
Automatic Generation of Dominance Breaking Nogoods
for a Class of Constraint Optimization Problems

Jimmy H.M. Lee, Allen Z. Zhong

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

Abstract

Constraint Optimization Problems (COPs) ask for an assignment of values to
variables in order to optimize an objective subject to constraints that restrict the
value combinations in the assignment. They are usually solved by the classical
Branch and Bound (B&B) search algorithm. Dominance breaking is an impor-
tant technique in B&B to prune assignments that are subordinate to others
concerning the objective value and/or the satisfiability of constraints. In prac-
tice, the addition of constraints for dominance breaking can drastically speed
up the B&B search for solving many COPs. However, identification of subop-
timal assignments in COPs and derivation of useful constraints for dominance
breaking are usually problem-specific and require sophisticated human insights
on the problem structure.

This paper proposes the first theoretical and practical framework for auto-
matic generation of dominance breaking constraints for a class of COPs con-
sisting of efficiently checkable objectives and constraints. In particular, the
framework focuses on generating nogood constraints representing incompatible
value assignments and formulates nogood generation as solving auxiliary con-
straint satisfaction problems. The proposed method can generate nogoods of
varying strengths for dominance breaking by controlling the number of involved
variables. Experimentation on various benchmarks demonstrates the effective-
ness of the proposal in both efficiency and ease of use. The superior performance
is also supported by a theoretical analysis to compare the relative strength of
automatically generated nogoods with manually derived dominance breaking
constraints in the literature.

Keywords: Dominance breaking constraints, Constraint programming,
Constraint optimization, Constraint satisfaction

Email addresses: jlee@cse.cuhk.edu.hk (Jimmy H.M. Lee), zwzhong@cse.cuhk.edu.hk
(Allen Z. Zhong)

Preprint submitted to Journal of Artificial Intelligence September 13, 2023

1. Introduction

Constraint Optimization Problems (COPs) are ubiquitous in practice and
have many applications including scheduling [1, 2, 3, 4], planning [5, 6], pack-
ing [7], transport routing [8, 9], etc. COPs are composed of a set of (discrete)
variables, a set of constraints and an objective function. The aim of solving a
COP is to find a solution, which is an assignment of values to variables satisfy-
ing all constraints, to maximize or minimize its objective function. Constraint
Programming [10] is a classical pillar of artificial intelligence and a typical ap-
proach for solving COPs. Users can formulate the COP model mathematically
and submit the model to a constraint programming solver, which will in turn
search for the assignment with the best objective value. Such a problem-solving
method represents the Holy Grail of Computer Science [11, 12]: the user states
the problem, the computer solves it.

A constraint programming solver usually solves a COP using the Branch and
Bound (B&B) search algorithm [13]. The efficiency of the B&B algorithm de-
pends highly on the pruning of the search tree. There are two common kinds of
pruning in B&B search in constraint programming. The first kind is the result
of constraint propagation [14], where values of variables are removed when they
cannot be in any solution. The second kind is effected by a bounding constraint
which is recursively tightened whenever a new best solution is found during
search. In the subsequent search, all feasible solutions with a worse objective
value of the new bound are pruned. Dominance breaking is different from other
pruning techniques in the B&B search and can provide a complementary kind
of pruning. It requires the identification of useful properties of optimal solu-
tions in order to add constraints to prune suboptimal solutions. The additional
constraints are based on the analysis of the problem structure and are usually
problem-specific.

Example 1. Consider the 0-1 knapsack problem where there is a set of items,
each with a price and a weight. The problem asks to select a subset of items with
the maximal total profit subject to the constraint that the total weight of chosen
items cannot exceed the capacity limit W of a knapsack. The following gives an
instance with 4 items and W = 5, where xi = 1 means that item i is chosen.

maximize 3x1 + x2 + 6x3 + 4x4

subject to x1 + 2x2 + 3x3 + 4x4 ≤ 5

xi ∈ {0, 1} for i = 1, . . . , 4

(1)

Observe that the first item has 3 units of profit and 1 unit of weight, while the
second item has 1 unit of profit and 2 units of weight. Suppose there is a subset
T1 that includes the second item and excludes the first one. We can always
replace the second item with the first one to obtain another subset T2 with less
total weight. If T1 is feasible, then T2 is also feasible with an objective value at
least as good as that of T1. Therefore, T1 can be removed without changing the
optimal objective value of (1). By a similar reasoning, we can also replace the

2

fourth item with the third one in the solution. These insights can be reformulated
as constraints to remove suboptimal solutions:

maximize 3x1 + x2 + 6x3 + 4x4

subject to x1 + 2x2 + 3x3 + 4x4 ≤ 5

x1 ≥ x2, x3 ≥ x4

xi ∈ {0, 1} for i = 1, . . . , 4

(2)

Note that x1 ≥ x2 and x3 ≥ x4 are dominance breaking constraints that can
make a suboptimal solution in (1) become infeasible in (2). For example, the
subset choosing the first and the fourth item is a solution for (1), while it violates
x1 ≥ x2 and x3 ≥ x4.

As shown in Example 1, constraints for dominance breaking can prune so-
lutions without giving any bounds on the objective value. Instead, some as-
signments are proved to be suboptimal, since they are dominated by others
concerning the objective value and the satisfiability of constraints. The ad-
ditional constraints characterize some useful properties of solutions with the
optimal objective value. Dominated solutions violating these dominance break-
ing constraints will be pruned in the B&B algorithm. A wealth of research
works apply dominance breaking in solving COPs in practice, where empirical
evidence shows that dominance breaking can dramatically reduce the search
space and speed up the solving process [1, 7, 15, 16, 17, 18].

Dominance breaking is powerful, but it usually takes mathematical wit and
tricks to identify opportunities and derive constraints for dominance breaking.
It is even more difficult to determine the compatibility of dominance breaking
constraints, i.e. whether more than one dominance breaking constraints can be
added to the problem simultaneously or not. Consider a variant of the knapsack
problem in Example 1, where the first two items has one unit of weight and
profit. Following the same reasoning, we can also derive either x1 ≤ x2 or
x1 ≥ x2 for dominance breaking. However, adding both constraints into the
problem will change the optimal objective value. Additional techniques are
required to select a subset of dominance breaking constraints to prune as many
suboptimal solutions as possible whereas preserving the optimal objective value.

Achieving success in applying dominance breaking to solve complex prob-
lems often requires sophisticated insights into the underlying structures of the
problem at hand. The methods are usually problem-specific and non-trivial
to transfer from one problem domain to another. Chu and Stuckey [19] de-
veloped a generic manual method for deriving dominance breaking constraints
in Constraint Optimization Problems (COPs). This method requires consider-
able manual effort to choose mappings that can potentially improve solutions in
terms of the satisfaction of constraints and the optimality of the objective under
the candidate mappings. Although Mears and Garcia de la Banda [20] auto-
mated this process to a large extent by detecting symmetries that map solutions
to equivalent solutions, it still requires manual interventions to be effective.

In this paper, we give the theory and practical implementation of the first
fully automatic method to generate dominance breaking constraints for a class of

3

COPs. The key difficulty for automation is that dominance breaking constraints
can be in different forms for different problems. We propose to generate con-
straints only in the form of nogoods representing incompatible value assignments
in COPs. Nogoods are simple to handle and analyze in constraint programming.
They are the most basic form of constraints and can be combined to construct
arbitrary constraints. In particular, nogood generation for a COP is formu-
lated mechnically as solving constraint satisfaction problems (CSPs) consisting
of constraints which are sufficient conditions to ensure that generated nogoods
can remove suboptimal assignments and preserve the optimal objective value.
These sufficient conditions correspond to the objective and constraints of a tar-
get COP. Once they are specified in a system, CSPs for nogood generation
can be constructed and solved automatically to obtain nogoods for dominance
breaking. In this way, the task of deriving dominance breaking constraints by
non-expert users is transformed into finding sufficient conditions for various kind
of objectives and constraints by system developers. To demonstrate the effec-
tiveness of our proposed method, we provide such sufficient conditions for a class
of efficiently checkable objectives and constraints in this paper, and implement
them using the MiniZinc modelling language [21]. Experimentation on vari-
ous problems, including those with no known dominance breaking constraints
in the literature, exhibit runtime improvement of up to three orders of magni-
tude against the baseline methods in constraint programming. What’s more, we
provide theoretical comparison between automatically generated nogoods and
manually derived dominance breaking constraints in the literature to explain
the empirical performance.

Compared with the preliminary version of this work that appeared in IJCAI-
PRICAI 2020 [22], the current paper is improved in several aspects:

• Most importantly, we give a theoretical analysis on the strength of the
automatically generated nogoods for various problems by comparing them
with dominance breaking constraints in the literature in Section 7.

• Secondly, we present more detailed explanation on using lexicographical
ordering constraint to ensure that adding automatically generated nogoods
preserve at least one optimal solution in Section 4.4.

• Next, we give more efficiently checkable constraints and identify their suf-
ficient conditions for implied satisfaction in Section 4.3.

• Lastly, we include two more benchmarks, the combinatorial auction and
the set covering problems, as well as a real-life benchmark with industrial
instances in the empirical evaluation of Section 6.

2. Background

In this section, we give preliminaries in COPs, relational mathematics as
well as dominance breaking in COPs.

4

2.1. Constraint Satisfaction and Optimization

A Constraint Satisfaction Problem (CSP) P is a tuple (X,D,C) consisting
of a finite set of variables X = {x1, . . . , xn}, a mapping D from a variable x ∈ X
to its finite domain D(x) and a set of constraints C. A literal of P = (X,D,C)
is of the form xi = vi where xi ∈ X and vi ∈ D(xi). An assignment θ over a
set of variables S ⊆ X is a set of literals that has exactly one literal for each
variable xi ∈ S, where S = var(θ) is the scope of θ. If (xi = vi) ∈ θ, then
θ[xi] = vi is the value assigned by θ to a variable xi ∈ var(θ).

Let DS denote the set of all assignments with the scope S ⊆ X. A full
assignment is an assignment whose scope is X, while a partial assignment has
a scope S ⊂ X. We use θ̄ to emphasize a full assignment. The projection
θ↓S′ of an assignment θ ∈ DS onto S′ ⊆ S is a partial assignment such that
θ↓S′ [x] = θ[x] for all x ∈ S′. Let DX

θ = {θ̄ ∈ DX | θ̄↓S= θ} denote the set of
full assignments extending from a partial assignment θ ∈ DS .

A constraint c ∈ C is a set of assignments over the variables var(c). An
assignment θ satisfies a constraint c if and only if θ↓var(c)∈ c, where var(c) ⊆
var(θ). A solution of a CSP P = (X,D,C) is a full assignment that satisfies
all constraints in C. If the set of all solutions sol(P) is non-empty, then P
is satisfiable. A nogood constraint derived from θ is a constraint of the form
¬θ ≡ ∨x∈var(θ)(x ̸= θ[x]). The length of a nogood connstraint is equal to the
scope size |var(θ)|.

A Constraint Optimization Problem (X,D,C, f) extends a CSP with an
objective function f : DX 7→ R. Without loss of generality, solving a COP is
to find an optimal solution θ̄opt such that θ̄opt ∈ sol(P) and f(θ̄opt) ≤ f(θ̄′) for
any other solution θ̄′ of P . In other words, the objective function is minimized.

2.2. Basic Definitions in Relational Mathematics

Given two sets M and N , a binary relation R over M and N is a set of
ordered pairs (m,n) where m ∈ M and n ∈ N . The set M is the domain of R
and N is the codomain of R. A mapping R : M 7→ N is a binary relation that
associates to every element of M exactly one element of N . A mapping R is
a bijection iff (1) R is surjective, i.e., ∀n ∈ N, ∃m ∈ M such that (m,n) ∈ R,
and (2) R is injective, i.e., ∀(m,n), (m′, n′) ∈ R, (m ̸= m′) ⇒ (n ̸= n′). We also
write mRn when (m,n) ∈ R.

A relation R is a homogeneous relation over a set M if its domain and
codomain are the same. Otherwise, it is a heterogeneous relation. A homo-
geneous relation R is transitive when ∀m,m′,m′′ ∈ M , if (m,m′) ∈ R and
(m′,m′′) ∈ R, then (m,m′′) ∈ R, and is irreflexive iff ∀m ∈ M, (m,m) /∈ R.

2.3. Dominance Relations in COPs

Following Chu and Stuckey [19], we formalize the concept of dominance as
a homogeneous relation over the set of all full assignments in a COP.

Definition 1. [19] A dominance relation ≺ with respect to P = (X,D,C, f) is
a transitive and irreflexive relation such that ∀θ̄, θ̄′ ∈ DX , if θ̄ ≺ θ̄′, then either:

5

1. θ̄ is a solution of P and θ̄′ is not a solution of P , or

2. both θ̄ and θ̄′ are solutions of P and f(θ̄) ≤ f(θ̄′), or

3. both θ̄ and θ̄′ are not solutions of P and f(θ̄) ≤ f(θ̄′)

In this case, we say that θ̄ dominates θ̄′ with respect to P .

Note that the three cases in Definition 1 are only necessary but not sufficient
conditions. A dominance relation must also be transitive and irreflexive to
ensure that all dominated assignments can be pruned. Consider a simple COP
with one variable x and D(x) = {0, 1}, where the objective function is constant.
There are two full assignments θ̄ = {x = 0} and θ̄′ = {x = 1}. If a dominance
relation ≺ is constructed such that θ̄ ≺ θ̄′ and θ̄′ ≺ θ̄ simultaneously, then both
θ̄ and θ̄′ are pruned, and the problem becomes unsatisfiable. However, no such
dominance relation exists by definition. By the transitive property, θ̄ ≺ θ̄′ and
θ̄′ ≺ θ̄ implies that θ̄ ≺ θ̄, but it is in conflict with the irreflexive property.

The next theorem follows directly from Definition 1.

Theorem 1. [19] Let ≺ be a dominance relation of a COP P = (X,D,C, f).
We can prune all full assignments θ̄′ ∈ DX whenever ∃θ̄ ∈ DX such that θ̄ ≺ θ̄′,
without changing the satisfiability or the optimal value of P .

Theorem 1 captures the characteristic of dominance breaking technique. In
standard B&B search, the objective value of the current best solution is used
as a bound. Feasible solutions with objective value worse than the bound are
pruned during search. On the other hand, dominance relations guarantee that
dominated solutions can be pruned due to the relative magnitude of their ob-
jective compared with some other dominating solutions, even though the actual
objective values of dominating solutions are unknown in advance. Such domi-
nance relations are exploited to derived dominance breaking constraints before
search as a preprocessing step.

3. Related Works

We review the research work on dominance breaking techniques.

3.1. Identification of Dominance Relations

There have been many works on exploiting dominance relations to boost
the B&B search algorithm for solving constraint optimization problems. To the
best of our knowledge, dominance relations are first characterized and defined
in the context of permutation problems [23]. Ibaraki [24] proves formally that
exploiting dominance relations in the B&B algorithm can result in a smaller
search tree for the B&B algorithm, which justifies the effectiveness of dominance
breaking techniques theoretically.

Research work exploiting dominance relations are mostly problem-specific.
With sophisticated insights of problem structures, one could either reformulate
COPs with additional dominance breaking constraints [1, 17, 18] or augment
the B&B search algorithm with dominance rules [7, 15, 16, 25, 3, 4] to exclude

6

dominated assignments. Dominance relations are usually defined, either explic-
itly or implicitly, in the soundness proofs for dominance breaking techniques in
different problems. A wealth of empirical evidence has shown that dominance
breaking can dramatically reduce the search space and speed up the B&B solving
process, but there is little discussion on how to generalize dominance relations
in one problem domain to another.

Early work on the identification of dominance relations attempts to find dom-
inance relations using machine learning [26]. While the method can be applied
to a class of problems, the generated candidate dominance relations lack correct-
ness guarantees and requires further manual inspection. Chu and Stuckey [19]
give the first generic method for deriving dominance breaking constraints for
COPs. Their method starts with candidate mappings over the solution set that
possibly map solutions to solutions, followed by the derivation of dominance
breaking constraints based on sufficient conditions regarding the satisfaction of
constraints and the optimality of the objective under the candidate mappings.
Manual efforts are required to select mappings, identify sufficient conditions,
and simplify the dominance breaking constraints. Mears and de la Banda [20]
later automate the process to a certain extent based on symmetry detection [27].
However, their method still requires manual selection of candidate mappings to
be effective. Our work in this paper follows this line of work and gives a method
to fully automate the derivation of dominance breaking constraints with sound-
ness guarantees.

3.2. Automatic Methods for Dominance Breaking

There are several automatic methods for dominance breaking when the class
of dominance relations are restricted.

Symmetry breaking [28] exploits symmetry relations to avoid searching for
symmetrically equivalent solutions and is an important technique in constraint
programming. Symmetry relations are bijective mappings on full assignments
that have the same objective value and are both solutions/non-solutions, while
dominance is a relation on also two full assignments, but one is “better” than
the other in terms of satisfiability or objective values. Static symmetry breaking
can be considered as a special case of dominance breaking by introducing, for
example, the lexicographic ordering on symmetric solutions. Given two sym-
metric solutions θ̄ and θ̄′ in a COP where θ̄ is lexicographically smaller than
θ̄′. We can consider θ̄ to dominate θ̄′ in a dominance relation with respect to
the COP. Considerable progress has been made in the automatic detection of
symmetry relations in CSPs [29, 30, 31, 32, 33, 34]. Our proposed method can
also generate symmetry breaking constraints for a class of COPs.

Lazy Clause Generation [35, 36] and Automatic Caching via Constraint Pro-
jection [37, 38] are dynamic methods for dominance breaking. Both methods
exploit dominance relations during the B&B search. Lazy clause generation
derives a nogood constraint by analyzing the process of constraint filtering that
leads to failures, so it mainly focuses on dominance relations when the domi-
nating parts are non-solutions. Automatic Caching via Constraint Projection
avoids the exploration of the current subproblem by finding conditions such that

7

it is dominated by an explored subproblem during the B&B search. In contrast,
we propose a static method to derive nogoods dominance breaking before the
runtime of the B&B algorithm. None of these methods exploits all possible
dominance relations in COPs. They can be used simultaneously to prune more
suboptimal solutions in the search space [39].

When the class of problems is restricted to mixed integer linear programs,
Fischetti et al. [40, 41] propose a local dominance procedure to exploit dominance
relations. The idea is to identify a dominating node for a given search node
by solving a structured auxiliary optimization problem, either in an exact or
heuristic manner, during the B&B search. Some design choices are required
for efficient implementation, such as heuristic selection of nodes to solve the
auxiliary problem and recording nogoods to prevent redundant solving.

4. Automatic Generation of Dominance Breaking Nogoods

In this section, we give an automated method to identify dominance breaking
constraints in the form of nogoods. The idea is to formulate the generation of
dominance breaking nogoods as solving auxiliary generation CSPs, which aim
to find pairs (θ, θ′) of partial assignments of a given COP P such that ¬θ′ is a
constraint to remove suboptimal assignments in P . We start with an example
generation CSP for the COP in Example 1.

Example 2. Consider the COP in (1) and a pair of partial assignments θ =
{x1 = v1, x2 = v2} and θ′ = {x1 = v′1, x2 = v′2} over the same scope, where
v1, v2, v

′
1, v

′
2 ∈ {0, 1} are unknown integers. Let σ be a mapping for θ and θ′,

where a full assignment θ̄′ ∈ DX
θ′ is mapped to θ̄ = σ(θ̄′) ∈ DX

θ such that

θ̄[x3] = θ̄′[x3] and θ̄[x4] = θ̄′[x4]. (3)

Based on the objective and constraints of (1), the generation CSP for θ and θ′

is formulated as follows.
3v1 + v2 ≥ 3v′1 + v′2

v1 + 2v2 ≤ v′1 + 2v′2

v1 ̸= v′1 ∨ v2 ̸= v′2

(4)

We claim that if θ and θ′ satisfy (4), then all assignments in DX
θ′ can be removed

without changing the optimal value of (1). In particular, we show this statement
by constructing a relation ≺ over DX such that σ(θ̄′) ≺ θ̄′ for all θ̄′ ∈ DX

θ′ and
proving that ≺ is a dominance relation.

Since v1 ̸= v′1 ∨ v2 ̸= v′2, we have DX
θ ∩ DX

θ′ = ∅, which implies that ≺
is transitive and irreflexive by construction. In addition, because 3v1 + v2 ≥
3v′1 + v′2, for all θ̄′ ∈ DX

θ , we have

3v1 + v2 ≥ 3v′1 + v′2

⇔ 3θ̄[x1] + θ̄[x2] ≥ 3θ̄′[x1] + θ̄′[x2]

⇔ 3θ̄[x1] + θ̄[x2] + 6θ̄[x3] + 4θ̄[x4] ≥ 3θ̄′[x1] + θ̄′[x2] + 6θ̄′[x3] + 4θ̄′[x4]

8

CP solver

(2) solve

constraint x[5] != 3 \/ x[11] != 1;
constraint x[10] != 4 \/ x[17] != 3;
constraint x[12] != 2 \/ x[19] != 2;
constraint x[9] != 1 \/ x[19] != 0;

Dominance Breaking Nogoods
(3) generate

(1) build

(4) combine
Constraint

Optimization
Problem

Generation
CSPs

Augmented
Constraint

Optimization
Problem

(5) solve

Figure 1: Workflow of Automatic Dominance Breaking for COPs

The last step holds due to (3). By similar reasoning, if v1 + 2v2 ≤ v′1 + 2v′2,
then θ̄′ is a solution implies that θ̄ is also a solution. In other words, the full
assignment θ̄′ and its image σ(θ̄′) must satisfy either one of the three cases in
Definition 1, and thus ≺ is a dominance relation.

Because ≺ is a dominance relation, any full assignment θ̄′ ∈ DX
θ′ can be

pruned by Theorem 1 without changing the optimal value of (1). One solution
of (4) is v1 = v′2 = 1 and v2 = v′1 = 0, which corresponds to partial assignments
θ = {x1 = 1, x2 = 0} and θ′ = {x1 = 0, x2 = 1}. To prune all full assignments
in DX

θ′ , we can simply add a dominance breaking nogood ¬θ′ ≡ (x1 ̸= 0∨x2 ̸= 1)
to the original COP. We can construct generation CSPs and generate dominance
breaking nogoods for other pairs of partial assignments similarly.

Example 2 demonstrate how to construct a generation CSP for a pair of
partial assignments. Our method constructs multiple generation CSPs and gen-
erates dominance breaking constraints to remove suboptimal assignments by
the following workflow (Figure 1):

1. Given a COP P , analyze the objective and constraints of P and construct
auxiliary generation CSPs for identifying dominance breaking nogoods.

2. Enumerate solutions of the generation CSPs using a constraint solver.
3. Generate one nogood constraint for each solution of the CSPs.
4. Add all generated nogood constraints to the COP P .
5. Solve the COP augmented with extra nogoods by a constraint solver.

Note that as long as generation CSPs are constructed automatically, the work-
flow can be automated and coordinated by a simple program. In the following
subsections, we provide detailed theoretical explanations on how to construct
generation CSPs for a class of COPs.

9

θ′ θ

θ̄θ̄′

(a) Exhaustive enumeration (b) Restriction of same scope

θ̄′ 1 μ(θ̄′ 1)

θ′ θ

θ̄′ 2 μ(θ̄′ 2)
(c) Using the mutation mapping

Figure 2: Restriction for checking a subset of pairs of partial assignments

4.1. Dominance Relations on Partial Assignments

Dominance relations over full assignments (Definition 1) can be generalized
to partial assignments as follows.

Definition 2. Let θ, θ′ be two partial assignments of a COP P = (X,D,C, f).
If ∀θ̄′ ∈ DX

θ′ , ∃θ̄ ∈ DX
θ such that θ̄ ≺ θ̄′, then we say θ ≺ θ′.

The following theorem is a direct consequence of Theorem 1 and Definition 2.

Theorem 2. Let P = (X,D,C, f) be a COP. If two constraints θ and θ′ satisfy
that θ ≺ θ′ with respect to P , then P has the same satisfiability or optimal value
as P ′ = (X,D,C ∪ {¬θ′}, f).

Once we establish the dominance relation θ ≺ θ′, the negation of θ′ is the de-
sired dominance breaking nogood for P . However, checking all possible pairs by
Definition 2 and generating all dominance breaking nogoods will be prohibitively
expensive, our approach is to focus on a subset of nogoods that can be generated
efficiently. An arbitrary pair of partial assignments in P may involve different
number of variables or different sets of variables (Fig 2a). Our first restriction is
to focus on pairs of partial assignments over the same scope, which will reduced
the number of checking substantially (Fig 2b). Still, checking θ ≺ θ′ needs to
find one full assignment in DX

θ for each full assignments θ̄′ ∈ DX
θ′ , which requires

nested for-loops in the straightforward implementation. Instead of exhaustive
enumeration, we further define the mutation mapping µθ′ 7→θ for θ and θ′ and
restrict our attention to check whether a full assignment θ̄′ is dominated by its
image µθ′ 7→θ(θ̄′) (Fig 2c).

Definition 3. Let θ, θ′ ∈ DS be two assignments in a COP P over the same
scope S. The mutation mapping µθ′ 7→θ : DX

θ′ 7→ DX
θ maps a full assignment

θ̄′ ∈ Dθ′
to another full assignment θ̄ ∈ DX

θ′ such that:

• θ̄[x] = θ[x] and θ̄′[x] = θ′[x] for x ∈ S, and

• θ̄[x] = θ̄′[x] for x /∈ S

10

In other words, the full assignment µθ′ 7→θ(θ̄′) “mutates” the value assigned
by θ′ in θ̄′ to that assigned by θ. For convenience of presentation, we let θ̄ =
µθ′ 7→θ(θ̄′) when it is clear from the context.

Example 3. Consider the two assignments θ and θ′ in Example 2. We list all
full assignments θ̄′ ∈ DX

θ and their images under µθ′ 7→θ as follows:

θ̄′ θ̄
x1 x2 x3 x4 x1 x2 x3 x4

v1 v2 0 0 7→ v′1 v′2 0 0
v1 v2 0 1 7→ v′1 v′2 0 1
v1 v2 1 0 7→ v′1 v′2 1 0
v1 v2 1 1 7→ v′1 v′2 1 1

where the “mutated” parts are highlighted in color.

The following theorem gives a sufficient condition for θ ≺ θ′ based on µθ′ 7→θ.

Theorem 3. Let P = (X,D,C, f) be a COP where θ and θ′ are two partial
assignments in P . If the mutation mapping µθ′ 7→θ satisfies:

• unequal: θ ̸= θ′,

• betterment: ∀θ̄′ ∈ DX
θ′ , f(θ̄) ≤ f(θ̄′), and

• implied satisfaction: ∀θ̄′ ∈ DX
θ′ , θ̄′ ∈ sol(P) implies that θ̄ ∈ sol(P),

where θ̄ = µθ′ 7→θ(θ̄′), then θ ≺ θ′ with respect to P .

Proof. The proof idea is inspired by Chu and Stuckey [19, 39]. We construct a
relation ≺ over DX such that θ̄ ≺ θ̄′ if and only if θ̄′ ∈ DX

θ′ and µθ′ 7→θ(θ̄′) =
θ̄. Note that ≺ is trivially transitive and irreflexive by the unequal condition
DX

θ ∩ DX
θ′ = ∅. If θ̄′ ≺ θ̄, then θ̄ ̸≺ ∗ where ∗ is an arbitrary full assignment in

DX
θ′ .
What remains is to show that for all θ̄′ ∈ DX

θ′ , if θ̄ ≺ θ̄′, then θ̄ and θ̄′ will
satisfy either one of the three cases in Definition 1:

• Suppose θ̄′ /∈ sol(P). If θ̄ ∈ sol(P), then θ̄ and θ̄′ fulfill the first case
in Definition 1. Otherwise, θ̄ /∈ sol(P). Since we have the betterment
condition, f(θ̄) ≤ f(θ̄′), which fulfills the third case in Definition 1.

• Suppose θ̄′ ∈ sol(P). By implied satisfaction, θ̄ is also a solution. What’s
more, f(θ̄) ≤ f(θ̄′) by the betterment condition. Therefore, θ̄ and θ̄′ fulfill
the first case in Definition 1.

Therefore, ≺ is a dominance relation over DX by Definition 1, and θ dominates
θ′ with respect to P .

The sufficient condition in Theorem 3 allows us to consider the objective
and constraints of a COP P separately to establish θ ≺ θ′ with respect to P .
What’s more, a full assignment is a solution if it satisfies all constraints of P .

11

Therefore, we can further consider implied satisfaction for each constraint of P
separately.

A generation CSP contains constraints over θ and θ′ for unequal, betterment
and implied satisfaction. The unequal condition in Theorem 3 simply requires
that at least one variable is assigned to different values in θ and θ′. To model
betterment and implied satisfaction in a generation CSP, we give their sufficient
conditions for several classes of efficiently checkable objectives and constraints
in Sections 4.2 and 4.3 respectively. As long as such sufficient conditions are
included into a system, generation CSPs can be constructed mechanically by the
system for a COP consisting of an efficiently checkable objective and efficiently
checkable constraints.

Note that our method can also generate nogoods for symmetry breaking.
Suppose a pair (θ, θ′) of partial assignments satisfying conditions in Theorem 3.
A full assignment θ̄′ ∈ DX

θ′ is mapped to θ̄ ∈ DX
θ such that θ̄ and θ̄′ have the

same objective value and satisfiability of constraints. In other words, DX
θ′ and

DX
θ are symmetric to each other. The nogood ¬θ′ is a symmetry breaking con-

straint. As shown by Flener et al. [42], multiple symmetry breaking constraints
can conflict and remove all solutions in CSPs. In optimization problems, we
need to preserve the optimal objective value of a COP when adding additional
dominance breaking constraints. We will also discuss the compatibility of gen-
erated nogoods in Section 4.4.

Unless otherwise stated, all formal results in the remainder of this section
are given within the following context: Let P = (X,D,C, f) be a COP. Suppose
θ, θ′ ∈ DS are two assignments over the same scope, and their mutation mapping
is µθ′ 7→θ : DX

θ′ 7→ DX
θ .

4.2. Betterment for Efficiently Checkable Objectives

Now we give sufficient conditions for betterment to hold for µθ′ 7→θ, namely
∀θ̄′ ∈ DX

θ′ , f(θ̄) ≤ f(θ̄′) where θ̄ = µθ′ 7→θ(θ̄′). The key idea is to define the
projection function f↓S of the objective function f onto S so that the relative
magnitude of f(θ̄) and f(θ̄′) can be determined. In the following, we consider
two types of efficiently checkable objectives: separable and supermodular/sub-
modular functions.

4.2.1. Separable Objectives

A function f is separable if it can be written as a linear combination of
functions of individual variables, i.e., f(θ̄) = f1(θ̄[x1]) + · · · + fn(θ̄[xn]), where
each component is fi : Z 7→ R. We define the projection function f ↓S (θ) =∑

xi∈S fi(θ[xi]) for a partial assignment θ ∈ DS .

Theorem 4. Let f be a separable function. If f↓S(θ) ≤ f↓S(θ′), then f(θ̄) ≤
f(θ̄′) for all full assignments θ̄′ ∈ DX

θ′ , where θ̄ = µθ′ 7→θ(θ̄′).

Proof. For each full assignment θ̄′ ∈ DX
θ′ and θ̄ = µθ′ 7→θ(θ̄′) ∈ DX

θ , we have

f(θ̄′) = f↓S(θ′) +
∑
xi /∈S

fi(θ̄
′[xi]) and f(θ̄) = f↓S(θ) +

∑
xi /∈S

fi(θ̄[xi]).

12

By Definition 3, θ̄[xi] = θ̄′[xi] for all xi /∈ S. Therefore,
∑

xi /∈S fi(θ̄
′[xi]) =∑

xi /∈S fi(θ̄[xi]). Thus, f↓S(θ) ≤ f↓S(θ′) implies that f(θ̄) ≤ f(θ̄′).

4.2.2. Supermodular and Submodular Objectives

A supermodular function is a set function g : 2V 7→ R that assigns each
subset U ⊆ V a value g(U) ∈ R such that

g(U ∪ T)− g(U) ≤ g(U ′ ∪ T)− g(U ′)

for every U,U ′ ⊆ V where U ⊆ U ′ and T ⊆ V \U ′. In a binary COP P =
(X,D,C, f) where D(x) = {0, 1} for all variable x ∈ X, an assignment θ ∈ DS

can be associated with a set U(θ) = {i | θ[xi] = 1}. We say that the objective
function f of P is equivalent to a supermodular function g if f(θ̄) = g(U(θ̄)).
Similarly, we define the projection function f↓S(θ) = g(U(θ)).

Theorem 5. Let f be a function which is equivalent to a supermodular function
g : 2V 7→ R in a binary COP. If f ↓S (θ) ≤ f ↓S (θ′) and U(θ) ⊆ U(θ′), then
f(θ̄) ≤ f(θ̄′) for all full assignments θ̄′ ∈ DX

θ′ , where θ̄ = µθ′ 7→θ(θ̄′).

Proof. By definition of a supermodular function, we have

g(U(θ) ∪ T)− g(U(θ)) ≤ g(U(θ′) ∪ T)− g(U(θ′)) (5)

for U(θ) ⊆ U(θ′) ⊆ V and any set T ⊆ V \U(θ′). Let T = {i | θ̄′[xi] = 1∧xi /∈ S}
for a full assignment θ̄′ ∈ DX

θ′ . Since f is a function which is equivalent to g,
we have f(θ̄′) = g(U(θ̄′)) = g(U(θ′) ∪ T). By Definition 3, θ̄[xi] = θ̄′[xi] for
all variables xi /∈ S. We also have f(θ̄) = g(U(θ̄)) = g(U(θ) ∪ T). Therefore,
equation (5) becomes

f(θ̄) ≤ f(θ̄′)− g(U(θ′)) + g(U(θ))

≡f(θ̄) ≤ f(θ̄′)− f↓S (θ′) + f↓S (θ)

Since f↓S (θ) ≤ f↓S (θ′), the above inequality implies that f(θ̄) ≤ f(θ̄′).

A function g is submodular if −g is supermodular. Thus minimizing a su-
permodular function is equivalent to maximizing a submodular function.

Corollary 1. Let f be a function which is equivalent to a submodular function
g : 2V 7→ R in a binary COP. If f ↓S (θ) ≥ f ↓S (θ′) and U(θ) ⊆ U(θ′), then
f(θ̄) ≥ f(θ̄′) for all full assignments θ̄′ ∈ DX

θ′ .

The proof of Corollary 1 is similar to that of Theorem 5. We note that
Theorems 3 and 4 can also be easily adapted for maximization.

4.3. Implied Satisfaction for Efficiently Checkable Constraints

Now we consider sufficient conditions for the implied satisfaction in Theo-
rem 3. Note that a full assignment θ̄ is a solution of P iff θ̄ satisfies all constraints
c ∈ C. If for all θ̄′ ∈ DX

θ′ and c ∈ C, θ̄′ satisfies c implies that θ̄ satisfies c, then
the implied satisfaction also hold. This suggests considering each constraint
c ∈ C separately. Furthermore, the following theorem states that we only need
to focus on a subset of constraints.

13

Theorem 6. If var(c)∩S = ∅ for a constraint c ∈ C, a full assignment θ̄′ ∈ DX
θ′

always has the same feasibility as θ̄ ∈ DX
θ with respect to c.

Proof. Since var(c) ∩ S = ∅, we have x /∈ S for all x ∈ var(c). By Definition 3,
θ̄′[x] = θ̄[x] for all x /∈ S, and therefore we have θ̄′ ↓var(c)= θ̄↓var(c). Thus,
θ̄′↓var(c)∈ c if and only if θ̄′↓var(c)∈ c. In other words, θ̄′ has the same feasibility
as θ̄ with respect to c.

By Theorem 6, we consider only constraint c ∈ C where var(c)∩S ̸= ∅ from
now on. We say a partial assignment θ is applied to c ∈ C by replacing every
occurrence of x ∈ var(c) ∩ S by value θ[x]. The resulting constraint cθ has
scope var(c)\S. The following proposition states that cθ ⇒ cθ′ is a sufficient
condition to prove implied satisfaction.

Proposition 1. If cθ′ ⇒ cθ holds for a constraint c ∈ C, then θ̄′ satisfies c ⇒ θ̄
satisfies c for all θ̄′ ∈ DX

θ′ and θ̄ = µθ′ 7→θ(θ̄′).

Proof. Let S′ = var(c)\S. By Definition 3, θ̄′[x] = θ̄[x] for x /∈ S, which implies
that θ̄′↓S′= θ̄↓S′ . Since cθ′ ⇒ cθ, cθ′ ⊆ cθ, which means that θ̄′↓S′∈ cθ′ implies
that θ̄↓S′∈ cθ. Thus, we have θ̄′ satisfies c ⇒ µθ′ 7→θ(θ̄′) satisfies c.

4.3.1. Unary Constraints

A unary constraint restricts the values that are valid for a single variable
x ∈ X, which are usually presolved and cast into the domain constraint of the
form c = (x ∈ D(x)). The condition for implied satisfaction is straightforward.

Theorem 7. Let c be a domain constraint of the form (x ∈ D(x)). If θ[x] ∈
D(x), then cθ′ ⇒ cθ.

Proof. Since θ[x] ∈ D(x), cθ is always true, which implies that cθ′ ⇒ cθ always
hold.

Note that if θ′[x] /∈ D(x), then all full assignments θ̄′ in DX
θ′ are trivially non-

solutions of P . An extra nogood constraint ¬θ′ is redundant in a propagation
solver. Therefore, we would add θ[x] ∈ D(x) and θ′[x] ∈ D(x) in the generation
CSP for all variables x ∈ S to avoid generate redundant nogoods.

4.3.2. Linear Inequality Constraints

A linear inequality constraint is c ≡ (
∑

wixi ≤ b) where wi, b ∈ R+. The
sufficient condition for implied satisfaction is stated as follows.

Theorem 8. Let c be a linear inequality constraint c ≡ (
∑

wixi ≤ b) and
S′ = S ∩ var(c). If

∑
xi∈S′ wiθ[xi] ≤

∑
xi∈S′ wiθ

′[xi], then cθ′ ⇒ cθ.

Proof. By definition, since
∑

xi∈S′ wiθ[xi] ≤
∑

xi∈S′ wiθ
′[xi], we have

cθ′ ≡ (
∑

xi∈(var(c)\S)

wixi ≤ b−
∑
xi∈S′

wiθ
′[xi])

⇒ (
∑

xi∈(var(c)\S)

wixi ≤ b−
∑
xi∈S′

wiθ[xi]) ≡ cθ

14

Note that if
∑

xi∈S′ wiθ
′[xi] > b, then any full assignment θ̄ ∈ DX

θ must
not satisfy the linear inequality constraint c ≡ (

∑
wixi ≤ b) and is trivially a

non-solution of P . Therefore, we also add a constraint
∑

xi∈S′ wiθ
′[xi] ≤ b to

the generation CSPs.

4.3.3. Boolean Disjunction Constraints

The Boolean disjunction constraint c ≡ (∨xi∈Bxi) requires at least one
Boolean variable in the set B takes the true value.

Theorem 9. Let c be a Boolean disjunction constraint (∨xi∈Bxi) and S′ =
S ∩B. If ∨xi∈S′θ′[xi] ⇒ ∨xi∈S′θ[xi], then cθ′ ⇒ cθ.

Proof. Since e′ = ∨xi∈S′θ′[xi] ⇒ ∨xi∈S′θ[xi] = e, either e′ and e are both true,
or e′ is evaluated to false. In the former case, cθ′ and cθ are always true, which
implies that cθ′ ⇒ cθ always holds. As for the latter case, cθ′ ≡ (∨xi∈S\S′xi),
and thus cθ ≡ e ∨ (∨xi∈S\S′xi). Therefore, cθ′ ⇒ cθ regardless of the value of
e.

Boolean disjunction constraints can also be extended where Boolean vari-
ables are results of binary comparisons (x ◦ b) where x ∈ X is a variable, b ∈ Z
is an integer and ◦ ∈ {=, ̸=,≥,≤, <,>} is a binary comparison operator.

Theorem 10. Let c be a Boolean disjunction constraint ∨xi∈B(xi ◦i bi) where
◦i ∈ {=, ̸=,≥,≤, <,>} is a binary comparison and bi ∈ Z, and S′ = S ∩ B. If
∨xi∈S′(θ[xi] ◦i bi) ⇒ ∨xi∈S′(θ′[xi] ◦i bi), then cθ′ ⇒ cθ.

The proof of Theorem 10 is similar to that of Theorem 9.

4.3.4. Counting Constraints

Counting constraints restrict the number of occurrences of some values in the
set V within a given scope S of variables. The Global Constraint Catalog [43] has
the keyword “Counting Constraints” under which there are 39 different global
constraints, among which the alldifferent constraint, the among constraint and
the global cardinality constraint are famous examples.

In this section, we first consider two basic constraints atleast(T, V, k) and
atmost(T, V, k) where T ⊆ X is a set of variables, V is a set of values, and
k ∈ N is an integer. The two constraints require that the number of variables
in T that take values in V is at least and at most k respectively.

Theorem 11. Let c be a constraint of the form atleast(T, V, k) and S′ = T ∩S.
If we have |{x | θ[x] ∈ V ∧ x ∈ S′}| ≥ |{x | θ′[x] ∈ V ∧ x ∈ S′}|, then cθ′ ⇒ cθ.

Proof. The atleast(T, V, k) constraint can be expressed as

atleast(T, V, k) ≡ (k ≤ |{x | θ[x] ∈ V ∧ x ∈ T}|)

15

Let d = |{x | θ[x] ∈ V ∧ x ∈ S′}| and d′ = |{x | θ′[x] ∈ V ∧ x ∈ S′}|. Since
T = (T ∩ S) ∪ (T \ S) and d ≥ d′, we have

cθ′ ≡ (k ≤ d′ + |{x|(x = v) ∧ v ∈ V ∧ x ∈ T \ S}|)
⇒ (k ≤ d+ |{x|(x = v) ∧ v ∈ V ∧ x ∈ T \ S}|)
≡ cθ

We have a similar result for the constraint atmost(T, V, k).

Theorem 12. Let c be a constraint of the form atmost(T, V, k) and S′ = T ∩S.
If we have |{x | θ[x] ∈ V ∧ x ∈ S′}| ≤ |{x | θ′[x] ∈ V ∧ x ∈ S′}|, then cθ′ ⇒ cθ.

The proof is similar to that of Theorem 11. We can also avoid generate redun-
dant nogood constraint ¬θ′ for a partial assignment θ′ violating atmost(T, V, k).
Therefore, we can add a constraint |{x | θ′[x] ∈ V ∧ x ∈ S′}| ≤ k to the genera-
tion CSPs.

By Theorems 11 and 12, we can derive the sufficient conditions of implied sat-
isfaction for different counting constraints. The first famous example of count-
ing constraints is the alldifferent constraint [44], where alldifferent(T) enforces
that all variables in a set T take distinct values. We can treat it as the con-
junction ∧v∈V atmost(T, {v}, 1) where V = ∪x∈TD(x) is the union of domains
of variables in T . Following Theorem 12, the sufficient condition for implied
satisfaction are given as follows.

Theorem 13. Let c be a constraint of the form alldifferent(T) where T ⊆ X.
If {θ[x] | x ∈ T ∩ S} ⊆ {θ′[x] | x ∈ T ∩ S}, then cθ′ ⇒ cθ.

Proof. The alldifferent constraint can be expressed as alldifferent({x | x ∈ T \
S} ∪ {x | x ∈ T ∩ S}). Since {θ[x] | x ∈ T ∩ S} ⊆ {θ′[x] | x ∈ T ∩ S}, we have

cθ = alldifferent({x | x ∈ T \ S} ∪ {θ[x] | x ∈ T ∩ S})
⇒ alldifferent({x | x ∈ T \ S} ∪ {θ′[x] | x ∈ T ∩ S})
= cθ′

Thus, cθ′ ⇒ cθ.

The alldifferent except 0 constraint [43] is a generalization of the alldifferent
constraint where all variables in a set T are required to take distinct values
except for those variables that are assigned value 0. The sufficient condition is
also related to the set of assigned values of θ and θ′ to variables in T .

Theorem 14. Let c be the constraint alldifferent except 0 (T) where T ⊆ X.
If {θ[x] | x ∈ T ∩ S ∧ θ[x] ̸= 0} ⊆ {θ′[x] | x ∈ T ∩ S ∧ θ′[x] ̸= 0}, then cθ′ ⇒ cθ.

The proof idea is similar to that of Theorem 13.
Another example is the among constraint [45, 46], where among(T, V, k)

takes a set T of variables, a set V of values and an integer k ∈ N as arguments.

16

The constraint requires that k = |{x | x ∈ T ∧ x = v ∧ v ∈ V }| and can be
expressed as the conjunction atleast(T, V, k) ∧ atmost(T, V, k). Thus, we have
the following result for among(T, V, k).

Corollary 2. Let c be the constraint among(T, V, k) where T ⊆ X is a set of
variables, V is a set of values and k ∈ N is an integer. If |{x | x ∈ T ∧ θ[x] ∈
V }| = |{x | x ∈ T ∧ θ′[x] ∈ V }|, then cθ′ ⇒ cθ.

The global cardinality constraint [47] is a generalization of both alldifferent
and among constraint. A global cardinality constraint GCC (T,U) takes two
arguments where T is a set of variables, U is a set of triples (vj , lj , uj). For each
triple in U , value vj should be taken by at least lj and at most uj variables in T .
The alldifferent constraint is simply a global cardinality constraint where each
value can be taken at most once. Note that GCC (T ,U) is also a conjunction
of atleast and atmost constraints:

GCC (T ,U) ≡
∧

(vj ,lj ,uj)∈U

(atleast(T, {vj}, lj) ∧ atmost(T, {vj}, uj))

Therefore, we have the following result for GCC (T ,U).

Corollary 3. Let c be the constraint GCC (T,U) where T ⊆ X is a set of
variables, and U is a set of tuples (vj , lj , uj). If |{x | x ∈ S ∩ T ∧ θ[x] = vj}| =
|{x | x ∈ S ∩ T ∧ θ[x] = vj}| for all tuple (vj , lj , uj) ∈ U , then cθ′ ⇒ cθ.

4.3.5. Circuit Constraint

The circuit constraint [48, 49] is useful in various graph problems such as the
famous Travelling Salesman Problem (TSP). It constrains an array of variables
representing successors of each node on a graph, which requires that the resulting
edges to form a Hamiltonian cycle. Formally, suppose G = (V,E) is a graph
where |V | = n. We have one variable xi for each node i ∈ V representing the
successor node after visiting node i. The constraint circuit(x1, . . . , xn) requires
that there is a cyclic permutation y1, . . . , yn of 1 . . . n such that

yi+1 = xyi , i = 1, . . . , n− 1

y1 = xyn

The sufficient conditions for implied satisfaction require the introduction of
additional variables for the path represented by θ and θ′.

Theorem 15. Let c be a constraint circuit(x1, . . . , xn) and S′ = S∩{x1, . . . , xn}.
If y1, . . . , y|S′|+1 and y′1, . . . , y

′
|S′|+1 are two sets of introduced variables such that:

(a) alldifferent(y1, . . . , y|S′|+1) and alldifferent(y′1, . . . , y
′
|S′|+1),

(b) ∀xi ∈ S′,∃j ∈ 1, ..., |S′|, yj = i ∧ yj+1 = θ[xi],

(c) ∀xi ∈ S′,∃j ∈ 1, ..., |S′|, y′j = i ∧ y′j+1 = θ′[xi],

(d) y1 = y′1 and y|S|+1 = y′|S|+1,

then cθ′ implies cθ.

17

Proof. Conditions (a) to (d) implies that θ and θ′ forms two paths traversing
the same set of nodes where they start from the same node y1 = y′1 and end at
the same node y|S′|+1 = y′|S′|+1. For any partial assignments over X \ S that

satisfies cθ′, it must form a tour starting from y|S|+1 and ending at y1, which
must also be a solution for cθ. Hence, cθ′ ⇔ cθ.

4.4. Compatibility of Dominance Breaking Nogoods

Theorems 2 and 3 only consider the soundness of adding one nogood con-
straint into P . Recall that our method enumerates all pairs (θ, θ′) of partial as-
signments that are solutions of generation CSPs. All drived dominance breaking
nogoods ¬θ′ are added to the COP P for search space pruning. It is necessary
to ensure that all nogoods are also compatible in the sense that not all optimal
solutions of P are eliminated.

Example 4. Consider a variant of the COP in (1) where the first two items
has two units of weight and profit. Following the same procedure as Example 2,
we can construct a generation CSP for a pair of partial assignments θ = {x1 =
v1, x2 = v2} and θ′ = {x1 = v′1, x2 = v′2} as follows:

2v1 + 2v2 ≥ 2v′1 + 2v′2

2v1 + 2v2 ≤ 2v′1 + 2v′2

v1 ̸= v′1 ∨ v2 ̸= v′2

(6)

where v1, v2, v
′
1, v

′
2 ∈ {0, 1} are unknown integers. Solving (6) can result in two

possible solutions: either (1) θ1 = {x1 = 1, x2 = 0} and θ′1 = {x1 = 0, x2 = 1},
or (2) θ2 = {x1 = 0, x2 = 1} and θ′2 = {x1 = 1, x2 = 0}. Adding both ¬θ′1
and θ′2 into the COP will eliminate all optimal solutions and change the optimal
objective value.

In this section, we propose to add extra constraints in generation CSPs to
avoid generating incompatible nogoods. We first show that the lexicographical
ordering between θ and θ′ is a sufficient condition to ensure the compatibility
of generated nogoods. Sometimes, the lexicographical ordering constraint is too
restrictive. We further generalize the lexicographical ordering to obtain more
relaxed sufficient conditions for compatibility, which will result in generating
more dominance breaking nogoods.

4.4.1. Lexicograhpical ordering for Partial Assignments

Given two tuples (a1, . . . , an), (b1, . . . , bn) ∈ Rn, we say that (a1, . . . , an) is
lexicographically smaller than (b1, . . . , bn), denoted by (a1, . . . , an) <lex (b1, . . . , bn),
if and only if ∃j ∈ {1, . . . , n} such that aj < bj and ∀j′ < j, aj′ = bj′ . Recall
that an assignment θ is a tuple in DS . We are interested in preserving the lexi-
cographically smallest optimal solution which is an optimal solution of P and is
lexicographically smallest among all optimal solutions of P .

Theorem 16. If θ and θ′ are two partial assignments such that θ <lex θ′, and
(θ, θ′) satisfies betterment and implied satisfaction, then the lexicographically
smallest optimal solution always satisfies ¬θ′.

18

Proof. Suppose θ̄′ ∈ DX
θ′ is an optimal solution of P and θ̄′ = µθ′ 7→θ(θ̄) ∈ DX

θ′ .
By Definition 3, θ̄[x] = θ̄′[x] for all variables x /∈ S, and θ <lex θ′ implies that
θ̄[x] <lex θ̄′[x]. Since θ and θ′ satisfy betterment and implied satisfaction, θ̄′ is
an optimal solution implies that θ̄ is also an optimal solution. In other words,
if there is an optimal solution θ̄′ ∈ DX

θ′ , there must be another optimal solution
θ̄ which is lexicographically smaller. By contraposition, the lexicographically
smallest optimal solution does not belong to DX

θ′ and always satisfy the nogood
constraint ¬θ′.

Theorem 16 implies that if we enforce θ <lex θ′ in the generation CSPs, the
generated nogoods ¬θ′ will not remove the lexicographically smallest optimal
solution. This ensures that all generated nogoods ¬θ′ derived from the solutions
of the generation CSPs are compatible, which means adding all nogoods to
the COP preserves the optimal value of P . We note the idea of using the
lexicograhpical ordering as the tiebreaker also appears in previous works [19, 40].

4.4.2. Generalized lexicograhpical ordering

The lexicograhpical ordering between θ and θ′ is a sufficient condition for
that at least one optimal solution is preserved, but sometimes the condition is
too strong such that it eliminates useful solutions of the generation CSP.

Example 5. Consider the COP in (1) again. We want to find a pair of partial
assignments θ and θ′ which are over the same scope S = {xi, xj} and satisfies
sufficient conditions in Theorems 4, 8 and 16:

unequal: θ[xi] ̸= θ′[xi] ∨ θ[xj] ̸= θ′[xj]

betterment: aiθ[xi] + ajθ[xj] ≤ aiθ
′[xi] + ajθ

′[xj]

implied satisfaction: biθ[xi] + bjθ[xj] ≥ biθ
′[xi] + bjθ

′[xj]

compatibility: θ <lex θ′

(7)

The only pair that satisfies conditions in (7) is that θ1 = {x2 = 0, x3 = 1} and
θ′1 = {x2 = 1, x3 = 0}. However, we can observe that θ2 = {x1 = 1, x2 = 0}
and θ′2 = {x1 = 0, x2 = 1} is also a pair that satisfies conditions in Theorem 3.
The nogood constraint ¬θ′2 is compatible with ¬θ′1, and therefore we can add
both constraints to P while preserving the optimal solution θ̄opt = {x1 = 1, x2 =
0, x3 = 0}.

To discover additional dominance breaking nogoods through the resolution
of generation CSPs, we propose a more relaxed sufficient condition for the com-
patibility of the produced nogoods based on the concept of the generalized lexico-
graphical ordering. Unlike strictly enforcing θ <lex θ′ as before, the generalized
lexicographical ordering incorporates sensitive functions over DX . A function
f defined over DX is sensitive if for any S ⊆ X, there exists a projection func-
tion f↓S defined over DS such that f↓S(θ) < f↓S(θ′). We have the following
sufficient conditions for the generalized lexicographical ordering.

19

Theorem 17. Suppose θ, θ′ are two partial assignments such that

(f1↓S(θ), . . . , fm↓S(θ)) <lex (f1↓S(θ′), . . . , fm↓S(θ′)),

where f1, . . . , fm are sensitive functions, and the pair (θ, θ′) satisfies betterment
and implied satisfaction. There is at least one optimal solution satisfying ¬θ′.

Proof. Without loss of generality, assume that m = 1. Let θ̄′ ∈ DX
θ′ an optimal

solution of P and θ̄ = µθ′ 7→θ(θ̄′) ∈ DX
θ . Since the pair (θ, θ′) satisfies betterment

and implied satisfaction, θ̄ must also be an optimal solution. Also, f1 is a
sensitive function, i.e., f1 ↓S (θ) < f1 ↓S (θ′) implies that f1(θ̄) < f1(θ̄

′). In
other words, if there is an optimal solution θ̄′ ∈ DX

θ′ , there must be another
optimal solution θ̄ ∈ DX

θ such that f1(θ̄) < f1(θ̄
′). By contraposition, the

optimal solution with the smallest value of f1 among the optimal solutions does
not belong to DX

θ′ and always satisfies the nogood constraint ¬θ′. The proof
generalizes trivially to the case when m > 1.

Note that we can use arbitrary sensitive functions in Theorem 17 as long
as their projection functions are well-defined. The generalized lexicograhpical
ordering degenerates to the lexicograhpical ordering if we use element functions
e1, . . . , en where ei(θ̄) = θ̄[xi]. The projection function is defined as

ei↓S(θ) =

{
θ[xi] if xi ∈ S

0 otherwise

By Theorem 17, the sufficient condition for compatibility is that

(e1↓S(θ), . . . , en↓S(θ)) <lex (e1↓S(θ′), . . . , en↓S(θ′)),

which can be simplified into θ <lex θ′ since ei↓S(θ) = ei↓S(θ′) = 0 when xi /∈ S.
As shown in Example 5, however, the lexicographical ordering constraint

is a too strong sufficient condition for compatibility. In practice, we also use
sensitive functions arising from the objective of a COP P . It is easy to verify that
separable objectives and supermodular objectives are sensitive with appropriate
definitions of their projection functions.

Proposition 2. Let f be a separable function and the projection function of f
be f↓S(θ) =

∑
xi∈S fi(θ[xi]). The separable function f is sensitive.

Proposition 3. Let f be a function that is equivalent to a supermodular func-
tion g and the projection function of f be f↓S(θ) = g(S(θ)) where S(θ) = {i |
θ[xi] = 1}. The supermodular function f is sensitive.

Example 6. Consider Example 5 again. If we replace the compatibility condi-
tion in (7) by:

compatibility: (aiθ[xi] + ajθ[xj], θ[xi], θ[xj]) <lex (aiθ[x
′
i] + ajθ[x

′
j], θ[x

′
i], θ[x

′
j]),

then solving the CSP will give us the following solution pairs:

20

• θ1 = (0, 1) and θ′1 = (1, 0) where var(θ1) = var(θ′1) = {x2, x3}

• θ2 = (1, 0) and θ′2 = (0, 1) where var(θ2) = var(θ′2) = {x1, x2}

• θ3 = (1, 0) and θ′3 = (0, 1) where var(θ3) = var(θ′3) = {x1, x3}

The derived nogood constraints ¬θ′1, ¬θ′2 and ¬θ′3 are all compatible in the COP.

We can also define sensitive functions arising from linear inequality con-
straints and counting constraints.

Proposition 4. Let c be a linear inequality constraint (
∑

wixi ≤ b). If we de-
fine f(θ̄) =

∑
wiθ̄[xi] for a full assignment θ̄ ∈ DX and the projection function

f↓S(θ) =
∑

xi∈S wiθ[xi], then f is sensitive.

Proposition 5. Let c be a constraint atmost(T, V, k). If we define f(θ̄) =
|{x | θ̄[x] ∈ V }| for a full assignment θ̄ ∈ DX and the projection function
f↓S(θ) = |{x | θ[x] ∈ V ∧ x ∈ S ∩ T}|, then f is sensitive.

Proposition 6. Let c be a constraint atleast(T, V, k). If we define f(θ̄) =
−|{x | θ̄[x] ∈ V }| for a full assignment θ̄ ∈ DX and the projection function
f↓S(θ) = −|{x | θ[x] ∈ V ∧ x ∈ S ∩ T}|, then f is sensitive.

Recall that our goal is to find more relaxed sufficient conditions for com-
patibility. In the actual implementation, we usually construct the tuples in
Theorem 17 using the sensitive function derived from the objective function,
followed by sensitive functions arising from the linear inequality and counting
constraints, and finally the element functions for tie-breaking.

5. Modeling Nogood Generation as Constraint Satisfaction

Sections 4 states the sufficient conditions in which θ ≺ θ′ with respect to P ,
and ¬θ′ can be added to P for dominance breaking. Our proposal is applicable
for a COP P as long as the objective and all constraints in P are all efficiently
checkable. Generating nogoods with all possible lengths can be computationally
intractable. In this section, we propose several implementation techniques to
further improve the solving efficiency.

First, we limit the scope size of partial assignments for generating nogood
constraints. The following theorem states the complexity result when using
the simple generate-and-test method to find all dominance breaking nogoods of
certain length.

Proposition 7. Let P = (X,D,C, f) be a COP and l ∈ N be a positive integer.

Suppose max(|D(xi)|) = d for all variables xi ∈ X, there are O(
(|X|

l

)
·
(
dl

2

)
) pairs

of partial assignments θ and θ′ where θ ̸= θ′ and |S| = l.

Proof. The candidate pairs can be enumerated by first selecting l variables
xi1 , . . . , xil fromX and then select two distinct tuples fromD(xi1)×· · ·×D(xil),

which has
(∏

k=1,...,l |D(xik
)|

2

)
≤

(
dl

2

)
ways in total. Hence, there are totally

O(
(|X|

l

)
·
(
dl

2

)
) such candidate pairs.

21

The total number of pairs grows polynomially with respect to the variable
number |X| and the maximum domain size max(|D(xi)|), but grows exponen-
tially with respect to the maximum length of dominance breaking nogoods. To
ensure the efficiency of our method, we limit the maximum scope size |S| to
a fixed integer L and attempt to generate and augment the COP P with no-
goods of length l ≤ L so that the time for nogood generation is less than the
potentially exponential time for solving constraint optimization problems.

Second, we combine multiple generation CSPs for scopes of the same size
into a single generation model. As shown in Example 5, sufficient conditions for
betterment (Theorems 4 to 5), implied satisfaction (Theorems 7 to 15) and com-
patibility (Theorems 16 and 17) are nothing but constraints on values assigned
by the pair of partial assignment when the scope is fixed. Therefore, enumerat-
ing all dominance breaking nogoods of length l requires solving O(

(|X|
l

)
) CSPs

in total. We observe that generation CSPs over scopes of the same size have
the same type of constraints except that parameters are different. They can be
combined by utilizing element constraints [50] in constraint programming.

Figure 3 gives example models for the 0-1 knapsack problem and the gener-
ation CSP in the MiniZinc language [21], where Figure 3a is a problem model
with n items and a knapsack with the capacity limit W . Lines 1 to 4 include the
parameters of the problems, while line 5 declares an array of binary variables,
each for one item. Lines 7 and 9 are the objective and the linear inequality
constraint respectively. The MiniZinc model for nogood generation is given in
Figure 3b. Lines 6 to 9 uses three arrays to model a pair (θ, θ′) of partial assign-
ments with the same scope, where we use an array F to represent the indices
set of variables in the common scope. The variable arraies v1 and v2 represent
the assigned values in θ and θ′ respectively. Thus, if ∃i ∈ {1, . . . , l} such that
F [i] = k, then xk ∈ S, θ[xk] = v1[k] and θ[xk] = v2[k]. Note that there are
variable symmetries in the array F , and thus the constraint in line 11 enforces
that F [i] < F [i+ 1] for all i = 1, . . . , l− 1. Lines 13 to 19 state two constraints
which are the sufficient conditions for implied satisfaction and betterment by
Theorem 4 and 8 respectively. The last constraint is derived from Theorem 17
and is to ensure the compatibility between the generated dominance breaking
nogoods.

Third, we further add constraints to avoid generate redundant nogoods.
Note that a longer nogood constraint can be redundant with respect to a shorter
one in a COP.

Proposition 8. If θ̃′ and θ′ are two partial assignments in a COP P such that
var(θ̃′) ⊂ var(θ′) and θ̃′[x] = θ′[x] for all variables x ∈ var(θ̃′), then ¬θ̃′ ⇒ ¬θ′.

Proposition 8 is easy to verify and implies that ¬θ′ is logically redundant
with respect to ¬θ̃′ if θ̃′ ⊂ θ′. Note that a nogood constraint c ≡ ¬θ′ is usu-
ally enforced to be generalized arc consistent (GAC) [51] A logically redundant
nogood constraint is also propagation redundant [52] and contributes no extra
pruning in a constraint solver. To avoid generating redundant dominance break-
ing nogoods, we solve generation CSPs for nogoods with increasing lengths. For

22

1 int: n; % number of items

2 int: W; % knapsack capacity

3 array [1..n] of int: p; % profits of items

4 array [1..n] of int: w; % weights of items

5 array [1..n] of var 0..1: x;

6

7 solve maximize sum(i in 1..n)(p[i] * x[i]);

8

9 constraint sum(i in 1..n)(w[i] * x[i]) <= W;

(a) The Problem Model

1 int: n; % number of items

2 int: W; % knapsack capacity

3 array [1..n] of int: p; % profits of items

4 array [1..n] of int: w; % weights of items

5

6 int: l;

7 array [1..l] of var 1..n: F;

8 array [1..l] of var 0..1: v1;

9 array [1..l] of var 0..1: v2;

10

11 constraint increasing(F);

12

13 var int: p1 = sum(i in 1..l)(p[F[i]] * v1[i]);

14 var int: p2 = sum(i in 1..l)(p[F[i]] * v2[i]);

15 constraint p1 >= p2;

16

17 var int: w1 = sum(i in 1..l)(w[F[i]] * v1[i]);

18 var int: w2 = sum(i in 1..l)(w[F[i]] * v2[i]);

19 constraint w1 <= w2;

20

21 constraint lex_less([-p1, w1]++v1 ,[-p2, w2]++v2);

(b) The Model of Generation CSPs

Figure 3: Models for the 0-1 knapsack problem in MiniZinc

23

each solution (θ̃, θ̃′), we add one constraint

∨xi∈var(θ̃′)(xi /∈ var(θ′) ∨ θ′[xi] ̸= θ̃′[xi]) (8)

into all generation CSPs with length l > |var(θ̃′)|, so that (θ, θ′) will correspond
to a nogood ¬θ′ that is not redundant with respect to ¬θ̃′.

In the actual implementation, we modify the publicly available MiniZinc
compiler to analyze the compiled FlatZinc model of a COP. Each constraint/ob-
jective in the FlatZinc model corresponds to O(1) constraints in the generation
CSP. Such a generation CSP can be constructed mechanically by analyzing the
problem in only one pass in negligible time as compared to the time for nogood
generation and problem-solving.

6. Empirical Evaluation

This section aims to demonstrate the practical applicability of our automatic
dominance breaking method for solving COPs. To model the problems, we use
the MiniZinc modelling language[21], and employ Chuffed[35], a widely used
constraint programming solver, as the backend solver for both nogood genera-
tion and problem-solving. It’s worth noting that generating nogoods by solving
the generation CSPs and handling additional nogoods while solving a COP may
introduce overheads. However, we believe that the efficiency gained by the ex-
tra pruning justifies the additional overhead, and we’ll show that the benefits of
automatic dominance breaking can significantly reduce the overall solving time
of constraint solvers. We’ve made the source code and benchmarks available at
https://github.com/AllenZzw/auto_dom/tree/dominance.

Our method, called L-dom, generates and augments problem models with
nogoods of length 2 up to L. To evaluate our method, we compare it against two
other methods: the basic problem model (no-dom) and the model with manual
dominance breaking constraints (manual). We use a fixed search heuristic
specified in the problem model and also the default free search option, which
alternates between the fixed search heuristics and the variable state independent
decaying sum search heuristic [53], in the Chuffed solver for each problem. In
addition, we include results obtained using the MIP method with the CBC
2.10 [54] as the backend solver for reference.

The timeout for the whole solving process (nogood generation + problem-
solving) is set to 2 hours, while we reserve 1 hour for nogood generation. If
nogood generation times out, we augment the problem model with only the
nogoods generated so far. Otherwise, the problem is solved with the remain-
ing time. All experiments are run on Xeon(R) Platinum 8268 2.90GHz using
MiniZinc 2.6.0.

6.1. Standard Benchmarks

The standard benchmarks consist of 6 problems, where there are 20 instances
for each instance group:

24

https://github.com/AllenZzw/auto_dom/tree/dominance

• Knapsack-n: the 0-1 knapsack problem is to maximize a linear objective
subject to a linear inequality constraint. The problem ask to select a subset
of items where each item i is associated with it profit pi and weight wi.
We use instances from an online repository1 where the number of items
n = 100, 150, 200, 250, 300. We use the fixed search heuristic to select an
item with the highest pi/wi first. The manual method uses dominance
breaking constraints in Definition 4.

• DisjKnapsack-n: the disjunctively constrained knapsack problem [55] is an
extension of the knapsack problem with additional Boolean disjunction
constraints. For each instance with n items, we augment the instance
by randomly picking ⌊ηn(n − 1)/2⌋ incompatible pairs of items where
η = 0.2%. The fixed search heuristic is the same as that of Knapsack. The
manual method uses dominance breaking constraints in Definition 5.

• ConcertSchd-n: the capacitated concert hall scheduling problem [56] is to
maximize a separable objective subject to alldifferent except 0 constraints.
The problem considers a set of concerts each having a start time sa, an
end time ea, a profit pa and a required capacity ra. A concert a can
only be placed into a hall with capacity ch such that ch ≥ ra. We follow
Gange and Stuckey [56] to generate random instances with 10 halls and
n applications where n = 20, 25, 30, 35, 40, with 1 ≤ sa ≤ ea ≤ 100,
200 ≤ ra, ch ≤ 1000 and pa

ea−sa+1 ≥ 10. The fixed search heuristic is
to include a concert with the highest ratio pa

ea−sa+1 first. The manual
method uses dominance breaking constraints in Definition 6.

• MaxCut-n: the maximum cut problem is to maximize a submodular func-
tion on a graph whose vertices are partitioned into two complementary
set S and T . For n = 30, 35, 40, 45, 50, we generate random graphs with
n vertices by independently sampling each edge with probability p = 0.1
whose weights are integers from 1 to 10. The fixed search heuristic is to
include vertices into S in order of their indices. The manual method uses
dominance breaking constraints in Definition 7.

• CombAuc-n: the combinatorial auction problem is to maximize a linear
objective subject to linear inequality constraints. We generate random
instances using the scheme of Balas and Ho [57], where there are m = 100
items and n = 100, 150, 200, 250, 300 bids in the instances. The value
of a bidder is selected from [1, 100]. The probability of an item being
covered by a bid is set to 5%. The fixed search heuristic is to include the
next available bid with the highest value first. The manual method uses
dominance breaking constraints in Definition 8.

• SetCover-n: the set covering problem [58] is to minimize a linear ob-
jective subjective to linear inequality constraints. We generate random

1https://people.eng.unimelb.edu.au/pstuckey/dom-jump/

25

https://people.eng.unimelb.edu.au/pstuckey/dom-jump/

no-dom manual 2-dom 3-dom 4-dom
Problem Solving Solving Solving Total Solving Total Solving Solving

Knapsack -100 – 1.33 1.12 1.74 0.02 28.09 0.08 1272.53
Knapsack -150 – 141.04 126.55 128.29 0.13 120.96 0.54 3600.54
Knapsack -200 – 1854.63 1671.77 1675.13 0.27 355.41 0.98 3600.98
Knapsack -250 – 6742.01 6548.54 6550.39 0.77 811.76 1.03 3601.03
Knapsack -300 – – – – 1.78 1597.57 1.84 3601.84

DisjKnapsack -100 – 2.91 7.21 7.69 0.02 23.56 0.04 991.07
DisjKnapsack -150 – 608.95 3363.07 3364.16 0.10 104.25 0.28 3600.28
DisjKnapsack -200 – 5971.33 – – 2.83 336.32 0.97 3600.97
DisjKnapsack -250 – – – – 41.38 850.16 3.16 3603.16
DisjKnapsack -300 – – – – 481.75 1841.92 14.45 3614.45
ConcertSched -25 37.72 19.08 4.05 4.33 3.20 5.33 2.87 37.49
ConcertSched -30 1166.07 756.93 228.94 229.00 122.65 124.61 136.04 197.55
ConcertSched -35 2645.94 1562.62 659.44 659.57 469.77 473.39 389.46 533.44
ConcertSched -40 5090.30 3206.15 1426.05 1426.17 1227.99 1232.44 1210.73 1440.56
ConcertSched -45 6248.07 5882.37 4146.53 4146.65 3316.66 3322.27 3187.46 3480.05

MaxCut-30 0.60 0.33 0.24 0.31 0.10 1.69 0.10 32.85
MaxCut-35 18.04 7.08 5.07 5.17 1.62 4.69 1.31 83.75
MaxCut-40 281.78 97.21 69.82 69.93 21.52 26.15 16.30 160.53
MaxCut-45 2548.66 1102.00 834.37 834.55 188.30 196.21 135.81 385.08
MaxCut-50 7160.27 6765.60 6703.06 6703.11 4671.98 4680.55 3595.26 3945.98

CombAuc-100 67.16 1.12 1.15 1.36 0.83 3.64 0.97 53.38
CombAuc-150 – 1129.94 1140.36 1140.90 433.17 443.22 390.35 600.61
CombAuc-200 – 4086.12 4107.03 4107.52 1847.73 1862.48 1524.59 1859.62
CombAuc-250 – 6473.76 6486.24 6486.44 3013.30 3032.58 2601.24 3093.52
CombAuc-300 – 6375.00 6381.24 6381.51 2033.18 2066.10 1709.82 2535.92
SetCover -100 76.68 1.63 1.39 1.46 0.01 4.82 0.01 113.96
SetCover -150 – 3620.55 2668.80 2669.02 0.65 27.95 0.02 571.01
SetCover -200 – 6991.12 6677.44 6677.53 39.63 116.89 0.06 2027.89
SetCover -250 – – 7168.51 7168.57 364.78 523.38 62.57 3347.68
SetCover -300 – – – – 783.23 1100.08 282.64 3882.64

Table 1: Comparison of average solving and total time using fixed search heuristics. The
column “Solving” is the average time for problem-solving, and the column “Total” is the
average of total time for nogood generation and problem-solving.

instances using the scheme of Umetani [59] with m = 100 items, n =
100, 150, 200, 250, 300 sets, the covering density to be 5%. The fixed search
heuristic is to include sets in order of their indices. The manual method
uses dominance breaking constraints in Definition 9.

Tables 1 and 2 report the average solving time and total time using fixed
search heuristic and the free search option of the Chuffed solver respectively. An
entry “–” indicates that the whole solving process time out after the 2-hour time
limit. Overall, we observe that the efficiency of all methods is usually better
using the free search option for all benchmark problems except SetCover. By
comparing the problem-solving time of 3-dom against no-dom and manual, it
is clear that the generated dominance breaking nogoods can drastically reduce
the solving time for all benchmarks, especially for large and hard instances.
The percentage decreases in solving time of 3-dom against no-dom are at
least 34.75% using the fixed search heuristic and at least 45.37% using the free
search option. The improvement of solving times can be up to three orders of
magnitudes. Note that no-dom timeouts in most of the instances of Knapsack,
DisjKnapsack, CombAuc and SetCover, and therefore the reduction of solving

26

no-dom manual 2-dom 3-dom 4-dom MIP
Problem Solving Solving Solving Total Solving Total Solving Total Solving

Knapsack -100 – 0.39 0.39 0.83 0.02 26.43 0.12 1493.50 0.01
Knapsack -150 – 25.01 25.08 26.40 0.14 114.57 0.16 3600.16 0.01
Knapsack -200 – 994.77 1126.47 1129.69 0.51 328.63 0.52 3600.52 0.02
Knapsack -250 – 5648.41 5533.63 5539.61 1.27 735.65 1.32 3601.32 0.02
Knapsack -300 – 6957.95 6956.59 6966.22 2.60 1318.52 2.37 3602.37 0.03

DisjKnapsack -100 – 0.81 2.33 2.70 0.02 24.01 0.08 1295.02 0.01
DisjKnapsack -150 – 180.90 2961.86 2962.78 0.14 105.08 0.15 3599.23 0.02
DisjKnapsack -200 – 5631.94 – – 3.77 303.85 3.27 3603.27 0.03
DisjKnapsack -250 – – – – 45.51 654.55 44.97 3644.97 0.06
DisjKnapsack -300 – – – – 828.64 1767.80 820.77 4060.77 0.07
ConcertSched -25 12.79 8.28 1.30 1.49 1.06 2.52 1.31 35.07 1.60
ConcertSched -30 726.28 285.18 22.73 22.79 17.59 19.89 18.09 126.38 2.39
ConcertSched -35 1250.13 712.29 61.53 61.69 34.16 38.90 28.63 264.88 1.34
ConcertSched -40 1997.80 906.94 232.53 232.70 173.95 180.75 134.69 620.15 12.88
ConcertSched -45 3462.22 2666.11 1547.09 1547.39 1386.52 1397.40 990.78 1738.05 115.28

MaxCut-30 0.05 0.06 0.05 0.09 0.02 1.53 0.02 31.17 0.19
MaxCut-35 0.24 0.17 0.12 0.19 0.11 3.13 0.10 88.15 0.74
MaxCut-40 3.24 2.53 2.21 2.35 1.18 8.12 0.81 235.75 2.06
MaxCut-45 45.51 43.65 44.01 44.22 20.39 32.34 15.35 410.30 5.58
MaxCut-50 2185.55 2290.00 2245.01 2245.28 903.76 922.78 483.21 1074.19 11.79

CombAuc-100 1173.01 3.12 3.50 3.77 2.56 6.24 2.56 73.40 0.00
CombAuc-150 – 3579.07 3603.27 3603.70 2446.64 2458.44 2292.57 2527.58 0.01
CombAuc-200 – 5197.80 5218.82 5219.08 3462.73 3480.50 2795.25 3181.67 0.01
CombAuc-250 – – 7160.79 7160.84 3933.10 3962.05 3350.12 4045.66 0.01
CombAuc-300 – 6744.57 6701.04 6701.34 2571.10 2610.77 1597.85 2472.81 0.01
SetCover -100 5675.74 67.16 22.80 22.87 0.02 4.68 0.01 115.81 0.01
SetCover -150 – 5701.37 5108.01 5108.13 0.82 27.08 0.02 554.79 0.01
SetCover -200 – – – – 198.60 271.79 0.06 1958.83 0.01
SetCover -250 – – – – 1191.58 1345.87 400.83 3568.17 0.01
SetCover -300 – – – – 1944.13 2215.12 673.40 4237.09 0.02

Table 2: Comparison of average solving and total using the free search option. The column
“Solving” is the average time for problem-solving, and the column “Total” is the average of
total time for nogood generation and problem-solving.

27

Figure 4: The number of solved instances over time using fixed search heuristics

28

Figure 5: The number of solved instances over time using the free search option

29

time can be even more significant when there is no timeout limit. Another
observation is that more nogood constraints usually help to reduce the solving
time as demonstrated in ConcertSchd, MaxCut, CombAuc and SetCover. The
exception is that the solving time of 4-dom is larger than that of 3-dom for
some instances of Knapsack and DisjKnapsack. The reason is that 3-dom is
already efficient in problem-solving, and the overhead of handling more nogoods
does not compensate for the searching time for the reduced search space. The
results of MIP method in Table 2 shows that the instances from the standard
benchmarks are relatively easy for integer programming solvers.

We also study the overall performance by comparing the average total time
(generation time + solving time) as the evaluation metric. We highlight the
smallest total time in bold for each group of instances of different problems. By
comparing the difference of the total time and the solving time in each instance
group, it is obvious that more time is needed to generate more nogoods. There
is a trade-off between stronger pruning and generation time. Still, our method
comes out on top with 3-dom being the best. When using the fixed search
heuristic, 3-dom runs up to 305.60 times and 129.54 times faster than no-dom
and manual respectively. If the free search option is used, then the speed-up
of 3-dom is up to 1212.76 times compared with no-dom and 210.54 times
compared with manual. Again, the actual acceleration of L-dom can be even
higher in the cases where no-dom and manual exceed the timeout limit.

Note that no-dom and manual may sometimes achieve better performance
than L-dom in some small instances. To study the anytime behaviors [60] of
different methods, we also give the number of solved instances versus the running
time using fixed and free option in Figures 4 and 5. We observe that 2-dom, 3-
dom and 4-dom usually requires more time than no-dom and manual before
they start to solve any instances, because the proposed method needs to solve
extra generation CSPs to generate nogood constraints for dominance breaking.
The advantage of automatically generated nogood constraints becomes more
obvious for harder instances. Within the timeout limit, 3-dom and 4-dom
solve more instances than no-dom and manual for all all benchmark problems.
Another observation is that 2-dom and manual have similar performance in
Knapsack, MaxCut, CombAuc, and SetCover, while differs in DisjKnapsack and
ConcertHall. In Section 7, we will give more theoretical analysis to explain the
behaviors of 2-dom and manual in different benchmarks.

It is worth noting that instances in the standard benchmarks are randomly
generated, which could introduce bias to the results. It is possible that the
randomly generated benchmarks adhere to a specific structure that is difficult
without dominance breaking. Therefore, we include a real-life benchmark in the
next section.

6.2. A Real-life Benchmark

We also compare different methods using a real-life benchmark with indus-
trial instances for bus driver scheduling [61]. The problem can be formulated as
a set partitioning problem with a separable objective and linear equality con-
straints. We are aware of no dominance breaking constraints for this problem in

30

no-dom 2-dom 3-dom 4-dom MIP
Problem Solving Solving Total Solving Total Solving Total

r1 361.03 362.15 365.31 160.09 238.57 257.80 3772.33 1.46
r1a – – – 4124.49 4377.42 2065.75 5398.88 0.59
r2 30.994 31.69 37.011 10.98 159.01 22.92 3466.05 0.08
r3 2010.773 1975.39 2394.60 1879.29 5479.29 1877.45 5477.45 1.99
t1 0.003 0.002 0.020 0.002 0.117 0.005 0.984 0.01

Table 3: Comparison of solving and total time for the bus scheduling problem. The column
“Solving” is the average time for problem-solving, and the column “Total” is the average of
total time for nogood generation and problem-solving.

the literature. Therefore, we only compare L-dom with the baseline no-dom.
The benchmark suite2 consists of 12 instances. All methods cannot complete
within the timeout limit when using the fixed search heuristic. With the free
search option, only 5 instances can be solved by at least one method. We report
the result for these 5 instances in Table 3 and highlight the smallest total time
for each instance using constraint programming. As shown, 3-dom can reduce
the total time by 33.92% for the r1 instance compared with no-dom. When
we compare against the 2 hours timeout limit for no-dom for the r1a instance,
3-dom can improve the total time by at least 39.20%.

On the other hand, no-dom has the smallest total time for the r2, r3 and
t1 instances. In particular, the r2 and t1 instances are relatively easy with
a short solving time. Though the solving time of 3-dom is smaller compared
with no-dom, the reduced solving time cannot compensate for the overhead of
nogood generation. This is in line with our observation from Figures 4 and 5
that L-dom has less advantage for easy instances in standard benchmarks.

As for the r3 instance, 2-dom cannot speed up the solving time too much,
while the nogood generation of 3-dom and 4-dom both time out and can
generate no additional nogoods over 2-dom within 1 hour. Therefore, the
solving times of 2-dom, 3-dom and 4-dom are similar since they are solving
exactly the same problem. More efficient nogood generation can further improve
the overall efficiency of our method. As shown in our follow-up work [62], the
time for nogood generation can be further reduced by adding constraints in
generation CSPs to avoid generating redundant nogoods.

6.3. A Non-linear Benchmark

Tables 2 and 3 show that the performance of MIP dominates in the standard
and real-life benchmarks, which are linearizable and easy for integer program-
ming. However, to demonstrate the effectiveness of our method in generating
nogoods and improving performance for problems with non-linear structures,
we introduce a variant of the Business-to-Business (B2B) meeting scheduling
problem [63]. We analyze the sufficient conditions for betterment and implied
satisfaction of our method for this problem.

2https://github.com/MiniZinc/minizinc-benchmarks/tree/master/bus_scheduling

31

https://github.com/MiniZinc/minizinc-benchmarks/tree/master/bus_scheduling

The B2B meeting scheduling problem requires assigning a setM of meetings,
each of which involves two participants in a set P , to a set T of available time
slots, subject to the following constraints:

• Each meeting takes a time slot.

• Each participant can attend at most one meeting in each time slot.

• At each time slot, there can be at most L meetings due to the limit of
available locations for holding meetings.

The original problem’s objective is to minimize the number of breaks, where
a “break” refers to a sequence of idle time slots between two meetings of a
participant. We introduce a variant of this problem with a different objective
to minimize the total duration of all participants. Here, the duration of a
participant is defined as the difference between the time slots of the first and
last meetings of the participant. The problem model is as follows:

minimize
∑
p∈P

(max({xm | m ∈ Mp})−min({xm | m ∈ Mp}) + 1) (9a)

subject to atmost({xm | m ∈ M}, {t}, L),∀t ∈ T (9b)

alldifferent({xm | m ∈ M}),∀p ∈ P (9c)

where xm is the assigned time slot for the meeting m, and Mp ⊆ M is the set of
meetings involving the participant p ∈ P . The sufficient conditions for implied
satisfaction of (9b) and (9c) are given in Theorems 12 and 13, while (9a) does
not match the types of objectives in Section 4.2. The sufficient condition for
betterment of (9a) can be analyzed as follows.

Theorem 18. Let f(θ̄) be the objetive function
∑

p∈P (max({θ̄[xm] | m ∈
Mp}) −min({θ̄[xm] | m ∈ Mp}) + 1). Suppose θ, θ′ ∈ DS are two assignments

over the same scope S, and their mutation mapping is µθ′ 7→θ : DX
θ′ 7→ DX

θ . We
define the projection functions:

• max↓S(θ) ≡ max({θ[xm] | m ∈ Mp ∧ xm ∈ S}), and

• min↓S(θ) ≡ min({θ[xm] | m ∈ Mp ∧ xm ∈ S})

If we have max↓S(θ) ≤ max↓S(θ′), and min↓S(θ) ≥ min↓S(θ′) for all participant
p ∈ P , then f(θ̄) ≤ f(θ̄′) for all full assignments θ̄′ ∈ DX

θ′ , where θ̄ = µθ′ 7→θ(θ̄′).

Proof. The max function for each participant can be expressed as

max({θ̄[xm] | m ∈ Mp})
=max({θ̄[xm] | m ∈ Mp ∧ xm ∈ S} ∪ {θ̄[xm] | m ∈ Mp ∧ xm /∈ S})
=max(max↓S(θ),max({θ̄[xm] | m ∈ Mp ∧ xm /∈ S}))

By Definition 3, θ̄[xm] = θ̄′[xm] when xm /∈ S, we have

max({θ̄[xm] | m ∈ Mp ∧ xm /∈ S}) = max({θ̄′[xm] | m ∈ Mp ∧ xm /∈ S})

32

no-dom 2-dom 3-dom 4-dom MIP
Problem Solving Solving Total Solving Total Solving Total Solving

Meeting-20 261.94 156.07 156.09 156.09 156.27 146.45 147.84 –
Meeting-25 471.23 233.84 233.86 233.80 234.09 250.22 253.17 –
Meeting-30 433.67 97.21 97.23 97.98 98.42 103.43 109.23 –
Meeting-35 903.84 197.18 197.22 191.55 192.23 172.32 181.72 –
Meeting-40 1078.87 289.59 289.64 287.85 288.86 182.59 199.17 –

Table 4: Comparison of average solving and total using the free search option. The column
“Solving” is the average time for problem-solving, and the column “Total” is the average of
total time for nogood generation and problem-solving.

Therefore, max↓S (θ) ≤ max↓S (θ′) implies that max({θ̄[xm] | m ∈ Mp}) ≤
max({θ̄′[xm] | m ∈ Mp}). The proof for the min function is similar. The
objective is a linear combination of the max and the negated min function, and
thus f(θ̄) ≤ f(θ̄′).

Theorem 18 allows us to apply our method and formulate the generation of
nogoods as solving auxiliary CSPs. We generated random instances of the B2B
Meeting Scheduling Problem using a random generator [64]. The instances had
|M | ∈ 20, 25, 30, 35, 40 meetings, |P | = 10 participants, and |T | = 20 time slots
with L = 10.

Table 4 presents the average solving and total time for the B2B meeting
scheduling problem using the Chuffed solver with the free search option and
using the CBC solver 2.10. While the MIP method times out and fails to com-
plete the search within the time limit for all instances, constraint programming
solves these instances with ease. Compared to the no-dom approach, the addi-
tion of automatically generated nogoods can reduce the solving time by 43.56%
to 81.52%. The 4-dom approach achieves the best performance in instances
with over 35 meetings, while it is also competitive with the 2-dom and 3-dom
approaches in small instances. These experimental results highlight the poten-
tial of our framework to be extended to more complex problems with diverse
objectives and constraints.

7. Strength of Dominance Breaking Nogoods

Section 6 demonstrates the effectiveness of the proposed method empirically.
In this section, we further give a theoretical study on the strength of generated
nogoods to explain their superior performance in benchmark problems compared
with dominance breaking constraints derived manually in the literature.

The effect of dominance breaking constraints is to make suboptimal full
assignments in a COP become infeasible so that they are pruned in the B&B
algorithm. If one dominance breaking constraint c1 implies another one c2,
then a full assignment violating c1 must also violate c2, and c1 can prune more
full assignments. Formally, we say that a constraint c1 is logically stronger
than c2 if c1 implies c2, and they are logically equivalent if they imply each
other. Similarly, a set of constraints C1 is logically stronger than another set of

33

constraints C2 if the conjunction of C1 implies the conjunction of C2, and they
are logically equivalent if they imply each other. In the sequel, we compare the
set of generated nogoods and dominance breaking constraints in the literature
for each benchmark in each subsection.

7.1. 0-1 Knapsack Problem

The 0-1 knapsack problem is a problem with a linear objective and a linear
inequality constraint. We use one variable xi ∈ {0, 1} for each item i to indicate
whether the item is selected or not. The problem model is as follows:

maximize

n∑
i=1

pixi (10a)

subject to

n∑
i=1

wixi ≤ W (10b)

The parameters pi and wi are the profit and the weight of item i, and W is
the knapsack capacity. Chu and Stuckey [65] propose the following dominance
breaking constraints.

Definition 4. [65] The set of manual dominance breaking constraints for the
0-1 knapsack problem are xi ≤ xj for all i, j ∈ {1, . . . , n} when either

1. pi < pj ∧ wi ≥ wj,

2. pi = pj ∧ wi > wj, or

3. pi = pj ∧ wi = wj ∧ i < j,

When the length l of nogoods is set to 2, our method can generate a set of
dominance breaking nogoods that is equivalent to the set of manual dominance
breaking constraints in Definition 4.

Theorem 19. When the nogood length is l = 2, the set of automatically gen-
erated dominance breaking nogoods is logically equivalent to the set of manual
dominance breaking constraints in Definition 4.

Proof. Suppose the solution of the generation CSP is a pair (θ, θ′) of partial
assignments over the same scope S = {xi, xj} where i < j. By Theorems 4, 8
and 17, (θ, θ′) must satisfy:

• betterment: pivi + pjvj ≥ piv
′
i + pjv

′
j

• implied satisfaction for (10b): wivi + wjvj ≤ wiv
′
i + wjv

′
j

• compatibility: (−(pivi + pjvj), vi, vj) <lex (−(piv
′
i + pjv

′
j), v

′
i, v

′
j)

where vi = θ[xi], vj = θ[xj], v
′
i = θ′[xi] and v′j = θ′[xj]. Since D(xi) = D(xj) =

{0, 1}, we can exhaust all value combinations and find that there are only two
possible valid solutions for the generation CSP: either (vi, vj , v

′
i, v

′
j) = (1, 0, 0, 1)

or (vi, vj , v
′
i, v

′
j) = (0, 1, 1, 0). Therefore, we have a set of nogood constraints

¬θ′ of the forms:

34

• xi ̸= 0 ∨ xj ̸= 1 when pi ≥ pj ∧ wi ≤ wj ∧ (−pi, wi) <lex (−pj , wj)},

• xi ̸= 1 ∨ xj ̸= 0 when pi ≤ pj ∧ wi ≥ wj ∧ (−pj , wj) <lex (−pi, wi), and

• xi ̸= 1 ∨ xj ̸= 0 when pi = pj ∧ wi = wj .

Since (xi ̸= 0 ∨ xj ̸= 1) ≡ (xi ≥ xj) and (xi ̸= 1 ∨ xj ̸= 0) ≡ (xi ≤ xj), the set
of constraints in Definition 4 is equivalent to the set of generated nogoods.

Theorem 19 is consistent with the empirical result in Section 6, where 2-
dom and manual has similar performance in problem-solving. It is easy to see
that the set of generated dominance breaking nogoods becomes even stronger
when we increment the maximum nogood length L.

Corollary 4. When the maximum nogood length is L > 2, the set of automati-
cally generated dominance breaking nogoods is logically stronger than the set of
manual dominance breaking constraints in Definition 4.

7.2. Disjunctively Constrained Knapsack Problem

The disjunctively constrained knapsack problem [55] is an extension of the
knapsack problem with additional constraints that some item pairs cannot be
selected simultaneously. The conflicts among items can be represented by an
undirected graph G = (N,E) where N = {1, . . . , n} and (i, j) ∈ E if item i and
j are in conflict with each other. Let Γ(i) = {j | (i, j) ∈ E} be the neighborhood
of item i in G, and the extra constraints can be modeled by Boolean disjunction
constraints.

(xi = 0) ∨ (xj = 0),∀j ∈ Γ(i), i ∈ {1, . . . , n} (11)

The set of dominance breaking constraints is similar to that for the 0-1 knapsack
problem, except that a precondition is required to ensure swapping the value of
xi and xj does not violate the Boolean disjunction constraints.

Definition 5. The set of manual dominance breaking constraints for the dis-
junctively constrained knapsack problem are (

∧
k∈Γ(j)(xk = 0)) → (xi ≤ xj) for

all i, j ∈ {1, . . . , n} when either

1. pi < pj ∧ wi ≥ wj,

2. pi = pj ∧ wi > wj, or

3. pi = pj ∧ wi = wj ∧ i < j,

The number of variables involved in the manual dominance breaking con-
straint depends on the size of Γ(j). The following theorem states that the set of
automatically generated dominance breaking nogoods of length l = max(|Γ(j)|)+
2 is logically stronger than manual dominance breaking constraints.

Theorem 20. When the nogood length is l = max(|Γ(j)|) + 2, the set of au-
tomatically generated dominance breaking nogoods is logically stronger than the
set of manual dominance breaking constraints in Definition 5.

35

Proof. It suffices to show that there is a logically equivalent dominance breaking
nogood of length l = |Γ(j)| + 2 for every constraint in Definition 5. When
i ∈ Γ(j), the constraint (

∧
k∈Γ(j)(xk = 0)) → (xi ≤ xj) becomes a tautology.

Therefore, we only consider the case when i /∈ Γ(j). For the ease of presentation,
we assume that |Γ(j)| = 1, and the proof can be generalized trivially.

When l = 3, consider a pair (θ, θ′) of partial assignments over the scope
S = {xi, xj , xk} where i < j, k ∈ Γ(j) and (θ, θ′) is a solution of the generation
CSP with length l = 3. The pair (θ, θ′) must satisfy sufficient conditions from
Theorems 4, 8 and 17, which are similar to those in the proof of Theorem 19.
In addition, (θ, θ′) must also satisfy

((θ[xj] = 0) ∨ (θ[xk] = 0)) ⇒ ((θ′[xj] = 0) ∨ (θ′[xk] = 0)) (12)

by Theorem 10. One possible solution is to have θ[xk] = θ′[xk] = 0. Following
the same reasoning as Theorem 19, we have a set of nogoods of the forms:

• xi ̸= 0∨xj ̸= 1∨xk ̸= 0 when pi ≥ pj∧wi ≤ wj∧(−pi, wi) <lex (−pj , wj),

• xi ̸= 1 ∨ xj ̸= 0 ∨ xk ̸= 0 when pi = pj ∧ wi = wj , and

• xi ̸= 1∨xj ̸= 0∨xk ̸= 0 when pi ≤ pj∧wi ≥ wj∧(−pj , wj) <lex (−pi, wi).

Since we have (xi ̸= 0 ∨ xj ̸= 1 ∨ xk ̸= 0) ≡ ((xk = 0) → (xi ≥ xj)) and
(xi ̸= 1 ∨ xj ̸= 0 ∨ xk ̸= 0) ≡ ((xk = 0) → (xi ≤ xj)), there is a logically
equivalent dominance breaking nogood for each dominance breaking constraint
in Definition 5.

Note that the conflict constraints can also be modeled by linear inequality
constraints, but the corresponding generation CSP will have fewer solutions. For
instance, if we replace (11) with xj+xk ≤ 1, there is a constraint θ[xi]+θ[xk] ≤
θ′[xi]+θ′[xk] in the generation CSP by Theorem 8, and it is a stronger condition
than (12). Following the same reasoning as the proof of Theorem 19, we will
find the generation CSP becomes unsatisfiable, and thus there are no dominance
breaking nogoods with length l = 3.

7.3. Capacitated Concert Hall Scheduling Problem

The Capacitated Concert Hall Scheduling Problems [56] is to schedule a set
A of applications to a set H of concert halls. Each application i ∈ A has a
period [si, ei], a profit pi and a requirement ri, and each concert hall h ∈ H has
a capacity ch. An application i can be scheduled in a hall h, if the requirement
ri ≤ ch, and application i and j cannot be in the same hall if their period are
overlapping, i.e. [si, ei] ∩ [sj , ej] ̸= ∅.

Let Hi = {h ∈ H | ch ≥ ri} be the set of feasible halls for application i.
We use one variable xi ∈ Hi ∪ {0} for each application i ∈ A. Application i is
scheduled in hall h when xi = h, while it is not scheduled when xi = 0. The non-
overlapping requirement can be modeled as alldifferent except 0 constraints,
where the set of applications that are overlapping at any time point should not
be scheduled in the same hall. It is sufficient to consider the start time of all

36

applications. Let Γ(i) = {j | sj ≤ si ≤ ej} be the set of applications whose
periods are overlapping with the start time of application i ∈ A. The problem
model is as follows:

maximize
∑
k∈A

pk1>0(xk) (13a)

subject to alldifferent except 0 ({xj | j ∈ Γ(i)}),∀k ∈ A (13b)

xk ∈ Hk ∪ {0},∀k ∈ A (13c)

where 1>0 : R 7→ {0, 1} is an indicator function returning 1 when xi > 0. The
objective is to maximize the total profit of all scheduled concerts. Gange and
Stuckey [56] propose constraints to prefer shorter, more profitable concerts.

Definition 6. [56] The set of manual dominance breaking constraints for ca-
pacitated concert hall scheduling problem are xi > 0 → xj > 0 for all i, j ∈ A
where either

1. [sj , ej] ⊆ [si, ei] ∧ rj ≤ ri ∧ pj > pi, or

2. [sj , ej] ⊆ [si, ei] ∧ rj ≤ ri ∧ pi = pj ∧ i < j

The following theorem shows the relations between the set of automatically
generated dominance breaking nogoods and the set of manual dominance break-
ing constraints when the length of nogoods is set to l = 2.

Theorem 21. When the nogood length is l = 2, the set of automatically gen-
erated dominance breaking nogoods is logically stronger than the set of manual
dominance breaking constraints in Definition 6.

Proof. Note that each constraint in Definition 6 is equivalent to the conjunction
of several nogood constraints:

xi > 0 → xj > 0

⇔¬(xi > 0) ∨ (xj > 0)

⇔xi = 0 ∨ xj ̸= 0

⇔
∧

h∈Hi

(xi ̸= h ∨ xj ̸= 0)

(14)

It suffices to show that the set of nogoods in (14) is logically equivalent to a
subset of generated dominance breaking nogoods when l = 2. We will prove
that for each nogood (xi ̸= h ∨ xj ̸= 0) where h ∈ Hi, there is a pair (θ, θ′) of
partial assignments over the scope S = {xi, xj}, where θ[xi] = θ′[xj] = 0 and
θ[xj] = θ′[xi] = h.

The pair (θ, θ′) is a solution of the generation CSP if it satisfies sufficient
conditions from Theorems 4, 14 and 17:

• betterment: pi1>0(0) + pj1>0(h) = pj ≥ pi = pi1>0(h) + pj1>0(0)

• implied satisfaction for (13b) and (13c)

37

– ∀k ∈ A, {θ[xj] | j ∈ Γ(k)} ⊆ {θ′[xi] | i ∈ Γ(k)},
– ∀k ∈ A, θ[xj] ∈ Hj ∪ {0}

• compatibility: (−pj , 0, h) <lex (−pi, h, 0)

By definition of Γ(k), if [sj , ej] ⊆ [si, ei], then j ∈ Γ(k) implies that i ∈ Γ(k),
and the implied satisfaction for (13b) must hold. Also, by definition of Hi and
Hj , if rj ≤ ri, then Hi ⊆ Hj , and the implied satisfaction for (13c) must hold
when θ[xj] = θ′[xi] = h ∈ Hi. Therefore, when [sj , ej] ⊆ [si, ei], pj ≥ pi, h ∈ Hi,
and (−pj , 0, h) <lex (−pi, h, 0), (θ, θ

′) is a solution of the generation CSP and
there is a dominance breaking nogoods ¬θ′ ≡ (xi ̸= h ∨ xj ̸= 0). The set of all
generated nogoods is the same as that in (14) and is logically equivalent to the
set of manual dominance breaking constraints in Definition 6.

Theorem 21 shows that the set of dominance breaking nogoods is even log-
ically stronger than manual dominance breaking constraints in [56], and the
theoretical result is also consistent with the empirical evaluation in Section 6,
where 2-dom has a better performance than manual in terms of the problem-
solving time and the number of solved instances within the timeout limit.

Again, it is easy to see that the set of generated dominance breaking nogoods
becomes even stronger when we increment the maximum nogood length L.

Corollary 5. When the maximum nogood length is L > 2, the set of automati-
cally generated dominance breaking nogoods is logically stronger than the set of
manual dominance breaking constraints in Definition 6.

7.4. Weighted Maximum Cut Problem

Given a weighted undirected graph G = (V,E), the maximum cut problem
is to find a partition (V1, V2) of V to maximize the total weights of crossing
edges. We use one binary variable xi ∈ {0, 1} for each vertex i ∈ V to indicate
whether i is in V1. The problem model is as follows:

maximize
∑

(i,j)∈E

w(i,j)xi ⊕ xj

subject to xi ∈ {0, 1},∀i ∈ V

where xi⊕xj is the exclusive disjunction which is 1 only when xi ̸= xj . Note that
the objective function is equivalent to the cut function g(V1) = g({i | xi = 1}),
which is a submodular set function. Inspired by the local search algorithm [66],
we define the following manual dominance breaking constraints.

Definition 7. The set of manual dominance breaking constraints for the weighted
maximum cut problems are xi ̸= 1 ∨ xj ̸= 1 for all pairs of nodes {i, j} when
either g({i}) ≥ g({i, j}) or g({j}) ≥ g({i, j}).

When the length l of generated nogoods is 2, the set of generated dominance
breaking nogoods is equivalent to the set of constraints in Definition 7.

38

Theorem 22. The set of automatically generated dominance breaking nogoods
of length l = 2 is logically equivalent to the set of manual dominance breaking
constraints in Definition 4.

Proof. By Corollary 1 and Theorem 17, a pair (θ, θ′) of partial assignments over
the scope S = {xi, xj} is a solution of the generation CSP for l = 2 if:

• betterment: g(U(θ)) ≥ g(U(θ′)) ∧ U(θ) ⊆ U(θ′)

• compatibility: (−g(U(θ)), θ[xi], θ[xj]) <lex (−g(U(θ′), θ′[xi], θ
′[xj])

where U(θ) = {k | xk ∈ S ∧ θ[xk] = 1} and U(θ′) = {k | xk ∈ S ∧ θ′[xk] = 1}.
Since D(xi) = D(xj) = {0, 1}, we exhaust all value combinations and find that
there are only two possible valid solutions: (1) θ[xi] = θ′[xi] = θ′[xj] = 1, θ[xj] =
0, and (2) θ[xj] = θ′[xi] = θ′[xj] = 1, θ[xi] = 0. Therefore, there is a generated
nogood constraint ¬θ′ ≡ (xi ̸= 1 ∨ xj ̸= 1) when either g({i}) ≥ g({i, j}) or
g({j}) ≥ g({i, j}), and the set of all generated nogoods of length 2 is equivalent
to the set of constraints in Definition 7.

Similar to those for the 0-1 knapsack problems, the set of generated nogoods
becomes even stronger when we increment the maximum nogood length L.

Corollary 6. When the maximum nogood length is L > 2, the set of automati-
cally generated dominance breaking nogoods is logically stronger than the set of
manual dominance breaking constraints in Definition 7.

7.5. Combinatorial Auction Problem

The combinatorial auction problem is to select a subset of n bidders for m
items, where each bidder Bi is a subset of {1, . . . ,m} and is associated with
a profit pi. The restriction is that each item can appear at most once in the
selected bidders, and the aim is to maximize the total values. We use one binary
variable xi ∈ {0, 1} for each bidder to indicate whether the bidder i is selected
or not and let Γ(k) = {i | k ∈ Bi} be the set of bidders that contain item k.
The problem model is as follows:

maximize

n∑
i=1

pixi (15a)

subject to

n∑
i∈Γ(k)

xi ≤ 1,∀k ∈ {1, . . . ,m} (15b)

Following the method by Chu and Stuckey [65], we consider dominance breaking
constraint derived from mappings that swap the values of variables xi and xj .

Definition 8. The set of manual dominance breaking constraints for the com-
binatorial auction problems are xi ≤ xj for all i, j ∈ {1, . . . , n} when Bi ⊇ Bj

and either (1) pi < pj, or (2) pi = pj ∧ i < j.

39

Theorem 23. The set of automatically generated dominance breaking nogoods
of length l = 2 is equivalent to the set of manual dominance breaking constraints
in Definition 8.

Proof. Suppose the solution of the generation CSP is a pair (θ, θ′) of partial
assignments over the same scope S = {xi, xj}. If Bi ⊇ Bj , then j ∈ Γ(k)
implies that i ∈ Γ(k). By Theorems 4, 8 and 17, (θ, θ′) is a solution of the
generation CSP if it satisfies:

• betterment: pivi + pjvj ≥ piv
′
i + pjv

′
j

• implied satisfaction for (15b):

– vj ≤ v′j when i ∈ Γ(k) and j /∈ Γ(k), or

– vi + vj ≤ v′i + v′j when i, j ∈ Γ(k)

• compatibility: (−(pivi + pjvj), vi, vj) <lex (−(piv
′
i + pjv

′
j), v

′
i, v

′
j)

where vi = θ[xi], vj = θ[vj], v
′
i = θ′[xi] and v′j = θ′[xj]. We can exhaust all value

combinations and find that there are only two possible valid solutions of the
generation CSP: either (vi, vj , v

′
i, v

′
j) = (1, 0, 0, 1) or (vi, vj , v

′
i, v

′
j) = (0, 1, 1, 0).

The set of generated nogoods consists of:

• xi ̸= 0 ∨ xj ̸= 1 when pi > pj , and

• xi ̸= 1 ∨ xj ̸= 0 when pi ≤ pj ,

which is equivalent to the set of constraints in Definition 8.

7.6. Set Covering Problems

The set covering problem [58] is to select a collection of subsets whose union
equals to the universe {1, . . . ,m}, and it is a dual problem of the combinatorial
auction problem. In this problem, each subset Si is associated with a cost ci,
and the objective is to minimize the total cost of the selected subsets. We use
one binary variable xi ∈ {0, 1} for each subset, and let Γ(k) = {i | k ∈ Bi}
be the collection of subsets that contain element k. The problem model is as
follows:

minimize

n∑
i=1

cixi (16a)

subject to

n∑
i∈Γ(k)

xi ≥ 1,∀k ∈ {1, . . . ,m} (16b)

Similar to Definition 8, we can derive the dominance breaking constraints by
the method by Chu and Stuckey [65].

Definition 9. The set of manual dominance breaking constraints for the set
covering problems are xi ≤ xj for all i, j ∈ {1, . . . , n} when Bi ⊆ Bj and either
(1) ci > cj, or (2) ci = cj ∧ i < j.

40

We have the following result, which is similar to that for the combinatorial
auction problem.

Theorem 24. The set of automatically generated dominance breaking nogoods
of length l = 2 is equivalent to the set of manual dominance breaking constraints
in Definition 9.

The proof is similar to that of Theorem 23.

8. Concluding Remarks

In this paper, we present the first fully automated method to make domi-
nance breaking accessible to non-experts for a class of constraint optimization
problems. Our method formulates the generation of dominance breaking no-
goods as a constraint satisfaction problem, providing a systematic and efficient
way to generate dominance breaking nogoods. An important advantage of our
method is the ability to control the amount and the aggregated strength of the
generated nogoods. Empirical results demonstrate that our method can speed
up the solving of constraint optimization problems using constraint solvers. Ad-
ditionally, our theoretical analysis on various benchmark problems shows that
our method can discover dominance breaking nogoods that had never been dis-
covered before.

There are several directions for further improvement of our method. The
generation of nogoods instance by instance can result in overhead that may not
compensate for the reduction in problem-solving time. Our experiment shows
that in problems with linear structures, the overall performance is not competi-
tive with integer programming due to the large nogood generation time. Future
research can focus on further reducing the generation time, such as through
generalizing nogoods from small to large instances of the same problem class.
Currently, the examination of nogood patterns still requires human interven-
tion [67].

Our method has its applicability limited to a specific class of problems,
resulting from the analysis of sufficient conditions for betterment and implied
satisfaction. The Real-world problems, such as instances from the MiniZinc
Challenge, consists of more complicated structures and cannot be handled by
our current method. One possible solution to this limitation is to analyze the
syntactic structures and exploit the functional dependency of variables [67].
Future research can explore alternative ways of addressing this limitation by
automating the analysis of sufficient conditions.

In addition, future research can focus on understanding the characteristics
and roles of individual nogoods and avoiding redundancies. It would be interest-
ing to study measures to assess the effectiveness of individual nogood constraints
in pruning the search space, allowing for the maintenance of only a subset of
relevant nogoods. Furthermore, SAT-based techniques for nogood simplifica-
tion, such as clause vivification [68], can potentially remove redundant literals
in generated dominance breaking nogoods in practice.

41

Acknowledgement

We are grateful to the anonymous reviewers of IJCAI-PRICAI 2020 and
the Artificial Intelligence journal for their insightful comments and suggestions.
We also acknowledge the financial support of a General Research Fund (RGC
Ref. No. CUHK 14206321) by the University Grants Committee, Hong Kong.

References

[1] L. Getoor, G. Ottosson, M. Fromherz, B. Carlson, Effective redundant
constraints for online scheduling, in: Proceedings of the the Fourteenth
AAAI National Conference on Artificial Intelligence, 1997, pp. 302–307.

[2] P. Baptiste, C. Le Pape, W. Nuijten, Constraint-based scheduling: applying
constraint programming to scheduling problems, Vol. 39, Springer Science
& Business Media, 2001.

[3] M. G. de la Banda, P. J. Stuckey, G. Chu, Solving talent scheduling with
dynamic programming, INFORMS Journal on Computing 23 (1) (2011)
120–137.

[4] H. Qin, Z. Zhang, A. Lim, X. Liang, An enhanced branch-and-bound algo-
rithm for the talent scheduling problem, European Journal of Operational
Research 250 (2) (2016) 412–426.

[5] A. Garrido, E. Onaindia, O. Sapena, Planning and scheduling in an e-
learning environment. A constraint-programming-based approach, Engi-
neering Applications of Artificial Intelligence 21 (5) (2008) 733–743.

[6] K. E. Booth, T. T. Tran, G. Nejat, J. C. Beck, Mixed-integer and constraint
programming techniques for mobile robot task planning, IEEE Robotics
and Automation Letters 1 (1) (2016) 500–507.

[7] R. E. Korf, Optimal rectangle packing: new results., in: Proceedings of
the Fourteenth International Conference on International Conference on
Automated Planning and Scheduling, 2004, pp. 142–149.

[8] H. Hojabri, M. Gendreau, J.-Y. Potvin, L.-M. Rousseau, Large neighbor-
hood search with constraint programming for a vehicle routing problem
with synchronization constraints, Computers & Operations Research 92
(2018) 87–97.

[9] K. E. Booth, J. C. Beck, A constraint programming approach to electric
vehicle routing with time windows, in: Proceedings of the 16th Interna-
tional Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, Springer, 2019, pp. 129–145.

[10] F. Rossi, P. van Beek, T. Walsh, Handbook of Constraint Programming,
Elsevier Science Inc., 2006.

42

[11] E. C. Freuder, In pursuit of the holy grail, Constraints 2 (1) (1997) 57–61.

[12] E. C. Freuder, Progress towards the holy grail, Constraints 23 (2) (2018)
158–171.

[13] A. Land, A. Doig, An Automatic Method of Solving Discrete Programming
Problems, Econometrica: Journal of the Econometric Society (1960) 497–
520.

[14] A. K. Mackworth, Consistency in networks of relations, Artificial intelli-
gence 8 (1) (1977) 99–118.

[15] R. E. Korf, M. D. Moffitt, M. E. Pollack, Optimal rectangle packing, Annals
of Operations Research 179 (1) (2010) 261–295.

[16] T. Aldowaisan, A new heuristic and dominance relations for no-wait flow-
shops with setups, Computers and Operations Research 28 (6) (2001) 563–
584.

[17] S. Prestwich, J. C. Beck, Exploiting dominance in three symmetric prob-
lems, in: Proceedings of the Fourth International Workshop on Symmetry
and Constraint Satisfaction Problems, 2004, pp. 63–70.

[18] J.-N. Monette, P. Schaus, S. Zampelli, Y. Deville, P. Dupont, A CP ap-
proach to the balanced academic curriculum problem, in: Proceedings of
the 7th International Workshop on Symmetry and Constraint Satisfaction
Problems, 2007, pp. 56–63.

[19] G. Chu, P. J. Stuckey, A generic method for identifying and exploiting
dominance relations, in: Proceedings of the 18th International Conference
on Principles and Practice of Constraint Programming, 2012, pp. 6–22.

[20] C. Mears, M. Garcia de la Banda, M. Wallace, B. Demoen, A method for de-
tecting symmetries in constraint models and its generalisation, Constraints
20 (2) (2015) 235–273.

[21] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, G. Tack,
MiniZinc: Towards a standard CP modelling language, in: Proceedings of
the 13th International Conference on Principles and Practice of Constraint
Programming, Springer, 2007, pp. 529–543.

[22] J. H. M. Lee, A. Z. Zhong, Automatic Generation of Dominance Breaking
Nogoods for a Class of Constraint Optimization Problems, in: Proceedings
of the 29th International Joint Conference on Artificial Intelligence, 2020,
pp. 1192–1200.

[23] W. H. Kohler, K. Steiglitz, Characterization and theoretical comparison
of branch-and-bound algorithms for permutation problems, Journal of the
ACM (JACM) 21 (1) (1974) 140–156.

43

[24] T. Ibaraki, The power of dominance relations in branch-and-bound algo-
rithms, Journal of the ACM (JACM) 24 (2) (1977) 264–279.

[25] G. Chu, P. J. Stuckey, Minimizing the maximum number of open stacks
by customer search, in: Proceedings of the 15th International Conference
on Principles and Practice of Constraint Programming, Springer, 2009, pp.
242–257.

[26] C.-F. Yu, B. W. Wah, Learning dominance relations in combinatorial search
problems, IEEE Transactions on Software Engineering 14 (8) (1988) 1155–
1175.

[27] C. D. Mears, Automatic symmetry detection and dynamic symmetry break-
ing for constraint programming, Ph.D. thesis, Monash University (2009).

[28] I. P. Gent, K. E. Petrie, J.-F. Puget, Symmetry in constraint programming,
Foundations of Artificial Intelligence 2 (2006) 329–376.

[29] E. C. Freuder, Eliminating interchangeable values in constraint satisfaction
problems, in: Proceedings of the 9th National Conference on Artificial
Intelligence, 1991, pp. 227–233.

[30] A. M. Frisch, I. Miguel, T. Walsh, CGRASS: A system for transforming con-
straint satisfaction problems, in: Proceedings of the 2002 Joint ERCIM/-
CologNet International Conference on Constraint Solving and Constraint
Logic Programming, Springer, 2002, pp. 15–30.

[31] A. Ramani, I. L. Markov, Automatically exploiting symmetries in con-
straint programming, in: Proceedings of the 2004 Joint ERCIM/-
CoLOGNET International Conference on Recent Advances in Constraints,
Springer, 2004, pp. 98–112.

[32] J.-F. Puget, Automatic detection of variable and value symmetries, in:
Proceedings of the 11th International Conference on Principles and Practice
of Constraint Programming, Springer, 2005, pp. 475–489.

[33] P. V. Hentenryck, P. Flener, J. Pearson, M. Ågren, Compositional deriva-
tion of symmetries for constraint satisfaction, in: Proceedings of the 6th
International Symposium on Abstraction, Reformulation, and Approxima-
tion, Springer, 2005, pp. 234–247.

[34] C. Mears, M. Garcia de la Banda, M. Wallace, On implementing symmetry
detection, Constraints 14 (4) (2009) 443–477.

[35] O. Ohrimenko, P. J. Stuckey, M. Codish, Propagation via lazy clause gen-
eration, Constraints 14 (3) (2009) 357–391.

[36] T. Feydy, P. J. Stuckey, Lazy clause generation reengineered, in: Proceed-
ings of the 15th International Conference on Principles and Practice of
Constraint Programming, Springer, 2009, pp. 352–366.

44

[37] G. Chu, M. Banda, Garcia de la Banda, P. J. Stuckey, Automatically ex-
ploiting subproblem equivalence in constraint programming, in: Proceed-
ings of the 7th international conference on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Prob-
lems, Springer, 2010, pp. 71–86.

[38] G. Chu, M. G. de la Banda, P. J. Stuckey, Exploiting subproblem domi-
nance in constraint programming, Constraints 17 (1) (2012) 1–38.

[39] G. Chu, P. J. Stuckey, Dominance breaking constraints, Constraints 20 (2)
(2015) 155–182.

[40] M. Fischetti, D. Salvagnin, Pruning moves, INFORMS Journal on Com-
puting 22 (1) (2010) 108–119.

[41] M. Fischetti, P. Toth, A new dominance procedure for combinatorial opti-
mization problems, Operations Research Letters 7 (4) (1988) 181–187.

[42] P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson,
T. Walsh, Breaking row and column symmetries in matrix models, in: Pro-
ceedings of the 8th International Conference on Principles and Practice of
Constraint Programming, Springer, 2002, pp. 462–477.

[43] N. Beldiceanu, M. Carlsson, J.-X. Rampon, Global constraint catalog
(2010).

[44] J.-C. Régin, A filtering algorithm for constraints of difference in CSPs,
in: Proceedings of the Twelfth AAAI National Conference on Artificial
Intelligence, 1994, pp. 362–367.

[45] N. Beldiceanu, E. Contejean, Introducing global constraints in CHIP,
Mathematical and computer Modelling 20 (12) (1994) 97–123.

[46] C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, T. Walsh, Among, com-
mon and disjoint constraints, in: Proceedings of the 2005 Joint ERCIM/-
CoLogNET International Conference on Constraint Solving and Constraint
Logic Programming, Springer, 2005, pp. 29–43.

[47] A. Oplobedu, J. Marcovitch, Y. Tourbier, CHARME: Un langage indus-
triel de programmation par contraintes, illustré par une application chez
Renault, in: Ninth International Workshop on ExpertSystems and Their
Applications: General Conference, Vol. 1, 1989, pp. 55–70.

[48] L. G. Kaya, J. N. Hooker, A filter for the circuit constraint, in: Proceed-
ings of the 12th International Conference on Principles and Practice of
Constraint Programming, Springer, 2006, pp. 706–710.

[49] K. G. Francis, P. J. Stuckey, Explaining circuit propagation, Constraints
19 (1) (2014) 1–29.

45

[50] P. Van Hentenryck, Constraint satisfaction in logic programming, MIT
press, 1989.

[51] A. K. Mackworth, E. C. Freuder, The complexity of constraint satisfaction
revisited, Artificial Intelligence 59 (1-2) (1993) 57–62.

[52] C. W. Choi, J. H. M. Lee, P. J. Stuckey, Propagation redundancy in re-
dundant modelling, in: Proceedings of the 9th International Conference on
Principles and Practice of Constraint Programming, Springer, 2003, pp.
229–243.

[53] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff:
Engineering an efficient SAT solver, in: Proceedings of the 38th Annual
Design Automation Conference, 2001, pp. 530–535.

[54] J. Forrest, T. Ralphs, H. G. Santos, S. Vigerske, J. Forrest, L. Hafer,
B. Kristjansson, jpfasano, EdwinStraver, M. Lubin, Jan-Willem, rlougee,
jpgoncal1, S. Brito, h-i gassmann, Cristina, M. Saltzman, tosttost,
B. Pitrus, F. MATSUSHIMA, to st, coin-or/cbc: Release releases/2.10.10
(Apr. 2023). doi:10.5281/zenodo.7843975.
URL https://doi.org/10.5281/zenodo.7843975

[55] T. Yamada, S. Kataoka, K. Watanabe, Heuristic and exact algorithms for
the disjunctively constrained knapsack problem, Information Processing
Society of Japan Journal 43 (9).

[56] G. Gange, P. J. Stuckey, Sequential precede chain for value symmetry elim-
ination, in: Proceedings of the 24th International Conference on Principles
and Practice of Constraint Programming, Springer, 2018, pp. 144–159.

[57] E. Balas, A. Ho, Set covering algorithms using cutting planes, heuristics,
and subgradient optimization: a computational study, in: Combinatorial
Optimization, Springer, 1980, pp. 37–60.

[58] S. L. Hakimi, Optimum distribution of switching centers in a communica-
tion network and some related graph theoretic problems, Operations re-
search 13 (3) (1965) 462–475.

[59] S. Umetani, Exploiting variable associations to configure efficient local
search algorithms in large-scale binary integer programs, European Journal
of Operational Research 263 (1) (2017) 72–81.

[60] S. Zilberstein, Using anytime algorithms in intelligent systems, AI magazine
17 (3) (1996) 73–73.

[61] S. D. Curtis, B. M. Smith, A. Wren, Forming bus driver schedules using
constraint programming, in: Proceedings of the 1st International Confer-
ence on the Practical Applications of Constraint Technologies and Logic
Programming, 1999, pp. 239–254.

46

https://doi.org/10.5281/zenodo.7843975
http://dx.doi.org/10.5281/zenodo.7843975
https://doi.org/10.5281/zenodo.7843975

[62] J. H. Lee, A. Z. Zhong, Towards more practical and efficient automatic
dominance breaking, in: Proceedings of the 35th AAAI Conference on
Artificial Intelligence, Vol. 35, 2021, pp. 3868–3876.

[63] M. Bofill, J. Espasa, M. Garcia, M. Palah́ı, J. Suy, M. Villaret, Scheduling
b2b meetings, in: Proceedings of the 20th International Conference on
Principles and Practice of Constraint Programming, 2014, pp. 781–796.

[64] M. Bofill Arasa, J. Coll Caballero, J. Giráldez-Cru, J. Suy Franch, M. Vil-
laret i Ausellé, The impact of implied constraints on maxsat b2b instances,
International Journal of Computational Intelligence Systems, 2022, vol. 15,
art. núm. 63.

[65] G. Chu, P. J. Stuckey, Dominance driven search, in: Proceedings of the 19th
International Conference on Principles and Practice of Constraint Program-
ming, Springer, 2013, pp. 217–229.

[66] S. Sahni, T. Gonzalez, P-complete approximation problems, Journal of the
ACM (JACM) 23 (3) (1976) 555–565.

[67] J. H. M. Lee, A. Z. Zhong, Exploiting functional constraints in automatic
dominance breaking for constraint optimization, in: C. Solnon (Ed.), Pro-
ceedings of the 28th International Conference on Principles and Practice of
Constraint Programming, Vol. 235 of Leibniz International Proceedings in
Informatics (LIPIcs), 2022, pp. 31:1–31:17.

[68] C.-M. Li, F. Xiao, M. Luo, F. Manyà, Z. Lü, Y. Li, Clause vivification
by unit propagation in cdcl sat solvers, Artificial Intelligence 279 (2020)
103197.

47

	Introduction
	Background
	Constraint Satisfaction and Optimization
	Basic Definitions in Relational Mathematics
	Dominance Relations in COPs

	Related Works
	Identification of Dominance Relations
	Automatic Methods for Dominance Breaking

	Automatic Generation of Dominance Breaking Nogoods
	Dominance Relations on Partial Assignments
	Betterment for Efficiently Checkable Objectives
	Separable Objectives
	Supermodular and Submodular Objectives

	Implied Satisfaction for Efficiently Checkable Constraints
	Unary Constraints
	Linear Inequality Constraints
	Boolean Disjunction Constraints
	Counting Constraints
	Circuit Constraint

	Compatibility of Dominance Breaking Nogoods
	Lexicograhpical ordering for Partial Assignments
	Generalized lexicograhpical ordering

	Modeling Nogood Generation as Constraint Satisfaction
	Empirical Evaluation
	Standard Benchmarks
	A Real-life Benchmark
	A Non-linear Benchmark

	Strength of Dominance Breaking Nogoods
	0-1 Knapsack Problem
	Disjunctively Constrained Knapsack Problem
	Capacitated Concert Hall Scheduling Problem
	Weighted Maximum Cut Problem
	Combinatorial Auction Problem
	Set Covering Problems

	Concluding Remarks

