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Abstract. Combining machine learning and constrained optimization, Predict+
Optimize tackles optimization problems containing parameters that are unknown
at the time of solving. Prior works focus on cases with unknowns only in the
objectives. A new framework was recently proposed to cater for unknowns also in
constraints by introducing a loss function, called Post-hoc Regret, that takes into
account the cost of correcting an unsatisfiable prediction. Since Post-hoc Regret
is non-differentiable, the previous work computes only its approximation. While
the notion of Post-hoc Regret is general, its specific implementation is applicable
to only packing and covering linear programming problems. In this paper, we
first show how to compute Post-hoc Regret exactly for any optimization problem
solvable by a recursive algorithm satisfying simple conditions. Experimentation
demonstrates substantial improvement in the quality of solutions as compared
to the earlier approximation approach. Furthermore, we show experimentally the
empirical behavior of different combinations of correction and penalty functions
used in the Post-hoc Regret of the same benchmarks. Results provide insights for
defining the appropriate Post-hoc Regret in different application scenarios.

Keywords: Constraint Optimization · Machine Learning · Predict+Optimize

1 Introduction

Constraint optimization problems are ubiquitous and occur in many daily and indus-
trial applications [2,7,8]. In practice, constraint optimization problems can contain cer-
tain parameters which are unknown at the time of solving and require prediction based
on some historical records. For example, a train company needs to schedule a mini-
mal number of trains while meeting the passenger demand, but the precise demand is
unknown ahead of time and needs to be predicted. The task is to 1) predict the unknown
parameters, then 2) solve the optimization problem using the predicted parameters, such
that the resulting solutions are good even under true parameters. Traditionally, in the
prediction stage, machine learning models are trained with error metrics independent of
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optimization problems, such as mean squared error. However, this kind of error metric
does not necessarily represent the performance of the resulted solutions. The predicted
parameters may in fact lead to a low-quality solution for the (true) optimization prob-
lem despite being “high-quality” for the error metric. Predict+Optimize instead trains
the prediction model with the more effective regret function, capturing the difference
in objective between the estimated and true optimal solutions, both evaluated using the
true parameters. The challenge is, regret, the new error metric, is piecewise constant
and non-differentiable [4], thus gradient-based methods do not apply.

A number of prior works [3–5,10,20] propose methods to overcome the non-
differentiability of regret, and they can be roughly divided into approximation and
exact methods. Approximation methods [5,20] compute the (approximate) gradients
of (approximations of) the regret function. They work not with the regret loss itself, but
an approximation of it. While novel, they are not always reliable. On the other hand,
exact methods [3,4,10] work directly with the regret to find a good prediction model,
even if the method cannot always find the global-optimum model for the training data
(e.g. if the method uses a local optimization method to find the output model). To over-
come the nondifferentiability of the regret, they exploit the structure of optimization
problems to train models without computing gradients, and can be applied to dynamic
programming solvable problems [4] and recursively solvable problems [10].

Despite the variety of approaches, most of the previous works [3–5,10,20] on Pre-
dict+Optimize handle problems with unknowns only in the objective. When constraints
contain also unknown parameters, one major challenge is that the estimated solution
may end up being infeasible under the true parameters—an issue inherent with uncer-
tainty in constraints. The regret function designed for fixed solution space is not applica-
ble in this situation. Hu et al. [9] propose a more general loss function called post-hoc
regret, in which an infeasible estimated solution is first corrected into a feasible one
(with respect to true parameters), and then the error of prediction is the sum of 1) the
objective difference between the true optimal solution and the feasible solution, and 2)
potential penalty incurred by correction. When unknown parameters only appear in the
objective, the post-hoc regret degenerates into the regret. The post-hoc regret is also
nondifferentiable, and Hu et al. further propose an approximation approach for packing
and covering linear programs [9]. However, exact approaches considering the post-hoc
regret remain uncovered.

The contributions of this paper are threefold. First, we propose the first exact app-
roach for Predict+Optimize with unknown parameters in both the objective and con-
straints. The proposed method is extended from Branch & Learn [10] and handles recur-
sively solvable problems with unknown constraints. Second, extensive experiments are
conducted to investigate the performance of post-hoc regret. We experimentally com-
pare the proposed method with the state-of-the-art approximation method [9] and inves-
tigate the performance of post-hoc regret on more general problems. Third, we empir-
ically study different combinations of the two key components of post-hoc regret, i.e.,
the correction function and the penalty function to gain insights for defining post-hoc
regret in different scenarios. Due to the page limit, we opted to present only part of the
experiment results. For the complete experiment results and analysis, as well as future
work, please refer to the extended version on arXiv with the same title.
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2 Background

Without loss of generality, we define an optimization problem (OP) P as finding:

x∗ = argmin
x

obj(x) s.t. C(x)

where x ∈ R
d is a vector of decision variables, obj : Rd → R is a real-valued objective

function in x which is to be minimized, and C is a set of constraints over x. We say x∗

is an optimal solution and obj(x∗) is the optimal value. A parameterized optimization
problem (Para-OP) P (θ) is an extension of an OP P :

x∗(θ) = argmin
x

obj(x, θ) s.t. C(x, θ)

where θ ∈ R
t is a vector of parameters. The objective obj(x, θ) and the constraints

C(x, θ) all depend on θ. An OP is a degenerated case of a Para-OP when there are no
unknowns.

The true parameters θ ∈ R
t for a Para-OP are hidden at the time of solving in

the Predict+Optimize (P+O) setting [3], and estimated parameters θ̂ are utilized in
their places. Suppose each parameter is estimated by m features. The estimation will
rely on a machine learning model trained over n observations of a training data set
{(A1, θ1), . . . , (An, θn)} where Ai ∈ R

t×m is a feature matrix for θi, in order to yield
a prediction function f : Rt×m → R

t predicting parameters θ̂ = f(A).
Solving the Para-OP under the estimated parameters, we can obtain an estimated

solution x∗(θ̂). When constraints contain unknown parameters, a big challenge is that
the feasible region is only approximated at solving time, and thus the estimated solu-
tion may be infeasible under the true parameters. Fortunately, some applications allow
us to correct an infeasible solution into a feasible one, after the true parameters are
revealed. Under these applications, Predict+Optimize can use a novel error measure-
ment, called Post-hoc Regret [9], to evaluate the quality of the estimated parameters θ̂.
The correction process can be formalized as a correction function, which takes an esti-
mated solution x∗(θ̂) and true parameters θ and returns a corrected solution x∗

corr(θ̂, θ)
that is feasible under θ. Although some scenarios may allow for post-hoc correct of an
estimated solution, some penalties may incur from such correction. A penalty function
Pen(x∗(θ̂) → x∗

corr(θ̂, θ)) takes an estimated solution x∗(θ̂) and the corrected solu-
tion x∗

corr(θ̂, θ) and returns a non-negative penalty. The choice of both the correction
function and the penalty function are problem and application-specific.

With respect to the corrected solution x∗
corr(θ̂, θ) and penalty function Pen, we are

now ready to define the Post-hoc Regret. The post-hoc regret contains two parts, one
is the objective difference between the true optimal solution x∗(θ) and the corrected
solution x∗

corr(θ̂, θ) under the true parameters θ, another one is the penalty that changing
from the estimated solution x∗(θ̂) to the corrected solution x∗

corr(θ̂, θ) will incur. The
Post-hoc Regret PReg(θ̂, θ) can be formally defined as:

PReg(θ̂, θ) = obj(x∗
corr(θ̂, θ), θ)−obj(x∗(θ), θ) + Pen(x∗(θ̂) → x∗

corr(θ̂, θ)) (1)

where obj(x∗
corr(θ̂, θ), θ) is the corrected optimal value and obj(x∗(θ), θ) is the true

optimal value.
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When only the objective contains unknown parameters, Post-hoc Regret degener-
ates into the Regret function [5], which compares the difference between the objec-
tive value of the true optimal solution x∗(θ) and the estimated solution x∗(θ̂) under
true parameters θ. The regret function can be defined as: Reg(θ̂, θ) = obj(x∗(θ̂), θ) −
obj(x∗(θ), θ), where obj(x∗(θ̂), θ) is the estimated optimal value.

Following the empirical risk minimization principle, Hu et al. [9] choose the pre-
diction function to be the function f from the set of models F attaining the smallest
average post-hoc regret over the training data:

f∗ = argmin
f∈F

1
n

n∑

i=1

PReg(f(Ai), θi) (2)

For discrete OPs and linear programs, the Post-hoc Regret is non-differentiable. Hence,
traditional machine learning algorithms that rely on gradients are not applicable.

Branch & Learn (B&L) [10] is a Predict+Optimize framework for Para-OPs with
unknown parameters only in the objective, which can compute the Regret exactly. B&L
can handle optimization problems solvable with a recursive algorithm (under some
restrictions). In B&L, Hu et al. study the class F of linear prediction functions and
represent the solution structure of a Para-OP using (continuous) piecewise linear func-
tions. A piecewise linear function h is a real-valued function defined on a finite set of
(closed) intervals I(h) partitioning R. Each interval I ∈ I(h) is associated with a linear
function h[I] of the form h[I](r) = aIr + bI , and the value of h(r) for a real number
r ∈ R is given by h[I](r) where r ∈ I . An algebra can be canonically defined on piece-
wise linear functions [18]. For piecewise linear functions h and g, we define pointwise
addition as (h+g)(r) = h(r)+g(r) for all r ∈ R. Pointwise subtraction, max/min and
scalar products are similarly defined. All five operations can be computed efficiently by
iterating over intervals of the operands [4].

This work is extended from B&L and in the rest of the paper, following the assump-
tion in B&L, we assume that the prediction function f is a linear mapping of the form
f(A) = Aα for some m-dimensional vector of coefficients α ∈ R

m.

3 Branch & Learn with Post-hoc Correction

In this section, we extend B&L to cater for unknown parameters also in constraints,
and call the extended framework Branch & Learn with post-hoc correction (B&L-C).
Post-hoc regret is used as the error metric.

To solve Problem 2, following the approach of Hu et al. [10], we update coefficients
α of f iteratively via coordinate descent (Algorithm 1). The algorithm starts with an
arbitrary initialization of α, and updates each coefficient in a round-robin fashion. Each
iteration (Lines 3–11) contains four functions. Construct constructs a Para-OP as a
function of the free coefficient, fixing the other coefficients in α, with an initial domain
I0. Convert returns a piecewise function of the free coefficient from the Para-OP,
and each interval of the function corresponds to one or a set of estimated solution(s).
Correct takes the returned piecewise function from Convert and the true parame-
ters as inputs. Then makes the post-hoc correction, and returns a piecewise function of
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Algorithm 1: Branch & Learn with Post-hoc Correction

Input: A Para-COP P (θ) and a training data set {(A1, θ1), . . . , (An, θn)}
Output: a coefficient vector α ∈ R

m

1 Initialize α arbitrarily and k ← 0;
2 while not converged ∧ resources remain do
3 k ← (k mod m) + 1;
4 Initialize L to be the zero constant function;
5 for i ∈ [1, 2, . . . , n] do
6 (P i

γ , I0) ← Construct(P (θ), k, Ai);
7 Ei(γ) ← Convert(P i

γ , I0);
8 Ci(γ) ← Correct(Ei, θi, I0);
9 Li(γ) ← Evaluate(Ei, Ci, θi, I0);

10 L(γ) ← L(γ) + Li(γ);

11 αk ← argminγ∈R
L(γ)*;

12 return α;

the free coefficient from the Para-OP. Each interval of the function corresponds to a data
structure representing one or a set of corrected solution(s). Evaluate takes the two
returned functions from Convert and Correct, and the true parameters as inputs.
Then computes the corrected optimal value and the penalty, and obtains the post-hoc
regret as a piecewise function of the free coefficient.

Let us describe lines 3–11 in Algorithm 1 in more detail. In each iteration (Lines
3–11), a coefficient αk is updated. Iterating over index k ∈ {1, . . . ,m}, we replace αk

in α with a variable γ ∈ R by constructing α + (γ − αk)ek, where ek is a unit vector
for coordinate k. In Lines 5–11, we wish to update αk as:

αk ← argmin
γ∈R

n∑

i=1

PReg(Aiekγ + Ai(α − αkek), θi)

For notational convenience, let ai = Aiek ∈ R
m and bi = Ai(α−αkek) ∈ R

m, which
are vectors independent of the free variable γ.

Construct synthesizes the Para-OP

P i
γ ≡ x∗(aiγ + bi) = argmin

x
obj(x, aiγ + bi) s.t. C(x, aiγ + bi)

Sometimes, the Para-OP can also have an initial domain I0 �= R for γ.
Convert takes P i

γ to create a function Ei mapping γ to the estimated objective
Ei(γ) = obj(x∗(aiγ + bi), aiγ + bi). Associated with each interval I ∈ I(Ei(γ)), a
linear function maps γ to the objective computed with the estimated parameters aiγ +
bi. When the unknown parameters only appear in the objective, the estimated solution
x∗(aiγ+bi) remains the same in each interval I [3,4], i.e., each interval corresponds to
one estimated solution. However, when the unknown parameters appear in constraints,
the estimated solution may not remain the same in each interval I . If the estimated
solution changes in one interval, one interval corresponds to a set of estimated solutions.
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Whether the estimated solution will remain the same in each interval depends on the
optimization problem and the positions of the unknown parameters. In Sect. 4, we show
two examples that the estimated solution will remain the same in each interval and one
example that the estimated solution will change in each interval.

Correct implements the correction function in the post-hoc regret. It takes the
returned piecewise function Ei(γ) from Convert and the true parameters θi as inputs.
For each interval I ∈ I(Ei(γ)), one or a set of estimated solution(s) x∗(aiγ + bi)
can be obtained. Correct makes the post-hoc correction with the true parameters
θi, and creates a function Ci mapping γ to the corrected optimal value Ci(γ) =
obj(x∗

corr(a
iγ + bi, θi), θi). Each interval I ∈ I(Ci(γ)) corresponds to one or a set

of corrected solution(s) x∗
corr(a

iγ + bi, θi). Whether the corrected solution will remain
the same in each interval I depends on the correction function. Besides, the form of the
returned function Ci(γ) depends on the correction function.

Evaluate takes the returned function from Convert, the returned function from
Correct, and the true parameters as inputs. It computes the corrected optimal value
and the penalty, and obtains the post-hoc regret Li for each γ, i.e.

Li[I] = PReg(aiγ + bi, θi) = obj(x∗
corr(a

iγ + bi, θi), θi) − obj(x∗(θi), θi)

+ Pen(x∗(aiγ + bi) → x∗
corr(a

iγ + bi, θ))

When the unknown parameters only appear in objectives, the post-hoc regret func-
tion Li returned from Evaluate is always a piecewise constant function of the free
coefficient [3,4,10]. It is straightforward to compute the sum of two piecewise constant
functions and update the coefficient (Lines 10–11 in Algorithm 1). However, when the
unknown parameters appear in constraints, the form of the post-hoc regret function Li

returned from Evaluate depends on the correction function and the penalty function,
which are both problem and application specific. Under different scenarios, the post-hoc
regret function may even be a piecewise nonlinear function, which leads to a technical
obstacle: how to sum up two piecewise nonlinear functions and find the minimum of
the resulted function efficiently. We will discuss this obstacle in Sect. 4.

While coordinate descent is a standard technique, a challenge of using this frame-
work is how to construct Convert for an algorithm. B&L presents a standard tem-
plate for recursive algorithms and shows how to cleanly adapt a recursive algorithm to
Convert. We use their template to construct Convert here. Therefore, the proposed
B&L-C framework has the same restrictions on the optimization problems as the B&L.

4 Case Studies

4.1 Maximum Flow with Unknown Edge Capacities

We first demonstrate, using the example of the maximum flow problem (MFP), how
our framework can solve problems solvable by a state-of-the-art approximation method
(IntOpt-C) [9]. The problem aims to find the largest possible flow sent from a source s
to a terminal t in a directed graph, under the constraints that the flow sent on each edge
cannot exceed the edge capacity.

Using the template proposed in B&L [10], we adapt the Edmonds-Karp algo-
rithm [19] to Convert, which recursively finds an unblocking path with remaining
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capacity and sends a flow such that at least one edge along the path is saturated. The
estimated solution x∗(aiγ+bi) of MFP is the flows sent through each path and therefore
will change with the capacities of saturated edges. In each interval of Ei(γ) returned by
Convert, the saturated edges remain the same, but the estimated solution will change
when γ changes. When the edge capacities are unknown, we need to consider a case
where the flow computed with the estimated capacities might exceed the true capacities
of some edges. We consider two possible correction functions:

– Correction Function A: given an infeasible estimated solution x∗, find the largest
λ ∈ [0, 1] such that λx∗ satisfies the constraints under the true parameters.
Note that Correction Function A is the same as the one used in IntOpt-C [9], which
is designed for packing linear programs. By using the same correction function, we
can investigate the performance difference between B&L-C and IntOpt-C.

– Correction Function B: re-compute the blocking flows of the chosen paths in the
infeasible estimated solution with the true capacities, and then augment the paths one
by one with the re-computed blocking flows. The ordering of path augmentation
is important but computing the best order requires O(n!) time. We can adopt an
approximate method: the paths are augmented according to the order of the path
augmentation of the Edmonds-Karp algorithm.

Using Correction Function B, augmenting the chosen paths by their blocking flows
one by one may lead to a situation that, since some edges are shared by several paths,
they may be blocked before some paths are used. Thus the blocking flows of some
chosen paths in the estimated solution may be zero and these chosen paths are wasted.
Therefore, we propose a penalty function:

– Penalty Function I: whenever a chosen path in the estimated solution is wasted,
deduct K units of flow.

Penalty Function I is not needed if Correction Function A is used, since the true capac-
ities are all positive, λ will not be zero in this problem and no chosen paths in the
estimated solution will be wasted.

Using Correction Function A, the corrected solution x∗
corr(a

iγ + bi, θi) will not
remain the same in each interval I ∈ I(Ci(γ)) either, where Ci(γ) is the piece-
wise rational linear function returned from Convert. Since the true optimal value
obj(x∗(θi), θi) is a constant value, the post-hoc regret function L(γ) returned from
Evaluate is a piecewise rational linear function. This will lead to the technical obsta-
cle mentioned in Sect. 3: how to sum up two piecewise rational linear functions and find
the minimum of the resulting piecewise rational linear function efficiently. In this work,
we deal with this obstacle by using grid search.

Using Correction Function B, the corrected solution x∗
corr(a

iγ+ bi, θi) remains the
same in each interval I ∈ I(Ci(γ)), where Ci(γ) is the piecewise constant function
returned from Convert. Using Penalty Function I, Pen(x∗(aiγ + bi) → x∗

corr(a
iγ +

bi, θi)) is also a piecewise constant function. Therefore, the post-hoc regret function
L(γ) returned from Evaluate is a piecewise constant function, and we can easily sum
up two piecewise constant functions and minimizes L(γ) in Lines 9 and 10 respectively
in Algorithm 1.
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4.2 0-1 Knapsack with Unknown Weights

In the second example, we showcase our framework on a packing integer programming
problem, the 0-1 knapsack problem, which can be handled by our framework straight-
forwardly but not by IntOpt-C. Given a set of items, each with a weight wi and a value
vi, and a knapsack with a maximum capacity C. The aim is to maximize the total value
of the selected items under the constraint that the total weight of the selected items is
less than or equal to the maximum capacity. Using the template proposed in B&L [10],
we adapt the branching algorithm for the 0-1 knapsack problem to Convert. The
estimated solution x∗(aiγ + bi) is a set of the selected items. In each interval of Ei(γ)
returned by Convert, the set of the selected items, i.e., the estimated solution, remains
the same. When the weights are unknown, we need to consider a case where the items
are selected with the estimated weights, but the total true weights might exceed the
capacity. We propose three correction functions here:

– Correction Function A: remove the selected items in the estimated solution one by
one in increasing order of the ratios of value/weight until the capacity is sufficient.

– Correction Function B: remove the selected items in the estimated solution one by
one in decreasing order of the weights until the capacity is sufficient.

– Correction Function C: remove all the selected items in the estimated solution
when it is infeasible.

Removing selected items from the knapsack may incur some removal fees, which
are formulated as the penalty function here. We consider two possible penalty functions:

– Penalty Function I: when the ith item is removed from the estimated solution, σivi

units of value is deducted, where σ ≥ 0 is a non-negative tunable vector.
– Penalty Function II: whenever a selected item in the estimated solution is removed,

K units of value is deducted, where K is a constant.

Since the solution set is discrete and finite, the estimated solution x∗(aiγ + bi)
remains the same in each interval I ∈ I(Ei(γ)), where Ei(γ) is the piecewise linear
function returned from Convert. Using the above three correction functions, the cor-
rected solution x∗

corr(a
iγ + bi, θi) remains the same in each interval I ∈ I(Ci(γ)),

where Ci(γ) is the piecewise constant function returned from Convert. Using the
above two penalty functions, Pen(x∗(aiγ + bi) → x∗

corr(a
iγ + bi, θi)) is also a piece-

wise constant function. Therefore, the post-hoc regret function L(γ) returned from
Evaluate is a piecewise constant function, and we can easily sum up two piecewise
constant functions and minimizes L(γ) in Lines 9 and 10 respectively in Algorithm 1.

4.3 Minimum Cost Vertex Cover with Unknown Costs and Edge Values

Our last example is a variant of the minimum cost vertex cover (MCVC) problem, where
we show how to apply our framework to an optimization problem that has unknown
parameters in both the objective and the constraints. This problem is also not solvable
by IntOpt-C. Given a graph G = (V,E), there is an associated cost c ∈ R

|V | denoting
the cost of picking each vertex, as well as edge values � ∈ R

|E|, one real value for each
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edge. Both the costs and edge values are unknown parameters. The goal is to pick a
subset of vertices, minimizing the total cost, subject to the constraint that for all edges
except the one with the smallest edge value, the edge needs to be covered, namely at
least one of the two vertices on the edge needs to be picked. This problem is relevant in
applications such as building public facilities. Consider, for example, the graph being a
road network with edge values being traffic flow, and we wish to build speed cameras at
intersections with minimum cost, while covering all the roads except the one with the
least traffic.

Using the template proposed in B&L [10], we adapt the branching algorithm for the
MCVC to Convert. The estimated solution x∗(aiγ+bi) is a set of the picked vertices.
In each interval of Ei(γ) returned by Convert, the set of the picked vertices, i.e., the
estimated solution, remains the same. When the edge values are unknown, the estimated
edge values might cause an edge to be wrongly removed. The selected vertices might
not cover all the edges that need to be covered. We thus propose one correction function:

– Correction Function A: if there is an edge not covered by the selected vertices, add
both of the edge endpoints to the selection.

Since the solution set is discrete and finite, the estimated solution x∗(aiγ + bi)
remains the same in each interval I ∈ I(Ei(γ)), where Ei(γ) is the piecewise linear
function returned from Convert. Using Correction Function A, the corrected solution
x∗

corr(a
iγ + bi, θi) remains the same in each interval I ∈ I(Ci(γ)), where Ci(γ) is

the piecewise constant function returned from Convert. Since there is no penalty
function in this example, Pen(x∗(aiγ + bi) → x∗

corr(a
iγ + bi, θi)) = 0 is a constant

function. Therefore, the post-hoc regret function L(γ) returned from Evaluate is a
piecewise constant function, and we can easily sum up two piecewise constant functions
and minimizes L(γ) in Lines 9 and 10 respectively in Algorithm 1.

5 Experimental Evaluation

In this section, we evaluate the proposed B&L-C framework and the post-hoc regret
function on the three optimization problems mentioned in Sect. 4. We compare the
proposed framework (B&L-C) with 7 different methods: the B&L framework [10], a
state-of-the-art approximation method (IntOpt-C) [9], and 5 classical regression meth-
ods including linear regression (LR), k-nearest neighbors (k-NN), classification and
regression tree (CART), random forest (RF) and neural network (NN) [6]. Below we
briefly discuss the experiment setting of each problem:

MFP with Unknown Edge Capacities. Our aim is to use this problem to compare the
proposed B&L-C framework with IntOpt-C [9]. Therefore, we use the same dataset and
follow the experiment setting in the work of IntOpt-C. The real-life dataset [17] is used
on three real-life graphs: POLSKA [15], with 12 vertices and 18 edges, USANet [13],
with 24 vertices and 43 edges, and GÉANT [12], with 40 vertices and 61 edges. In
this dataset, each unknown edge capacity is related to 8 features. Following the setting
in IntOpt-C, we divide the dataset into two sets: training and test. For experiments on
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POLSKA and USANet, 610 instances are used for training and 179 instances for testing
the model performance, while for experiments on GÉANT, 490 instances are used for
training and 130 instances for testing the model performance.

0-1 Knapsack with Unknown Weights. In this experiment, each instance consists of
10 items. The weightsW will be predicted from data, while values V and capacityC are
given. Given that we are unable to find datasets specifically for the 0-1 knapsack prob-
lem, we follow the experimental approach in the previous works of P+O [10,14] and use
real data from a different problem (the ICON scheduling competition) [17] as numeri-
cal values required for our experiment instances. In this dataset, each unknown weight
is related to 8 features. We use a 70%/30% training/testing data split: 210 instances are
used for training and 90 instances for testing the model performance.

We generate the values following the generation method proposed by Pisinger [16],
which is widely used to generate knapsack data [1,11]. Three groups of values, which
are uncorrelated, weakly correlated, and almost strongly correlated with the weights,
are considered. Suppose the value of the ith item is vi, the weight of the ith item is wi.
These 3 groups of values are generated as: 1) uncorrelated: vi is randomly chosen in
[1, R], 2) weakly correlated: vi is randomly chosen in [max{1, wi−R/10}, wi+R/10],
3) almost strongly correlated: vi is randomly chosen in [wi + R/10 − R/500, wi +
R/10 + R/500], where R is set to be 500 since the weights in the dataset are around
40 to 60. Since the average total weight of each instance is around 400, we conduct
experiments on the 0-1 knapsack problem with 100, 200, and 300 capacities. The σ in
Penalty Function I is set to be 0.1 and K in Penalty Function II is set to be 500.

MCVCwith Unknown Costs and Edge Values. Since the MCVC is an NP-hard prob-
lem, we conduct experiments on two small graphs from the Survivable Network Design
Library [15]: ABILENE, with 12 vertices and 15 edges, and PDH, with 11 vertices
and 34 edges. Given that we are unable to find datasets specifically for the MCVC, we
use the same real data from the ICON scheduling competition [17] as numerical values
required for our experiment instances. We use a 70%/30% training/testing data split:
210 instances are used for training and 90 instances for testing the model performance.

5.1 B&L-C Versus IntOpt-C

In the first experiment, we compare our exact method (B&L-C) against an approxima-
tion method (IntOpt-C) in terms of solution quality and runtime. We conduct exper-
iments on the MFP with unknown edge capacities, which can be solved by both the
approximation method IntOpt-C [9] and the proposed exact method B&L-C. Following
the experiment setting in IntOpt-C [9], Correction Function A is used and there is no
penalty function here. We run 10 simulations on each graph and compare the solution
quality and the runtime of each method.

Table 1 reports the mean post-hoc regrets and standard deviations for each app-
roach. At the bottom of the table, we also report the average True Optimal Values
(TOV) for reference. Note that B&L performs training with the regret but the testing is
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Table 1.Mean post-hoc regrets and standard deviations for the MFP with unknown edge capaci-
ties using Correction Function A and no penalty function.

PReg POLSKA USANet GÉANT

B&L-C 9.07 ± 0.67 14.44 ± 1.12 10.18 ± 1.02

B&L 17.01±2.00 21.79±1.53 17.04±2.11

IntOpt-C 10.00±0.67 16.64±1.34 10.84±1.10

Ridge 11.20±0.73 19.52±1.16 12.47±1.14

k-NN 14.39±0.83 22.89±1.58 15.13±1.08

CART 16.65±1.06 24.15±1.51 17.01±1.59

RF 12.30±0.90 22.27±1.34 12.52±1.19

NN 12.18±1.08 18.62±1.23 12.05±1.13

TOV 88.66±1.10 96.22±1.38 98.71±1.98

Table 2. Average runtimes (in seconds) for the MFP with unknown edge capacities.

Runtime(s) POLSKA USANet GÉANT

B&L-C 66.54 411.67 48.32

B&L 40.30 288.43 29.90

IntOpt-C 18.65 132.22 15.48

with the post-hoc regret, while B&L-C and IntOpt-C use post-hoc regret in both train-
ing and testing. The results show that B&L-C always achieves the best performance,
while IntOpt-C achieves the second-best performance in all cases. Compared with
IntOpt-C, B&L-C obtains 9.29% smaller regret on POLSKA, 13.20% smaller regret on
USANet, and 6.08% smaller regret on GÉANT. Considering the relative error, B&L-
C achieves 10.23%, 15.01%, and 10.31% relative error on POLSKA, USANet, and
GÉANT respectively. We also observe that using regret as the loss function, B&L does
not have a better performance than the classical regression methods when the unknown
parameters appear in constraints. Table 2 shows the average runtimes of B&L-C using
Correction Function A, B&L, and IntOpt-C. Here, the runtime refers to the training
time of the prediction model. The results show that the runtime of B&L-C using Cor-
rection Function A is larger than that of IntOpt-C, while the runtime of B&L is not
that much larger than that of IntOpt-C. The reason is that, in this problem, the post-
hoc regret function using Correction Function A is a piecewise rational linear function,
while the regret function is a piecewise linear function. To compute the minimum of a
piecewise rational linear function, grid search is used and is quite time-consuming. But
the minimum of a piecewise linear function can be computed easily and grid search is
not needed.

In conclusion, we observe that B&L-C can achieve much better solution quality but
need longer runtime than IntOpt-C.
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5.2 Post-hoc Regret on More General Problems

IntOpt-C is only applicable for packing and covering linear programming problems. We
investigate the performance of post-hoc regret on two integer programming problems:
0–1 knapsack with unknown weights, and a variant of MCVC with unknown costs and
edge values, both of which cannot be solved by IntOpt-C.

0-1 Knapsack with Unknown Weights. In this experiment, we use Correction Func-
tion A and Penalty Function I as an example, to show that the B&L-C framework can
deal with 0-1 knapsack with unknown weights. Table 3 reports the solution qualities for

Table 3. Mean post-hoc regrets and standard deviations for the 0-1 knapsack problem with
unknown weights and 3 groups of values using Correction Function A with Penalty Function I.

Preg Cap=100 Cap=200 Cap=300

Uncorrelated B&L-C 112.66 ± 19.70 91.45 ± 9.43 53.90 ± 8.33

B&L 165.57±18.35 199.02±48.07 123.06±25.26

Ridge 175.05±24.22 201.00±24.52 145.73±23.04

k-NN 188.73±22.95 239.83±30.24 189.11±37.25

CART 185.33±22.53 215.83±24.14 174.44±22.06

RF 179.34±21.99 213.53±23.63 159.27±29.35

NN 159.75±40.05 172.87±74.31 120.21±70.43

TOV 942.76±37.06 1712.67±41.63 2174.50±42.63

Weakly
Correlated

B&L-C 20.81 ± 2.61 18.88 ± 1.56 12.91 ± 1.16

B&L 31.73±6.56 36.45±6.36 25.31±5.65

Ridge 28.98±3.39 36.00±3.81 26.81±2.40

k-NN 31.22±3.93 42.00±4.95 34.32±5.08

CART 31.61±4.68 38.80±3.72 31.83±3.49

RF 30.04±4.08 38.05±4.94 29.34±3.51

NN 27.08±5.11 31.18±11.57 22.12±9.80

TOV 165.96±4.62 309.28±4.69 397.94±5.77

Almost
Strongly
Correlated

B&L-C 44.62 ± 4.01 59.77 ± 3.91 43.93 ± 3.41

B&L 51.95±5.17 84.11±13.64 97.72±22.87

Ridge 49.98±3.47 82.92±8.01 96.53±10.61

k-NN 51.73±3.38 87.15±7.68 110.98±12.66

CART 52.40±4.48 81.02±6.73 101.58±8.95

RF 50.75±4.29 80.72±9.87 98.31±12.44

NN 50.11±3.63 75.34±18.42 85.56±32.39

TOV 209.40±5.92 441.17±9.05 654.16±10.99
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each approach across 10 runs on 0-1 knapsack problem with unknown weights and 3
different groups of values (uncorrelated, weakly correlated, and almost strongly corre-
lated).

As shown in Table 3, B&L-C has the smallest mean post-hoc regrets in all cases.
In the experiments on uncorrelated values, B&L-C obtains at least 29.48%, 47.10%,
and 55.16% when the capacity is 100, 200, and 300 respectively. In the experiments
on weakly correlated values, B&L-C obtains at least 23.13%, 39.45%, and 41.61%
when the capacity is 100, 200, and 300 respectively. In the experiments on almost
strongly correlated values, B&L-C obtains at least 10.72%, 20.67%, and 48.65% when
the capacity is 100, 200, and 300 respectively. These results indicate that using Cor-
rection Function A, when the capacity grows larger, the advantage of B&L-C is more
evident.

We also report the relative errors in these experiments. In the experiments on uncor-
related values, B&L-C achieves 11.95%, 5.34%, and 2.48% relative error when the
capacity is 100, 200, and 300 respectively. In the experiments on weakly correlated val-
ues, B&L-C achieves 12.54%, 6.10%, and 3.25% relative error when the capacity is
100, 200, and 300 respectively. In the experiments on almost strongly correlated values,
B&L-C achieves 21.31%, 13.55%, and 6.72% relative error when the capacity is 100,
200, and 300 respectively. These results indicate that when the values are more correla-
tive with the weights, the relative error is larger. Besides, using Correction Function A,
the relative error becomes smaller when the capacity grows larger.

Table 4. Mean post-hoc regrets and
standard deviations for the MCVC with
unknown costs and edge values.

PReg ABILENE PDH

B&L-C 11.83 ± 2.79 55.94 ± 8.46

B&L 15.26±3.56 73.6±8.55

Ridge 19.3±3.05 65.23±6.76

k-NN 33.08±4.55 70.52±6.72

CART 28.6±5.67 66.03±7.39

RF 27.91±4.25 65.29±8.01

NN 14.14±2.42 70.65±5.69

TOV 275.33±5.43 491.18±12.75

Table 5. Mean post-hoc regrets and standard devi-
ations for the MFP with unknown edge capacities
using Correction Function B without/with Penalty
Function I.

PReg Correction Function B Correction Function B
& Penalty Function I

POLSKA USANet GÉANT POLSKA USANet GÉANT

B&L-C 1.41 ± 0.26 4.49 ± 0.67 1.03 ± 0.24 6.14 ± 1.08 16.89 ± 1.10 2.04 ± 0.27

B&L 1.51±0.30 10.09±1.37 5.82±1.68 8.59±0.45 20.89±1.55 7.00±2.01

Ridge 1.52±0.30 7.11±0.88 1.20±0.34 8.54±0.47 18.72±1.10 2.47±0.27

k-NN 2.42±0.36 8.03±0.86 1.47±0.52 8.22±0.53 23.57±1.04 3.10±0.46

CART 3.29±0.69 10.84±1.28 1.75±0.52 8.13±0.88 28.79±1.96 3.71±0.82

RF 1.81±0.33 8.72±1.19 1.27±0.41 7.27±0.52 21.30±1.36 2.54±0.44

NN 1.83±0.29 5.52±0.73 1.22±0.37 8.95±0.44 18.98±1.02 2.45±0.54

TOV 88.66±1.10 96.22±1.38 98.71±1.98 88.66±1.10 96.22±1.38 98.71±1.98

MCVC with Unknown Costs and Edge Values. Table 4 shows the solution qualities
for each approach across 10 runs on the MCVC experiment. B&L-C achieves the best
performance in both of the two graphs. B&L-C obtains at 16.13%-64.24% smaller post-
hoc regret in ABILENE, and 14.24%-23.99% in PDH. Considering the relative error,
B&L-C achieves 4.30% relative error in ABILENE, and 11.39% relative error in PDH.

5.3 Different Combinations of Correction Functions and Penalty Functions

The correction function and the penalty function are problem and application-specific.
Even in the same problem but different scenarios, the correction function and the
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penalty function could be different. Here, we try out different combinations of cor-
rection functions and penalty functions in the same problem to provide insights for
defining the appropriate post-hoc regret.

MFP with Unknown Edge Capacities. We conduct experiments on the MFP using
Correction Function B with/without Penalty Function I. The experiment results are
shown in Table 5. Since the correction function is changed, the gradient of the post-
hoc regret with respect to edge capacities is also changed and thus IntOpt-C cannot be
used.

First, to compare the performance of post-hoc regret with different correction func-
tions, we compare the results of using Correction Function A and B in Tables 1 and 5
respectively. Table 5 shows that B&L-C always achieves the best performance. Com-
pared with other methods, B&L-C obtains at least 7.03% smaller regret on POLSKA,
18.50% smaller regret on USANet, and 14.19% smaller regret on GÉANT. Considering
the relative error, B&L-C achieves 1.59%, 4.67%, and 1.04% relative error on POL-
SKA, USANet, and GÉANT respectively. The results show that B&L-C using Correc-
tion Function B can achieve smaller mean post-hoc regret than B&L-C using Correction
Function A, which indicates that using Correction Function B is more suitable.

Second, we investigate the performance of post-hoc regret when using penalty func-
tions on the MFP. Due to the page limit, we opted to present only one value of K, which
is the units of flow to be deducted. Here, K is set to be 10. For experiment results and
analysis on K = {30, 50}, please refer to the extended version on arXiv with the same
title. Results in Table 5 show that when using Correction Function B & Penalty Func-
tion I, B&L-C also achieves the best performance on all of the three graphs. Since the
penalty term exists and is always non-negative, the mean post-hoc regrets here are larger
than the mean post-hoc regrets of using Correction Function B without a penalty func-
tion. Compared with other methods, B&L-C obtains at least 15.46% smaller regret on
POLSKA, 9.79% smaller regret on USANet, and 16.47% smaller regret on GÉANT.
Considering the relative error, B&L-C achieves 6.93%, 17.53%, and 2.07% relative
error on POLSKA, USANet, and GÉANT respectively.

Table 6.Mean post-hoc regrets and standard deviations for the 0-1 knapsack problemwith weakly
correlated values using different correction functions with Penalty Function I.

PReg Corection Function B Correction Function C

Cap=100 Cap=200 Cap=300 Cap=100 Cap=200 Cap=300

B&L-C 24.25 ± 2.59 32.87 ± 3.55 31.70 ± 1.89 53.48 ± 5.27 116.56 ± 14.06 130.79 ± 9.80

B&L 32.59±6.32 40.24±5.31 36.35±5.72 58.67±7.41 124.67±23.56 174.70±26.32

Ridge 29.88±3.22 39.62±3.60 36.27±2.33 55.31±7.29 124.23±14.73 160.04±20.54

k-NN 32.96±3.72 45.98±4.16 41.73±4.11 62.72±6.63 123.12±14.03 153.48±21.53

CART 35.14±4.71 45.79±4.37 42.28±2.79 70.97±11.57 141.80±19.47 171.11±23.31

RF 32.83±3.97 43.51±4.91 37.30±2.37 64.01±11.51 126.48±22.04 158.52±26.99

NN 28.60±4.58 39.05±8.02 38.52±11.05 74.05±28.73 163.71±64.50 213.17±80.20

TOV 165.96±4.62 309.28±4.69 397.94±5.77 165.96±4.62 309.28±4.69 397.94±5.77
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0-1 Knapsack with Unknown Weights. Experiments on weakly correlated values are
conducted as examples to show the performance difference of post-hoc regret when
using different correction functions and penalty functions in the 0-1 knapsack problem.

First, to compare the performance when using different correction functions, we fix
the penalty function as Penalty Function I. Experiments on 0-1 knapsack using Correc-
tion Function A & Penalty Function I are conducted in Sect. 5.1, and we only conduct
experiments using Correction Function B and C here. The results are shown in Table 6.
B&L-C outperforms other approaches. Besides, the mean post-hoc regrets achieved
by B&L-C using Correction Functions B and C are both larger than that achieved by
B&L-C using Correction Function A, which indicates that when using Penalty Function
I, Correction Function A is more suitable than Correction Functions B and C.

Second, to compare the performance when using different penalty functions, we
conduct experiments using Penalty Function II and Correction Function A, B, and C
respectively. Experiment results are shown in Table 7. As Table 7 shows, B&L-C outper-
forms other approaches. The results show that when using Penalty Function II, B&L-C

Table 7. Mean post-hoc regrets and standard deviations for the 0-1 knapsack problem with
unknown weights and weakly correlated values using Penalty Function II.

PReg Cap=100 Cap=200 Cap=300

Correction
Function A

B&L-C 127.13 ± 27.52 202.99 ± 48.62 231.32 ± 58.74

B&L 280.65±73.44 482.37±134.13 668.78±167.01

Ridge 263.55±68.79 439.81±101.30 608.07±121.73

k-NN 323.26±67.78 445.81±119.63 566.84±159.66

CART 566.15±188.48 687.51±184.25 697.52±176.48

RF 378.68±131.24 536.21±170.43 613.09±153.58

NN 357.23±121.00 614.05±191.50 608.49±200.71

Correction
Function B

B&L-C 127.24 ± 27.60 186.84 ± 37.45 193.92 ± 39.52

B&L 281.43±73.56 491.13±158.54 726.18±175.94

Ridge 264.37±68.94 435.33±97.59 596.34±121.07

k-NN 323.73±66.71 437.21±115.41 556.91±159.57

CART 563.81±187.58 676.10±180.67 685.91±176.05

RF 380.11±±132.23 527.84±163.75 595.89±151.56

NN 356.05±119.96 552.03±217.25 592.49±190.67

Correction
Function C

B&L-C 173.12 ± 43.50 255.03 ± 73.81 335.59 ± 82.28

B&L 566.25±155.93 1546.77±518.46 2736.39±628.02

Ridge 543.03±149.36 1472.25±283.24 2328.08±430.10

k-NN 658.57±156.24 1376.22±322.83 2069.61±493.77

CART 1030.83±320.56 1991.15±453.46 2581.91±509.94

RF 775.12±270.11 1623.26±483.81 2322.75±582.54

NN 697.35±269.30 1890.08±712.55 2485.80±892.67

TOV 165.96±4.62 309.28±4.69 397.94±5.77
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using Correction Function B achieves smaller mean post-hoc regret than B&L-C using
Correction Function A or C. This indicates that when using Penalty Function II, Cor-
rection Function B is more suitable to be used. The reason for this phenomenon lies in
the definitions of Penalty Function II and Correction Function B. In Penalty Function II,
removing more items leads to a larger penalty, while Correction Function B removes the
selected items in the estimated solution one by one in decreasing order of the weights,
thus will remove fewer items than Correction Functions A and C. We also notice that
when the capacity is 100, B&L-C using Correction Function A outperforms B&L-C
using Correction Function B. We give the explanation below. Since the average weight
of the items is around 40 to 60, when the capacity is 100, the number of the selected
items in the estimated solution and the number of the removal items from the post-hoc
correction are both very small and the latter ones in Correction Function A and B may
be almost the same. Under this situation, the penalty terms (Pen(x∗(θ̂) → x∗

corr(θ̂, θ)))
of using Correction Functions A and B in the post-hoc regret function are almost the
same, then selecting items with higher value and has larger corrected optimal value
(obj(x∗

corr(θ̂, θ), θ)) can achieve smaller post-hoc regret. Therefore, B&L-C using Cor-
rection Function A performs better.

6 Conclusion

We propose the first exact method for Predict+Optimize with unknown parameters in
both the objective and constraints. The proposed framework is an extension of Branch
& Learn, a framework for problems with only unknown objectives, and can handle
recursively and iteratively solvable problems. Extensive experiments are conducted to
compare the proposed method with the state-of-the-art Predict+Optimize approach and
investigate the performance of the post-hoc regret on more general problems. Further-
more, we empirically study different combinations of correction functions and penalty
functions to gain insights for defining post-hoc regret in different scenarios.
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