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Abstract

This paper proposes Branch & Learn, a framework for Predict+Optimize to tackle
optimization problems containing parameters that are unknown at the time of
solving. Given an optimization problem solvable by a recursive algorithm satisfying
simple conditions, we generalize previous work substantially by showing how a
corresponding learning algorithm can be constructed directly and methodically
from the recursive algorithm. Our framework applies also to iterative algorithms by
viewing them as a degenerate form of recursion. Extensive experimentation shows
better performance for our proposal over classical and state of the art approaches.

1 Introduction

In the intersection of machine learning and constrained optimization, the Predict+Optimize framework
tackles optimization problems with parameters that are unknown at solving time. Such uncertainty is
common in daily life and industry. For example, retailers need to pick items to restock for maximizing
profit, yet consumer demand is a-priori unknown.

The task is to i) predict the unknown parameters, then ii) solve the optimization problem using
the predicted parameters, such that the resulting solutions are good even under true parameters.
Traditionally, the parameter prediction uses standard machine learning techniques, with error measures
independent of the optimization problem. Thus, the predicted parameters may in fact lead to a low-
quality solution for the (true) optimization problem despite being “high-quality" for the error metric.
The Predict+Optimize framework uses the more effective regret function [3, 6, 9] as the error metric,
capturing the difference in objective (computed under the true parameters) between the estimated
and true optimal solutions. However, the regret function is usually not (sub-)differentiable, and
gradient-based methods do not apply.

Prior works have focused on the regime where the optimization problems contain unknown objective
and known constraints, and proposed ways to overcome the non-differentiability of the regret. They
can be roughly divided into two approaches: approximation and exact. The former tries to compute
the (approximate) gradients of (approximations of) the regret function. Elmachtoub et al. [6] propose
a differentiable surrogate function for the regret function, while Wilder et al. [17] relax the integral
objective in constrained optimization and solve a regularized quadratic programming problem. Mandy
and Guns [12] focus on mixed integer linear programs and propose an interior point based approach.
While novel, approximation approaches are not always reliable. Exact approaches exploit the
structure of optimization problems to train models without computing gradients. Demirović et al. [4]
investigate problems with the ranking property and propose a large neighborhood search method to
learn a linear prediction function. They [5] further extend the method to enable Predict+Optimize for
problems amenable to tabular dynamic programming (DP).
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We propose a novel exact method for problems solvable with a recursive algorithm (under some
restrictions), significantly generalizing the work of Demirović et al. [5]. By viewing iteration as a
special case of recursion with a single branch, our framework applies also to iterative algorithms.
Recall that DP is a special case of recursion, where the recursion structure has overlapping sub-
problems, enabling the use of memoization to avoid recomputation. In particular, tabular DP is
implemented as an iterative algorithm, computing the table row by row. While tabular DP is a widely
applicable technique, it is not universal in that many naturally recursively solvable problems are not
known to have a DP algorithm. For example, many modern combinatorial search algorithms are still
fundamentally based on exhaustive search. Our work thus subsumes the method by Demirović et
al. [5] and extends the Predict+Optimize framework to a much wider class of optimization problems.
Experiments on 3 benchmarks with artificial and real-life data against 9 other learning approaches
confirm the superior solution quality and scalability of our method.

The concurrent work by Guler et al. [9], just accepted to AAAI22, proposes a divide and conquer
algorithm, extending the work of Demirović et al. [5] by considering optimization problems whose
objective function is a bilinear function in the decision variables and the unknown parameters. While
both Branch & Learn and [9] are exact methods for Predict+Optimize, there are problems amenable
to Branch & Learn but not [9], and vice versa. The techniques used are also very different between
the two works. Section 6 compares the two pieces of work in more detail.

2 Background

Without loss of generality, an optimization problem is to find x∗ = argminx obj(x) s.t. C(x), where
x ∈ Rd is a vector of decision variables, obj : Rd → R is a function mapping x to an objective value
to be minimized, and C is a set of constraints over x. Thus, x∗ is an optimal solution and obj(x∗)
is the optimal value. In this (and prior) work, we focus on cases where only the objective contains
uncertainty. A parameterized optimization problem (Para-OP) P (θ) thus extends the problem P as:

x∗(θ) = argmin
x

obj(x, θ) s.t. C(x)

where θ ∈ Rt is a vector of parameters. The objective now depends also on θ. When the parameters
are known, a Para-OP is just an optimization problem.

Example 1. Consider a project funding problem to maximize
∑4

i=1 pi · xi subject to the budget
constraint 2x1 + 2x2 + x3 + x4 ≤ 3, where p is an array representing the profits of projects. The
problem is an instance of 0-1 knapsack. However, p is usually unknown at decision time, with only
some features related to it given, such as proposal scores and the reputation of each applicant.

In Predict+Optimize [5], the true parameters θ ∈ Rt for a Para-OP are unknown at solving time, and
estimated parameters θ̂ are used instead. Suppose each parameter is estimated by m features. The
estimation will rely on a machine learning model trained over n observations of a training data set
{(A1, θ1), . . . , (An, θn)}, where Ai ∈ Rt×m is a feature matrix for θi, so as to yield a prediction
function f : Rt×m → Rt for estimating parameters θ̂ = f(A).

The quality of the estimated parameters θ̂ is measured by the regret function, which is the objective
difference between the true optimal solution x∗(θ) and the estimated optimal solution x∗(θ̂) under
the true parameters θ. Formally, we define the regret function Regret(θ̂, θ) : Rt × Rt → R≥0 to be:

Regret(θ̂, θ) = obj(x∗(θ̂), θ)− obj(x∗(θ), θ)

where obj(x∗(θ̂), θ) is the estimated optimal value and obj(x∗(θ), θ) is the true optimal value.
Following the empirical risk minimization principle, Elmachtoub et al. [7] choose the prediction
function from the set of models F to attain the smallest average regret over the training data:

f∗ = argmin
f∈F

1

n

n∑
i=1

Regret(f(Ai), θi) (1)

For discrete optimization problems, the regret is not (sub) differentiable. Hence, traditional (sub-
)gradient-based training algorithms are not applicable.
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Algorithm 1: Coordinate Descent
Input: A Para-OP P (θ) and a training data set {(A1, θ1), . . . , (An, θn)}
Output: a coefficient vector α ∈ Rm

1 Initialize α arbitrarily and k ← 0;
2 while not converged ∧ resources remain do
3 k ← (k mod m) + 1;
4 Initialize L to be the zero constant function;
5 for i ∈ [1, 2, . . . , n] do
6 (P i

γ , I0)← Construct(P (θ), k, Ai) ;
7 Ei(γ)← Convert(P i

γ , I0);
8 Li(γ)← Evaluate(I(Ei), θi, I0);
9 L(γ)← L(γ) + Li(γ);

10 αk ← argminγ∈RL(γ);

11 return α;

Demirović et al. [5] study the class F of linear prediction functions and propose to represent the
solution structure of a Para-OP using (continuous) piecewise linear functions. A piecewise linear
function h is a real-valued function defined on a finite set of (closed) intervals I(h) partitioning R.
Each interval I ∈ I(h) is associated with a linear function h[I] of the form h[I](r) = aIr + bI ,
and the value of h(r) for a real number r ∈ R is given by h[I](r) where r ∈ I . An algebra can be
canonically defined on piecewise linear functions [15]. For piecewise linear functions h and g, we
define pointwise addition as (h+ g)(r) = h(r) + g(r) for all r ∈ R. Pointwise subtraction, max/min
and scalar products are similarly defined. All five operations can be computed efficiently by iterating
over intervals of the operands [5].

In the rest of the paper, we assume that the prediction function f is a linear mapping of the form
f(A) = Aα for some m-dimensional vector of coefficients α ∈ Rm.

To (approximately) solve problem (1), Demirović et al. [5] proposes to update the coefficients α of f
iteratively via coordinate descent (Algorithm 1), in which α are initialized arbitrarily and updated in
a round-robin fashion. Each iteration (lines 3-10) contains three functions. Construct constructs a
Para-OP as a function of the free coefficient, fixing the other coefficients in α, with an initial domain
I0. Convert returns a piecewise linear function of the free coefficient from the Para-OP, and each
interval of the function corresponds to an estimated optimal solution. Evaluate takes the returned
function and the true parameters as inputs, computes the estimated optimal value, and obtains the
regret as a piecewise constant function of the free coefficient.

As Algorithm 1 shows, in each iteration (lines 3-10), an coefficient αk is updated. Iterating over
index k ∈ {1, . . . ,m}, we replace αk in α with a variable γ ∈ R by constructing α+ (γ − αk)ek,
where ek is a unit vector for coordinate k. In lines 5-10, we wish to update αk as:

αk ← argmin
γ∈R

n∑
i=1

Regret(Aiekγ +Ai(α− αkek), θ
i)

Let us describe lines 6-8 in more detail. For notational convenience, let ai = Aiek ∈ Rm and
bi = Ai(α − αkek) ∈ Rm, which are vectors independent of the free variable γ. Construct
synthesizes the parameterized problem

P i
γ ≡ x∗(aiγ + bi) = argmin

x
obj(x, aiγ + bi) s.t. C(x)

Sometimes, the parameterized problem can also have an initial domain I0 ̸= R for γ. For instance,
we may restrict the estimated profits to be non-negative in Example 1. Convert takes P i

γ to
create a function Ei mapping γ to the estimated objective Ei(γ) = obj(x∗(aiγ + bi), aiγ + bi).
Associated with each interval I ∈ I(Ei(γ)), a linear function maps γ to the objective computed with
the estimated parameters aiγ + bi, and the estimated optimal solution x∗(aiγ + bi) remains the same
in each interval I [4, 5]. From this, Evaluate computes the regret Li for each interval I , i.e.

Li[I] = Regret(aiχ(I) + bi, θi) = obj(x∗(aiχ(I) + bi), θi)− obj(x∗(θi), θi)
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Algorithm 2: Generic Recursive Solving and Recursive Learning

1 Function ReSolve(P, θ):
2 if isBaseCase(P ) then
3 (x∗(θ), C∗(θ))← BaseCase(P, θ);
4 else
5 T ← Extract(P, θ);
6 PL← Branch(P, θ, T );
7 RL← Map(ReSolve, PL);
8 (x∗(θ), C∗(θ))← Reduce(⊕, RL);
9 return R;

10 Function ReLearn(Pγ , I0):
11 if isBaseCase(Pγ , I0) then
12 R[I0]← BaseCaseL(Pγ);
13 else
14 Tγ ← ExtractL(Pγ , I0);
15 for each interval I ∈ I(Tγ) do
16 PL← BranchL(Pγ , Tγ [I]);
17 RL← Map(ReLearn, PL);
18 R[I]← Reduce(⊞, RL);

19 return R;

where χ is a function arbitrarily selecting a value from an interval I . The resulting function Li is
piecewise constant and represents the regret for different values of the free coefficient. If γ /∈ I0,
the value of Li is set to a sufficiently large constant to indicate impracticability of the estimation
θ̂ = aiγ + bi. Line 9 sums all Li(γ) into a piecewise constant total regret L(γ) across all training
examples, and line 10 minimizes L(γ) by simply iterating over each interval of L(γ).

While coordinate descent is a standard technique, the key contribution by Demirović et al. [5] is
to show how to build the Convert function for a tabular DP algorithm, by computing a modified
DP table with essentially the same structure. In this paper, we significantly generalize the method
by constructing Convert for recursive and iterative algorithms, opening the Predict+Optimize
framework to a much wider class of problems than just those solvable using DP algorithms. A major
obstacle to the generalization is that different prediction coefficients γ can lead to wildly different
executions of the recursion, all of which need to be explored in order to optimize for γ minimizing the
empirical regret. At a high level, we overcome this challenge by presenting a standard template for
recursive algorithms (ReSolve in Algorithm 2), which we show can be cleanly adapted (ReLearn)
to algorithmically enumerate all the possible recursion executions based on the free coefficient γ.

3 Recursively Solvable Problems

This section describes the general form (ReSolve in Algorithm 2) of recursive algorithms considered,
which in particular captures also all DP algorithms without memoization applied. This template uses
the following two higher-order functions:
Definition 1 (Map). Suppose D,S are two sets and f : D → S is a function. Map(f, [d1, . . . , dl])
returns a list [f(d1), . . . , f(dl)] where d1, . . . , dl ∈ D and f(di) ∈ S.

Definition 2 (Reduce). Suppose S is a set and ⊕ : S × S → S is a commutative and associative
operation. Reduce(⊕, [s1, s2, . . . , sl]) returns s1 ⊕ s2 ⊕ · · · ⊕ sl.

The ReSolve function takes a recursively solvable Para-OP P and known parameters θ, and returns
the optimal value and decisions C∗ and x∗ for P (θ). It has several key components: i) isBaseCase
checks if P (θ) is a base case, and if so, BaseCase returns the result of P (θ). ii) Extract, using
the current problem P and current parameters θ, computes some information T which will determine
the list of subproblems. iii) Branch, using only T , creates and returns a list PL of subproblems,
and computes the corresponding parameters from both T and the current parameters θ. iv) Each
subproblem in PL is solved recursively, via Map mapping ReSolve to PL. After the recursive
calls, the partial results in RL are aggregated by a binary operation ⊕ via Reduce. As mentioned,
the ReSolve template also captures iterative algorithms as recursion with a single branch.

We also restrict attention to algorithms satisfying: i) the only arithmetic operations involving the
unknown parameters are +, −, max, min and multiplication with known constants, ii) there are no
conditionals within Branch, and iii) isBaseCase is independent of the parameters θ.
Example 2. ReSolve_KS in Algorithm 3 is an instantiation of ReSolve for solving the project
funding (0-1 knapsack) problem in Example 1. ReSolve_KS takes input (p, c, n,W, S) where
n is the number of remaining projects to consider, W is the available funding, and S are the
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Algorithm 3: Recursive Solving and Recursive Learning for 0-1 Knapsack Problem

1 Function ReSolve_KS(p, c, n,W, S):
2 if n = 0 or W ≤ 0 then
3 R← 1(W ≥ 0) ·

∑
i∈S p[i];

4 else
5 [P1, P2]← Branch_KS(p, c, n,W, S);
6 RL← Map(Resolve_KS, PL);
7 R← Reduce(max, RL);
8 return R;

9 Function ReLearn_KS(pγ , c, n,W, S, I):
10 if n = 0 or W ≤ 0 then
11 R[I]←

∑
i∈S pγ [i];

12 else
13 [P1, P2]←

BranchL_KS(pγ , c, n,W, S);
14 RL← Map(ReLearn_KS, PL);
15 R[I]← Reduce(max, RL);
16 return R[I];

selected projects so far. Initially, S = ∅. Extract_KS is a no-op. Branch_KS returns [(p, c, n−
1,W, S), (p, c, n−1,W−c[n], S∪{n})], the two subproblems for whether the nth project is selected
or not. isBaseCase checks if the total cost exceeds the budget or if no projects are left to consider.

Limitations of requirements on the recursive algorithm Before Example 2, we specified re-
quirements on recursive algorithms considered in this paper. Even though the framework is general,
there are algorithms that the framework excludes. Perhaps the most stringent restrictions are on the
arithmetics we allow in ReSolve. Using two examples, we illustrate some limits of our framework.

One simple (but perhaps unnatural) problem that the proposed framework cannot handle directly
is the following: given n items with unknown “rewards” ri, find the two items with the maximum
product of their rewards (rirj). Computing the product of rewards involves multiplying (instead of
adding) unknown parameters, which our framework cannot handle directly. On the other hand, the
problem is equivalent to maximizing the sum of the logarithm of the two rewards. Thus, in this case,
a simple reformulation of the problem makes it amenable to Branch & Learn (though whether the
learning would work well is a different question, and depends on the data and the parameters).

However, we can make the problem and objective slightly more complicated (and contrived): choose
3 items, and maximize the sum of pairwise products of rewards, i.e. find items i, j, k to maximize
rirj + rjrk + rirk. It is much less obvious how we can find a natural reformulation of the problem
that makes it still amenable to Branch & Learn, illustrating some of the limits of the approach.

4 The Branch & Learn Framework

The proposed Branch & Learn (B&L) framework methodically transforms a recursive algorithm
(ReSolve in Algorithm 2) as described in the last section into a Predict+Optimize learning algorithm.
In particular, we adapt the recursive algorithm into the ReLearn template of Algorithm 2, for use as
the Convert function (line 7)—the intellectual core of the approach—in Algorithm 1.

Recall from Section 2 that, in the context of the coordinate descent algorithm (Algorithm 1),
Convert (ReLearn here) takes as input i) the problem Pγ—constructed from P as well as
the current training example (A, θ)—the problem P expressed as a function of the free coefficient
coordinate γ, and ii) the domain I0 of γ, also constructed from (A, θ) (for example, to ensure
basic properties of parameters such as non-negativity). From these inputs, ReLearn computes a
piecewise linear function, mapping intervals (that partition I0 overall) to objectives (computed under
the estimated parameters) of estimated optimal solutions using γ taking values within that interval.
To construct such a ReLearn procedure, we can simply adapt from the corresponding ReSolve
algorithm, and we explain each component of ReLearn here.

ReSolve (Algorithm 2) comprises isBaseCase, BaseCaseL, ExtractL, BranchL, Map
and Reduce. Since isBaseCase, Map and Reduce do not directly involve any parameters, they
are unchanged from ReSolve. As for BaseCaseL, ExtractL and BranchL, they are obtained
from ReSolve by replacing all arithmetic operations with their piecewise linear generalizations.

With these component functions, the structure of ReLearn can then be based on that of ReSolve.
ReLearn first checks whether the current subproblem is a base case, and if so, returns the corre-
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sponding objective under the estimated parameters. Otherwise, it performs the recursion as follows: i)
ExtractL computes information Tγ for deciding which subproblems to branch into, where crucially
this information will depend on the parameters and hence also on the free coefficient γ. Thus the
result of ExtractL is a data structure mapping each disjoint subinterval I of I0 to some information
Tγ [I]. In ReLearn, we denote the set of subintervals as I(Tγ). ii) With the result of ExtractL,
we iterate over each I ∈ I(Tγ), and perform the corresponding BranchL, Map and Reduce to
get the estimated objective values for each γ ∈ I . Note that, since we map ReLearn instead of
ReSolve to PL, even within the current interval I , the final estimated objective will generally be
further subdivided into smaller pieces. Thus, within I , it will be piecewise linear function instead of
just a linear function. Reduce, using the canonical piecewise linear extension ⊞ of ⊕, handles the
further subdivisions as desired. iii) Finally, the resulting piecewise linear function R[I] is returned.

Example 3. The adapted ReLearn_KS in Algorithm 3 solves the parameterized 0-1 knapsack
problem with the inputs of the parameterized problem P i

γ = (pγ , c, n,W, S) and an initial domain
I0. The estimated profits pγ is an array of linear functions of the free coefficient γ, and I0 is the
initial domain depending on Ai such that pγ ≥ 0 for all γ ∈ I0. The components of ReLearn_KS
are essentially the same as those of ReSolve_KS (Algorithm 3), except that the addition in line 11
and the max operation in the Reduce function are replaced by their canonical extensions.

We also note that, while it is possible to completely formalize the framework into a syntactic
transformation, the correctness (or the required restrictions on ReSolve) of the formalization
will depend highly on the precise programming language used (e.g. issues of side effect), and
require significant low-level work on the level of the grammar of the language, detracting from the
key intuitions and principles behind our framework. For this reason, we do not embark on such
formalization in this paper. Nonetheless, in the next section, we give several case studies to showcase
problems that are amenable to our framework and show how to adapt those recursive/iterative
algorithms to ReLearn functions, demonstrating the applicability of the proposed framework.

5 Case Studies

This section gives several case studies for our framework. We first demonstrate, using the example of
the shortest path problem (SPP), how our framework can recover the DP based method of Demirović
et al. [5]. We then showcase our framework on a more complicated iterative algorithm for solving the
capacitated minimum cost flow problem (MCFP). To demonstrate the full recursion generality that our
framework can handle, we use it on the tree-search algorithm for the NP-hard problem of minimum
cost vertex cover (MCVC). The last example is the multi-stage scheduling (MSS) problem, which
can be handled by our framework straightforwardly but not by many other prior Predict+Optimize
methods. We describe the problems in the main paper while details are given in Appendix A.

Shortest Path Tabular DP can be viewed as an iterative algorithm, computing the subproblem
table row by row—the Branch operation in ReSolve generates a single subproblem P ′, which
is independent of the unknown parameters (only the parameters to P ′ depend on the unknown
parameters). With this perspective, the work of Demirović et al. [5] is a special case of our method.

A concrete example is the Bellman-Ford algorithm [2] for SPP in a weighted directed graph with
potentially negative weights. We instantiate ReSolve for solving SPP to obtain ReSolve_SPP
as follows. Suppose V is the set of vertices of the graph. The inputs of ReSolve_SPP are
(Gc, D, s, t,N), where Gc ∈ R|V |×|V | is a matrix with entry (Gc)uv equal to the cost along the
directed edge uv, N is a counter, D is an array of shortest (|V | −N − 1)-hop distances from the
source to each vertex, and s and t are the source and terminal. Initially, N = |V | − 1 and all elements
in D are initialized to a sufficiently large number (signifying infinity), except that D[s] is set to
0. isBaseCase_SPP tests whether N = 0, and BaseCase_SPP returns D[t]. Extract_SPP
computes an array D′ where each element D′[v] is computed by iterating over every vertex u ̸= v
and computing D′[v] = min(D[v], D[u] + (Gc)uv). Branch_SPP returns a single subproblem
[P ′] where P ′ = (Gc, D′, s, t,N − 1), on which ReSolve_SPP is called recursively.

We consider the Predict+Optimize setting where the edge costs are unknown. In the parameterized
problem Pγ , parameterized by the free coefficient γ in the coordinate descent, the edge costs are
non-negative parameters represented by linear functions of γ. Correspondingly, all operations in
ReLearn_SPP involving edge costs are replaced by their piecewise linear counterparts (Section 2).
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ReLearn_SPP outputs a piecewise linear function that is the cost of the estimated shortest path
under the estimated parameters, which as explained in Section 2 can be used to compute the regret.
See Appendix A.1 for the pseudocode of ReSolve_SPP and ReLearn_SPP.

Capacitated Minimum Cost Flow We now apply the B&L framework to another iteratively
solvable problem: MCFP in a directed graph, where at most one edge exists between any two vertices.
Each graph edge has a non-negative capacity and a non-negative cost per unit of flow. Given input
K, we want to find the least cost to route K units of flow from the source s to the terminal t. We
consider the parameterized problem where only the edge flow costs are unknown.

We instantiate ReSolve for solving MCFP using the successive shortest path algorithm [16], to
obtain ReSolve_MCFP. Suppose the set of vertices is V . The inputs of ReSolve_MCFP are
(Gp, Gc, F, s, t). The two matrices Gp ∈ R|V |×|V |

≥0 and Gc ∈ R|V |×|V |
≥0 represent the edge capacity

and the edge (unit) flow cost of the graph respectively. For the successive shortest path algorithm, we
preprocess the graph by adding, for every edge uv in G, a reverse edge vu with 0 capacity and the
negated cost −(Gc)uv . The variable F ∈ R|V |×|V |

≥0 is a matrix representing the flow sent along each
edge so far. isBaseCase_MCFP tests whether there is no longer a path from s to t with non-zero
capacity in Gp or whether the sum of all flows sent to t is no less than K, and BaseCase_MCFP
adds the costs of all flows in F , i.e. R =

∑
(u,v) Fuv · (Gc)uv . Extract_MCFP computes a path T

from s to t with lowest cost (per unit flow) in Gc. Branch_MCFP updates the capacity graph Gp

and the flow graph F given a path T . The capacity of each edge in the path T is decreased and the
capacities of the reverse edges in Gp are increased by the value of the sending flow. The value of the
sending flow is the minimum value between the largest flow value allowed on T and the remaining
flow need to be sent to t. The flow is also added to F . ReSolve_MCFP is called recursively on
these new Gp and F as well as the original Gc, s and t.

Correspondingly in ReLearn_MCFP, the input is a problem Pγ parameterized by the free coefficient
γ, and all edge costs (the unknown parameters) are expressed as linear functions of γ. The initial
domain I0 for γ is restricted so that the edge cost estimates are non-negative for all γ ∈ I0.
ExtractL_MCFP adapts from the Bellman-Ford ReLearn_SPP in the previous case study, which
computes a piecewise data structure Tγ mapping intervals (for γ) to different shortest paths (in
addition to just the path lengths). For each interval I of Tγ , Branch_MCFP constructs a subproblem
P ′
γ by updating Gp using Tγ [I]. ReLearn_MCFP is recursively called on P ′

γ , until the base case
is reached. See Appendix A.2 for the pseudocode of ReSolve_MCFP and ReLearn_MCFP.

Minimum Cost Vertex Cover Our third example is the MCVC problem, where we show how to
apply our framework to a (non-degenerate) recursive algorithm (with multiple branches). Given a
graph G = (V,E), there is an associated cost c ∈ R|V | denoting the cost of picking each vertex. The
costs are unknown parameters. The goal is to pick a subset of vertices, minimizing the total cost,
subject to the constraint that all edges need to be covered, namely at least one of the two vertices on
an edge needs to be picked. This problem is relevant in applications such as building public facilities.
Consider, for example, the graph being a road network with edge values being traffic flow, and we
wish to build speed cameras at intersections with minimum cost, while covering all the roads.

The recursive algorithm ReSolve_MCVC takes input (G, c, ℓ, n, chosen), where G, c, ℓ are as
before, n is the number of levels of (binary) recursion remaining and chosen is the current list
of chosen vertices. isBaseCase_MCVC checks if n = 0, and BaseCase_MCVC returns the
total cost of vertices in chosen if all edges in G are covered, and returns infinity otherwise.
Extract_MCVC is a no-op. Branch_MCVC creates two subproblems (G, c, ℓ, n− 1, chosen) and
(G, c, ℓ, n−1, chosen∪{n}), i.e. choosing vertex n or not, and Reduce takes the min of the two op-
tions. Correspondingly, ReLearn_MCVC replaces all arithmetic and min operations by piecewise lin-
ear counterparts. See Appendix A.3 for the pseudocode of ReSolve_MCVC and ReLearn_MCVC.

Multi-stage Scheduling Our last example is the MSS problem, where a set of items needs to be
processed by two machines sequentially. Each machine can process only one item at a time, and
each item must be processed first by machine 1 and then machine 2. Furthermore, the items must be
processed by both machines in the same order. The goal is to find an ordering for processing items
that minimizes the total elapsed time. For this problem, the unknown parameters are the individual
item processing times on the machines. We note that a host of prior Predict+Optimize methods
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cannot be applied to this problem, including the tabular DP method of Demirović et al. [5], as well as
the recent work of Guler et al. [9] and any linear programming based methods which all require a
problem formulation with an objective that is bilinear in the unknown parameters and the decision
variables (that is, a dot product between these two vectors). Our method on the other hand handles
this problem relatively straightforwardly by directly adapting Johnson’s rule. See Appendix A.4 for
details of ReSolve_MSS and ReLearn_MSS as well as their pseudocode.

6 Comparing Branch & Learn with Latest Work

Both Branch & Learn and the work of Guler et al. [9] are exact methods for Predict+Optimize, since
they both directly optimize the regret, instead of any surrogates. Both also use coordinate-descent as
the high-level optimization routine. The main differences lie in the kind of problems that the methods
can apply to, as well as the very different techniques used to achieve each coordinate-descent step.

In terms of applicable problems, Branch & Learn applies to all optimization problems solvable by an
algorithm fitting the ReSolve template in Section 3. On the other hand, [9] applies to problems with
an objective that is bilinear in both the decision variables and the unknown parameters—the objective
is the inner product between the two vectors. There are problems amenable to Branch & Learn but
not [9], and vice versa. Here we can give some intuition about when each method is applicable.

Suppose we have an optimization problem with a finite feasible solution set. For most practical
purposes, such a solution set is enumerable by a recursive algorithm (but not always, since finite
sets need not be enumerable for computability reasons). If, additionally, the objective function is
bilinear as in the assumption of [9], then Branch & Learn would be able to handle such a problem. In
this sense, an optimization problem with a finite solution set that is solvable by [9] would also be
solvable by Branch & Learn. The multi-stage scheduling problem with unknown per-item/machine
processing times is an example problem with no such bilinear-objective representation (unless we
use an exponentially large integer linear program to represent the problem, with exponentially many
unknown parameters), yet is easy to fit into our framework.

On the other hand, if the solution space is continuous, Branch & Learn might not be able to handle
such an optimization problem. The reason is that Branch & Learn (as it is currently formulated)
requires explicitly computing the entire empirical regret function, which is possible only if the regret
has a finite representation (say, as a piecewise linear function). When the solution space is continuous,
the regret might be a general smooth function even if the objective is bilinear. By contrast, [9] never
computes the entire regret function explicitly. Instead, it just computes the regret function at query
points, and performs numerical optimization on the function (which is convex when the objective is
bilinear). In this sense, [9] is more capable than Branch & Learn in these continuous settings.

In terms of techniques, Branch & Learn automatically generates the “transition points” in the
piecewise linear functions by essentially simulating the recursive algorithm. This contrasts the
approach of [9], where they leverage the convexity structure in the problem arising from their
bilinearity assumption on the objective, and they use a numerical optimization approach (essentially
a variant of binary/ternary search) to perform a coordinate-descent step.

7 Experimental Evaluation

In this section, we compare our proposed B&L method with other methods for Predict+Optimize.
We include 4 classical regression methods: linear regression (LR), k-nearest neighbors (k-NN),
classification and regression tree (CART) and random forest (RF) [8]; 3 approximation methods:
smart predict then optimize (SPO) [6], quadratic programming task loss (QPTL) [17], and interior
point based approach (IntOpt) [12]; and 2 exact methods: SPO tree and SPO forest [7]. We experiment
on three optimization problems: MCFP, MCVC and MSS—problems that the previous DP-based
method cannot handle—and use both artificial and real-life data on real-life graphs. For MCFP,
we use USANet [11] (24 vertices and 43 edges) and GÉANT [10] (40 vertices and 61 edges). For
the NP-hard problem of MCVC, we use two smaller graphs from the Survivable Network Design
Library [13]: POLSKA (12 vertices and 18 edges) and PDH (11 vertices and 34 edges). In MCFP,
the edge costs are unknown, and the capacities are sampled from [10, 50]. The flow value is set to
20, and we select random sources and sinks. In MCVC, the edge costs are unknown. In MSS, the
processing times for each item and machine are unknown. We vary the number of jobs from 10 to 40.
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Table 1: Mean regrets and standard deviations for MCFP with unknown parameters.

Artificial Dataset Real-life Dataset
USANet GÉANT USANet GÉANT

Size 100 300 100 300 100 300 100 300
B&L 1687.10±729.36 1699.24±688.96 733.78±294.23 732.99±270.88 141.37±128.52 122.66±85.52 72.43±63.58 68.44±50.76
LR 1795.02±792.63 1749.24±691.16 765.13±345.07 743.20±289.98 177.55±154.53 141.00±92.60 84.41±68.03 88.66±63.21
k-NN 1783.50±783.84 1791.61±715.92 801.65±350.87 759.87±278.67 285.30±206.60 223.95±132.56 127.73±79.25 121.75±48.45
CART 2529.74±891.06 2436.37±922.07 1310.53±422.75 1260.65±347.26 339.41±219.52 313.36±175.66 157.82±62.13 194.62±88.12
RF 1783.84±750.26 1707.96±670.23 766.73±322.94 771.19±314.24 197.25±162.16 138.02±87.96 88.25±58.49 103.92±56.31
SPO 2193.87±880.07 2071.87±739.14 1011.65±322.98 937.57±252.87 204.89±185.62 139.55±93.63 82.48±71.62 84.18±57.95
QPTL 2220.47±850.36 2244.40±854.32 1063.96±355.06 1093.78±282.53 259.94±236.54 212.83±172.12 84.60±71.89 102.30±61.28
IntOpt 1796.33±756.94 1754.77±701.96 778.18±303.49 762.99±293.06 200.69±174.94 140.98±88.58 82.42±68.32 87.61±58.05
SPO Tree 1743.68±754.79 1723.44±695.73 1487.71±879.45 1499.39±845.48 185.68±156.35 153.47±106.54 143.57±107.88 136.16±85.02
SPO Forest 1777.86±689.84 1736.28±691.08 745.43±344.07 747.60±292.79 178.35±144.90 145.52±102.28 135.98±101.46 132.07±77.23
Average TOV 10825.18±921.41 10835.36±1038.05 9831.18±3318.39 9784.31±3391.45 6831.07±1044.27 6660.78±872.37 6459.94±2049.60 6026.91±2049.46

Table 2: Mean regrets and standard deviations for MCVC with unknown parameters.

Artificial Dataset Real-life Dataset
POLSKA PDH POLSKA PDH

Size 100 300 100 300 100 300 100 300
B&L 109.45±15.42 110.04±6.55 50.40±8.60 53.71±5.62 2.22±1.36 2.18±0.49 7.57±6.04 5.51±2.62
LR 115.69±15.59 116.36±8.60 55.15±9.98 56.59±6.70 3.56±2.07 3.09±0.91 8.32±5.86 6.10±2.67
k-NN 123.06±17.26 116.97±11.26 56.58±8.77 58.36±6.16 5.16±2.13 5.02±1.00 11.77±7.23 9.78±2.91
CART 117.23±14.88 123.61±13.20 89.68±15.95 89.40±8.91 5.47±2.29 5.38±1.21 16.92±7.64 11.70±3.51
RF 116.38±14.75 117.13±11.75 58.75±9.88 56.84±6.62 4.17±1.83 3.91±0.92 13.45±7.70 7.76±3.36
SPO 117.50±16.94 116.72±9.14 78.74±14.98 69.46±6.63 2.94±1.54 2.78±0.82 10.00±7.97 6.58±3.07
QPTL 118.14±18.07 117.52±9.14 81.70±14.83 79.31±5.72 2.58±1.37 2.57±0.62 10.89±6.49 9.28±3.99
IntOpt 119.52±16.04 118.44±9.70 69.66±14.43 66.12±8.44 2.55±1.32 2.30±0.51 10.93±6.56 8.79±3.93
SPO Tree 118.90±17.62 117.55±9.49 56.51±8.95 57.70±6.77 2.68±1.31 2.57±0.65 14.12±6.73 11.19±4.13
SPO Forest 119.00±18.72 117.25±10.95 55.07±8.98 56.85±6.00 2.86±1.42 2.66±0.64 13.11±7.40 11.45±3.62
Average TOV 649.00±21.02 654.82±11.83 817.76±26.29 822.72±16.22 321.14±16.11 317.96±6.96 502.17±30.42 503.57±12.39

We run 30 simulations for each problem configuration. In each simulation, we build datasets con-
sisting of n ∈ {100, 300} pairs of (feature matrix, parameters). In the artificial and real-life datasets,
each parameter has 4 and 8 features respectively. Given that we are unable to find datasets specifically
for the MCFP, MCVC and MSS problems, we follow the experimental approach of Demirović
et al. [3, 4, 5] and use real data from a different problem (the ICON scheduling competition) as
numerical values required for our experiment instances. We use a 70%/30% training/testing data
split. Details of the data generation method are in Appendix B. We use the scikit-learn library [1]
to implement LR, k-NN, CART and RF, and OR-Tools [14] as the problem solver in SPO Tree and
SPO Forest. All models are trained with Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz processors.1

Solution Quality Table 1, 2, and 3 report the mean regrets and their standard deviations for each
method on MCFP, MCVC and MSS respectively. Mean regret ± std is the metric used to demonstrate
the performance. At the bottom of the table we also report the average true optimal values (TOV) to
compare the relative error on the artificial and real-life datasets.

As shown in Table 1, B&L achieves the best performance in all cases. On the artificial dataset, B&L,
LR, k-NN, RF, IntOpt, and SPO Forest achieve similar performance on both of the two graphs, while
SPO Tree performs well on USANet but has a poor performance on GÉANT. With the real-life
dataset, B&L shows the most significant advantages. Compared with other methods, B&L obtains
20.38%-58.35% (n = 100) and 11.13%-60.86% (n = 300) smaller regret on USANet, and 12.13%-
54.11% (n = 100) and 18.70%-64.83% (n = 300) smaller regret on GÉANT. We observe that all
methods achieve smaller relative error with real-life data than with artificial data. B&L, for example,
achieves 7.46%-15.68% and 1.12%-2.07% relative error with artificial and real-life data respectively.
This is consistent with how the artificial dataset is purposefully designed to be highly non-linear (see
Appendix B), and thus harder to learn. Nevertheless, B&L still achieves the smallest regret.

Table 2 shows the results for MCVC. We can see that B&L has the smallest mean regrets in all
cases. On the artificial dataset, all methods achieve similar good performance on POLSKA, while
CART and all approximation methods perform poorly on PDH. The performance differences among
different methods are larger in the real-life dataset, and the advantages of B&L are more evident.
B&L obtains 12.95%-59.41% (n = 100) and 5.22%-59.53% (n = 300) smaller regret in POLSKA,
and 9.05%-55.26% (n = 100) and 9.71%-52.89% (n = 300) in PDH. Similar to the results of MCFP,
all algorithms achieve better performance in the real-life dataset. B&L achieves 6.16%-16.86%
relative error in the artificial dataset, and 0.68%-1.51% relative error in the real-life dataset.

1Our implementation is available at https://github.com/dadahxy/NeurIPS_BranchAndLearn
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Table 3: Mean regrets and standard deviations for MSS with unknown parameters.

Artificial Dataset Real-life Dataset
10 Jobs 40 Jobs 10 Jobs 40 Jobs

Size 100 300 100 300 100 300 100 300
B&L 112.23±10.74 118.03±6.40 216.23±18.10 220.88±12.25 2.63±1.25 2.41±0.57 18.52±2.98 21.17±1.55
LR 121.91±12.12 121.53±6.66 226.74±21.34 225.80±16.28 3.08±1.37 2.82±0.58 20.78±3.65 23.48±2.04
k-NN 122.67±14.31 123.89±6.98 227.95±28.40 221.45±12.62 7.88±2.14 7.46±0.93 54.24±7.81 48.23±4.17
CART 117.79±14.46 123.67±7.41 225.29±24.91 227.99±12.45 8.53±2.23 6.43±0.98 52.45±8.86 35.19±5.50
RF 120.72±12.38 123.90±6.18 223.29±22.52 228.13±16.86 6.92±2.02 5.71±1.00 44.52±6.61 31.01±4.24
SPO Tree 122.21±16.07 122.23±7.81 231.14±30.03 229.43±17.39 4.53±1.53 4.19±0.83 49.21±9.67 42.98±5.59
SPO Forest 125.37±12.52 121.64±6.76 223.20±22.00 230.55±12.96 3.38±1.40 3.31±0.69 46.18±10.06 35.59±3.25
Average TOV 1215.19±25.89 1223.62±16.46 4606.86±57.62 4599.35±38.33 548.99±19.79 550.05±13.59 2644.11±52.04 2671.86±34.35

Table 4: Average runtime (in seconds) for MCFP, MCVC and MSS on real-life data.

Minimum cost flow problem Minimum cost vertex covering problem Multi-stage scheduling problem
USANet GÉANT POLSKA PDH 10 Jobs 40 Jobs

Size 100 300 100 300 100 300 100 300 100 300 100 300
B&L 22.47 70.37 20.63 59.17 651.76 1965.00 298.26 896.00 8.02 27.74 1427.34 4302.60
SPO Tree 20.94 61.93 35.94 439.19 484.77 6281.35 223.53 2798.22 7.88 41.80 156.56 4683.33
SPO Forest 17.26 73.05 22.07 369.21 980.32 4277.86 488.36 2125.27 11.03 49.17 66.05 2424.03

We show the mean regrets and standard deviations in the MSS experiment in Table 3. Note that linear
programming based methods including SPO, QPTL and IntOpt are not applicable to this problem as
mentioned in Section 5. Due to the space limitation, we only show the results when the number of
jobs is 10 and 40—see Appendix C for more results. B&L has the best performance in all cases with
the real-life dataset, achieving 0.44%-0.79% relative error compared to the TOV. Contrasting other
methods, B&L obtains 14.58%-69.20% (n = 100) and 14.47%-67.73% (n = 300) smaller regret for
10 jobs, and 10.85%-65.85% (n = 100) and 9.84%-56.10% (n = 300) for 40 jobs. On the artificial
dataset, all algorithms perform essentially the same, achieving 4.69%-9.65% relative error.

Scalability/Runtime Learning using regression or approximate methods is fast, but these methods
sacrifice the accuracy of the learned model, which is the motivation for the line of work on Pre-
dict+Optimize. On the other hand, many optimization problems are expensive to solve. Although
exact methods achieve lower regret, their runtime scalability can be an issue since their learning
process requires solving optimization problems multiple times. For a fair comparison, therefore,
we compare B&L only with other exact methods: SPO Tree and SPO Forest. Table 4 shows the
average runtime across 30 simulations for different cases. Overall, we observe that B&L scales at
least as well as SPO Tree and SPO Forest in most of the cases. Of note is the (MSS, 40 jobs, dataset
size 100) setting where B&L runs slower than SPO Tree and Forest, due to the fact that MSS is a
permutation-based scheduling problem, where B&L takes significant training time to explore all the
possible predictions. Nonetheless, if we consider the ratio of runtimes between dataset sizes 100 and
300, B&L scales significantly better than SPO Tree and Forest with respect to the dataset size.

8 Summary

Given a ReSolve function for a recursively or iteratively solvable problem, we propose a systematic
approach to synthesize a ReLearn function for learning with the regret loss, by replacing operators
in ReSolve with their piecewise linear counterparts. Our proposal is methodical and straightforward
to implement. Furthermore, our framework encompasses a wide class of recursive algorithms
(ReSolve functions), as demonstrated by our case studies. Most importantly, B&L empirically
achieves the lowest regrets against classical machine learning and contemporary Predict+Optimize
algorithms with runtime comparable with the latter.
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[3] E. Demirović, P. J. Stuckey, J. Bailey, J. Chan, C. Leckie, K. Ramamohanarao, and T. Guns.
An investigation into prediction + optimisation for the knapsack problem. In International
Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations
Research, pages 241–257, 2019.
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