
Finding Good Partial Assignments during Restart-Based
Branch and Bound Search

Hongbo Li1 and Jimmy H.M. Lee2

1School of Information Science and Technology, Northeast Normal University, Changchun, China
2Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

lihb905@nenu.edu.cn, jlee@cse.cuhk.edu.hk

Abstract

Restart-based Branch-and-Bound Search (BBS) is a stan-
dard algorithm for solving Constraint Optimization Problems
(COPs). In this paper, we propose an approach to find good
partial assignments to jumpstart search at each restart for gen-
eral COPs, which are identified by comparing different best
solutions found in different restart runs. We consider informa-
tion extracted from historical solutions to evaluate the qual-
ity of the partial assignments. Thus the good partial assign-
ments are dynamically updated as the current best solution
evolves. Our approach makes restart-based BBS explore dif-
ferent promising sub-search-spaces to find high-quality so-
lutions. Experiments on the MiniZinc benchmark suite show
how our approach brings significant improvements to a black-
box COP solver equipped with the state of the art search tech-
niques. Our method finds better solutions and proves optimal-
ity for more instances.

Introduction
Constraint Programming (CP) is a powerful paradigm
for solving discrete combinatorial optimization problems.
Restart-based depth-first Branch-and-Bound Search (BBS)
is a standard algorithm used in black-box constraint solvers
to solve Constraint Optimization Problems (COPs). Due to
the NP-hard characteristic of general COP, search heuris-
tics (Michel and Van Hentenryck 2012; Palmieri and Perez
2018; Demirovic, Chu, and Stuckey 2018; Fages and
Prud’Homme 2017) play an important role in BBS. An ef-
ficient search heuristic may find a high quality or even an
optimal solution quickly. Besides search heuristics, explor-
ing a good sub-search-space containing high quality solu-
tions first will speed up the finding of an optimal solution.
However, as far as we know, there exists no approach that
can always find a sub-search-space containing optimal so-
lutions for general COPs before solving the problems. To
avoid search being trapped in a bad sub-search-space, the
restart technique (Gomes, Selman, and Kautz 1998) helps
BBS explore different sub-search-space and has been a nec-
essary component in modern black-box COP solvers.

Finding good search entrance for general COPs is not
easy. Restart techniques usually help BBS switch search en-
trances by utilizing the heuristic information accumulated in

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

different restart runs (Boussemart et al. 2004; Michel and
Van Hentenryck 2012; Li, Yin, and Li 2021). Recently, Fre-
quent Pattern Mining-based Search (FPMS) (Li et al. 2020)
is proposed to find good subtrees for solving COPs. It makes
BBS directly zoom into a promising sub-search-space by
running a pre-processing phase using frequent pattern min-
ing on high quality sampled solutions. However, FPMS is
suitable for only loosely constrained problems. In this pa-
per, we propose a novel approach to find good initial partial
assignments for general COPs. The approach discovers good
partial assignments as search entrances that can be extended
to high quality or even optimal solutions. The partial assign-
ments are updated as the current best solution evolves, so
that the approach is naturally incorporated with restart tech-
niques to explore different sub-search-space specified by the
partial assignments. Our idea is based on a simple premise.
Given two feasible solutions S1 and S2, where S1 is con-
sidered better than S2. If a solution is a set of variable as-
signments, then S1 \S2 contains the assignments that makes
S1 better. In our approach, the best solution at each restart
run is always added to the front of a queue. The pairwise
difference of adjacent solutions in the queue are extracted to
form the basis of the good sub-search-space to jumpstart the
next restart run. In case a run fails to find a solution within
the restart limit, the partial assignment is cut by half and
a larger sub-search-space will be explored. The procedure
repeats until either a new solution is found or the partial
assignment is empty and the default search strategy takes
over. Extensive experimentation with the MiniZinc bench-
mark suite demonstrates that our approach significantly im-
proves the performance of the state of the art search strategy
for a black-box COP solver. Our method is able to find better
solutions and prove optimality for more instances.

Background
Constraint Optimization Problem
A Constraint Optimization Problem (COP) P is a 4-tuple
P = ⟨X ,D, C,F⟩, where X is a set of variables, the do-
main dom(x) ∈ D specifies the set of possible values for
each x ∈ X , C is a set of constraints and F is an objective
function. Each constraint c ∈ C specifies the allowed combi-
nations of values for a subset of variables. An assignment A
to variables X ⊆ X is a set of instantiations of the form x/v,

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

4035

one for each x ∈ X to assign v to x where v ∈ dom(x). If
X = X , then A is a complete assignment; otherwise a par-
tial assignment. An assignment to a single variable is called
a singleton-assignment or simply s-assignment. A complete
assignment S that satisfies all constraints is a feasible solu-
tion to P . The search space of P is the Cartesian product
of the domains of all variables. Each partial assignment A
specifies a sub-search-space. The length of a partial assign-
ment is the number of s-assignments involved in it. The ob-
jective function F maps every complete assignment of P to
a real number. Without loss of generality, we consider here
minimization and a feasible solution S∗ is an optimal solu-
tion if F(S∗) ≤ F(S) for any other feasible solution S to
P . In case of maximization, optimal solutions are defined
simply with ≤ replaced by ≥. For simplicity, we consider
minimization problems in this paper.

Restart-based Depth-First BBS
A COP P can be solved by Branch-and-Bound Search
(BBS) augmented with constraint propagation (Bessiere
2006). This work focuses on search strategies. Thus we skip
the details of constraint propagation and always adopt the
solver’s default propagation engine. BBS explores the search
space with depth-first backtracking tree search resulting in
a search tree. The main idea is to use the last best feasi-
ble solution found as an upper bound to help prune search
space. When no more solutions can be found, optimality is
proved and the last feasible solution found can be returned
as the optimal solution of the COP. While building a search
tree, BBS makes decisions with search heuristics, e.g., se-
lecting an s-assignment. To avoid being trapped in a bad
sub-search-space, modern constraint solvers usually employ
restart techniques to switch different search entrances, e.g.,
the initial decisions of a search tree. Restart techniques set
a cutoff to trigger restarts. Whenever the amount of a given
resource reaches the cutoff during search, such as the num-
ber of failures or the number of search tree nodes visited,
the search is restarted from the root node with a new search
order. Each restart run will build a new search tree. To en-
sure the completeness of BBS, the popular restart strategies
usually set an initial cutoff c and the cutoff is increased as
the restart number r increases. For instance, the geometric
restart (Gomes, Selman, and Kautz 1998; Walsh 1999) in-
creases the cutoff with a growing factor ρ, e.g., c×ρr. Luby
restart uses the Luby sequence (Luby, Sinclair, and Zucker-
man 1993) to set the cutoff, e.g, c×lr where lr is the number
returned by Luby sequence at time r.

A high-level description of restart-based BBS is included
in Algorithm 1 (please ignore the boxed part for the mo-
ment). Our approach is built on this framework. If the fgpa
flag is set to false, i.e., the boxed parts are skipped, then
the Algorithm 1 degenerates to the basic restart-based BBS.
Whenever a new feasible solution S is found, S is recorded
as the current best solution and F(S) is used to bound sub-
sequent search to ensure the next feasible solution found
must be strictly better than S at line 18. The algorithm ter-
minates in three cases: (1) it returns the best solution found
so far when a termination condition (such as a time limit) is
reached; (2) it returns null if unsatisfiability is proved and

Algorithm 1: Restart-based depth-first BBS
Input: a COP P and a termination condition;
Output: a solution S;

1 S ← null;

2

if fgpa then
solQueue← empty;
newSolutionFound← false;

while the

termination condition is not reached do
3 x/v← MAKEDECISION(); // Algorithm 4
4 if propagating the s-assignment x=v fails then
5 if the restartCutoff is reached then
6 set next restartCutoff by the default

restart strategy;

7

if fgpa then
PREPAREFORRESTART();

// Algorithm 2

8 restart the search;
9 else

10 cancel the decision and backtrack;
11 if unsatisfiability is proved then
12 return S;

13 else
14 if all variables are assigned then
15 S ← current best solution;

16

if fgpa then
newSolutionFound← true;
lastSolution← S;

add a constraint to ensure next solution
is better than S;

17 cancel the last assignment and backtrack;
18 if unsatisfiability is proved then
19 return S;

20 return S;

no feasible solution is found; (3) it returns an optimal solu-
tion if unsatisfiability is proved and some feasible solutions
are found. One possibility to define the restart condition is
using the number of failures encountered during a search
run. Whenever the number of failures reaches restartCutoff
at line 6, the search is restarted at line 9.

Our approach will work as a plugin that improves the
default search strategy for COPs, so that there is a default
restart strategy at line 7 in Algorithm 1. In the follow-
ing pseudocodes, all the variables with the same names are
global variables.

Finding Good Partial Assignments for COPs
We will first introduce the motivation of this work and the
main workflow of the proposed approach. Then we intro-
duce how to implement the workflow in Algorithm 1.

4036

The Motivation
A partial assignmentA is optimal if it can be extended to an
optimal solution. If we know an optimal partial assignment
A, then we can find an optimal solution in a sub-search-
space of size O(dn−|A|) instead of the entire search-space of
size O(dn), where n is the variable number and d is the max-
imum domain size. However, as far as we know, no approach
can always identify optimal partial assignments for general
COPs before solving it. Thus the aim of our approach is to
find promising partial assignments that have a higher possi-
bility of being optimal, or can be extended to a high-quality
solution whose objective is close to that of an optimal one.

Given a COP P and its feasible solutions S1 and S2 with
different objectives. We consider each of the solutions as a
set of s-assignments. S1 ∩ S2 forms a partial assignment of
P . Assuming that F(S1) < F(S2), then in the sub-search-
space specified by S1 ∩ S2, the partial assignment S1 \ S2

is better than S2 \ S1, because S1 = (S1 ∩ S2) ∪ (S1 \
S2) and S2 = (S1 ∩ S2) ∪ (S2 \ S1). In a sense, S1 \ S2

is what makes S1 a better solution. Intuitively, the current
best solution evolves towards optimal solutions in BBS. The
partial assignments extracted from the current best solution
should evolve towards optimal partial assignments.

The main workflow of our approach is shown in Fig-
ure 1. The variable solQueue is a FIFO queue with a
maximum size m (a parameter) storing some representa-
tive solutions. A new solution will be added to the head of
solQueue and the earliest added one will be removed when
the queue is full. The variable paList is a list storing all
the s-assignments extracted from solQueue. The variable
subtree is a list storing the partial assignment to be explored
in next restart. The details of the algorithm will be intro-
duced in the following subsections.

Generating Good Partial Assignments
To generate good partial assignments, we collect the last and
best solution found by BBS at each restart run. The collec-
tion is done at lines 3-5 of Algorithm 2 which is called at line
8 of Algorithm 1 before each restart. We select only the last
solution as the representative solution of the current search
tree and store these solutions in the queue solQueue. The
good partial assignments will be extracted from the stored
solutions. In BBS, a new solution is always better than those
found before it. We always add a new representative solution
to the head of solQueue. Thus the solutions in solQueue
are naturally sorted by their objectives and the best one is at
the head. Other parts of Algorithm 2 are related to utilizing
good partial assignments, and we will explain those later.

We track the evolution of the solutions to extract good
partial assignments. Algorithm 3 is the procedure of Gen-
erating Partial Assignments (GPA), which synthesizes a list
paList storing all the extracted s-assignment. Whenever a
new solution is added into solQueue, a new paList will be
created. The GPA procedure iterates over solQueue from
the head and extracts a partial assignment Si \ Si+1 from
each pair of adjacent solutions Si and Si+1. It always puts
the partial assignments extracted from better solutions at ear-
lier locations in paList, e.g., the s-assignments in Si \ Si+1

Run BBS with subtree to restartCutoff

Update solQueue with S

Search completed?

Y

N

N

Y Terminate

paList;
subtree;

Initialize restartCutoff

new solution S found?

Create a new paList from solQueue

Copy paList to subtree

Set temporary restartCutoff

Remove latter half of paList

Set restartCutoff by the
default restart strategy

Restart search

Figure 1: The main workflow of our approach.

Algorithm 2: PREPAREFORRESTART

1 restartNum← restartNum + 1;
2 if newSolutionFound then
3 add lastSolution to the head of solQueue ;
4 if solQueue.size > m then
5 remove the last one from solQueue ;
6 newSolutionFound← false;
7 GPA();
8 defCut← the cutoff returned by the default

restart sequence;
9 set restartCutoff to restartNum×defCut;

10 restartNum← 1;
11 PREPARESUBTREE(); // Algorithm 5

Algorithm 3: GPA
1 paList← empty;
2 for i = 1 to solQueue.size - 1 do
3 for each s-assignment xi/vi in Si \ Si+1 do
4 if xi/vi is not in paList then
5 add xi/vi at the end of paList;

are always stored before those in Sj \ Sj+1 (j > i), where i
and j are the indexes of the solutions in solQueue.

Utilizing Good Partial Assignments in BBS
The variable subtree is essentially a copy of paList (to be
explained in Algorithm 5). We use a simple strategy to in-
voke BBS to first explore the sub-search-space specified by
subtree (a list storing the partial assignment to be used) in
Algorithm 4. This is a normal depth-first BBS except that
the initial assignments are specified. At each step, the first s-
assignment x/v in subtree is selected and removed from the
list. If v is still in the domain of x, it will be used to make

4037

Algorithm 4: MAKEDECISION

1 while subtree is not empty AND fgpa do
2 x/v← select and remove the first s-assignment

from subtree;
3 if v is still in dom(x) then
4 return x/v;

5 return the decision made by the default heuristic;

Algorithm 5: PREPARESUBTREE

1 subtree← empty;
2 copy paList to subtree;
3 remove the s-assignments indexed from

paList.size
2 + 1 to paList.size from paList;

a decision. After subtree is exhausted, the default search
strategy takes over. Thus the search will not be limited in
the sub-search-space and the rest of the search-space will be
explored.

The list subtree is generated from paList in Algorithm 5
which is called at line 11 of Algorithm 2. In each call of PRE-
PARESUBTREE procedure, it copies all the s-assignments
from paList to subtree with the initial ordering and re-
moves the latter half from paList. The PREPARESUBTREE
procedure is called before each restart, so that if a better so-
lution is not found in current run, only the first half of paList
will be copied to the subtree for next restart run. The rea-
son for the operation (line 3) is as follows. A longer partial
assignment results in a smaller sub-search-space. We would
prefer longer partial assignments that can be extended to an
optimal solution. However, we do not know which of the s-
assignments in paList are involved in an optimal solution.
Therefore, we explore the smallest sub-search-space when a
new paList is generated. After that, if no solution is found
in the current run, we remove the bottom half of the partial
assignment and explore a larger sub-search-space in the next
restart run. The procedure repeats until either a new solution
is found, or the partial assignment is empty. In the latter case,
the default search strategy takes over.

We design a strategy to give more resource to the next
run after a new paList is generated, because we expect to
find a new solution in the smallest sub-search-space spec-
ified by the new partial assignment. The idea is to set a
temporary restart cutoff for the next run, which is usually
larger than the default cutoff. The temporary restart cut-
off is set to defCut×restartNum at line 9 of Algorithm 2,
where defCut is the cutoff returned by the default restart se-
quence and restartNum is the number of restarts before the
last representative solution was found, which is accumulated
in PREPAREFORRESTART procedure. The temporary cutoff
will overwrite the cutoff set at line 7 of Algorithm 1. The
variable restartNum is initialized to 1 and reset to 1 at line
10 of Algorithm 2 after a new solution is found. Whenever
a restart run fails to find a new solution, restartNum will
be incremented by 1. It is used to measure the difficulty of

finding a new solution. The intuition is that the partial as-
signments extracted from a hard to find solution may con-
tain some good s-assignments that are hard to find, so that
we should give more resource to explore the corresponding
sub-search-space. Thus the more difficult to find the current
solution, the larger the temporary cutoff is set. If the first run
with a temporary restart cutoff fails to find a solution, the
default restart strategy will take over until the next feasible
solution is found.

Refining Procedure GPA
Algorithm 3 may put some good s-assignments at the lat-
ter locations of paList, because some good ones may be
extracted from a solution found in an earlier run. Thus, we
propose a refined strategy utilizing the average contribution
of each s-assignment to sort all the s-assignments in paList.
The Refined Generating Partial Assignment (RGPA) proce-
dure is presented in Algorithm 6.

The good s-assignments will be extracted from only the
most recent k solutions where k is set to solQueue.size

2 . As-
suming that F(Si) < F(Sj), and given an s-assignment,
if it appears in set = Si \ Sj , it is given an objScore =
F(Sj)−F(Si)

|set| which is the average contribution to the im-
provement of objective value between Si and Sj . We also
design a strategy to give higher weight to the s-assignments
extracted from a better solution (line 4). The weight is mea-
sured by the distance from a solution Si to the current best
solution S′ (the first one in solQueue), e.g., k+1−i

k , where
i is the index of the solution Si in solQueue. We com-
pare each Si with the solutions from Si+1 to Si+k and add
score = weight×objScore considering both the weight and
the contribution into the scoreList of each s-assignment in
Si \ Sj (j = i + 1 to i + k) (lines 9-13). The scoreList
of an s-assignment is a list recording all the scores of the

Algorithm 6: RGPA
1 visited← ∅;
2 k ← solQueue.size

2 ;
3 for i = 1 to k do
4 weight← k+1−i

k ;
5 for j = 1 to k do
6 set← Si \ Si+j ;
7 objScore← F(Si+j)−F(Si)

|set| ;
8 score← objScore×weight;
9 for each s-assignment x/v in set do

10 if x/v /∈ visited then
11 visited← visited ∪ {x/v};
12 scoreList(x/v)← empty;
13 add score into scoreList(x/v);

14 paList← empty;
15 sort all s-assignments in visited in descending order

of the average of their recorded scores;
16 add the sorted s-assignments in visited into paList;

4038

s-assignment and it may contain duplicate scores coming
from different extractions for the s-assignment. All the s-
assignments are measured and sorted by the descending or-
der of the average of scores recorded in their scoreList
(lines 14-16).

Proposition 1. The procedure GPA costs O(mn) time and
the procedure RGPA costs O(m2n + (log2 nd)nd) time,
where m is the maximum size of solQueue, n is the num-
ber of variables and d is the maximum domain size.

Proof. The GPA procedure compares at most m-1 pairs of
solutions to extract partial assignments. It costs O(n) time
to generate each Si \ Sj , so it costs O(mn) time.

The RGPA procedure extracts partial assignment from at
most m

2 solutions (the loop at line 3). Each of these solu-
tions will be compared with at most m

2 solutions (the loop at
line 5). So it costs O(m2n) time to collect the scores of the
s-assignments. There are at most nd s-assignments in the
problem. So, sorting all the s-assignment in visited costs
O((log2 nd)nd) time. Thus, the RGPA procedure costs
O(m2n+ log2 nd)nd time.

Proposition 2. Both the GPA procedure and RGPA proce-
dure require O(mn+ nd) space.

Proof. The solQueue costs O(mn) space to store the solu-
tions. The paList contains at most nd s-assignments, so the
GPA procedure needs O(mn+ nd) space.

The RGPA procedure records a scoreList for each s-
assignment. To calculate the average score for each s-
assignment, we can use an implementation costing O(1)
space to record the number of scores and the interme-
diate average result. So the RGPA procedure also needs
O(mn+ nd) space.

Note that both GPA and RGPA may create a paList con-
taining more than one s-assignment for a variable. We keep
multiple s-assignments x/v1 and x/v2 for x for two reasons.
Assuming that x/v1 is before x/v2. Firstly, if x/v1 is used to
make a decision, then x/v2 will be filtered by propagation,
so the lines 3-4 of Algorithm 4 guarantees that x/v2 will not
take effect. Secondly, the s-assignments in paList are from
different solutions, so they may be inconsistent. If x/v1 is
inconsistent with those s-assignments before it, it will be fil-
tered by propagation. In this case, x/v2 can be used as an
alternate decision, which should be better than a decision
made by the default strategy.
Example. The following is an example of the different
paLists generated by GPA and RGPA. Table 1 presents the
assignments of 4 solutions recorded in solQueue. S4 is the
current best solution located at the head of solQueue and S1

is the best solution from the first restart run and it is located
at the end of solQueue.
• The GPA procedure does not consider the objectives. It
extracts x1/2, x5/4, x6/4 and x7/4 from S4\S3, x1/3, x3/3
and x4/3 from S3 \ S2, x1/2 and x2/2 from S2 \ S1. Thus
it creates a paList: x1/2, x5/4, x6/4, x7/4, x1/3, x3/3,
x4/3, x2/2.
• The RGPA procedure considers more information. There
are 4 solutions in solQueue, so k is set to 2 here. When

i sol obj x1 x2 x3 x4 x5 x6 x7 x8

1 S4 54 2 2 3 3 4 4 4 1
2 S3 60 3 2 3 3 1 1 1 1
3 S2 90 2 2 1 1 1 1 1 1
4 S1 100 1 1 1 1 1 1 1 1

The i column is the index of the solutions in solQueue.

Table 1: The solutions in solQueue of the example

finding good partial assignments from S4, the weight is 1.
The procedure first extracts x1/2, x5/4, x6/4 and x7/4 from
S4\S3, and then it adds (60−54)×1

4 = 1.5 into the scoreList
of each of the four s-assignments. Secondly, it extracts x3/3,
x4/3, x5/4, x6/4 and x7/4 from S4 \ S2, and adds 7.2 into
the scoreList of each of the five s-assignments. When ex-
tracting good partial assignments from S3, the weight is 0.5.
It first extracts x1/3, x3/3, x4/3 from S3 \ S2, and adds
(90−60)×0.5

3 = 5 into the scoreList of each of the three s-
assignments. Then it extracts x1/3, x2/2, x3/3 and x4/3
from S3 \ S1, and adds 5 into the scoreList of each of the
four s-assignment. Finally, the scoreList of x5/4, x6/4 and
x7/4 contain 1.5 and 7.2, so the average score is 4.35. The
scoreList of x3/3 and x4/3 contain 7.2, 5 and 5, so the av-
erage score is 5.73. The scoreList of x1/2 contains 1.5. The
scoreList of x1/3 contains 5 and 5, so the average score is
5. The scoreList of x2/2 contains 5. After sorting the s-
assignments by the descending order of the average scores,
it creates a paList: x3/3, x4/3, x1/3, x2/2, x5/4, x6/4,
x7/4, x1/2.

Discussion and Related Work
Our approach explores the sub-search-spaces specified by
different partial assignments. The procedure seems to simu-
late Large Neighbourhood Search (LNS) (Shaw 1998) that
fixes the assignment of some variables and searches in a sub-
search-space to find better solutions in an iterative manner.
LNS selects a set of variables and fix them to their values
in the current best solution. Both GPA and RGPA provide a
strategy to generate a partial assignment extracted from dif-
ferent solutions. When utilizing the partial assignment, the
variables involved in the partial assignment are not fixed.
They are instantiated one by one at the top of the search tree,
so that the corresponding sub-search-space will be explored
first and search is not limited in the sub-search-space. If the
sub-search-space contains no better solution and the restart
limit is not reached, the search will continue to explore the
rest of the search space upon backtracking. While the partial
assignment fixed by LNS is consistent, the partial assign-
ment generated by our approach may be inconsistent. This
is not a problem when utilizing the partial assignment, be-
cause only one s-assignments is used at each step and lines
3-4 in Algorithm 4 will skip the inconsistent s-assignments.

Solution-Based Phase Saving (SBPS) (Demirovic, Chu,
and Stuckey 2018) is an efficient value-selection strategy for
COPs. It gives priority to the value v for each variable x if
x/v is in the current best solution. If v is still in dom(x), it
selects x/v; otherwise, it makes the selection by an underly-
ing value heuristic. SBPS also simulates LNS. The phase to

4039

be saved in the next feasible solution is usually determined
by variable heuristics (Michel and Van Hentenryck 2012;
Palmieri and Perez 2018), because the variables selected ear-
lier are placed at higher level of the search tree, so that they
have a larger chance to keep their current values in next fea-
sible solution. Our approach finds good partial assignment
first, and then place them at the top of the search tree. The
s-assignments in the partial assignments have larger chance
to be kept in the next feasible solution.

Bound-Impact Value Selector (BIVS) (Fages and
Prud’Homme 2017) chooses the value of a variable leading
to the best objective bound after a propagation. For each
value v in dom(x), BIVS applies a decision x/v in a copy
of the COP and calculates the reduction effects on the
objective through propagation, and then selects the value
leading to the best bound of the objective. SBPS employing
BIVS as the underlying value heuristic has been used as the
default value-selection heuristic in some black-box COP
solvers, such as Choco (Prud’homme, Fages, and Lorca
2017). Our approach works as a heuristic to make decisions
at the top levels of the search trees. It can be combined with
any search strategy including SBPS and BIVS.

Frequent Pattern Mining-based Search (FPMS) (Li et al.
2020) finds good subtrees containing high-quality solutions
for loosely constrained optimization problems. It employs
a random search procedure to generate sample solutions to
represent the feature of the solution space and uses frequent
pattern mining to find a good partial assignment. If the prob-
lem is tightly constrained, then the sampling procedure of
FPMS will be costly. Thus, it is not suitable for tightly con-
strained problems. Besides, it finds only one good search en-
trance and has not been incorporated with restart techniques.
Our approach analyses the intermediate solutions found by
BBS to find good partial assignments and does not need a
sampling procedure. Thus our approach is suitable for all
kinds of constraint optimization problems. Besides, our ap-
proach updates the good partial assignments as the current
best solution evolves, so that it provides multiple search en-
trances to incorporate with restart techniques.

Our approach enjoys benefits of both Evolutionary Com-
putation (EC) (Back, Fogel, and Michalewicz 1997) and
BBS. People customize different strategies in EC to solve
specific optimization problems. We adapt the idea of main-
taining a solution set to extract useful information to find
good partial assignments for general constraint optimization
problems. Whenever a new solution is found, it will be used
to update the partial assignment for the next restart run. In
our approach, some components of EC work as a part of the
search strategy in BBS for completely solving COPs.

Experiments
In the following, GPA and RGPA denote our approach with
GPA and RGPA procedures generating partial assignments
respectively. We incorporate GPA and RGPA into state of
the art search strategy (baseline) to examine how our ap-
proach improves the baseline black-box COP solver.
The Environment. The environment is JDK8 under CentOS
6.4 with Intel Xeon CPU E7-4820@2.00GHz processor and
58 GB RAM. The experiments were run in Choco solver

(version 4.10.8) (Prud’homme, Fages, and Lorca 2017). 1

We have used a unique random seed 0 throughout the exper-
iments and the timeout is set to 2 hours.
Benchmark. The experiments were run with the MiniZ-
inc benchmark suite from https://github.com/MiniZinc/
minizinc-benchmarks. The instances are flattened offline to
FlatZinc format to use the global constraints provided by
Choco. After eliminating those large instances that cannot
be flattened in 1 hour, we have 71 MiniZinc models of
1292 instances. To balance the effect of instance set size,
we randomly pick 10 instances for each MiniZinc model. If
a model contains less than 10 instances, we select them all.
Metrics. The performance of the compared search strate-
gies are measured by solution quality and the number of in-
stances where search completes. It is not easy to define a
unique measurement for solution qualities, because the ob-
jectives of the instances vary greatly and there are minimiza-
tion and maximization problems. We compare the strate-
gies in pairs to see which one finds better solutions. In the
following tables, the row #C presents the numbers of in-
stances where search completes. In each cell containing two
numbers separated by a colon, we present the numbers of
instances where the approach with the row id finds better
solutions versus that of the approach with the column id.
The instances where the two compared strategies find solu-
tions with same objective are not counted. The last column
presents the number of wins for each strategy with a row id.
Baseline. We have used SBPS (Demirovic, Chu, and
Stuckey 2018) as the value heuristic and BIVS (Fages and
Prud’Homme 2017) as the underlying heuristic for SBPS.
The Luby sequence (Luby, Sinclair, and Zuckerman 1993)
based restart strategy which achieves a good balance be-
tween frequent and extended restarts is employed. The initial
restart cutoff is set to n, the number of variables. The default
nogood recording (Lecoutre et al. 2007) technique in Choco
is also used. With the above settings, we have tested three
variable-selection heuristics including dom/wdeg (the de-
fault variable heuristic in Choco) (Boussemart et al. 2004),
Activity-Based Search (ABS, the variable heuristic which
is recommend to be combined with SBPS) and ABSO (the
variable heuristic combining ABS with an objective-based
function, which is designed for constraint optimization prob-
lems) (Palmieri and Perez 2018). Table 2 presents the results
got in 2 hours of 577 random selected instances. The cells
containing two numbers separated by a colon present the
comparison between two methods, e.g., the cell containing
174:54 means the search strategy with ABS finds a solution
better than that found by the strategy with dom/wdeg in 174
instances, and the latter finds better solutions in 54 instances.
Thus ABS wins. It is shown that ABS performs better than
the others in both completing search and solution quality.
Thus we have used ABS as the variable-selection strategy.
All the above techniques put together is a state of the art
black-box COP solver containing ABS, SBPS, BIVS, Luby
restart and nogood recording, which is used as the baseline
(marked by Base in the results) in the experiments.

1The source code of RGPA implemented in Choco 4.10.8 is
available at https://github.com/lihb905/rgpa.

4040

ABS dom
wdeg ABSO win

ABS - 174:54 126:91 2
dom
wdeg 54:174 - 98:163 0

ABSO 91:126 163:98 - 1
#C 321 244 248 -

Table 2: The baseline search strategies

Results. Our approach is designed for the optimization pro-
cedure. It starts to work after the second feasible solution is
found. So we eliminated the infeasible instances and those
instances where the baseline cannot find the second feasi-
ble solution in 2 hours. The tables contain the results of 480
instances randomly selected from the remaining instances.

Firstly, we investigate the influence of the parameter m
in RGPA, which is the maximum number of solutions in
solQueue. The performance of RGPA with m set to 10, 20,
30, 50 and unlimited (marked by U) is investigated. Table 3
presents the results. The cells in the table present the same
results as those in Table 2, e.g., the cell containing 41:38
means the RGPA with m = 20 finds a solution better than
that found by the RGPA with m = 10 in 41 instances, and
the latter finds better solutions in 38 instances. Thus RGPA
with m = 20 wins. It is shown that the parameter 20 outper-
forms all the others, 30 is outperformed by 20 only, 10 is
outperformed by all the others and unlimited is not a good
choice either. The results indicate that the parameter should
not be too small or too large. A small number of solutions
may not provide sufficient information and a large number of
solutions may keep the information of the earlier found so-
lutions, which should be discarded. We believe that there is
no best parameter for all problems, and 20 is recommended
here for a black-box solver. It is shown the performance
of different parameters are close in completing search. Al-
though 20 is not the one completing search in the largest
number of instances, it is good at finding better solutions.
Thus, we set m to 20 in the following experiments.

Secondly, we compare GPA and RGPA with the baseline.
The results are grouped by different time limits in seconds
in Table 4. The OBJ rows present the same comparison as in
Table 3. Note that in each cell we can compute the number
u of instances where the compared strategies finds the same
quality of solution since the sum of u and the two presented
numbers is 480. From the comparison of solution qualities,
we can see that RGPA performs better than the other two
in all time limits and GPA also outperforms the baseline
in all time limits. From the #C rows, we can see that the
baseline strategy completes search in the largest number of
instances in the short time limit of 600 seconds, but GPA
completes search in 276 instances before timeout (7200 sec-
onds). RGPA completes search in the largest number of in-
stances in the other time limits. RGPA loses in 1 instance
in completing search and outperforms the others in finding
good solutions, and gets the best overall performance. We
also present the result of comparing the number of better
instances found in different time limits in a histogram in
Figure 2. We can see a clear trend that as the time limit in-

m 10 20 30 50 U win
10 - 38:41 34:43 37:43 39:42 0
20 41:38 - 30:24 32:20 32:19 4
30 43:34 24:30 - 25:19 29:15 3
50 43:37 20:32 19:25 - 18:10 2
U 42:29 19:32 15:29 10:18 - 1
#C 276 275 276 274 274 -

Table 3: Experiments on parameter m of RGPA

Time
Limit Base GPA RGPA win

600 OBJ
Base - 66:76 58:73 0
GPA 76:66 - 58:69 1

RGPA 73:58 69:58 - 2
#C 215 206 210 -

1200 OBJ
Base - 62:78 56:74 0
GPA 78:62 - 59:69 1

RGPA 74:56 69:59 - 2
#C 224 224 226 -

1800 OBJ
Base - 60:77 52:75 0
GPA 77:60 - 58:75 1

RGPA 75:52 75:58 - 2
#C 230 228 234 -

3600 OBJ
Base - 50:82 46:78 0
GPA 82:50 - 54:71 1

RGPA 78:46 71:54 - 2
#C 242 244 245 -

5400 OBJ
Base - 45:85 43:82 0
GPA 85:45 - 53:62 1

RGPA 82:43 62:53 - 2
#C 251 253 253 -

7200 OBJ
Base - 43:84 40:84 0
GPA 84:43 - 52:61 1

RGPA 84:40 61:52 - 2
#C 269 276 275 -

Table 4: The overall results

600s 1200s 1800s 3600s 5400s 7200s

40

60

80

58 56
52

46 43 40

73 74 75 78
82 84

Time limits

N
um

be
ro

fi
ns

ta
nc

es Base RGPA

Figure 2: Comparing RGPA with the baseline.

creases, the gap between RGPA and the baseline widens.
Next, we examine the effect of different settings of the

restart strategy. The latest Choco solver (version 4.10.8) pro-
vides a strategy that resets the restart sequence after a solu-
tion is found. Whether resetting the sequence or not may

4041

RGPA(IM) RGPA(D) RGPA(U) Base(D) Base(U) win
RGPA(IM) - 70:50 72:48 84:40 81:46 4
RGPA(D) 50:70 - 67:53 77:48 66:60 3
RGPA(U) 48:72 53:67 - 81:54 62:55 2
Base(D) 40:84 48:77 54:81 - 57:71 0
Base(U) 46:81 60:66 55:62 71:57 - 1

#C 275 275 277 269 269 -

Table 5: Experiments on different settings of restart

Problems RGPA FPMS

OpenStacks
(48 instances)

Average Objective 10.5 11.73
Better 48 26

Average Time 31 481
#C 29 19

Trucking
(15 instances)

Average Objective 470 1771
#Better 15 5

Average Time 206 3202
#C 5 5

Table 6: RGPA verse FPMS

affect the performance of all the search strategies. So in Ta-
ble 5, we compare our approach with the baseline with re-
setting (the default setting, marked by (D)) and unresetting
(marked by (U)) the sequence. Only the strategy RGPA(IM)
uses our strategy that sets the temporary restart cutoff. It is
shown that RPGA always outperforms the baseline strategy
in both resetting and unresetting the sequence. Adding our
strategy that uses the temporary restart cutoff into RGPA(D),
RGPA(IM) outperforms all the others in finding better so-
lutions. Although RGPA(IM) completes search in less in-
stances than RGPA(U), it outperfroms the baseline.

RGPA is known to be more superior than FPMS as dis-
cussed in the last section. In particular, FPMS is applicable
only to loosely constrained problems. As such, we selected
2 among the 71 MiniZinc benchmarks in our experiment,
with which FPMS can be used successfully, for comparison
between RGPA and FPMS. The results are shown in Table
6. The #Better rows show the number of instances where the
corresponding method finds better solutions in 7200 seconds
and the Average Time rows show the time cost of finding the
best solution. It is shown that RGPA costs significantly less
time to find better solutions than FPMS. RGPA also com-
pletes search in more instances in the OpenStacks problem.

Conclusion
In this paper, we propose an approach to find good par-
tial assignments for general constraint optimization prob-
lems. Our approach extracts good partial assignments from
different intermediate solutions found during branch-and-
bound search. Exploring the sub-search-space specified by
the good partial assignments, our approach helps BBS finds
better solutions and complete search in more instances. It
significantly improves the state of the art search strategy for
general constraint optimization problems.

Acknowledgements
We thank the anonymous referees for their constructive
comments. This work is supported by the National Natu-
ral Science Foundation of China under Grant 62276060 and
Natural Science Foundation of Jilin Province under Grant
20210101470JC. In addition, we acknowledge the finan-
cial support of a General Research Fund (RGC Ref. No.
CUHK 14206321) by the University Grants Committee,
Hong Kong.

References
Back, T.; Fogel, D. B.; and Michalewicz, Z. 1997. Handbook
of Evolutionary Computation. GBR: IOP Publishing Ltd.,
1st edition. ISBN 0750303921.
Bessiere, C. 2006. Constraint Propagation. In Rossi, F.;
van Beek, P.; and Walsh, T., eds., Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelli-
gence, 29–83. Elsevier.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L. 2004.
Boosting Systematic Search by Weighting Constraints. In
Proc. ECAI’04, volume 16, 146–150.
Demirovic, E.; Chu, G.; and Stuckey, P. J. 2018. Solution-
based phase saving and large neighbourhood search. In
Proc. CP’18, 99–108. Springer.
Fages, J. G.; and Prud’Homme, C. 2017. Making the First
Solution Good. In Proc. ICTAI’17. IEEE.
Gomes, C. P.; Selman, B.; and Kautz, H. 1998. Boosting
Combinatorial Search Through Randomization. In Proc.
AAAI’98, 431–437.
Lecoutre, C.; Sais, L.; Tabary, S.; and Vidal, V. 2007.
Recording and Minimizing Nogoods from Restarts. Jour-
nal on Satisfiability, Boolean Modeling and Computation, 1:
147–167.
Li, H.; Lee, J. H.; Mi, H.; and Yin, M. 2020. Finding Good
Subtrees for Constraint Optimization Problems Using Fre-
quent Pattern Mining. In Proc. AAAI’20, 1577–1584.
Li, H.; Yin, M.; and Li, Z. 2021. Failure Based Variable
Ordering Heuristics for Solving CSPs. In Proc. CP’21, 9:1–
9:10.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of Las Vegas algorithms. Information Processing
Letters, 47(4): 173–180.
Michel, L.; and Van Hentenryck, P. 2012. Activity-based
Search for Black-box Constraint Programming Solvers. In
Proc. CPAIOR’12, 228–243. Springer.

4042

Palmieri, A.; and Perez, G. 2018. Objective as a Feature
for Robust Search Strategies. In Proc. CP’18, 328–344.
Springer.
Prud’homme, C.; Fages, J.-G.; and Lorca, X. 2017. Choco
Documentation. TASC - LS2N CNRS UMR 6241,
COSLING S.A.S.
Shaw, P. 1998. Using constraint programming and local
search methods to solve vehicle routing problems. In Proc.
CP’98, 417–431. Springer.
Walsh, T. 1999. Search in a Small World. In Proc. IJCAI’99,
1172–1177.

4043

