
Predict+Optimize for Packing and Covering LPs with
Unknown Parameters in Constraints

Xinyi Hu1, Jasper C.H. Lee2, Jimmy H.M. Lee1

1Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
2Department of Computer Sciences & Institute for Foundations of Data Science, University of Wisconsin–Madison, WI, USA

{xyhu,jlee}@cse.cuhk.edu.hk, jasper.lee@wisc.edu

Abstract

Predict+Optimize is a recently proposed framework which
combines machine learning and constrained optimization,
tackling optimization problems that contain parameters that
are unknown at solving time. The goal is to predict the un-
known parameters and use the estimates to solve for an esti-
mated optimal solution to the optimization problem. How-
ever, all prior works have focused on the case where un-
known parameters appear only in the optimization objective
and not the constraints, for the simple reason that if the con-
straints were not known exactly, the estimated optimal so-
lution might not even be feasible under the true parameters.
The contributions of this paper are two-fold. First, we pro-
pose a novel and practically relevant framework for the Pre-
dict+Optimize setting, but with unknown parameters in both
the objective and the constraints. We introduce the notion of
a correction function, and an additional penalty term in the
loss function, modelling practical scenarios where an esti-
mated optimal solution can be modified into a feasible so-
lution after the true parameters are revealed, but at an ad-
ditional cost. Second, we propose a corresponding algorith-
mic approach for our framework, which handles all packing
and covering linear programs. Our approach is inspired by the
prior work of Mandi and Guns, though with crucial modifica-
tions and re-derivations for our very different setting. Exper-
imentation demonstrates the superior empirical performance
of our method over classical approaches.

Introduction
Constrained optimization problems are ubiquitous in daily
life, yet, they often contain parameters that are unknown at
solving time. As an example, retail merchants wish to op-
timize their stocking of products in terms of revenue and
cost, and yet the precise demands for each product are not
known ahead of time. The goal, then, is to 1) predict the
unknown parameters and 2) solve the optimization problem
using these predicted parameters, in the hopes that the es-
timated solution is good even under the true parameters re-
vealed later on. The classical approaches would learn a pre-
dictor for these unknown parameters using losses like the
mean squared error, which are independent of the optimiza-
tion at hand. However, a small error for the predicted param-
eters in the parameter space does not necessarily guarantee

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a high solution quality evaluated under the true parameters.
The recent framework of Predict+Optimize by Elmachtoub
and Grigas (2017; 2022) proposes to instead use the more
effective regret function as the loss function, capturing the
difference in objective between the estimated and true opti-
mal solutions, both evaluated using the true parameters.

A number of prior works (Wilder, Dilkina, and Tambe
2019; Elmachtoub, Liang, and McNellis 2020; Guler et al.
2022) have developed algorithmic implementations of this
framework on a variety of classes of optimization problems.
Yet, all the prior works have focused on the case where
only the optimization objective contains unknown parame-
ters, and never the constraints. This is for a simple technical
reason: if we had used some predicted parameters to solve
for an estimated solution, the solution might not even be fea-
sible under the true parameters! On the other hand, some ap-
plication scenarios allow for post-hoc correction of an esti-
mated solution into a feasible solution after the true param-
eters are revealed, potentially at additional cost or penalty.
Using the product stocking example again, a hard constraint
is the available warehouse space, which needs to be pre-
dicted, depending on how well the already-bought products
sell. If a merchant buys in excess of the available space, they
always have the option to throw away some of the newly-
bought products, which would involve 1) paying a disposal
company as well as 2) losing out on the profit of the thrown-
away products as a “penalty”.

The contributions of this paper are two-fold. First, we cap-
ture the above intuition and significantly generalize the Pre-
dict+Optimize framework, allowing us to address optimiza-
tion problems with unknown parameters in both the objec-
tive and the constraints. Specifically, we introduce the pro-
cess of post-hoc correction, which makes use of a correc-
tion function and a penalty function. The definition of regret
is enhanced to take into account the post-hoc correction of
a solution, and the associated cost and penalty. Second, we
propose an algorithmic implementation for this novel frame-
work as applied to packing and covering linear programs
(LPs), a well-studied and significant class of practically rel-
evant optimization problems. We give a general correction
function for packing and covering LPs, and demonstrate how
to learn a predictor in this setting using an approach inspired
by the work of Mandi and Guns (2020). We also apply our
approach on 3 benchmarks to demonstrate the superior em-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

3987



pirical performance of our method over classic learning al-
gorithms1.

Background
In this section, we describe the formulation of Pre-
dict+Optimize as it appears in prior works, on problems
with unknown parameters appearing only in the objective.
The theory is stated in terms of minimization but applies of
course also to maximization, upon appropriate negation.

An optimization problem P is defined as finding

x∗ = argminx obj(x) s.t. C(x)

where x ∈ Rd is a vector of decision variables, obj : Rd →
R is a function mapping x to a real objective value which
is to be minimized, and C(x) is a set of constraints over x.
We say x∗ is an optimal solution and obj(x∗) is the optimal
value.

In prior works, a parameterized optimization problem
(Para-OP) P (θ) extends an optimization problem P as:

x∗(θ) = argminx obj(x, θ) s.t. C(x)

where θ ∈ Rt is a vector of parameters. The objective de-
pends on θ, and note that the constraints do not (in prior
works). When the parameters are known, a Para-OP is just
an optimization problem.

In Predict+Optimize (Elmachtoub and Grigas 2017,
2022), the true parameters θ ∈ Rt for a Para-OP are un-
known at solving time, and estimated parameters θ̂ are used
instead. Suppose that for each parameter, there are m rel-
evant features. A learner is given n observations forming
a training data set {(A1, θ1), . . . , (An, θn)}, where Ai ∈
Rt×m is a feature matrix for θi, and the task is to learn a
prediction function f : Rt×m → Rt predicting parameters
θ̂ = f(A) from any feature matrix A.

The key aspect of Predict+Optimize is to measure qual-
ity of the estimated parameters θ̂ using the regret function
as the loss function. The regret is the objective difference
between the true optimal solution x∗(θ) and the estimated
solution x∗(θ̂) under the true parameters θ. Formally, the re-
gret function Regret(θ̂, θ) : Rt × Rt → R≥0 is:

Regret(θ̂, θ) = obj(x∗(θ̂), θ)− obj(x∗(θ), θ)

where obj(x∗(θ̂), θ) is the estimated optimal value and
obj(x∗(θ), θ) is the true optimal value. Following the empir-
ical risk minimization principle, prior learning methods (El-
machtoub, Liang, and McNellis 2020) aim to return the pre-
diction function to be the function f from the set of mod-
els F attaining the smallest average regret over the training
data:

f∗ = argminf∈F
1
n

∑n
i=1 Regret(f(Ai), θi) (1)

Mandi and Guns (2020) proposed to use a (feedforward)
neural network to predict the unknown parameters from fea-
tures. The standard approach to training neural networks is

1We allow estimated solutions to be corrected also for these
classic learning algorithms, but the training itself just uses the orig-
inal loss function, which is oblivious to any potential correction.

via gradient descent using the backpropagation algorithm,
in order to learn the weight on each edge of the network.
Concretely, fixing a training feature matrix A and a corre-
sponding true parameter vector θ, for each edge e on the
network with weight we, we need to compute the derivative
dRegret

dwe
. Using the multivariate chain rule, the derivative can

be decomposed as follows:

dRegret(θ̂, θ)

dwe
=

∂Regret(θ̂, θ)

∂x∗(θ̂)

∂x∗(θ̂)

∂θ̂

∂θ̂

∂we
(2)

where ∂Regret(θ̂,θ)

∂x∗(θ̂)
is a vector with the same length as the

decision variable vector x∗, ∂x∗(θ̂)

∂θ̂
is a matrix, and ∂θ̂

∂we
is

a vector with the same length as the number of unknown
parameters. The right hand side of the Equation 2 is to be
interpreted as a matrix product.

On the right hand side, the first term is the gradient of the
regret with respect to the estimated optimal solution. In the
context of linear programs, this is trivial to compute since
the objective function is linear in x∗. The third term, on the
other hand, is the gradient of the estimated parameters with
respect to the neural network edge weight, which can be
computed efficiently using the standard backpropagation al-
gorithm (Rumelhart, Hinton, and Williams 1986). What re-
mains is the second term ∂x∗

∂θ̂
: the derivative of each decision

variable with respect to each predicted parameter. In general,
these derivatives do not exist for linear programs. Mandi
and Guns (2020) thus proposed to use an interior-point LP
solver: it generates a sequence of modified programs, with
logarithmic barrier terms of decreasing weights introduced
into the objective. Upon termination of the solver at an ap-
proximate optimum of the LP, the interior-point solver re-
turns the approximate optimum as well as auxiliary infor-
mation such as the weight of the barrier term at termination,
all of which are used by Mandi and Guns to extract some
gradient information related to the original problem.

Post-hoc Correction
We now generalize the framework in the previous section

to include unknown parameters also in constraints.
The notion of a Para-OP can be easily extended to allow

unknown parameters in both the objective and constraints:

x∗(θ) = argminx obj(x, θ) s.t. C(x, θ)

Note that in this extension, both the objective and constraints
depend on the unknown parameters θ.

When constraints contain unknown parameters, the feasi-
ble region is only approximated at solving time, and the esti-
mated solution may be infeasible under the true parameters.
Fortunately, in some applications, once the true parameters
are revealed, there might be possible ways for us to correct
an infeasible solution into a feasible one. This can be for-
malized as a correction function, which takes an estimated
solution x∗(θ̂) and true parameters θ and returns a corrected
solution x∗

corr(θ̂, θ) that is feasible under θ. The choice of
correction function will be problem and application-specific;

3988



indeed, the space of correction functions depends on the sit-
uation. The goal then is to choose a correction function that
generally loses the least amount in the objective from the
correction.
Example 1. Consider a simplified version of the product
stocking problem. There are 4 divisible products (e.g. oil and
rice). Each product i has a per-unit revenue ri and a per-unit
weight wi, and there is a maximum of Mi units available for
sourcing. The goal is to make an order of xi units of item
i, so as to maximize

∑4
i=1 ri · xi subject to the constraint∑4

i=1 wi · xi ≤ C, where r = [13, 14, 10, 11] and w =
[5, 3, 4, 9] are two arrays representing the per-unit revenues
and weights of the products, as well as the constraint that
xi ≤ Mi for all i. However, the available capacity C when
the products arrive is unknown at solving time, depending
on the volume of sales between the orders being made and
the arrival of the products.

In Example 1, the products are selected based on an es-
timated warehouse capacity, but the prediction might be an
overestimate. One trivial correction function is to throw out
the entire order, which is not useful. A more useful correc-
tion function is to throw out some of each product to fit them
into the actually available capacity.

While application scenarios may allow for post-hoc cor-
rection of an estimated solution, such correction may incur
a penalty. A penalty function Pen(x∗(θ̂) → x∗

corr(θ̂, θ))

takes an estimated solution x∗(θ̂) and the corrected solu-
tion x∗

corr(θ̂, θ) and returns a non-negative penalty. In Ex-
ample 1, the correction incurs both 1) logistical costs for re-
moving items and 2) costs of having paid for these products.

We are now ready to define the notion of post-hoc regret
PReg(θ̂, θ) with respect to correction function x∗

corr(θ̂, θ)
and penalty function Pen:

PReg(θ̂, θ) = obj(x∗
corr(θ̂, θ), θ)− obj(x∗(θ), θ)

+ Pen(x∗(θ̂) → x∗
corr(θ̂, θ))

(3)

Learning a prediction function using different correction
functions and penalty functions on the same Para-OP can
yield vastly different prediction behaviors. For example, in-
creasing the penalty will yield conservative predictions that
induce estimated solutions that are more likely to be feasible
under the true parameters, since an infeasible estimated so-
lution would have to incur a large penalty. Similarly, in the
above product stocking example, the trivial correction func-
tion of “throwing everything out” would encourage predic-
tions (much) more conservative than a correction that throws
out just enough items to fit the true available capacity.

Since the prediction behavior depends on the chosen cor-
rection and penalty functions, it is important for the prac-
titioner to choose them carefully. The practitioner should
make sure that 1) both accurately reflect the application sce-
nario at hand and that 2) the correction function should be
as efficient as the application setting allows.

Given a correction function and a penalty, we will fol-
low Mandi and Guns (2020) and train a neural network to
minimize the empirical post-hoc regret. In the rest of the pa-
per, we will study the application of this framework to pack-

ing and covering linear programs. We will propose a generic
correction function that should be applicable generally, and
show how we can learn a neural network that performs well
under the post-hoc regret.

Predict+Optimize on Packing LPs
In this section, we derive how we can train a neural network
to predict unknown parameters in both the objective and
constraints of a packing LP, under the new Predict+Optimize
framework proposed in the last section.

Consider a packing LP in the standard form:

x∗ = argmax
x

c⊤x s.t. Gx ≤ h, x ≥ 0 (4)

with decision variables x ∈ Rd and problem parameters
c ∈ Rd, G ∈ Rp×d

≥0 , h ∈ Rp
≥0. Here, we consider the most

general setting where all the problem parameters c,G, and
h can be unknown.

We stated in the last section that the choice of a correc-
tion function generally depends on the specific problem and
application. On the other hand, packing LPs have a lot of
structure we can exploit. For example, the all 0s solution
is always feasible. We propose the following generic correc-
tion function, which is generally applicable for packing LPs:
given an uncorrected solution x∗, find the largest λ ∈ [0, 1]
such that λx∗ satisfies the constraints under the true param-
eters. This can be formalized as follows:

x∗
corr(θ̂, θ = (c,G, h)) = λx∗(θ̂)

where λ = max{λ ∈ [0, 1] |G(λx∗(θ̂)) ≤ h}
(5)

We also need to decide on a penalty function, which again
is generally problem and application-specific. For simplic-
ity and for wide applicability, in the rest of the paper we
will assume that the penalty function is linear, in the sense
that the penalty for the correction is the dot product between
1) the difference between the corrected and uncorrected so-
lution vectors and 2) a vector of penalty factors. Due to
scaling reasons, we express this vector of penalty factors in
units of the objective c, that is, the penalty vector is σ ◦ c
where ◦ is the Hadamard/entrywise product, and σ ≥ 0 is
a non-negative tunable vector. Then, the penalty function
Pen is formally defined as Pen(x∗(θ̂) → x∗

corr(θ̂, θ)) =
(σ ◦ c)⊤(x∗ − x∗

corr).
With the above choices of correction and penalty, we can

now write down the simplified form of post-hoc regret for
packing LPs. Note that, since packing LPs are maximization
problems instead of minimization, the following has some
sign differences from Equation 3.

PReg(θ̂, θ) = c⊤(x∗(θ)− x∗
corr(θ̂, θ)) +

(σ ◦ c)⊤(x∗(θ̂)− x∗
corr(θ̂, θ))

(6)

where σ ∈ Rd
≥0.

Following the approach of Mandi and Guns (2020),
briefly described in in the Background section, we use a neu-
ral network (of various architectures depending on the pre-
cise problem) to predict the parameters, before feeding the
parameters into the interior-point LP solver of Mandi and

3989



Guns. This interior point solver iteratively generates a se-
quence of relaxations to the LP, into problems of the form

x∗ = argmax
x

c⊤x+ µ

[
d∑

i=1

ln(xi) +

p∑
i=1

ln(hi −G⊤
i x)

]
(7)

for a sequence of decreasing non-negative µ. Upon termi-
nation, we retrieve a solution x which is approximately the
optimum of the original LP, as well as the value of µ last
used.

We derive how, using the solution x and the barrier weight
µ, we can compute the relevant (approximations of) deriva-
tives in order to train the neural network via gradient de-
scent. Using the law of total derivative, we get

dPReg(θ̂, θ)

dwe
=

∂PReg(θ̂, θ)

∂x∗
corr

∣∣∣∣∣
x∗

∂x∗
corr

∂x∗
∂x∗(θ̂)

∂θ̂

∂θ̂

∂we

+
∂PReg(θ̂, θ)

∂x∗

∣∣∣∣∣
x∗
corr

∂x∗(θ̂)

∂θ̂

∂θ̂

∂we
(8)

On the right hand side, the terms ∂PReg(θ̂,θ)
∂x∗

corr

∣∣∣
x∗

and ∂PReg(θ̂,θ)
∂x∗

∣∣∣
x∗
corr

are straightforward from (6):

∂PReg(θ̂,θ)
∂x∗

corr

∣∣∣
x∗

= −(1+σ)◦ c and ∂PReg(θ̂,θ)
∂x∗

∣∣∣
x∗
corr

= σ◦ c.

The term ∂θ̂
∂we

relates only to the neural network and is
handled directly by the standard backpropagation algo-
rithm (Rumelhart, Hinton, and Williams 1986). Therefore,
in the remainder of this section, we show how to compute
(approximations of) ∂x∗

corr

∂x∗ and ∂x∗(θ̂)

∂θ̂
.

Computing ∂x∗
corr

∂x∗ . The term ∂x∗
corr

∂x∗ is determined solely
by the correction function (5), and has nothing to do with
the LP solver. We use the law of total derivative again to
decompose the term:

∂x∗
c(θ̂, θ)

∂x∗(θ̂)
=

∂x∗
c(θ̂, θ)

∂λ

∣∣∣∣∣
x∗

∂λ

∂x∗(θ̂)
+

∂x∗
c(θ̂, θ)

∂x∗(θ̂)

∣∣∣∣∣
λ

Observe that ∂x∗
c(θ̂,θ)
∂λ

∣∣∣
x∗

= x∗(θ̂) and ∂x∗
c(θ̂,θ)

∂x∗(θ̂)

∣∣∣
λ
= λI (I is

an identity matrix). It remains to derive ∂λ
∂x∗(θ̂)

, captured in
the following lemma.
Lemma 1. Let x∗(θ̂) denote the estimated optimal solution
of the packing LP shown in (4), x∗

corr(θ̂, θ) = λx∗(θ̂) be the
correction function shown in (5). Suppose that at the optimal
λ of (5), the ith inequality constraint Gi is tight, namely
G⊤

i (λx
∗(θ̂)) = hi. Then, we have

∂λ

∂x∗(θ̂)
= − λ

G⊤
i x

∗(θ̂)
G⊤

i .

As a corollary, we have

∂x∗
corr(θ̂, θ)

∂x∗(θ̂)
=

−λ

G⊤
i x

∗(θ̂)
x∗(θ̂)G⊤

i + λI.

The lemma follows from an implicit differentiation of the
tight constraint and the proof is in Appendix A.1.

Approximating ∂x∗(θ̂)

∂θ̂
. Recall that the interior point

solver of Mandi and Guns (2020) solves a sequence of
relaxations of the form given in Equation (7). The term
µ[
∑d

i=1 ln(xi) +
∑p

i=1 ln(hi − G⊤
i x)] is also known as

a logarithmic barrier term, which is commonly used in
interior-point based solving methods (Boyd and Vanden-
berghe 2004). At termination, we get the values of x∗ and
µ. We will use these values, as well as Equation (7), to ap-
proximate the gradient information ∂x∗(θ̂)

∂θ̂
.

In the context of the packing LP, the unknown parameter
θ̂ may either be c, G or h. The case of c has already been
derived by Mandi and Guns (2020) (see Appendix A.1 and
A.2 in their paper). The following two lemmas captures the
other two cases.

Define the notation f(x, c,G, h) = c⊤x +

µ(
∑d

i=1 ln(xi))+µ(
∑p

i=1 ln(hi−Gix)). Then, Problem (7)
can be expressed as finding x∗ = argmaxx f(x, c,G, h).
Using this notation, we write down the following two
lemmas on computing ∂x∗

∂h and ∂x∗

∂G approximately, with
proofs in Appendix A.1.
Lemma 2. Consider the LP relaxation (7), defining x∗ as a
function of c,G and h. Then, under this definition of x∗,

∂x∗

∂h
= −fxx(x

∗)−1fhx(x
∗)

where fxx denotes the matrix of second derivatives of f with
respect to different coordinates of x, and similarly for other
subscripts, and explicitly:

fxkxj
(x) =

{
−µx−2

j − µ
∑p

i=1 G
2
ij/(hi −G⊤

i x)
2 j = k

−µ
∑p

i=1 GijGik/(hi −G⊤
i x)

2 j ̸= k

and
fhℓxj

(x) = µGℓj/(hℓ −G⊤
ℓ x)

2

Lemma 3. Consider the LP relaxation (7), defining x∗ as a
function of c,G and h. Then, under this definition of x∗,

∂x∗

∂G
= −fxx(x

∗)−1fGx(x
∗)

where fxx is defined as in Lemma 2 and

fGℓqxj
(x) ={
−µGℓjxq/(hℓ −G⊤

ℓ x)
2 − µ/(hℓ −G⊤

ℓ x) q = j

−µGℓjxq/(hℓ −G⊤
ℓ x)

2 q ̸= j

We end this section with a remark that the LP solver of
Mandi and Guns (2020) in fact returns more information
than just x and µ. In their work, they start not with (7) but
with the homogeneous self-dual (HSD) formulation of the
original LP, involving the extra information returned by the
solver, and perform derivative calculations similar in spirit to
our lemmas in this section. However, in our context of un-
known G and h, if we also tried using the HSD formulation
for gradient calculations, we would end up with derivatives
that are degenerate. For this reason, we have opted to use the
simpler Equation (7) which, as we demonstrate in the Exper-
imental Evaluation section, appears to work well in practice.

3990



Predict+Optimize on Covering LPs
Covering LPs are closely related to packing LPs—in fact,
they are the duals of each other. Consider a covering LP in
standard form:

x∗ = argmin
x

c⊤x s.t. Gx ≥ h, x ≥ 0 (9)

with decision variables x ∈ Rd and problem parameters
c ∈ Rd, G ∈ Rp×d, h ∈ Rp. We are again in the general
setting where all the problem parameters c,G, and h can be
unknown.

Performing Predict+Optimize on covering LPs is essen-
tially the same as in the previous section, up to some sign
changes to account for changed inequality directions and
minimization vs maximization. The only non-trivial differ-
ence is the need to change the correction function. Instead of
scaling down an uncorrected solution for feasibility, we will
scale up in covering LPs, defined formally as follows:

x∗
corr(θ̂, θ = (c,G, h)) = λx∗(θ̂)

where λ = min{λ ≥ 1 |G(λx∗(θ̂)) ≥ h}
(10)

We use the same penalty function as in the packing LP case.
The differentiation calculations from the last section apply
essentially verbatim to covering LPs apart from minor sign
differences. We therefore defer the details to Appendix A.2.

Experimental Evaluation
We evaluate the proposed interior point based method with
post-hoc correction (IntOpt-C) on 3 benchmarks: a maxi-
mum flow transportation problem with unknown edge ca-
pacities, an alloy production problem with unknown chemi-
cal composition in the raw materials, and a fractional knap-
sack problem with unknown rewards and weights. We com-
pare our method with 5 classical regression methods (Fried-
man, Hastie, and Tibshirani 2001) including ridge regres-
sion (Ridge), k-nearest neighbors (k-NN), classification and
regression tree (CART), random forest (RF), and neural net-
work (NN). All of these methods train the prediction models
with their classic loss function. We also apply the chosen
correction function of each problem to the estimated solu-
tions for these classical regression methods, in order to en-
sure feasibility, to compute the post-hoc regret. However, the
correction function has nothing to do with the training of
these classic methods. The methods of k-NN, RF and NN as
well as our method have hyperparameters, which we tune via
cross-validation: for k-NN, we tried k ∈ {1, 3, 5}; for RF,
we try different numbers of trees in the forest {10, 50, 100};
for both NN and our method, we treat the learning rate,
epochs and weight decay as hyperparameters. We include
the final hyperparameter choices in Appendix B.2

Ridge, k-NN, CART and RF are implemented using
scikit-learn (Pedregosa et al. 2011). The neural network is
implemented using PyTorch (Paszke et al. 2019). All mod-
els are trained with Intel(R) Xeon(R) CPU @ 2.20GHz. To

2Our implementation is available at https://github.com/
dadahxy/AAAI PostHocRegret.

compute the optimal solution of an LP under the true param-
eters, we use the LP solver from Gurobi (Gurobi Optimiza-
tion, LLC 2023) instead of the solver of Mandi and Guns.

We first focus on the solution quality comparisons and
then make the runtime analysis.

Solution Quality
We compare the solution quality of the proposed IntOpt-
C method and 5 classical regression methods on 3 bench-
marks: a maximum flow transportation problem with un-
known edge capacities, an alloy production problem with
unknown chemical composition in the raw materials, and
a fractional knapsack problem with unknown rewards and
weights.

A maximum flow transportation problem with unknown
capacities. In our first experiment, we formulate a trans-
portation problem as a single-source-single-sink maximum
flow problem (MFP). To formulate it as a packing LP, we
use the formulation where the decision variables each cor-
respond to a simple path from the source to the sink. In this
experiment, the unknown parameters are the edge capacities,
which is the h vector in the packing LP. We experiment in
a setting where the goal is to use Predict+Optimize to learn
which paths we will be using for transport, and proportion-
ally how much flow we will be sending along each path—for
example, the prediction is used to apply for permits from
a city council for sending a lot of traffic along particular
routes. Given that we are less concerned about predicting
the actual flow magnitudes, in this experiment we set the
penalty factor σ to the all-0s vector.

We conduct experiments on 3 real-life graphs: POL-
SKA (Orlowski et al. 2007) with 12 vertices and 18 edges,
USANet (Lucerna et al. 2009) with 24 vertices and 43 edges,
and GÉANT (LLC 2018) with 40 vertices and 61 edges.
Given that we are unable to find datasets specifically for this
max-flow problem, we follow the experimental approach of
Demirovic et al. (2019; 2019; 2020) and use real data from
a different problem (the ICON scheduling competition) as
numerical values required for our experiment instances. In
this dataset, each unknown edge capacity has 8 features. For
experiments on POLSKA and USANet, out of the available
789 instances, 610 are used for training and 179 for testing
the model performance, while for experiments on GÉANT,
out of the available 620 instances, 490 are used for training
and 130 for testing the model performance.

For both NN and our method, we use a 3-layer fully-
connected network with 16 neurons per hidden layer.

Figure 1 shows a box plot of the post-hoc regrets of
the various methods on the three different graphs. We ob-
serve that our IntOpt-C method (in red) achieves the smallest
post-hoc regret in all cases. Compared with other methods,
IntOpt-C obtains at least 10.71% smaller post-hoc regret on
POLSKA, 10.67% smaller on USANet, and 10.02% smaller
on GÉANT.

For comparison, we also show a box plot of the mean
squared error (MSE), i.e. squared ℓ2 error, of the predicted
parameters, across different methods and graphs, in Figure 2
(in log scale). Even though the goal is to minimize post-hoc

3991



Figure 1: Post-hoc regrets for max-flow transportation.

Figure 2: MSE for max-flow transportation.

regret and it is unreasonable to evaluate our method on the
MSE, we present these results anyway for all our experi-
ments, as they help illustrate the behavior of our method. In
this experiment, the MSE of IntOpt-C is drastically worse
than all the other methods. We argue that this is by design:
our method optimizes for learning in terms of post-hoc re-
gret, while all the other classical methods learn to minimize
in MSE. There does remain the question of why our method
has that bad of an MSE. From investigating the data (see
Appendix C.1), this is due to our method predicting the un-
known parameters at several orders of magnitude larger than
the true parameters. The reason for this phenomenon lies
in the problem formulation, where we are trying to predict
which paths to send flows through, and are less concerned
with predicting the precise amount of flow. As a modelling
choice, therefore, we picked the penalty factor σ = 0. Note
that, since the unknown parameters are the “h” vector in
the packing LP, if we scale up the h vector, then the corre-
sponding solutions x are scaled up by the same factor. Thus,
the phenomenon is equivalent to the estimated solution be-
ing much larger than the true optimal solution. This is fine
from the Predict+Optimize perspective: the correction func-
tion scales down an over-capacity estimated solution, and so
the predictor only needs to predict the direction of the solu-
tion vector; even if it gives a far-too-large norm, the correc-
tion function will fix the magnitude at no cost. Our learning
algorithm appears to have learnt to exploit this correction
function, and nonetheless, the estimated solution still gives
the desired information—which paths to send flow along in
the graph.

If we did care about predicting the actual flow values, then
we would set the penalty factor to a non-zero value. In the
next couple of experiments, we explore how the penalty fac-
tor affects the performance of our method, in terms of both
the post-hoc regret and the MSE of the predicted parame-

ters. We note again that the penalty factor is a property of
the application, and not an algorithmic choice we make.

An alloy production problem with unknown chemical
compositions in raw materials. In our second experi-
ment, we consider an alloy production problem that is ex-
pressible as a covering LP. An alloy production plant needs
to produce a certain amount of a particular alloy, requiring a
mixture of M kinds of metals. To that end, it must acquire
at least reqm tons of each of the m ∈ [M ] metals. The raw
materials are to be obtained from K suppliers, each supply-
ing a different type of ore. The ore supplied by site k ∈ [K]
contains a conkm ∈ [0, 1] fraction of material m at a price
of costk per ton. The objective is to meet the minimum ma-
terial requirements for each metal, at the minimum cost. The
decision variables xk are the number of tons of ores to order
from each site k. Affected by the uncertainty in the mining
process, the metal concentration (% of the m ∈ M mate-
rial per ton) of each ore is unknown, i.e. conkm is unknown,
which is the G matrix in the covering LP.

Following the correction function and penalty described
in Sections and respectively, if the estimated solution does
not meet the minimum tonnage requirements of any metal,
the alloy production plant will scale up its order by a factor
of λ ≥ 1 (from Equation 10) across all the suppliers. On
the other hand, for this after-the-fact order, each supplier k
will charge a new cost of (1 + σk)costk per ton of its ore,
instead of the previous cost of costk. We experimented on
various values of penalty factors σk and we will report and
discuss how the value of σk affects the performance of the
prediction pipeline. We stress again that the value of σk is
from the application, and not an algorithmic choice.

We conduct experiments on two real alloys: brass and an
alloy blend for strengthening Titanium. For brass, 2 kinds of
metal materials, Cu and Zn, are required (Kabir and Mah-
mud 2010), that is M = 2. The requirements of the two ma-
terials are, proportionally, req = [627.54, 369.72]. For the
titanium-strengthening alloy, 4 kinds of metal materials, C,
Al, V, and Fe, are required (Kahraman, Gülenç, and Findik
2005), i.e., M = 4. The requirements of the four materi-
als are req = [0.8, 60, 40, 2.5]. Since we could not find any
real data on the concentration of metals in ores, we again
use real data from a different problem (a knapsack problem
(Paulus et al. 2021)) as numerical values in our experiment
instances. In this dataset, each unknown metal concentration
is related to 4096 features. For experiments on both of the
two alloys productions, 350 instances are used for training
and 150 instances for testing the model performance.

For NN and our method, we use a 5-layer fully connected
network with 512 neurons per hidden layer.

We conduct experiments on 5 types of penalty factor (σ)
settings: the all-0s vector, and then 4 vectors where each en-
try is i.i.d. uniformly sampled from [0.25 ± 0.015], [0.5 ±
0.015], [1.0±0.015], and [2.0±0.015] respectively. This ran-
dom sampling of σ ensures that the penalty factor for each
supplier is different, but remain roughly in the same scale.

For space reasons, we only report the experimental re-
sults for the brass alloy, and defer the qualitatively-similar
titanium-alloy results to Appendix C.2. Figure 3 shows the

3992



Figure 3: Post-hoc regrets for alloy production.

Figure 4: MSE for alloy production.

post-hoc regrets of the different learning methods, across
the different scales of penalty factor σ. When the penalty
factor is 0, our method improves the solution quality sub-
stantially, obtaining at least 38.67% smaller post-hoc regret
than the other methods. When the penalty factor is non-zero
as given in the last paragraph, our method obtains at least
7.80%, 3.99%, 3.24%, and 6.56% smaller post-hoc regret
respectively. The results suggest that the advantages of our
IntOpt-C method on solution quality first decreases and then
increases as the penalty factor σ grows.

We show also the MSE of the predicted parameters in Fig-
ure 4, across different methods, in log scale. As discussed in
the previous max-flow experiment, when the penalty is 0, the
MSE for our method can be very large as the lack of penalty
gets exploited by the method. Interestingly, as we observe in
Figure 4, the MSE for our method first decreases and then in-
creases as σ grows (the growth at the end is slightly difficult
to read on this plot). Here we explain why the MSE values
of IntOpt-C may increase when the penalty term grows too
large. When the penalty is non-zero but somewhat small, it
acts as a regularizer to prevent our method from exploiting
the correction function as in the previous experiment. On the
other hand, as the penalty increases, the post-hoc regret be-
comes dominated by the penalty term. As such, our method
is strongly disincentivized to use any correction whatsoever.
Therefore, when σ is large, our method tends to be conserva-
tive and always predicts parameters that make the estimated
solution a bit too large. This explains why the MSE of the
predicted parameters gets bigger again (albeit not by much)
as σ increases.

Fractional knapsack problem with unknown prices and
weights. The last experiment is on the fractional knapsack
problem with unknown rewards and weights. The unknown
parameters appear in both objective “c” and constraints “G”
of the packing LP. In our setting, word descriptions of a col-

Figure 5: Post-hoc regrets for fractional knapsack.

lection of M infinitely-divisible items is presented to the al-
gorithm, from which the weight wi and reward ci of each
item i need to be predicted. The player’s goal is to maxi-
mize the total reward of (fractionally) selected items without
exceeding a known fixed capacity of the knapsack. We use
the dataset of Paulus et al. (2021), in which each fractional
knapsack instance consists of 10 items and each item has
4096 features related to its reward and weight.

For both NN and our method, we use a 5-layer fully-
connected network with 512 neurons per hidden layer.

In line with the choice of correction function and penalty
in the section for Packing LPs, if the estimated solution
violates the capacity constraint, items will need to be re-
moved at a penalty and in a proportional manner (i.e. the
over-capacity knapsack is scaled down). If the change in the
amount of item i is ∆i, then the penalty for this removal is
σici∆i.

We conduct experiments on 4 different capacities: 50,
100, 150, and 200. In the main paper, we report only the re-
sults for capacity 200—the rest are qualitatively similar, and
they can be found in Appendix C.3. We use 700 instances
for training and 300 instances for testing the model perfor-
mance. Identically to the second experiment, we use 5 scales
of penalty factors: all-0s penalty, and penalty factor σ with
i.i.d. entries drawn uniformly from [0.25 ± 0.015], [0.5 ±
0.015], [1.0± 0.015], and [2.0± 0.015].

Figure 5 shows the post-hoc regrets of the different meth-
ods across the different scales of penalty factors. Our method
again performs the best across all the evaluated algorithms.
Observing a similar trend as in the alloy production exper-
iment, the improvements of our method over other clas-
sical methods, in terms of the post-hoc regret, first de-
creases and then increases as the penalty factor σ grows.
When the penalty factor is 0, our method obtains at least
21.48% smaller post-hoc regret than other methods. When
the penalty factor is non-zero as given in the last paragraph,
the post-hoc regret of our method is at least 9.78%, 4.57%,
2.18%, and 4.83% smaller.

As in the previous experiments, we also compare the MSE
of the parameters predicted by our method against the other
methods, as shown in Figure 6 in log scale. Similar to the
other experiments, when the penalty term is zero, the pre-
dicted parameters of IntOpt-C are shifted by several orders
of magnitude from the true parameters (the post-hoc regret
is small but the MSE value is large). Then, as σ grows, the
MSE of our method decreases to roughly the same as the

3993



Maximum flow transportation Alloy production Fractional knapsack
Runtime(s) POLSKA USANet GÉANT Brass Titanium-alloy Capacity=50 Capacity=100 Capacity=150 Capacity=200

IntOpt-C 18.65 132.22 15.48 228.00 331.38 131.49 132.89 139.44 132.37
Ridge <1 <1 <1 20.22 56.89 22.33
k-NN <1 <1 <1 25.14 70.22 26.00
CART <1 <1 <1 30.33 94.89 34.83
RF 4.11 11.00 11.89 959.50 2552.25 1034.07
NN 10.33 12.82 13.89 212.22 321.11 135.80

Table 1: Average runtime (in seconds) for the maximum flow transportation, alloy production, and fractional knapsack problems.

Figure 6: MSE for fractional knapsack.

other methods, before growing slightly again as σ becomes
large and the predictor learnt from our method becomes con-
servative.

Runtime Analysis
Table 1 shows the average runtime across 10 simulations
for different optimization problems. Here, the runtime refers
to only the training time of the prediction model, and does
not include the testing time which is relatively small and
insignificant for our benchmarks. At training time, only our
method solves the LP. Training for the usual NN does not in-
volve the LP at all, and so training is much faster (but gives
worse results).

In the alloy production problem and the fractional knap-
sack problem, the runtimes of our IntOpt-C method are com-
parable to NN, and are much better than RF. In the maxi-
mum flow transportation problem, the runtimes of IntOpt-C
are comparable to NN in POLSKA and GÉANT, but the run-
times of IntOpt-C are large in USANet. The reason is that we
use the formulation where each of the decision variables cor-
responds to a simple path from the source to the sink. Thus,
when the number of paths is large (the number of paths in
USANet is 242), the number of decision variables of the LP
is large and the LP takes more time to solve.

Summary
We proposed the first Predict+Optimize framework address-
ing the scenario where the constraints may contain unknown
parameters. Specifically, we introduced the novel notions
of correction function, penalty function and post-hoc regret
into the framework. Algorithmically, we focused on packing
and covering linear programs—a large and widely-studied
class of problems—and presented a method to train param-
eter predictors in our novel framework. Empirical results in
3 benchmarks demonstrate better prediction performance of

our method over 5 classical methods which do not take the
correction function into account during training. An inter-
esting piece of future work is to extend the use of post-hoc
regret for a wider class of problems.

We also note that our framework is designed only for ap-
plications that allow post-hoc correction of an infeasible so-
lution into a feasible one, after the true parameters are re-
vealed. In addition, the correction function and the penalty
function are problem and application specific, and thus re-
quire human input for their formulation. Another interest-
ing research direction is to explore automatic suggestions of
useful correction functions and penalty functions based on
the problem models.

Acknowledgments
We thank the anonymous referees for their constructive com-
ments. In addition, Xinyi Hu and Jimmy H.M. Lee ac-
knowledge the financial support of a General Research Fund
(RGC Ref. No. CUHK 14206321) by the University Grants
Committee, Hong Kong. Jasper C.H. Lee was supported
in part by the generous funding of a Croucher Fellowship
for Postdoctoral Research, NSF award DMS-2023239, NSF
Medium Award CCF-2107079 and NSF AiTF Award CCF-
2006206.

References
Boyd, S.; and Vandenberghe, L. 2004. Convex optimization.
Cambridge University Press.
Demirović, E.; Stuckey, P. J.; Bailey, J.; Chan, J.; Leckie, C.;
Ramamohanarao, K.; and Guns, T. 2019. An investigation
into Prediction+Optimisation for the knapsack problem. In
International Conference on Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research,
241–257. Springer.
Demirović, E.; Stuckey, P. J.; Bailey, J.; Chan, J.; Leckie, C.;
Ramamohanarao, K.; and Guns, T. 2019. Predict+Optimise
with Ranking Objectives: Exhaustively Learning Linear
Functions. Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, 1078–1085.
Demirović, E.; Stuckey, P. J.; Guns, T.; Bailey, J.; Leckie, C.;
Ramamohanarao, K.; and Chan, J. 2020. Dynamic Program-
ming for Predict+Optimise. In Proceedings of the Thirty-
Fourth AAAI Conference on Artificial Intelligence, 1444–
1451.
Elmachtoub, A. N.; and Grigas, P. 2017. Smart
“Predict, then Optimize”. Technical report.
https://arxiv.org/pdf/1710.08005.pdf.

3994



Elmachtoub, A. N.; and Grigas, P. 2022. Smart “Predict,
then Optimize”. Management Science, 68(1): 9–26.
Elmachtoub, A. N.; Liang, J. C. N.; and McNellis, R. 2020.
Decision Trees for Decision-Making under the Predict-then-
Optimize Framework. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, 2858–2867.
Friedman, J.; Hastie, T.; and Tibshirani, R. 2001. The el-
ements of statistical learning. Springer series in statistics
New York. Volume 1, Number 10.
Guler, A. U.; Demirović, E.; Chan, J.; Bailey, J.; Leckie, C.;
and Stuckey, P. J. 2022. A Divide and Conquer Algorithm
for Predict+Optimize with Non-Convex Problems. In Pro-
ceedings of the Thirty-Sixth AAAI Conference on Artificial
Intelligence.
Gurobi Optimization, LLC. 2023. Gurobi Optimizer Refer-
ence Manual. https://www.gurobi.com. Accessed: 2022-08-
13.
Kabir, K. B.; and Mahmud, I. 2010. Study of erosion-
corrosion of stainless steel, brass and aluminum by open
circuit potential measurements. Journal of Chemical En-
gineering, 13–17.
Kahraman, N.; Gülenç, B.; and Findik, F. 2005. Joining
of titanium/stainless steel by explosive welding and effect
on interface. Journal of Materials Processing Technology,
169(2): 127–133.
LLC, M. 2018. Geant Topology Map dec2018
copy. https://www.geant.org/Resources/Documents/
GEANT Topology Map December 2018.pdf. Accessed:
2020-09-10.
Lucerna, D.; Gatti, N.; Maier, G.; and Pattavina, A. 2009.
On the efficiency of a game theoretic approach to sparse re-
generator placement in WDM networks. In GLOBECOM
2009-2009 IEEE Global Telecommunications Conference,
1–6. IEEE.
Mandi, J.; and Guns, T. 2020. Interior Point Solving for
LP-based Prediction+Optimisation. Advances in Neural In-
formation Processing Systems, 33: 7272–7282.
Orlowski, S.; Pióro, M.; Tomaszewski, A.; and Wessäly, R.
2007. SNDlib 1.0–Survivable Network Design Library. In
Proceedings of the 3rd International Network Optimization
Conference. http://sndlib.zib.de, extended version accepted
in Networks, 2009.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural
Information Processing Systems 32, 8024–8035. Curran As-
sociates, Inc.
Paulus, A.; Rolı́nek, M.; Musil, V.; Amos, B.; and Martius,
G. 2021. Comboptnet: Fit the right NP-hard problem by
learning integer programming constraints. In International
Conference on Machine Learning, 8443–8453. PMLR.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,

R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12: 2825–2830.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986.
Learning representations by back-propagating errors. na-
ture, 323(6088): 533–536.
Wilder, B.; Dilkina, B.; and Tambe, M. 2019. Melding the
data-decisions pipeline: Decision-focused learning for com-
binatorial optimization. In Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence, 1658–1665.

3995


