealed across T different stages.

Consider again the Para-OP

x∗(θ) = argmin
x

obj(x,θ) s.t. C(x,θ)

We view the true parameter vector θ as (θ1, . . . , θT ), where each θt is the sub-vector of parameters
released at Stage t. Similarly, we also view the vector of decision variables x as (x0, . . . , xT ), where
each xt is the sub-vector of decision variables that are hard-committed in Stage t (e.g. via a concrete
real-world action taken at Stage t) and soft-committed in prior stages (e.g. a tentative nurse schedule).

At a high level, the parameters θt are revealed at Stage t, and a model makes a prediction θ̂(t) =

(θ̂
(t)
t+1, . . . , θ̂

(t)
T ) of all the unrevealed parameters. Then, the practitioner solves the Stage t optimization

problem which we define later in the section. The decision variables xt are newly hard-committed,
whereas the decision variables xt+1, . . . , xT are soft-committed with potential to be modified in
future stages (at the cost of a penalty). This process is repeated until all stages are completed.

In the rest of the section and paper, we will use the standard notation of θ[t1 : t2] = (θt1 , . . . , θt2) to
denote sub-vectors (treated as arrays), and use the notation ⊕ for vector concatenation.

3.1 Formal Framework Definition

Now we formally define Multi-Stage Predict+Optimize framework. In Appendix B, we also present
the hospital scenario from the Introduction as a detailed example of applying this framework.

Stage 0 None of the true parameters have been revealed. Model0 takes the feature matrix A and
predicts θ̂(0) = (θ̂

(0)
1 , . . . , θ̂

(0)
T ). The practitioner then computes the Stage 0 solution x̂(0) as

x̂(0) = argmin
x

obj(x, θ̂(0)) s.t. C(x, θ̂(0))

The decision variables x̂
(0)
0 are hard commitments, whereas the rest of the decision vector

x̂
(0)
1 , . . . , x̂

(0)
T are soft commitments.

Stage t (for 1 ≤ t ≤ T ) The true parameters θ1, . . . , θt−1 were previously revealed, and θt is newly
revealed. Modelt makes a prediction θ̂(t) = (θ̂

(t)
t+1, . . . , θ̂

(t)
T ) using 1) the feature matrix A, 2) the

previous stage solution x̂(t−1) and 3) the revealed true parameters θ1, . . . , θt. For computational
efficiency reasons, Modelt may instead take any subset or derived functions of the above inputs. For
example, Modelt can choose whether or not to incorporate the revealed true parameters θ1, . . . , θt
as input. While these revealed parameters can serve as additional features, potentially guiding and
correcting current predictions more effectively, they also increase training time (and inference time
to a smaller extent). The trade-off between prediction improvement and additional training time
depends on the optimization problem, model structure, and training data. Therefore, whether to
utilize the revealed true parameters can be considered a hyperparameter that should be tuned for each
application using the available training data. See Appendix H.1 for a more detailed discussion.

Afterwards, the practitioner computes the Stage t solution x̂(t) using the following Stage t opti-
mization problem, which crucially modifies the original Para-OP by: 1) introducing a penalty term
Pent(x̂

(t−1) → x,θ[1 : t]) capturing the cost of changing the Stage t− 1 solution x̂(t−1) to the new
Stage t solution x, and 2) introducing the constraint that x[1 : t − 1] = x̂(t−1)[1 : t − 1], namely,
hard commitments from prior stages cannot be modified in the current Stage t. This constraint is a
form of a non-anticipativity constraint in the stochastic programming literature [14].

x̂(t) = argmin
x

obj(x,θ[1 : t]⊕ θ̂(t)) + Pent(x̂
(t−1) → x,θ[1 : t])

s.t. C(x,θ[1 : t]⊕ θ̂(t)) and x[1 : t− 1] = x̂(t−1)[1 : t− 1]

4



The Stage t solution, by construction, has x̂(t)[1 : t − 1] being equal/compatible with the hard
commitments from prior stages. The new hard commitments are x̂

(t)
t , and the rest of the decision

vector x̂(t)[t+ 1 : T ] are new soft commitments we make for the future stages.

At t = T , the prediction θ̂(T ) is a length-0 vector since all the true parameters will have been revealed.

For the rest of the paper, we make the assumption that these Stage t optimizations are always
satisfiable, regardless of the prior stage solutions, prior+current predictions and revealed parameters.
For practical applications, this assumption is both natural and essential. In real-world scenarios,
encountering an unsatisfiable condition can lead to catastrophic outcomes. Therefore, before using
the application, the domain expert should always have designed the underlying real-world system to
have recourse actions to mitigate bad prior commitments (at cost/penalty) and to prevent catastrophe,
and furthermore model such recourse actions in the (multi-stage) optimization problem. Any system
and the corresponding formulation of multi-stage optimization problem lacking such recourse should
not be used/executed. It is thus a reasonable assumption and a practical responsibility our framework
asks of the practitioner, that recourse actions are always designed into the underlying system and
modelled, so that our feasibility assumption is satisfied.

Evaluation: The sequence of predictions θ̂(0), . . . , θ̂(T ), which along with the true parameters θ
induces the sequence of solutions x̂(0), . . . , x̂(T ), is evaluated using a generalized notion of post-hoc
regret, defined as follows (for a minimization problem):

PReg((θ̂(0), . . . , θ̂(T )),θ) = obj(x̂(T ),θ)− obj(x∗(θ),θ) +
∑
t

Pent(x̂
(t−1) → x̂(t),θ[1 : t])

where x∗(θ) is again the optimal in-hindsight vector of decisions for the original Para-OP.

We note that if a problem has only 2 stages (Stages 0 and 1), then our framework of Multi-Stage
Predict+Optimize indeed captures Two-Stage Predict+Optimize described in Section 2.

4 End-to-End Training Algorithms on MILPs

In this section, we give 3 training algorithms for neural network models for the Multi-Stage Pre-
dict+Optimize framework, under the assumption that all Stage t optimization problems can be
formulated as (mixed integer) linear programs (MILPs).

The first training algorithm, our baseline (Section 4.1), is a straightforward generalization of the one
proposed for the two-stage framework [16]. This algorithm only trains a single neural network and
reuses the same parameter predictions across all stages. Although the approach is computationally
efficient, it fails to fully exploit the power of the framework, which allows for predictions to be
updated at each stage.

Our second and third algorithms (Sections 4.2 and 4.3) instead train one neural network per stage,
each making new parameter predictions for the corresponding stage. As mentioned in Section 1,
it is delicate to train these neural networks. The quality of a prediction in one stage depends on
decisions in other stages, which in turn depends on predictions made in those other stages. To
handle this dependency, we employ a coordinate-descent strategy, where each stage/neural network
is a coordinate. We present both a sequential version and a parallel version of this strategy as
training algorithms, which trade off between training time (sequential being slower) and predictive
performance.

We also point out that it is technically possible to train all networks simultaneously, without using
coordinate descent like in Sections 4.2 and 4.3. To do so, we would instead use ground truth
parameters in place of prior and future stage predictions. However, intuitively, this simpler approach
should have worse predictive ability than the proposed two methods, given the interdependency of
the predictors. We show experimental comparisons in Appendix H.2 confirming this intuition.

In Section 5, we show empirical results comparing these algorithms and classic non-Predict+Optimize
learning algorithms (e.g. standard regression models), which demonstrate that even our baseline
training approach outperforms classic non-Predict+Optimize algorithms. Also, our more sophisticated
approaches yield even better learning performance, at the cost of additional training time.

5



4.1 Baseline: Extending the Two-Stage Approach to Train a Single Neural Network

We first present a baseline Predict+Optimize training algorithm for our multi-stage setting, via a
natural extension of the two-stage approach [16].

This baseline algorithm trains a single neural network NN , which takes a feature matrix A and
returns the prediction θ̂ = NN(A). The same predictions are then reused across all the stages. More
specifically, in the language of Section 3, we choose θ̂(t) = θ̂[t+ 1 : T ] for this basic approach.

We use standard gradient methods to train the neural network NN , with the goal of minimizing
post-hoc regret as defined in Section 3:

PReg = obj(x̂(T ),θ)− obj(x∗(θ),θ) +
∑
t

Pent(x̂
(t−1) → x̂(t),θ[1 : t])

Noting the second term is independent of θ̂(0) and hence NN , the gradient with respect to an edge
weight we in NN is

dPReg

dwe
=

d obj(x̂(T ),θ)

dwe
+

T∑
t=1

dPent(x̂
(t−1) → x̂(t),θ[1 : t])

dwe

By the law of total derivative, we can expand this to

dPReg

dwe
=

d obj(x̂(T ),θ)

dx̂(T )

dx̂(T )

dθ̂

dθ̂

dwe
+

T∑
t=1

(
∂ Pent

∂x̂(t−1)

∣∣∣∣
x̂(t)

dx̂(t−1)

dθ̂
+

∂ Pent

∂x̂(t)

∣∣∣∣
x̂(t−1)

dx̂(t)

dθ̂

)
dθ̂

dwe

The term dθ̂
dwe

is calculated via standard backpropagation, while the terms d obj(x̂(T ),θ)
dx̂(T ) , ∂ Pent

∂x̂(t−1)

∣∣
x̂(t)

and ∂ Pent

∂x̂(t)

∣∣
x̂(t−1) are calculable when the objective and penalty functions are smooth. The only

non-trivial calculation is for dx̂(t)

dθ̂
for all t ∈ [T ].

Recall that x̂(t) is computed from the Stage t optimization problem, as a deterministic function of
x̂(t−1) and θ̂(t) (which is a sub-vector of θ̂ here, since we reuse predictions), while x̂(t−1) itself also
depends on θ̂. We thus further decompose dx̂(t)

dθ̂
into the following recursive computation

dx̂(t)

dθ̂
=

∂x̂(t)

∂x̂(t−1)

∣∣∣∣
θ̂

dx̂(t−1)

dθ̂
+

∂x̂(t)

∂θ̂

∣∣∣∣
x̂(t−1)

Calculating ∂x̂(t)

∂x̂(t−1)

∣∣∣
θ̂

and ∂x̂(t)

∂θ̂

∣∣∣
x̂(t−1)

requires differentiating through a MILP. So instead of directly
using MILP formulations for the Stage t optimization problems, we use the convex relaxation by Hu
et al. [16], which in turn adapts the approach of Mandi and Guns [22].

We also note that it is possible to use other convex relaxations and approaches to differentiate through
the MILP, for example using tools like CvxpyLayers [1]. We chose Hu et al.’s calculations because
their experiments showed the computational efficiency of their approach over other tools.

4.2 Sequential Coordinate Descent

Training only one neural network, the baseline algorithm is efficient but fails to fully harness the
power of the framework in Section 3. Each stage t makes new decisions, and the “goodness” of future
decisions depends on these previously committed decisions. Thus, new predictions should be made
each stage for future parameters, based on prior-stage optimization decisions, so as to yield current
and future optimization decisions that work well with the already-committed ones. However, the
baseline algorithm ignores this information and does not update the predictions accordingly.

We thus propose our second training algorithm, which trains one neural network per stage, from
Stages 0 to T − 1. The neural network NNt for Stage t takes the feature matrix A as input, as well
as all the prior decision vector x̂(t−1), and outputs the prediction θ̂(t) for parameters θ[t + 1 : T ].
The astute reader might recall that the proposed framework in Section 3 allows NNt to utilize
the revealed parameters from stage t − 1 as additional features as input. However, preliminary

6



Algorithm 1: Sequential and Parallel Coordinate Descent Approaches

1 PROCEDURE SeqCoordinateDescent
2 t← 0

3 While not terminating
4 Train NNt using NN−t (Section 4.2)
5 t← (t+ 1) mod T

6 PROCEDURE ParCoordinateDescent
7 While not terminating
8 Save copy NN ′

t ← NNt for all t ∈ [0, T − 1]

9 Parallel train+update NNt using NN ′
−t (like

in Section 4.2)

experiments in Appendix H.1 indicated that including such parameters does not really enhance
prediction quality, while merely increasing training time. Therefore, in our current implementation,
NNt does not include these revealed parameters. In general, however, such choice should be treated
as a hyperparameter and made for each application.

To address the dependency between the neural networks, we employ a coordinate descent ap-
proach, where each stage/neural network is treated as a “coordinate”. We train the neural networks
NN0, . . . , NNT−1 in cyclic order, repeating until termination (e.g. convergence or timeout). See
Algorithm 1 for high-level pseudocode description of this sequential coordinate descent approach, as
well as the parallelized version described in the next subsection.

Concretely, we train NNt by considering all the other neural networks as fixed. Here, we will focus
on describing the forward pass, since the backward pass gradient computations follow essentially the
same strategy described in Section 4.1 — see Appendix C for details of the gradient computations.

Forward pass Consider a historical (feature, parameter) pair (A,θ). We first iteratively generate
the sequence of solutions x̂(0), . . . , x̂(t) using θ̂(i) = NNi(A, x̂(i−1)) for i ∈ [0, t − 1]. Then, we
compute the Stage t prediction θ̂(t) = NNt(A, x̂(t−1)), and generate the remaining sequence of
solutions x̂(t), . . . , x̂(T ) using θ̂(i) = θ̂(t)[i+ 1 : T ] for i ∈ [t, T ].

Backward pass The goal is to compute the derivative of the post-hoc regret with respect to each
edge weight we of NNt. Similar to Section 4.1, instead of directly using the MILP formulation of all
the Stage t optimization problems in the forward pass, we use the convex relaxation of Hu et al. and
Mandi and Guns. This allows us to differentiate the modified (due to convex relaxations) post-hoc
regret with respect to each we in NNt. As mentioned, the calculations are quite similar to those in
Section 4.1, and so we defer them to Appendix C.

Experimental results in Section 5 demonstrate that the sequential coordinate descent training approach
outperforms both the classic non-Predict+Optimize methods and the baseline Predict+Optimize
approach from Section 4.1.

We note that in the above description of the training implementation of NNt, there is a lot of repeated
computation that can be pre-computed and reused. Since, during coordinate descent, the prior neural
networks NN0, . . . , NNt−1 are considered fixed, the solutions (x̂(0), . . . , x̂(t−1)) are also fixed for a
given (features, parameters) pair (A,θ) no matter how NNt is updated during training. Thus, for
each (A,θ) we always pre-compute and save the sequence of solutions (x̂(0), . . . , x̂(t−1)), and only
recompute (x̂t, . . . , x̂T ) as we update NNt through training gradient steps.

4.3 Parallel Coordinate Descent

While the sequential coordinate descent training approach yields accurate predictors, the compu-
tational cost is also high. Training a single neural network already requires solving sequences of
optimization problems over many iterations; the serialization from training the neural networks one
at a time can make the resulting training time prohibitive for applications.

We thus propose to parallelize the coordinate descent approach, slightly sacrificing prediction quality
for efficiency. In each coordinate descent step, we train all the neural networks in parallel. When
training a particular neural network NNt, we use copies of NN0, . . . , NNt−1, NNt+1, . . . , NNT−1

from the previous descent step, but otherwise the training implementation remain the same as in
Section 4.2. See also Algorithm 1.

7



This simple change drastically improves running time (Appendix G), while only slightly decreases
predictive accuracy: the post-hoc regret of models trained using parallel coordinate descent sits
between that of the baseline training algorithm and the sequential coordinate descent approach.

5 Experimental Evaluation

We evaluate the proposed 3 training algorithms: Baseline, Sequential Coordinate Descent (SCD),
and Parallel Coordinate Descent (PCD) on 3 benchmarks described in Appendix D. We compare
these algorithms to classic non-Predict+Optimize regression models [10]: ridge regression (Ridge),
k-nearest neighbors (k-NN), classification and regression tree (CART), random forest (RF), and
neural network (NN). The single predictions from these classical regression models are used in test
time identically to our Baseline approach (Section 4.1). We tune all algorithm hyperparameters via
cross-validation — Appendix E gives all the hyperparameter types and chosen values. In particular,
the termination criteria for SCD and PCD in Algorithm 1 are based on a threshold that measures the
difference in training set post-hoc regrets between two (outermost) iterations of the training coordinate
descent. This threshold is also treated as a hyperparameter that was tuned per each application; in the
experiments presented in this paper, we used a threshold of 0.1.

Due to space limitations, we present only the best results obtained among all standard regression
methods (BAS) as one column in the main paper. See Appendix F for full results. Furthermore,
we report mainly the prediction accuracy — see Appendix G for computational setup and detailed
runtime comparisons.

Given the lack of datasets specific to these benchmarks, we follow a standard Predict+Optimize
experimental approach [16, 24, 7] and use real data from different problems as numerical values in
our experiment instances. We include details in the individual subsections. For each benchmark, we
run 30 simulations, each simulation containing a 70/30 training/test data split.

5.1 Production and Sales Problem

Our first benchmark is a linear programming (LP) problem. An oil company is developing a
production and sales plan for the upcoming T quarters/months. The company aims to maximize
profits — sales revenues minus production costs — under the constraint that the amount of oil sold
each quarter/month cannot exceed the customer demands. The production cost and sales price for
each quarter/month are known, but the demand is revealed only at the beginning of each quarter/month
after the company receives the orders. See Appendix D.1 for the detailed description and LP model.

We generate production costs and sales prices following the method by Ardjmand et al. [3]. Production
costs are randomly generated from [50, 100]. Two groups of sales prices are considered: low-profit
product prices are randomly generated from [50, 100]; high-profit product prices are from [120, 150].
Customer demands are the unknown parameters and need prediction — we use real data from a
knapsack benchmark [28] as demand parameters, where each parameter is related to 4096 features.

We conduct experiments on T = {4, 12}, corresponding to 4 quarters or 12 months. For NN,
Baseline, SCD, and PCD, we use 5-layer fully connected networks with 512 neurons per hidden layer.

Table 1 reports the mean post-hoc regrets and standard deviations across 30 simulations for the
proposed 3 methods and BAS on the problem. Appendix F.1 gives a full data table (Table 5) with
all standard regression methods. We also report the mean and standard deviations of True Optimal
Values (TOV) in the last column — optimal objective under true parameters in hindsight — for
readers to use as (rough) normalization for relative errors. The results demonstrate the advantage of
Predict+Optimize methods. All three proposed methods, even Baseline, beat all standard regression
methods. SCD consistently achieves the best performance, followed closely by PCD. Baseline falls
between the two coordinate descent methods.

In Appendix F.1, Table 6 shows the percentage improvements of the proposed 3 methods against
BAS. From that table, we observe that the advantage of our methods increases with the number of
stages.

Considering the relatively large standard deviations in Table 1, to show the substantial performance
improvements clearly, we provide “win rate” results in Figure 1 and related information in Table 7
in Appendix F.1. Here, “win rate” refers to counting the number of simulations (out of 30) where a

8



Table 1: Mean post-hoc regrets and standard deviations for the production and sales problem.

Price group Stage num SCD PCD Baseline BAS TOV

Low-profit 4 293.78±99.21 297.34±107.44 305.26±100.88 355.56±103.78 1615.75±675.77
12 488.72±127.62 495.21±122.42 515.80±137.67 637.77±199.25 7344.78±2290.04

High-profit 4 505.24±89.55 520.76±92.20 526.77±104.99 561.36±96.49 5007.09±976.65
12 887.38±250.55 905.61±255.99 935.03±263.47 997.44±273.91 21066.00±4159.56

Table 2: Mean post-hoc regrets and standard deviations for the investment problem when capital=50.

Stage num Transaction
factor SCD PCD Baseline BAS TOV

4
0.01 47.48±6.98 47.67±6.64 48.24±7.13 48.98±7.19 158.56±11.19
0.05 34.92±5.57 35.22±5.98 35.64±6.28 36.42±5.70 126.22±8.86
0.1 25.50±3.88 25.63±3.93 25.96±4.64 26.62±4.07 99.83±7.02

12
0.01 3846.20±420.94 3869.76±420.01 3941.09±437.57 3999.70±475.44 6166.73±573.51
0.05 1663.82±208.60 1679.17±205.01 1701.51±222.45 1736.59±232.15 2860.05±288.85
0.1 646.14±75.52 652.57±74.45 665.71±76.40 680.94±70.76 1259.99±107.60

method outperforms another. Table 7 reports win rate results among Baseline, SCD, PCD, and BAS,
and Figure 1 further compares the proposed methods against BAS across each individual simulation.
Both the table and figure show that SCD outperforms BAS in all simulations, while PCD and Baseline
outperform BAS in most simulations.

5.2 Investment Problem

Our second benchmark shows our framework on a MILP problem. The task is to create an investment
plan for trading financial products over a year, under limited capital. The net profit consists of: 1)
dividends gained from holding products, 2) market price of products in the portfolio at the end of
the year and 3) net profits from trading products (selling price minus buying price) minus trading
transaction fees. For simplicity, we assume that transaction fees are linear in the products’ market
prices. We call the proportionality constant the transaction factor, which we vary across experiments.

The market price of (resp. dividends from owning) each product in each quarter/month is revealed
only at the beginning (resp. end) of the quarter/month, requiring predictions. As with the previous
benchmark, we use real data from a knapsack benchmark [28] for parameters needing prediction.
The detailed problem description and the MILP formulation are in Appendix D.2

We conduct experiments on five financial products, and T = {4, 12}, corresponding to 4 quarters or
12 months. We consider two different initial capital values: 25 and 50, and three different transaction
factors: 0.01, 0.05, or 0.1. For NN, Baseline, SCD and PCD, we again use a 5-layer fully connected
network with 512 neurons per hidden layer.

Table 2 reports the mean post-hoc regrets and standard deviations across 30 simulations for the
proposed three methods and BAS on the problem when capital=50. We report full data tables
(Tables 8 and 9) in Appendix F.2. TOVs are reported in the last column, again for reference. The
results confirm the performance ordering of SCD > PCD > Baseline > classical regression methods.

Table 10 in Appendix F.2 presents the percentage improvement of our proposed methods against BAS.
Curiously, contrasting the previous benchmark, the advantage of our methods against BAS appears
to be non-increasing with the number of stages. We hypothesize this is an LP versus MILP issue —
training for this benchmark required relaxing integrality constraints, introducing more approximations
with more stages. It is interesting future work to study if the performance decay in the number of
stages is a general phenomenon for MILPs and if it can be mitigated.

For the investment problem benchmark, we again provide win rate results in Table 11 in Appendix F.2.
The results show that the proposed 3 methods outperform BAS in more than 96.67% of the simula-
tions.

5.3 Nurse Rostering Problem

Our last benchmark is the nurse rostering MILP problem described in Section 1. The task is to
minimize the costs of hiring nurses to meet the (unknown) patient demands. After each stage’s patient

9



Table 3: Mean post-hoc regrets and standard deviations for the nurse rostering problem.

Extra nurse
payment SCD PCD Baseline BAS TOV

15 607.66±142.19 622.05±153.64 629.35±153.67 662.34±169.17 10611.64±1574.11
20 789.65±200.22 805.11±224.99 817.60±219.47 863.02±214.50 10732.32±1504.12
25 1038.29±255.42 1048.08±281.32 1083.45±259.68 1144.63±305.00 10893.54±1485.37
30 1207.50±319.25 1240.48±332.39 1290.10±371.08 1369.81±373.20 11110.73±1344.15

demands are revealed, the admin can modify future rosters at cost, and hire extra temporary nurses at
higher salary in case of understaffing. See Appendix B for a detailed description of the model.

Each problem instance consists of 10 regular nurses and 7 days (stages). Extra nurses come at a
cost of {15, 20, 25, 30} in different experiments. Due to the longer solving time for these MILPs,
we use real data from the ICON scheduling competition [32] as the numerical values for patient
demands, where each demand value is related to 8 features as opposed to 4096 features in previous
benchmarks. Given far fewer features, for both NN, Baseline, SCD and PCD, we use a smaller
network architecture: a 5-layer fully-connected network with 16 neurons per hidden layer.

Table 3 reports the mean post-hoc regrets and standard deviations across 30 simulations for each
approach, again corroborating the prediction performance order of SCD > PCD > Baseline > BAS.
Appendix F.3 gives full experimental results.

Similarly to the first two benchmarks, we report win rate results in Table 14 and show comparisons
between the proposed methods against BAS across each individual simulation in Figure 2 in Ap-
pendix F.3. Table 14 shows that SCD pretty consistently outperforms BAS, achieving win rates of
86.67% or higher in most scenarios. PCD also demonstrates competitive performance, with win rates
ranging from 70% to 83.33%, making it a viable alternative as we hypothesized.

5.4 Runtime Analysis

Appendix G gives the training times for each method. The training times follow the order of SCD
> PCD > Baseline > classic regression methods, which is the same for predictive accuracy in the
benchmarks, indicating a tradeoff between training time and accuracy. Our methods take longer
runtime than most other regression methods due to having to solve sequences of linear programs
during training. Among our methods, the coordinate descent methods take longer time than Baseline
due to having to train more neural networks, and the sequential version naturally takes longer than
the parallelized version.

6 Conclusion and Future Work

We propose the first Predict+Optimize framework for scenarios where unknown parameters are
revealed progressively over stages. Specifically, our proposal allows better predictions and
(re)optimization at each stage as more parameters are made known. Algorithmically, we focus
on MILPs–—a large and widely-studied class of problems–—and present three training methods for
our novel framework. Empirical results in three benchmarks demonstrate better predictions from our
methods over classical ones. Our methods trade off between predictive accuracy and training time.

Our work establishes the feasibility of Multi-Stage Predict+Optimize, and furthermore shows that
even our baseline algorithm of training a single predictor outperforms classical non-Predict+Optimize
approaches. Looking into the future beyond the present work, there is ample space for algorithmic
improvements. As we observed in Section 5, the current experimental results suggest that our
multi-stage predict+optimize methods display rather different behaviors depending on whether the
optimization is a linear program or a mixed integer program. In particular, for linear programs,
the advantage of our methods over classical methods increases with the number of stages, whereas
the opposite happens for integer programs. We believe it is important to investigate whether this
phenomenon holds more generally. If so, it is a prudent research direction to understand whether
such decay is inevitable for MILPs, or if there are algorithmic techniques to mitigate this effect.

10



Acknowledgments

We thank the anonymous reviewers for their constructive comments. In addition, Xinyi Hu and
Jimmy H.M. Lee acknowledge the financial support of a General Research Fund (RGC Ref. No.
CUHK 14206321) by the Hong Kong University Grants Committee, and also a Direct Grant (Ref.
No. 4055231) by The Chinese University of Hong Kong. Jasper C.H. Lee’s work was partially
done while he was at the University of Wisconsin-Madison, supported by a Croucher Fellowship
for Postdoctoral Research and NSF Medium Award CCF-2107079. Peter Stuckey’s contribution
was partially supported by the DARPA Assured Neuro Symbolic Learning and Reasoning (ANSR)
program under award number FA8750-23-2-1016, and by the Australian Research Council through
the OPTIMA ITTC IC200100009.

References
[1] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter. Differentiable convex

optimization layers. Advances in neural information processing systems, 32, 2019.

[2] B. Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural networks. In
International Conference on Machine Learning, pages 136–145. PMLR, 2017.

[3] E. Ardjmand, G. R. Weckman, W. A. Young, O. Sanei Bajgiran, and B. Aminipour. A robust
optimisation model for production planning and pricing under demand uncertainty. International
Journal of Production Research, 54(13):3885–3905, 2016.

[4] H. Bae, J. Lee, W. C. Kim, and Y. Lee. Deep value function networks for large-scale multistage
stochastic programs. In International Conference on Artificial Intelligence and Statistics, pages
11267–11287. PMLR, 2023.

[5] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik. Learning to branch. In International
conference on machine learning, pages 344–353. PMLR, 2018.

[6] H. Chu, W. Zhang, P. Bai, and Y. Chen. Data-driven optimization for last-mile delivery. Complex
& Intelligent Systems, 9(3):2271–2284, 2023.

[7] E. Demirović, P. J. Stuckey, T. Guns, J. Bailey, C. Leckie, K. Ramamohanarao, and J. Chan.
Dynamic programming for Predict+Optimise. In Proceedings of the Thirty-Fourth AAAI
Conference on Artificial Intelligence, pages 1444–1451, 2020.

[8] P. Donti, B. Amos, and J. Z. Kolter. Task-based end-to-end model learning in stochastic
optimization. Advances in neural information processing systems, 30, 2017.

[9] A. N. Elmachtoub and P. Grigas. Smart “Predict, then Optimize”. Management Science,
68(1):9–26, 2022.

[10] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning. Springer series
in statistics New York, 2001. Volume 1, Number 10.

[11] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization
with graph convolutional neural networks. Advances in neural information processing systems,
32, 2019.

[12] A. U. Guler, E. Demirović, J. Chan, J. Bailey, C. Leckie, and P. J. Stuckey. A divide and conquer
algorithm for Predict+Optimize with non-convex problems. In Proceedings of the Thirty-Sixth
AAAI Conference on Artificial Intelligence, 2022.

[13] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

[14] J. L. Higle. Stochastic programming: optimization when uncertainty matters. In Emerging
theory, methods, and applications, pages 30–53. Informs, 2005.

[15] X. Hu, J. C. H. Lee, and J. H. M. Lee. Predict+Optimize for packing and covering LPs with
unknown parameters in constraints. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2022.

11



[16] X. Hu, J. C. H. Lee, and J. H. M. Lee. Two-Stage Predict+Optimize for mixed integer
linear programs with unknown parameters in constraints. In Advances in Neural Information
Processing Systems, 2023.

[17] X. Hu, J. C. H. Lee, J. H. M. Lee, and A. Z. Zhong. Branch & Learn for recursively and iteratively
solvable problems in Predict+Optimize. In Advances in Neural Information Processing Systems,
2022.

[18] J. Jeong, P. Jaggi, A. Butler, and S. Sanner. An exact symbolic reduction of linear smart
Predict+Optimize to mixed integer linear programming. In K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages
10053–10067. PMLR, 17–23 Jul 2022.

[19] J.-H. Lange and P. Swoboda. Efficient message passing for 0–1 ilps with binary decision
diagrams. In International Conference on Machine Learning, pages 6000–6010. PMLR, 2021.

[20] D. Liu, M. Fischetti, and A. Lodi. Learning to search in local branching. In Proceedings of the
aaai conference on artificial intelligence, volume 36, pages 3796–3803, 2022.

[21] L. Lozano, D. Bergman, and J. C. Smith. On the consistent path problem. Operations Research,
68(6):1913–1931, 2020.

[22] J. Mandi and T. Guns. Interior point solving for LP-based prediction+optimisation. Advances
in Neural Information Processing Systems, 33:7272–7282, 2020.

[23] J. Mandi, P. J. Stuckey, T. Guns, et al. Smart predict-and-optimize for hard combinatorial
optimization problems. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence, volume 34, pages 1603–1610, 2020.

[24] M. Mulamba, J. Mandi, M. Diligenti, M. Lombardi, V. B. Lopez, and T. Guns. Contrastive
losses and solution caching for predict-and-optimize. In 30th International Joint Conference on
Artificial Intelligence (IJCAI-21): IJCAI-21, pages 2833–2840. International Joint Conferences
on Artificial Intelligence, 2021.

[25] Y. Nandwani, R. Ranjan, P. Singla, et al. A solver-free framework for scalable learning in neural
ilp architectures. Advances in Neural Information Processing Systems, 35:7972–7986, 2022.

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. 2019.

[27] R. M. Patel, J. Dumouchelle, E. Khalil, and M. Bodur. Neur2sp: Neural two-stage stochastic
programming. Advances in neural information processing systems, 35:23992–24005, 2022.

[28] A. Paulus, M. Rolínek, V. Musil, B. Amos, and G. Martius. Comboptnet: Fit the right NP-hard
problem by learning integer programming constraints. In International Conference on Machine
Learning, pages 8443–8453. PMLR, 2021.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[30] G. C. Pflug and A. Pichler. Multistage stochastic optimization, volume 1104. Springer, 2014.

[31] Y. Rychener, D. Kuhn, and T. Sutter. End-to-end learning for stochastic optimization: A
bayesian perspective. In International Conference on Machine Learning, pages 29455–29472.
PMLR, 2023.

[32] H. Simonis, B. O’Sullivan, D. Mehta, B. Hurley, and M. D. Cauwer. Energy-Cost Aware
Scheduling/Forecasting Competition, 2014.

12



[33] J. Song, Y. Yue, B. Dilkina, et al. A general large neighborhood search framework for solving
integer linear programs. Advances in Neural Information Processing Systems, 33:20012–20023,
2020.

[34] A. Stratigakos, S. Camal, A. Michiorri, and G. Kariniotakis. Prescriptive trees for integrated
forecasting and optimization applied in trading of renewable energy. IEEE Transactions on
Power Systems, 37(6):4696–4708, 2022.

[35] X. Tian, R. Yan, Y. Liu, and S. Wang. A smart predict-then-optimize method for targeted
and cost-effective maritime transportation. Transportation Research Part B: Methodological,
172:32–52, 2023.

[36] B. Wilder, B. Dilkina, and M. Tambe. Melding the data-decisions pipeline: Decision-focused
learning for combinatorial optimization. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence, pages 1658–1665, 2019.

[37] G. Zarpellon, J. Jo, A. Lodi, and Y. Bengio. Parameterizing branch-and-bound search trees
to learn branching policies. In Proceedings of the aaai conference on artificial intelligence,
volume 35, pages 3931–3939, 2021.

13



A Detailed Literature Review

In this section, we first summarize the related works in Predict+Optimize, and then summarize other
works related to learning unknowns in optimization problems, but outside of Predict+Optimize.

A.1 Predict+Optimize

As mentioned in Section 1, prior works all focus on the case where all unknown parameters are
revealed simultaneously. Most of them have focused on the regime where the unknown parameters
only appear in the objective and use the regret proposed by Elmachtoub et al. [9] as the loss function.
Since the regret loss is usually not (sub-) differentiable, and gradient-based methods do not apply,
they proposed ways to overcome the non-differentiability of the regret. Elmachtoub et al. [9] propose
a differentiable surrogate function for the regret function, while Wilder et al. [36] relax the integral
objective in constrained optimization and solve a regularized quadratic programming problem. Mandy
and Guns [22] focus on mixed integer linear programs and propose an interior point based approach.
In addition to computing the (approximate) gradients of the regret function or approximations of
it, another way to deal with the non-differentiability of the regret is to exploit the structure of
optimization problems to train models without computing gradients. Demirović et al. [7] investigate
problems amenable to tabular dynamic programming and propose a coordinate descent method to
learn a linear prediction function. Hu et al. [17] extend their framework, to enable problems solvable
with a recursive or iterative algorithm to be tackled in Predict+Optimize. Guler et al. [12] proposes a
divide and conquer algorithm, extending the work of Demirović et al. [7] in a different manner so
that the algorithm can deal with problems with the linear objective function.

As for Predict+Optimize with unknown parameters also in constraints, Hu et al. [15] first propose the
post-hoc regret loss function and a framework for packing and covering LPs with unknown parameters
in both objectives and constraints. They [16] further advocate a conceptually simpler framework,
which enable solving MILPs with unknown constraints. Besides, there are also works applying
Predict+Optimize to a wide range of real-world problems, including maritime transportation [35],
last-mile delivery [6], and trading in renewable energy [34].

A.2 Decision-Focused Learning

Now we summarize other works related to learning unknowns in optimization problems, particularly
those outside of Predict+Optimize. These works can be placed into two categories.

One category considers learning unknown parameters but with very different goals and measures
of loss. For example, CombOptNet [28] and Nandwani et al. [25] focus on learning parameters so
as to make the predicted optimal solution (Stage 0 estimated solution in the proposed framework)
as close to the true optimal solution x∗ as possible in the solution space/metric. However, these
works also assume that all unknown parameters are revealed simultaneously, and thus cannot be
applied to applications where unknown parameters are revealed progressively over several stages.
Furthermore, experiments in Two-Stage Predict+Optimize [16] show that these other methods yield
worse predictive performance when evaluated on the post-hoc regret.

Another category gives ways to differentiate through LPs or LPs with regularizations, as a technical
component in a gradient-based training algorithm [2, 36, 1]. While our proposed algorithms in
Section 4.1 and Appendix C use the methods of Hu et al. [15, 16] and Mandi and Guns [22] to
perform gradient computations, we could in principle use any of the aforementioned other works.
However, we point out that our main contribution is not the gradient computation method but the
two training algorithms of the set of NNs. Nonetheless, experiments in Two-Stage Predict+Optimize
framework [16] demonstrate that the gradient calculation method they used (which we also use)
performs at least as well in post-hoc regret performance as other gradient methods, while being
(significantly) faster. This is the reason we follow Hu et al.’s method and implementation.

A.3 (Multi-Stage) Stochastic Programming

As mentioned in Section 1, while stochastic programming and Predict+Optimize are related frame-
works, the technical challenges are very different. The most important difference is that Pre-
dict+Optimize is a supervised learning problem, whereas stochastic programming is unsupervised

14



learning. In Predict+Optimize frameworks, the true parameters (which need prediction) are always
associated with relevant features that help prediction. On the other hand, stochastic programming
frameworks have no such features, and typically assume that the entire distribution over the unknown
parameters is given to the algorithm — in practice, the distribution needs to be estimated from
historical data over the unknown parameters, which is an unsupervised density estimation problem.

Due to the different starting assumptions, Predict+Optimize and stochastic programming formulate
optimization problems rather differently. In stochastic programming, since the assumption is that
the full parameter distribution is given, the optimization problem (or problems, across stages) would
explicitly include the expectation operator in the objective — the goal is to solve for optimization
decisions so that the expected objective, with expectation taken over the parameter distribution, is
maximized/minimized. Predict+Optimize frameworks approach this rather differently: while the
goal is still to optimize the expected objective, the optimization problems themselves are phrased
such that they take predicted parameters, and the problem asks for the optimal decisions assuming
the predicted parameters. It then becomes the goal of the learning algorithm to learn to make
predictions from features, such that the expected objective is optimized overall. This is achieved via
empirical risk minimization over training data, which we assume are samples from the underlying
(feature,parameter) joint distribution.

We also note the dimensionality of the objects being learnt in the different frameworks. In stochastic
programming, the entire distribution over the unknown parameters needs to be learnt. On the other
hand, in Predict+Optimize, we learn a mapping from features to predicted parameters, which, under
smoothness assumptions or bounded model complexity assumptions (e.g. by restricting to using a
fixed neural network architecture), can effectively be regarded as a (much) lower dimensional object
than learning an entire distribution over unknown parameters.

A.4 Integration of Machine Learning and Mixed-Integer Programming

The integration of machine learning and (discrete) optimization is an increasingly popular field. In
this section, we mention some works on using machine learning to help solve mixed-integer programs
and especially stochastic programs.

In the context of integrating machine learning with stochastic programming, several noteworthy
contributions have emerged. Donti et al. [8] propose an end-to-end learning framework that directly
aligns the training of probabilistic machine learning models with the ultimate task-based objective
in the context of stochastic programming. Patel et al. [27] use a neural network to approximate
the expected value function in two-stage stochastic programming problems, enabling more efficient
solution approaches compared to traditional methods. Bae et al. [4] propose a neural network-based
stagewise decomposition algorithm that can effectively approximate value functions for large-scale
multistage stochastic programming problems. Rychener et al. [31] develop a principled end-to-end
learning framework for training neural network decision maps that can effectively solve stochastic
optimization problems, including empirical risk minimization and distributionally robust optimization
formulations.

The application of using ML to help mixed-integer programming (MIP) has also seen substantial
progress: ML algorithms for exact solving of MIPs by branch-and-cut based algorithms [5, 11, 37],
ML algorithms for exact solving of MIPs by decomposition-based algorithms [19, 21], ML algorithms
for approximate solving MIPs by large neighborhood search based algorithm [33, 20], and so on.

B A Detailed Example for Multi-Stage Predict+Optimize Framework

In this section, we use the hospital scenario, i.e., the nurse rostering problem (NRP), mentioned
in Section 1 as a running example for the Multi-Stage Predict+Optimize framework described in
Section 3.1.

Here we describe the NRP in detail. A hospital needs to make nurses schedule for the whole week (7
days) two weeks beforehand so that the nurses can be well prepared for the work and also plan for
their leisure activities. The goal of the hospital is to minimize the total costs for hiring nurses and
meet the patients’ demands.

15



There are full-time nurses in the hospital. If there are too many patients and the hospital’s nurses are
understaffed, the hospital can temporarily hire some extra nurses at a higher salary. Since the number
of patients that will come in each shift on each day is unknown two weeks beforehand, the hospital
needs to predict the number of patients to make a schedule for the full-time nurses and plan to hire
extra nurses. The hospital will learn the predictor based on historical hospital records, considering
features such as time of year, day of the week and temperature.

To provide better service to patients, the hospital has an appointment system that requires patients
to schedule an appointment in advance to receive medical care. Reservations for the next day close
the night before. At this point, the hospital knows the precise number of patients for each shift of
the current day. Therefore, at the night of day (t− 1), i.e., Stage t (1 ≤ t ≤ 7), the true numbers of
patients for each shift of the current day are revealed.

Now we show the running example for the Multi-Stage Predict+Optimize framework. Examples 1,
and 2 are examples for Stage 0 and Stage t (for 1 ≤ t ≤ T ) respectively.
Example 1. Suppose there are n full-time nurses, 7 days, and 3 working shifts per day. Full-time
nurses are entitled to take a rest: day-off shift. The decision variables are: 1) a Boolean vector
x ∈ {0, 1}n×7×3, where xi,j,k represents that whether nurse i is assigned to shift k in day j, and 2)
an integer vector σ ∈ N7×3, where σj,k represents the number of extra nurses hired in shift k day
j. Let dj,k denote the number of patients in shift k day j, mi denote the number of patients that the
nurse i can serve per shift, ci denote the payment of the nurse i per shift, es denote the number of
patients that each extra nurse can serve per shift, and ec denote the payment of each extra nurse per
shift. The unknown parameters are d ∈ N7×3.

Consider the time that the schedules need to be made as Stage 0. The hospital learns the predictor
and uses the estimated number of patients d̂(0) to optimize for that week’s schedule. The Stage 0 OP,
the NRP using the estimations, can be formulated as:

x̂(0), σ̂(0) =argmin
x,σ

n∑
i=1

ci

7∑
j=1

3∑
k=1

xi,j,k + ec

7∑
j=1

3∑
k=1

σj,k (1)

s.t.
n∑

i=1

mixi,j,k + esσj,k ≥ d̂
(0)
j,k, ∀j ∈ {1, . . . , 7}, k ∈ {1, 2, 3} (2)

4∑
k=1

xi,j,k = 1, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , 7} (3)

xi,j,3 + xi,j+1,1 ≤ 1, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , 6} (4)

1 ≤
7∑

j=1

xi,j,4 ≤ 2, ∀i ∈ {1, . . . , n} (5)

x ∈ {0, 1}, σ ≥ 0 (6)
where Equation (1) represents the objective, which is to minimize the total costs for hiring full-time
nurses and extra nurses; Equation (2) ensures that the schedule can satisfy the patient demand under
each shift; Equation (3) ensures that each full-time nurse will be scheduled for exactly one shift each
day; Equation (4) ensures that no full-time nurse will be scheduled to work a night shift followed
immediately by a morning shift; and Equation (5) ensures that each full-time nurse gets one or two
day-off shifts per week.

After Stage 0, the schedules for day 1 are hard commitments and cannot be changed, i.e., x̂(0)
0 =

{xi,1,k | ∀i ∈ {1, ..., n}, k ∈ {1, 2, 3}}, whereas the rest of the decisions are soft commitments.
Example 2. (Continued) At the night of day t − 1, i.e., Stage t (for 1 ≤ t ≤ 7), the reservations
for the next day close, and the true numbers of patients for the three shifts of the next day θt =
(dt,1, dt,2, dt,3) ∈ N3 are revealed. By Stage t, all the true numbers of patients for the prior t − 1
days are also revealed. The number of patients for the later 7− t days are still uncovered and are
estimated as θ̂(t) = (θ̂

(t)
t+1, . . . , θ̂

(t)
T ), where θ̂

(t)
i = (d̂

(t)
i,1, d̂

(t)
i,2, d̂

(t)
i,3) ∈ N3 represents the numbers of

patients on day i estimated on day t.

Hard commitments contain two parts: 1) the schedule for the day t and the prior t− 1 days, and 2)
the number of extra nurses hired in the prior t− 1 days, i.e., here x[1 : t− 1] represents {xi,j,k | ∀i ∈

16



{1, ..., n}, j ∈ {1, ..., t}, k ∈ {1, 2, 3}} ∪ {σj,k | ∀j ∈ {1, ..., t − 1}, k ∈ {1, 2, 3}}. The hospital
may update the predictions and reschedule for the later (7− t) days. But such rescheduled leads to
extra costs for hiring full-time nurses, which are recorded by the penalty function Pen(x̂(t−1) →
x,θ[1 : t]). The more temporarily the shift is rescheduled, the larger the increase in the costs. For
simplicity, we assume that the extra cost is linear in the original cost for hiring each full-time nurse.
In this scenario, the penalty function can be formulated as Extra(x̂(t−1) → x):

Extra(x̂(t−1) → x) =

n∑
i=1

7∑
j=1

3∑
k=1

Extra(x̂(t−1) → x)i,j,k

where the (i, j, k)-th item in the penalty function is:

Extra(x̂(t−1) → x)i,j,k =

{
(T − j + t)ρici, xi,j,k > x̂

(t−1)
i,j,k

0, xi,j,k ≤ x̂
(t−1)
i,j,k

As mentioned in Section 3.1, the Stage t optimization problem modifies the original Para-OP by: 1)
introducing the penalty term capturing the cost of changing the Stage t − 1 solution x̂(t−1) to the
new Stage t solution x to the objective:

x̂(t), σ̂(t) = argmin
x,σ

n∑
i=1

ci

7∑
j=1

3∑
k=1

xi,j,k + ec

7∑
j=1

3∑
k=1

σj,k +

n∑
i=1

7∑
j=1

3∑
k=1

Extra(x̂(t−1) → x)i,j,k

and 2) introducing the constraint that hard commitments from prior stages cannot be modified in the
current Stage t:

xi,j,k = x̂
(t−1)
i,j,k , ∀i ∈ {1, ..., n}, j ∈ {1, ..., t}, k ∈ {1, 2, 3}}

σj,k = σ̂
(t−1)
j,k , ∀j ∈ {1, ..., t− 1}, k ∈ {1, 2, 3}

Besides, for the first constraint in Equation (2), the Stage 0 predicted parameters d̂0 are replaced by
(d1,1, . . . , dt,3, d̂

(t)
t+1,1, . . . , d̂

(t)
7,3):

n∑
i=1

mixi,j,k + esσj,k ≥ dj,k, ∀j ∈ {1, . . . , t}, k ∈ {1, 2, 3}

n∑
i=1

mixi,j,k + esσj,k ≥ d̂tj,k, ∀j ∈ {t+ 1, . . . , 7}, k ∈ {1, 2, 3}

The four constraints from Equation (3) to Equation (6) keep the same in the Stage t (for 1 ≤ t ≤ 7)
optimization.

C Gradient Computations in Sequential Coordinate Descent

The post-hoc regret used to train NNt can be written as:

PReg(θ̂(t),θ[t+1 : T ]) = obj(x̂(T ),θ)− obj(x∗(θ),θ)+

T∑
i=t

Peni(x̂
(i−1) → x̂(i),θ[1 : i]) (7)

Noting the second term is independent of θ̂(t) and hence NNt, the gradient with respect to an edge
weight we in NNt is

dPReg

dwe
=

d obj(x̂(T ),θ)

dwe
+

T∑
i=t

dPeni(x̂
(i−1) → x̂(i),θ[1 : i])

dwe

By the law of total derivative, we can expand this to

dPReg

dwe
=

d obj(x̂(T ),θ)

dx̂(T )

dx̂(T )

dθ̂(t)

dθ̂(t)

dwe
+

T∑
i=t

(
∂ Peni

∂x̂(i−1)

∣∣∣∣
x̂(i)

dx̂(i−1)

dθ̂(t)
+

∂ Peni

∂x̂(i)

∣∣∣∣
x̂(i−1)

dx̂(i)

dθ̂(t)

)
dθ̂(t)

dwe

17



Similar to the gradient computation in Section 4.1, the term dθ̂(t)

dwe
is calculated via standard backpropa-

gation, while the terms d obj(x̂(T ),θ)
dx̂(T ) , ∂ Peni

∂x̂(i−1)

∣∣
x̂(i) and ∂ Peni

∂x̂(i)

∣∣
x̂(i−1) are calculable when the objective

and penalty functions are smooth. The only non-trivial calculation is for dx̂(i)

dθ̂(t)
for all i ∈ [t : T ].

Recall that x̂(i) is computed from the Stage i optimization problem, as a deterministic function of
x̂(i−1) and θ̂(t), while x̂(i−1) itself also depends on θ̂(t). We thus further decompose dx̂(i)

dθ̂(t)
into the

following recursive computation

dx̂(i)

dθ̂(t)
=

∂x̂(i)

∂x̂(i−1)

∣∣∣∣
θ̂(t)

dx̂(i−1)

dθ̂(t)
+

∂x̂(i)

∂θ̂(t)

∣∣∣∣
x̂(i−1)

Calculating ∂x̂(i)

∂x̂(i−1)

∣∣∣
θ̂(t)

and ∂x̂(i)

∂θ̂(t)

∣∣∣
x̂(i−1)

requires differentiating through a MILP. So instead of
directly using MILP formulations for the Stage t optimization problems, we use the convex relaxation
by Hu et al. [16], which in turn adapts the approach of Mandi and Guns [22].

D Details for Case Studies

In this section, we give a detailed description for the other two benchmarks used in Section 5.

D.1 Production and Sales Problem

We first demonstrate, using the example of the production and sales problem, how our framework
can tackle LPs. An oil company intends to develop a production and sales plan for the upcoming T
quarters/months. The goal is to maximize the profits, i.e., the sales revenues minus the production
costs, under the constraints that the amount of oil product sold each quarter/month cannot exceed
the customer demands. The production cost and sales price for each quarter/month are known, but
the customer demand is revealed only at the beginning of each quarter/month after the company
receives the orders. The company will estimate the customer demands based on historical sales
records, considering features such as oil type, oil consumption of different areas, and so on.

The decision variables are: 1) a real vector x ∈ RT , where xi represents the amount of product
produced in month i, and 2) a real vector y ∈ RT , where yi represents the amount of product sold
in month i. Let pi denote the unit profit of selling product in month i, ci denote the unit cost of
producing product in month i, di denote the customer demands in month i. The unknown parameters
are d ∈ RT .

At Stage 0, i.e., the time that the production and sales plan needs to be made, there is no order yet
and the customer demands are unknown. The company learns the predictor and uses the predicted
demands d̂(0) to make the plan. The Stage 0 OP can be formulated as:

x̂(0), ŷ(0) =argmax
x,y

T∑
i=1

piyi −
T∑

i=1

cixi (8)

s.t. yi ≤ d̂
(0)
i , ∀i ∈ {1, . . . , T} (9)

yi ≤
i−1∑
j=1

xj −
i−1∑
j=1

yj , ∀i ∈ {1, . . . , T} (10)

x ≥ 0, y ≥ 0 (11)

where Equation (8) represents the objective, for maximizing the profits, i.e., the sales revenues minus
the production costs; Equation (9) ensures that the amount of oil product sold each quarter/month
will not exceed the customer demands; Equation (10) ensures that the amount of oil product sold
each quarter/month will not exceed the inventory at that quarter/month.

At the beginning of each quarter/month, the company receives orders, and the demand for that
quarter/month is revealed. We assume that the beginning of each quarter/month is one stage. Then,
by Stage t (1 ≤ t ≤ T ), all the true demands for the prior (t− 1) quarters/months as well as the t

18



quarter/month are revealed. The demands for the later (T − t) quarters/months are still uncovered and
are estimated as θ̂(t) = (θ̂

(t)
t+1, . . . , θ̂

(t)
T ), where θ̂

(t)
i = d̂

(t)
i represents the demand of quarter/month i

estimated on quarter/month t. The production and sales for the quarter/month t and the prior (t− 1)
quarters/months have already happened and cannot be changed, which are committed variables. There
is no penalty function in this scenario. Therefore, the Stage t OP can be formulated as:

x̂(t), ŷ(t) =argmax
x,y

T∑
i=1

piyi −
T∑

i=1

cixi

s.t. yi ≤ di, ∀i ∈ {1, . . . , t}

yi ≤ d̂
(t)
i , ∀i ∈ {t+ 1, . . . , T}

yi ≤
i−1∑
j=1

xj −
i−1∑
j=1

yj , ∀i ∈ {1, . . . , T}

xi = x̂
(t−1)
i , yi = ŷ

(t−1)
i , ∀i ∈ {1, . . . , t− 1}

x ≥ 0, y ≥ 0

D.2 Investment Problem

In the second experiment, we showcase our framework on an MILP. The unknown parameters appear
in both the objective and constraints. A person wants to make an investment plan for buying several
types of financial products next year to maximize the investment profit, under limited capital. The
investment profit contains 3 parts: 1) the interest gained from the products owned, 2) the market prices
of the products owned at the end of the year, and 3) profits from selling products minus costs for
buying products minus transaction fees. The capital for the whole year is given. However, the market
price of each product in each quarter/month is revealed only at the beginning of the quarter/month,
and the interest of owning each product in each quarter/month is revealed only at the end of the
quarter/month. The person will estimate the market prices and interests based on past experiences,
considering features such as the product type, the financial condition and operational capabilities of
the company to which the product belongs, and so on.

Suppose there are T quarters/months, and N investment products. The decision variables are: 1)
a natural vector x ∈ NT×N , where xi,j represents the number of product j on hand at the end of
quarter/month i, 2) an integer vector y ∈ Z(T−1)×N , where yi,j represents the number of product
j bought or sold in quarter/month i, and 3) a natural vector z ∈ N(T−1)×N , where zi,j represents
whether the transaction fee is paid for product j in month i. Let pi,j denote the interest of product j
in month i, wi,j denote the market price of product j in month i, C denote the capital for the whole
year.

We assume that the end of quarter/month t, i.e., the beginning of quarter/month (t+ 1), is Stage t. At
Stage 0, i.e., the beginning of quarter/month 1, the person can buy some products without paying a
transaction fee. The market price of each product at this time is known, i.e., w1 = (w1,1, . . . , w1,N )

are given. The unknown parameters in this OP are p ∈ RT×N and w = (w2, . . . , wT ) ∈ R(T−1)×N .
At the beginning of each subsequent quarter/month, the person can buy more products or sell the
products owned but needs to pay a transaction fee. For simplicity, we assume that the transaction
fee for buying/selling product i in quarter/month j is linear in the market price of product i in
quarter/month j. Here, the linearity factor is independent of the request. That is, if the person
buys/sells k number of product i in quarter/month j, the person has to spend kσwij , where σ ≥ 0 is
a non-negative tunable scalar parameter, and we call it transaction factor.

19



At Stage 0, i.e., the beginning of quarter/month 1, the person uses the predicted interests p̂(0) and
market prices ŵ(0) to make the plan. The Stage 0 OP can be formulated as:

x̂(0), ŷ(0), ẑ(0) =argmax
x,y,z

obj(p̂(0), w1, ŵ
(0), x, y, z) (12)

s.t.
N∑
j=1

w1,jx1,j ≤ C, (13)

∑N
j=1 w1,jx1,j

+
∑t

i=2

∑N
j=1 σŵ

(0)
i,j zi,j

+
∑t

i=2

∑N
j=1 ŵ

(0)
i,j yi,j

≤ C, ∀t ∈ {2, . . . , T} (14)

xi,j = yi,j + x(i−1),j , ∀i ∈ {2, . . . , T}, j ∈ {1, . . . , N} (15)

zi,j ≥ yi,j , ∀i ∈ {2, . . . , T}, j ∈ {1, . . . , N} (16)

zi,j ≥ −yi,j , ∀i ∈ {2, . . . , T}, j ∈ {1, . . . , N} (17)

where

obj(p̂0, w1, ŵ
0, x, y, z)

=

T∑
i=1

p̂
(0)
i,j xi,j +

N∑
j=1

ŵ
(0)
T,jxT,j − (

N∑
j=1

w1,jx1,j +

T∑
i=2

N∑
j=1

σŵ
(0)
i,j zi,j +

T∑
i=2

N∑
j=1

ŵ
(0)
i,j yi,j)

represents the objective, which is to maximize the investment profit; Equations (13) and (14) ensure
that the money spent on buying products and transaction fees will not exceed the capital available;
Equations (15), (16), and (17) formulate the relationships among three decision variables x, y, and z.

At Stage t, i.e., the end of quarter/month t, the interest of owning each product in quarter/month
t as well as the market price of each product revealed. Then, by Stage t (1 ≤ t ≤ T ), all the true
market prices for the prior t quarters/months, as well as the (t + 1) quarter/month, are revealed.
Besides, all the true interests for the prior t quarters/months are also revealed. But the market prices
for the later (T − t− 1) quarters/months and the interests for the later (T − t) are still uncovered and
are estimated as ŵ(t) = (ŵ

(t)
t+2, . . . ŵ

(t)
T ) and p̂(t) = (p̂

(t)
t+1, . . . p̂

(t)
T ), where ŵ

(t)
i and p̂

(t)
i represents

the market price and the interest of quarter/month i estimated on quarter/month t. The investment
decisions x, y, z for the prior t quarters/months have already happened and cannot be changed, which
are committed variables. There is no penalty function in this scenario.

x̂(t), ŷ(t), ẑ(t) = argmax
x,y,z

obj(p[1 : t]⊕ p̂(t), w1,w[2 : t+ 1]⊕ ŵ(t), x, y, z)

s.t.
N∑
j=1

w1,jx1,j ≤ C,

∑N
j=1 w1,jx1,j

+
∑k

i=2

∑N
j=1 σwi,jzi,j

+
∑k

i=2

∑N
j=1 wi,jyi,j

≤ C, ∀k ∈ {2, . . . , t}

∑N
j=1 w1,jx1,j

+
∑t+1

i=2

∑N
j=1 αwi,jzi,j +

∑k
i=t+2

∑N
j=1 αŵ

(t)
i,j zi,j

+
∑t+1

i=2

∑N
j=1 wi,jyi,j +

∑k
i=t+2

∑N
j=1 ŵ

(t)
i,j yi,j

≤ C, ∀k ∈ {t+ 1, . . . , T}

xi,j = yi,j + x(i−1),j , ∀i ∈ {2, . . . , T}, j ∈ {1, . . . , N}
zi,j ≥ yi,j , ∀i ∈ {2, . . . , T}, j ∈ {1, . . . , N}
zi,j ≥ −yi,j , ∀i ∈ {2, . . . , T}, j ∈ {1, . . . , N}

xi,j = x̂
(t−1)
i,j , ∀i ∈ {1, . . . , t}, j ∈ {1, . . . , N}

yi,j = ŷ
(t−1)
i,j , zi,j = ẑ

(t−1)
i,j , ∀i ∈ {2, . . . , t}, j ∈ {1, . . . , N}

20



where

obj(p[1 : t]⊕ p̂(t), w1,w[2 : t+ 1]⊕ ŵ(t), x, y, z)

=

t∑
i=1

N∑
j=1

pi,jxi,j +

T∑
i=t+1

N∑
j=1

p̂
(t)
i,jxi,j −

N∑
j=1

w1jx1j − (

t+1∑
i=2

N∑
j=1

αwi,jzi,j +

T∑
i=t+2

N∑
j=1

αŵ
(t)
i,j zi,j)

− (

t+1∑
i=2

N∑
j=1

wi,jyi,j +

T∑
i=t+2

N∑
j=1

ŵ
(t)
i,j yi,j) +

N∑
j=1

ŵ
(t)
TjxTj

E Hyperparameters for the Experiments

The methods of k-NN, RF, NN, Baseline, SCD and PCD have hyperparameters, which we tune via
cross-validation: for k-NN, we try k ∈ {1, 3, 5}; for RF, we try different numbers of trees in the
forest {10, 50, 100}; for NN, Baseline, and PCD, we treat the optimizer, learning rate, and epochs as
hyperparameters. For Baseline, SCD and PCD, we treat the optimizer, learning rate, the early-cut-off
value of log barrier regularization term (µ), and epochs as hyperparameters.

Table 4 show the final hyperparameter choices for the three problems: 1) production and sales problem,
2) investment problem, and 3) nurse rostering problem.

Table 4: Hyperparameters of the experiments on the three problems.

Model Hyperaprameters
Production and sales Investment Nurse rostering

Baseline
optimizer: optim.Adam;
learning rate: 1× 10−7;
µ = 10−8; epochs=20

optimizer: optim.Adam;
learning rate: 1× 10−6;
µ = 10−8; epochs=20

optimizer: optim.Adam;
learning rate: 1× 10−6;
µ = 10−8; epochs=20

SCD
optimizer: optim.Adam;
learning rate: 1× 10−7;
µ = 10−8; epochs=20

optimizer: optim.Adam;
learning rate: 1× 10−6;
µ = 10−8; epochs=20

optimizer: optim.Adam;
learning rate: 5× 10−7;
µ = 10−7; epochs=20

PCD
optimizer: optim.Adam;
learning rate: 1× 10−7;
µ = 10−8; epochs=20

optimizer: optim.Adam;
learning rate: 1× 10−6;
µ = 10−8; epochs=20

optimizer: optim.Adam;
learning rate: 5× 10−7;
µ = 10−7; epochs=20

NN
optimizer: optim.Adam;
learning rate: 1× 10−5;

epochs=20

optimizer: optim.Adam;
learning rate: 1× 10−5;

epochs=20

optimizer: optim.Adam;
learning rate: 1× 10−3;

epochs=20
k-NN k=5
RF n estimator=100

Ridge, k-NN, CART and RF are implemented using scikit-learn [29]. The neural network is
implemented using PyTorch [26]. To compute the two stages of optimization at test time for our
method, and to compute the optimal solution of an (MI)LP under the true parameters, we use the
Gurobi MILP solver [13].

F Detailed Experiment Results

F.1 Production and Sales Problem

Table 5 reports the mean post-hoc regrets and standard deviations across 30 simulations for all training
methods on the production and sales problem. Compared among standard regression models, NN
performs well and achieves the best performance in all cases listed in Table 5, while Ridge and RF
also have decent performances.

Table 6 shows improvement ratios among the proposed 3 algorithms and BAS. “A vs B" refers to the
improvement in the percentage of method A over method B. Take “Baseline vs BAS" as an example,
the improvement percentage of the baseline over BAS is (355.56−305.26)/355.56×100% = 14.15%
when T = 4 in the low-profit price group. Comparing numbers in “SCD VS BAS", “PCD VS BAS",
and “Baseline VS BAS" when stage num = 4 and 12, we can see that the advantages of the proposed
methods over BAS are more distinct when the number of stages is larger. Additionally, comparing
numbers in “SCD VS Baseline" and “PCD VS Baseline" when stage num = 4 and 12, we also note
that the advantages of SCD and PCD over the Baseline are more distinct when the number of stages
is larger.

21



Table 5: Mean post-hoc regrets and standard deviations of all methods for the production and sales
problem.

Price group Low-profit High-profit
Stage num 4 12 4 12
SCD 293.78±99.21 488.72±127.62 505.24±89.55 887.38±250.55
PCD 297.34±107.44 495.21±122.42 520.76±92.20 905.61±255.99
Baseline 305.26±100.88 515.80±137.67 526.77±104.99 935.03±263.47
NN 355.56±103.78 637.77±199.25 561.36±96.49 997.44±273.91
Ridge 390.88±114.89 648.60±214.69 612.49±109.62 1017.41±277.01
knn 368.20±111.34 663.96±208.51 591.47±97.87 1050.42±296.83
CART 485.73±152.05 873.85±279.68 763.88±136.37 1345.56±337.05
RF 375.18±114.23 644.63±204.50 567.35±94.16 1021.51±274.34
TOV 1615.75±675.77 7344.78±2290.04 5007.09±976.65 21066.00±4159.56

Table 6: Improvement ratios among Baseline, SCD, PCD, and standard regression models for the
production and sales problem.

Price group Stage num SCD VS BAS PCD VS BAS Baseline VS BAS SCD VS Baseline PCD VS Baseline SCD VS PCD

Low-profit 4 17.38% 16.37% 14.15% 3.76% 2.59% 1.20%
12 23.37% 22.35% 19.12% 5.25% 3.99% 1.31%

High-profit 4 10.00% 7.23% 6.16% 4.09% 1.14% 2.98%
12 11.03% 9.21% 6.26% 5.10% 3.15% 2.01%

Figure 1 shows post-hoc regret comparisons between BAS and the proposed methods (Baseline, SCD,
and PCD) for each run. The x-axis refers to the number of each simulation, and the y-axis refers
to the ratio of the post-hoc regret achieved by BAS and the proposed methods (Baseline, SCD, and
PCD) corresponding to that simulation. To easily read the comparisons, we sorted all simulations
by the increasing order of the post-hoc regret ratios of BAS/SCD. The red dashed line where the
post-hoc regret ratio is 1.0 represents the boundary line where (Baseline, SCD, or PCD) performs
better or worse than BAS. When the point representing the post-hoc regret ratio of BAS/(Baseline,
SCD, or PCD) falls above the red dashed line, it means that (Baseline, SCD, or PCD) performs better
than BAS. Conversely, when the point falls below the red dashed line, it means BAS performs better
than (Baseline, SCD, or PCD). Observing Figure 1, SCD outperforms BAS across all simulations in
all 4 scenarios. While not as stable as SCD, PCD and Baseline also outperform BAS in most of the
simulations. Compared with Figure 1a, there are more BAS/Baseline points that fall below the red
dashed line in Figure 1b, while the number of BAS/SCD points and the number of BAS/PCD points
that fall below the red dashed line are similar in Figure 1a and Figure 1b. The same phenomenon
can be observed when comparing Figure 1c and Figure 1d, demonstrating the advantage of SCD and
PCD over Baseline.

The win rate of a method against other methods can be directly computed from Figure 1 by counting
the number of simulations with ratios > 1, and we provide the win rates table as a reference in Table 7.
Table 7 indicates that in more than half of the simulations, SCD achieved the best performance. PCD
followed closely, achieving the best performance in the remaining 20% to 50% of the simulations.

Table 7: Win rates for the production and sales problem.

Price group Stage num Baseline beats BAS SCD beats BAS PCD beats BAS BAS is best Baseline is best SCD is best PCD is best

Low-profit 4 93.33% 96.67% 86.67% 0.00% 3.33% 50.00% 46.67%
12 73.33% 100.00% 90.00% 0.00% 0.00% 66.67% 33.33%

High-profit 4 66.67% 96.67% 73.33% 0.00% 23.33% 50.00% 26.67%
12 76.67% 100.00% 80.00% 0.00% 0.00% 63.33% 36.67%

F.2 Investment Problem

Table 8 and Table 9 report the mean post-hoc regrets and standard deviations across 30 simulations
for all training methods on the investment problem. Compared among standard regression models,
NN performs well and achieves the best performance in most cases, while Ridge and RF also have
decent performances and obtain the smallest mean post-hoc regret in some cases.

Table 10 shows improvement ratios among the proposed 3 algorithms and BAS. Comparing "SCD
vs BAS", "PCD vs BAS", and "Baseline vs BAS" performance under the same capital and the same
stage number, we observe that the advantages of the proposed methods (SCD, PCD, and Baseline)
over the standard regression approaches become more pronounced as the transaction factor increases.

22



(a) Low-profit products and 4 quarters. (b) Low-profit products and 12 months.

(c) High-profit products and 4 quarters. (d) High-profit products and 12 months.

Figure 1: BAS/Baseline, BAS/SCD, and BAS/PCD for the production and sales problem.

Table 8: Mean post-hoc regrets and standard deviations of all methods for the investment problem
when capital=25.

Stage num 4 12
Transaction
factor 0.01 0.05 0.1 0.01 0.05 0.1

SCD 19.85±3.14 14.73±3.59 10.56±1.63 1513.31±185.03 666.96±91.54 260.27±34.32
PCD 20.00±3.24 14.90±3.62 10.63±1.62 1524.69±191.19 675.27±95.10 263.97±35.09
Baseline 20.20±3.68 15.14±3.62 10.77±1.64 1540.47±186.90 686.84±92.49 269.07±34.47
NN 20.51±3.43 15.47±3.67 11.23±1.87 1563.78±199.67 699.30±101.58 277.31±32.99
Ridge 20.88±3.30 15.38±3.37 11.70±2.00 1588.11±200.48 703.74±97.62 276.51±32.14
k-NN 22.21±3.44 16.96±4.18 11.56±2.15 1643.46±198.96 722.73±79.93 285.73±41.26
CART 24.81±4.30 19.68±4.58 13.42±2.27 1845.40±285.85 832.02±129.30 333.71±51.84
RF 21.88±3.56 16.98±3.74 12.07±1.93 1563.94±190.01 700.31±77.70 279.84±34.73
TOV 64.11±4.91 51.53±9.97 39.87±2.67 2404.22±264.58 1147.61±114.54 502.05±46.67

Besides, comparing “SCD vs Baseline" and “PCD vs Baseline" under the same capital and the same
transaction factor but different stage numbers, the advantages of SCD and PCD over Baseline are
amplified as the number of stages increases. This trend is consistent with the findings from the
experiments on the production and sales problem. One interesting phenomenon is that under the
same capital and the same transaction factor, the advantage of the proposed methods over BAS
appears to be similar or even less obvious when the number of stages is 12 compared to when it is
4. This observation differs from the pattern seen in the production and sales problem experiments.
We hypothesize that this divergence may be attributable to the fundamental differences between the
problem settings. While the production and sales problem is a pure LP, the investment problem is an
IP with several integrality constraints. The proposed methods relax these integrality constraints and
treat the problem as an LP for the purpose of forward and backward propagation. The gaps between
the original IP and the relaxed LP may accumulate as the number of stages grows larger, potentially
diminishing the advantages of the Predict+Optimize approaches.

23



Table 9: Mean post-hoc regrets and standard deviations of all methods for the investment problem
when capital=50.

Stage num 4 12
Transaction
factor 0.01 0.05 0.1 0.01 0.05 0.1

SCD 47.48±6.98 34.92±5.57 25.50±3.88 3846.20±420.94 1663.82±208.60 646.14±75.52
PCD 47.67±6.64 35.22±5.98 25.63±3.93 3869.76±420.01 1679.17±205.01 652.57±74.45
Baseline 48.24±7.13 35.64±6.28 25.96±4.64 3941.09±437.57 1701.51±222.45 665.71±76.40
NN 48.98±7.19 36.42±5.70 26.62±4.07 4046.79±390.52 1736.59±232.15 680.94±70.76
Ridge 50.73±6.35 37.38±4.66 27.62±3.12 4019.04±454.78 1743.96±217.95 682.24±74.91
k-NN 53.49±8.52 39.69±7.22 28.12±3.86 4213.33±434.62 1797.32±206.92 702.48±94.53
CART 62.35±11.68 47.05±9.14 31.81±6.76 4723.27±529.86 2086.09±325.70 835.96±137.08
RF 52.49±6.73 39.07±6.50 27.75±3.84 3999.70±475.44 1748.02±201.68 696.46±75.14
TOV 158.56±11.19 126.22±8.86 99.83±7.02 6166.73±573.51 2860.05±288.85 1259.99±107.60

Table 10: Improvement ratios among Baseline, SCD, PCD, and standard regression models for the
investment problem.

Capital Stage num Transaction
factor SCD VS BAS PCD VS BAS Baseline VS BAS SCD VS Baseline PCD VS Baseline SCD VS PCD

25

4
0.01 3.25% 2.53% 1.53% 1.74% 1.01% 0.74%
0.05 4.23% 3.15% 1.57% 2.70% 1.61% 1.12%
0.1 6.03% 5.39% 4.12% 1.99% 1.33% 0.67%

12
0.01 3.23% 2.50% 1.49% 1.76% 1.02% 0.75%
0.05 4.07% 3.17% 1.78% 2.90% 1.68% 1.23%
0.1 5.87% 4.53% 2.69% 3.27% 1.89% 1.40%

50

4
0.01 3.06% 2.68% 1.51% 1.58% 1.19% 0.39%
0.05 4.12% 3.29% 2.14% 2.02% 1.18% 0.85%
0.1 4.21% 3.71% 2.46% 1.79% 1.27% 0.52%

12
0.01 3.84% 3.25% 1.47% 2.41% 1.81% 0.61%
0.05 4.19% 3.31% 2.02% 2.22% 1.31% 0.91%
0.1 5.11% 4.17% 2.24% 2.94% 1.97% 0.99%

Table 11 presents the win rate results for Baseline, SCD, PCD, and BAS. We observe that SCD
outperforms BAS across most of the simulations, with win rates exceeding 80% in most scenarios.
PCD also shows strong performance, particularly at higher transaction factors. Compared with BAS,
PCD achieves win rates above 80% in many scenarios, closely following SCD.

Table 11: Win rates for the investment problem.

Capital Stage num Transaction
factor Baseline beats BAS SCD beats BAS PCD beats BAS BAS is best Baseline is best SCD is best PCD is best

25

4
0.01 53.33% 86.67% 73.33% 3.33% 30.00% 46.67% 20.00%
0.05 66.67% 90.00% 86.67% 0.00% 33.33% 43.33% 23.33%
0.1 70.00% 93.33% 90.00% 0.00% 33.33% 46.67% 20.00%

12
0.01 66.67% 93.33% 83.33% 0.00% 3.33% 73.33% 23.33%
0.05 80.00% 96.67% 93.33% 0.00% 6.67% 83.33% 10.00%
0.1 83.33% 100.00% 96.67% 0.00% 0.00% 86.67% 13.33%

50

4
0.01 60.00% 80.00% 66.67% 3.33% 23.33% 43.33% 30.00%
0.05 66.67% 93.33% 83.33% 3.33% 36.67% 40.00% 20.00%
0.1 70.00% 96.67% 90.00% 0.00% 26.67% 43.33% 30.00%

12
0.01 70.00% 83.33% 83.33% 3.33% 0.00% 80.00% 16.67%
0.05 73.33% 90.00% 86.67% 3.33% 0.00% 86.67% 10.00%
0.1 76.67% 100.00% 90.00% 0.00% 0.00% 93.33% 6.67%

F.3 Nurse Rostering Problem

Table 12 reports the mean post-hoc regrets and standard deviations across 30 simulations for all
training methods on the nurse rostering problem. Compared among standard regression models,
NN always performs well and achieves the best performance, while Ridge and RF also have decent
performances.

Table 13 shows improvement ratios among the proposed 3 algorithms and BAS. Comparing "SCD vs
BAS", "PCD vs BAS", and "Baseline vs BAS" performance with different extra nurse payments, we
observe that the advantages of the proposed methods (SCD, PCD, and Baseline) over the standard
regression approaches become more pronounced as the extra nurse payment increases.

Figure 2 shows post-hoc regret comparisons between BAS and the proposed methods (Baseline,
SCD, and PCD) for each run. To easily read the comparisons, we again sorted all simulations by
the increasing order of the post-hoc regret ratios of BAS/SCD. Observing Figure 2, the proposed

24



Table 12: Mean post-hoc regrets and standard deviations of all methods for the nurse rostering
problem.

Extra nurse
payment 15 20 25 30

SCD 607.66±142.19 789.65±200.22 1038.29±255.42 1207.50±319.25
PCD 622.05±153.64 805.11±224.99 1048.08±281.32 1240.48±332.39
Baseline 629.35±153.67 817.60±219.47 1083.45±259.68 1290.10±371.08
NN 662.34±169.17 863.02±214.50 1144.63±305.00 1369.81±373.20
Ridge 663.57±141.49 887.63±206.36 1146.56±297.33 1371.20±320.37
k-NN 758.49±135.75 1033.88±197.22 1309.92±255.86 1562.98±298.14
CART 965.16±207.67 1303.68±280.11 1645.59±350.32 1957.13±433.46
RF 680.47±148.20 870.50±221.81 1145.32±293.18 1378.68±333.73
TOV 10611.64±1574.11 10732.32±1504.12 10893.54±1485.37 11110.73±1344.15

Table 13: Improvement ratios among Baseline, SCD, PCD, and standard regression models for the
nurse rostering problem.

Extra nurse
payment SCD VS BAS PCD VS BAS Baseline VS BAS SCD VS Baseline PCD VS Baseline SCD VS PCD

15 8.26% 6.08% 4.98% 3.45% 1.16% 2.31%
20 8.50% 6.71% 5.26% 3.42% 1.53% 1.92%
25 9.29% 8.44% 5.35% 4.17% 3.26% 0.93%
30 11.85% 9.44% 5.82% 6.40% 3.85% 2.66%

(a) Extra nurse payment = 15. (b) Extra nurse payment = 20.

(c) Extra nurse payment = 25. (d) Extra nurse payment = 30.

Figure 2: BAS/Baseline, BAS/SCD, and BAS/PCD for the nurse rostering problem.

methods outperform BAS in most of the simulations. Since the nurse rostering problem is an IP with
several integrality constraints, and the proposed methods just relax these constraints and treat the
problem as an LP for the purpose of forward and backward propagation. We hypothesize that the gap
between the original IP and the relaxed LP may diminish the advantages of the proposed methods,
and thus, BAS sometimes performs slightly better than the proposed methods.

25



Table 14 presents the win rate results for Baseline, SCD, PCD, and BAS. Same as in the first two
benchmarks, SCD demonstrates high win rates against BAS across all scenarios. SCD achieves win
rates of 86.67% or higher in three out of four cases, peaking at 96.67% when the extra payment is
25. PCD also performs well, with win rates ranging from 70% to 83.33% against BAS. While not
as consistently high as SCD, PCD’s performance remains competitive, indicating its viability as an
alternative approach.

Table 14: Win rates for the nurse rostering problem.

Extra nurse
payment Baseline beats BAS SCD beats BAS PCD beats BAS BAS is best Baseline is best SCD is best PCD is best

15 70.00% 70.00% 70.00% 10.00% 26.67% 40.00% 23.33%
20 73.33% 86.67% 80.00% 6.67% 10.00% 50.00% 33.33%
25 73.33% 96.67% 83.33% 3.33% 16.67% 43.33% 36.67%
30 73.33% 86.67% 76.67% 3.33% 6.67% 60.00% 30.00%

G Runtimes for the Experiments

Table 15: Average training time (in seconds) for the three benchmarks (in seconds).

Training
time (s)

Production and sales Investment Nurse rostering
Stage num = 4 Stage num = 12 Stage num = 4 Stage num = 12 Stage num = 7

Low-profit High-profit Low-profit High-profit Capital = 25 Capital = 50 Capital = 25 Capital = 50 \
SCD 828.79±216.69 700.63±244.37 3287.99±809.72 2552.73±991.69 402.37±58.00 535.18±88.45 7734.01±1198.41 11216.01±1994.75 14949.59±3281.24
PCD 293.41±96.27 236.80±81.07 483.28±95.81 470.76±124.97 157.25±41.65 194.40±57.51 2639.72±648.22 4509.83±767.45 6801.54±1175.01
Baseline 157.72±50.85 100.09±32.50 195.42±35.03 169.58±45.62 56.04±14.73 61.49±18.30 669.01±261.78 797.61±282.70 2618.63±524.37
NN 70.58±24.78 97.60±46.17 49.24±18.24 70.81±29.81 61.41±5.28
Ridge 1.71±0.29 2.88±0.39 5.60±1.28 17.45±7.96

≤ 1k-NN 0.98±0.96 1.03±0.24 1.92±0.62 11.35±0.99
CART 0.77±0.19 2.46±0.39 5.79±1.45 27.30±2.19
RF 24.82±1.13 91.93±1.80 358.19±4.26 1150.64±484.87

In this paper, all models are trained with Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz processors
on Google Colab. Since the testing time of different approaches is quite similar and close to being
negligible, here, we only show the training time of each prediction model and do not include the
testing time. At training time, the proposed Baseline, SCD, and PCD methods need to solve the LP.
Training for the usual NN does not involve the LP at all, and so training is much faster (but gives
much worse results).

There are two stopping criteria for SCD and PCD. We set the maximum iteration number of SCD and
PCD as 5. Besides, if the difference between the post-hoc regret of two consecutive iterations is less
than 1, we consider that the algorithm has converged. This is the second stopping criterion.

Table 15 shows the average training time across 30 simulations for the three problems. For the
investment problem, since the training times under different transaction fees are similar when the
capital and the number of stages are the same, we do not report them one by one but report only
the average. For the nurse rostering problem, since the training times under different extra nurse
payments are similar when the numbers of stages are the same, we also do not report them one by
one but report only the average.

Since the proposed 3 methods require solving multiple LPs when training, their training times are
usually longer than standard methods. But since the production and sales problem is an LP, the
solving time of which is not too long, the training time of Baseline is around double of NN. Table 15
also shows that SCD and PCD usually converge in 4 iterations in the production and sales problem.

In the investment problem, the training times of Baseline are better than that of RF. The solving time
of the OP, i.e., the difficulty of solving the OP, can largely affect the training times of the proposed
methods. When the number of stages grows larger, the investment problem is more difficult to solve.
Therefore, the training times of Baseline when there are 4 stages are quite comparable with that of
NN, but the training times of Baseline when there are 12 stages are much larger than that of NN. In
addition, when the OP becomes more complex, the number of iterations required for SCD and PCD
convergence also increases. SCD and PCD convergence usually in 2-3 iterations when there are 4
stages, and usually in 3-4 iterations when there are 12 stages.

In the NRP, since the solving time of 1 NRP is large, the training times of the proposed methods
are larger than standard regression methods, which indicates that one future research direction is the
speed-vs-prediction accuracy tradeoffs on Multi-Stage Predict+Optimize.

26



H Other End-to-End Training Approaches on MILPs

As mentioned in Section 3 and Section 4, other types of training algorithms can be used within the
proposed framework. Considering the performance in both post-hoc regret and training time, we
proposed three training algorithms in Section 4. However, there are additional possibilities, and we
will discuss two of them in this section.

H.1 Revealed Parameters as a Feature for Later Stage Predictions

As mentioned in Section 3, the proposed framework allows the training algorithm to choose whether to
incorporate the revealed true parameters as additional features as input. In the current implementation
of the proposed SCD and PCD methods, we did not include these revealed parameters because, in
our preliminary experiments, including them does not really improve prediction quality while just
increasing training time.

Table 16 reports the results from the experiments on the production and sales problem by incorporating
the revealed parameters from stage t− 1 as inputs to the stage t networks. As Table 16 shows, the
performance using this expanded input did not improve over the results of the proposed three
approaches.

Table 16: Mean post-hoc regrets and standard deviations of training SCD with revealed parameters,
training PCD with revealed parameters, SCD, PCD, and Baseline for the production and sales
problem..

Price group Low-profit High-profit
Stage num 4 12 4 12
SCD with revealed 294.44±81.72 488.93±116.51 507.30±63.74 890.48±153.28
PCD with revealed 299.73±82.91 498.32±123.25 521.82±74.86 911.04±185.57
SCD 293.78±99.21 488.72±127.62 505.24±89.55 887.38±250.55
PCD 297.34±107.44 495.21±122.42 520.76±92.20 905.61±255.99
Baseline 305.26±100.88 515.80±137.67 526.77±104.99 935.03±263.47

The reason that including revealed parameters does not lead to better predictive performance is due to
a combination of the nature of the data and the neural network architecture. Consider one extreme:
the true parameter vectors in every single stage are always equal. A neural network model (or other
reasonable models) that takes in the prior-stage true parameters should be able to learn to pick up on
that and use the information. Consider the other extreme: if the parameter vectors are completely
independent across stages, then no model will be able to use prior-stage true parameter information,
since no actual information exists. Reality (and our particular dataset) is somewhere in between:
there can be some correlation between stages, but, it really depends on whether such information is
extractable by the neural network architecture (or whatever other prediction model one wants to use
within our multi-stage framework).

For general applications, the decision whether to use the prior-stage true parameters is essentially
another hyperparameter, to be tuned for that particular application using the available training data
(though one can be safe and always include it, at the expense of training time).

H.2 Training Different-Stage Neural Networks Simultaneously (or, Necessity of Coordinate
Descent Approach)

We propose two coordinate descent based methods in Section 4, but it is also possible to train all
networks simultaneously, without the use of coordinate descent. In this section, we compare the
proposed two methods against a simultaneous training method, to better motivate the necessity of
coordinate descent.

A reasonable way (and the only way we can think of) to train all networks simultaneously is replace
prior and future stage predictions in SCD and PCD by the ground truth parameters. However,
intuitively, this is a worse approach than the proposed methods, given the interdependency of the
predictors: the performance of a predictor depends on the predictions and choices made in past and
future stages.

27



Table 17: Mean post-hoc regrets and standard deviations of a simultaneous training method, SCD,
PCD, and Baseline for the production and sales problem..

Price group Low-profit High-profit
Stage num 4 12 4 12
SCD 293.78±99.21 488.72±127.62 505.24±89.55 887.38±250.55
PCD 297.34±107.44 495.21±122.42 520.76±92.20 905.61±255.99
Simultaneously training 300.28±103.85 509.07±129.93 523.38±88.52 925.35±223.17
Baseline 305.26±100.88 515.80±137.67 526.77±104.99 935.03±263.47

We have explored this alternative training method and here are the preliminary results on the produc-
tion and sales problem in Table 17. We observe that the solution quality achieved by the simultaneous
training method was worse than the SCD and PCD methods.

The coordinate descent strategy in Section 4 was needed to capture the complex interactions between
the networks in different stages, and crucial for the strong performance.

28



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction state our contributions, including the new
framework and training algorithms. We state clearly that the algorithms are applicable to
MILPs.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 3 states the “total recourse” assumption that we assume all Stage t
optimization problems are always satisfiable. Section 4 states that we only work with MILP
formulations. Section 5 discusses the tradeoff between training time and predictive accuracy.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

29



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We make no substantial theoretical claims in this paper, beyond basic gradient
calculations which are provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide code and all hyperparameter choices, as well as how the data was
generated or sourced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

30



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide data and code with the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all data splits, how the data was generated/sourced, and hyperpa-
rameter choices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We give standard deviations in our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix G gives the computational setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have no human subjects nor do we use any private data in experiments.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is on fundamental research and does not have a direct path to
nefarious use cases.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

32

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not release any artifacts that can be easily misused.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite relevant data sources in Section 5.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

33

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide documentation for our implementations to run these experiments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not use any human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not use any human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34


	Introduction
	Background — Two-Stage Predict+Optimize
	Multi-Stage Predict+Optimize
	Formal Framework Definition

	End-to-End Training Algorithms on MILPs
	Baseline: Extending the Two-Stage Approach to Train a Single Neural Network
	Sequential Coordinate Descent
	Parallel Coordinate Descent

	Experimental Evaluation
	Production and Sales Problem
	Investment Problem
	Nurse Rostering Problem
	Runtime Analysis

	Conclusion and Future Work
	Detailed Literature Review
	Predict+Optimize
	Decision-Focused Learning
	(Multi-Stage) Stochastic Programming
	Integration of Machine Learning and Mixed-Integer Programming

	A Detailed Example for Multi-Stage Predict+Optimize Framework
	Gradient Computations in Sequential Coordinate Descent
	Details for Case Studies
	Production and Sales Problem
	Investment Problem

	Hyperparameters for the Experiments
	Detailed Experiment Results
	Production and Sales Problem
	Investment Problem
	Nurse Rostering Problem

	Runtimes for the Experiments
	Other End-to-End Training Approaches on MILPs
	Revealed Parameters as a Feature for Later Stage Predictions
	Training Different-Stage Neural Networks Simultaneously (or, Necessity of Coordinate Descent Approach)


