
Automatic Dominance Breaking for a Class of Constraint Optimization Problems

Jimmy H.M. Lee and Allen Z. Zhong
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

{jlee, zwzhong}@cse.cuhk.edu.hk

Abstract
Exploiting dominance relations in many Constraint
Optimization Problems can drastically speed up the
solving process in practice. Identification and uti-
lization of dominance relations, however, usually
require human expertise. We present a theoretical
framework for a useful class of constraint optimiza-
tion problems to detect dominance automatically
and formulate the generation of the associated dom-
inance breaking nogoods as constraint satisfaction.
By controlling the length and quantity of the no-
goods, our method can generate dominance break-
ing nogoods of varying strengths. Experimentation
confirms runtime improvements of up to three or-
ders of magnitude against manual methods.

1 Introduction
Dominance relations in Constraint Optimization Problems
(COPs) describe relations between two assignments where
one is known to be subordinate compared with another with
respect to satisfiability and/or objective value. Once domi-
nance relations are found in a COP, they can be used to speed
up Branch and Bound (BnB) search [Ibaraki, 1977].

A wealth of research studies how to exploit dominance
relations in practice. With sophisticated insights of the
problem structure, one could either add dominance break-
ing constraints to exclude dominated assignments [Prestwich
and Beck, 2004; Getoor et al., 1997] or augment the BnB
search algorithm with dominance test [Monette et al., 2007;
Aldowaisan, 2001; Korf, 2004]. Empirical evidence has
shown that these problem-specific methods can dramatically
reduce the search space and so speed up the solving process.

Dominance breaking is useful in solving COPs, but identi-
fication of dominance relations is non-trivial in general. Chu
and Stuckey [2012] give the first generic method for identify-
ing a class of dominance relations and generating dominance
breaking constraints for COPs. While clever and interesting,
the method calls for manual derivation of mappings and con-
ditions, which is taxing for the mathematically uninclined.
Mears and de la Banda [2015] automate the derivation pro-
cess to a large extent, but their method still has to select sym-
metries manually. Also, they could generate only the same
constraints as those reported in the literature.

Manual derivation of free form dominance breaking con-
straints requires deep understanding of the problems and
sometimes even ingenuity. Our goal is to automate the pro-
cess to make dominance breaking accessible to the non-
experts by restricting the form of the dominance breaking
constraints to nogoods. We start by giving a general theory of
dominance relations over constraints and specialize our atten-
tion to partial assignments, which can be interpreted as con-
junctions of equality constraints. Theorems are given to iden-
tify the sufficient conditions of when an assignment constraint
dominates another for COPs with objectives and constraints
of certain useful forms. Negation of dominated partial assign-
ments are dominance breaking nogoods. Most importantly,
nogoods generation can be formulated mechanically as con-
straint satisfaction. By controlling the length and quantities of
the nogoods, our method can tune the collective strengths of
the generated nogoods and find pruning opportunities that are
often neglected by manual methods. Experimentation on a
diversified set of benchmarks confirms the practicality of our
method, which compares favourably against manual methods
both in efficiency and ease of use, and exhibits runtime (in-
cluding both nogood generation and solving time) speed-up
of up to three orders of magnitude.

2 Background
A Constraint Satisfaction Problem (CSP) P is a tuple
(X,D,C) consisting of a finite set of variables X =
{x1, . . . , xn}, a mapping D from variable x ∈ X to its fi-
nite domainD(x) and a set of constraints C, where each con-
straint c ∈ C is a subset of the Cartesian product D(xi1) ×
· · · ×D(xik) over the scope var(c) = {xi1 , . . . , xik} ⊆ X .
A Constraint Optimiaztion Problem (COP) (X,D,C, f) ex-
tends a CSP with an objective function f .

An assignment x = v is an equational constraint which
assigns a value v ∈ D(x) to variable x ∈ X . A partial
assignment θ for variables X ′ ⊆ X is the set of assignments
{x = v|x ∈ X ′}, where X ′ is the scope var(θ) of θ. A full
assignment is a partial assignment when X ′ = X . When the
context is clear, we use θ to denote the tuple (vi1 , . . . , vil),
where ij < ij+1, xij ∈ X ′ and |X ′| = l. The projection θ↓Y
of θ onto Y ⊆ var(θ) is the partial assignment {x = v|(x =
v) ∈ θ ∧ x ∈ Y }.

A full/partial assignment θ satisfies a constraint c iff
θ↓var(c)∈ c, where var(c) ⊆ var(θ). A solution of a COP

P = (X,D,C, f) is a full assignment that satisfies all con-
straints in C, and P is satisfiable if the the set of all solutions
sol(P) is not empty. In the remainder of the paper, we use θ̄
to emphasize that it is a full assignment.

The objective function f maps every full assignment to a
real number. Without loss of generality, the goal of solv-
ing a COP is to find an optimal solution θ̄opt such that θ̄opt
is a solution of P and f(θ̄opt) ≤ f(θ̄′) for any other solu-
tion θ̄′ of P . In other words, the objective function is min-
imized. (Remove) In constraint programming, The Branch-
and-bound (BnB) algorithm [Land and Doig, 1960] usually
solves a COP by iteratively finding a solution with better ob-
jective value, and pruning subtrees that contain no better solu-
tion than the best solution found so far. The iterative process
is repeated until no better solution can be found and the last
solution is returned as the optimal solution.

Here we review some basic concepts in relational math-
ematics. A binary relation R over two sets S and S′ is a
set of ordered pairs (s, s′) where s ∈ S and s′ ∈ S′. If
S = S′, such a binary relation is homogeneous; otherwise it
is heterogeneous. For a homogeneous relation R over S, R
is transitive if ∀s, s′, s′′ ∈ S, sRs′ ∧ s′Rs′′ ⇒ sRs′′, and
it is irreflexive if @s ∈ S such that sRs. The transitive clo-
sure of a homogeneous relation R on a set S is the smallest
relation on S that contains R and is transitive. In our work,
we slightly generalise the transitive closure to heterogeneous
relationR : S 7→ S′ by a two-step construction: (1) construct
a relation R̂ over the union Ŝ = S ∪ S′ such that R̂ = R as a
set of ordered pairs, and 2) take the transitive closure R̂+ of
R̂ on the set Ŝ.

Let ΘP be the set of full assignments of a COP P =
(X,D,C, f). A dominance relation ≺a with respect to P
is a transitive and irreflexive relation such that for θ̄, θ̄′ ∈ ΘP

if θ̄ ≺a θ̄′ with respect to P , then either: 1) θ̄ is a solution
of P and θ̄′ is not a solution of P, or 2) both θ̄ and θ̄′ are so-
lutions of P and f(θ̄) ≤ f(θ̄′), or 3) both θ̄ and θ̄′ are not
solutions of P and f(θ̄) ≤ f(θ̄′). We say that θ̄ dominates
θ̄′. The following theorem states that it is sound to prune all
dominated full assignments.

Theorem 1. [Chu and Stuckey, 2012] Given a COP P =
(X,D,C, f) and a dominance relation≺a with respect to P .
We can prune all full assignments θ̄′ ∈ ΘP whenever ∃θ̄ ∈
ΘP such that θ̄ ≺a θ̄′, without changing the satisfiability or
optimal value of P .

Note that a dominance relation should be both transitive
and irreflexive. If P is satisfiable, then there is at least one
optimal solution θ̄opt of P that is not dominated by any other
solutions. Consider a simple COP P with one variable x with
domain {0, 1} and a constant objective function, where Both
{x = 0} and {x = 1} are optimal solutions of P . Given a
dominance relation ≺a with respect to P , either {x = 1} ≺a
{x = 0} or {x = 0} ≺a {x = 1}, but not both. Otherwise,
we will have {x = 1} ≺a {x = 1} due to the transitive
property, but it violates the irreflexive property of ≺a.

3 Automatic Generation of Dominance
Breaking Nogoods

This section gives an overview of our method. Different from
other works in the literature where dominance relations are
manually identified, our method can automate the process of
identifying and exploiting dominance relations as follows:

1. Given the problem model of a COP P , we will first ana-
lyze the objective and constraints of P and build a gen-
eration model as a CSP mechanistically for identifying
all dominance breaking constraints with respect to P .

2. When instance data is presented, all solutions of the
generation model are searched, and each solution cor-
responds to a dominance breaking constraint, which is
in the form of a nogood.

3. All generated nogoods are added to the problem model
of P before solving.

The key step is to build the generation model automatically
based on the problem model of P . In the rest of the paper,
our focus is to show that, for a COP P , the constraints in the
generation model can be obtained directly from constraints
and objectives in P . The generation model can be obtained
by using only one pass automatic analysis on the problem
model of P .

To facilitate the presentation of our work, we will first
present a general theory of dominance relations over con-
straints in Section 4. If a constraint c is dominated by some
constraint c′ with respect to a COP P , the negation ¬c is a
dominance breaking constraint for P . Further, we will show
that it suffices to consider three conditions, namely irreflexiv-
ity, betterment and implied satisfaction, to establish the dom-
inance relation between c and c′. In Section 5, we will re-
strict our attention to dominance relations over assignment
constraints. We will give concrete results on what constraints
should be presented in the generation model for different ob-
jectives and constraints in the problem model. In Section 6,
we will give the skeleton code for implementation.

4 Dominance Relations Between Constraints
Chu and Stuckey [2012] investigated dominance relations on
full assignments and search nodes. It is straightforward to
generalise it to dominance relations between constraints.

Given a COP P = (X,D,C, f). Let Θc denote the set
of all full assignments satisfying c. Suppose there are two
constraints c and c′ of the same scope X ′ ⊆ X , we say c
dominates c′, i.e. c ≺ c′, with respect to P if ∀θ̄′ ∈ Θc′ ,∃θ̄ ∈
Θc, such that θ̄ ≺a θ̄′ for some dominance relation ≺a with
respect to P . Note that we do not require c, c′ ∈ C. The
following theorem is a direct consequence of Theorem 1.

Theorem 2. Given a COP P = (X,D,C, f) and two con-
straints c and c′ over X ′ ⊆ X . If c ≺ c′ with respect to
P , then P has the same satisfiability or optimal value as
P ′ = (X,D,C ∪ {¬c′}, f)

Proof. ∀θ̄′ ∈ Θc′ ,∃θ̄ ∈ Θc s.t. θ̄ ≺a θ̄′. By Theorem 1, we
can prune all dominated full assignments in Θc′ by adding
¬c′ to the constraint set C of P .

Once we could establish c ≺ c′ with respect to P , the nega-
tion of c′ is the desired dominance breaking constraint. To
check c ≺ c′, we can simply compare all solutions in Θc

against those in Θc′ , but this is impractical. We give a suffi-
cient condition for c ≺ c′.
Theorem 3. Given a COP P = (X,D,C, f) and two con-
straints c and c′ over X ′ ⊆ X . If there exists a bijective
mapping σ : Θc 7→ Θc′ such that:

• irreflexivity: the transitive closure of σ is irreflexive

• betterment: ∀θ̄ ∈ Θc, f(θ̄) ≤ f(σ(θ̄))

• implied satisfaction: ∀θ̄ ∈ Θc, σ(θ̄) is a solution of P
implies θ̄ is a solution of P

then c ≺ c′.

Proof. (Sketch) We need to show that ∀θ̄′ ∈ Θc′ ,∃θ̄ ∈ Θc

such that θ̄ ≺a θ̄′ where ≺a is a dominance relation with
respect to P . The idea is similar to the proof of Theorem
3 by Chu and Stuckey [2012], based on which we show the
transitive closure of σ is indeed a dominance relation ≺a.

We further prove that ∀θ̄′ ∈ Θc′ ,∃θ̄ ∈ Θc such that
θ̄ ≺a θ̄′ with respect to P . Note that σ is a bijective map-
ping, so ∀θ̄′ ∈ Θc′ ,∃σ−1(θ̄′) ∈ Θc. Since ≺a is constructed
by taking the transitive closure of σ, σ−1(θ̄′) ≺a θ̄′. Hence,
c ≺ c′.

From now on, when the context is clear, we use ≺ to denote a
dominance relation between full assignments or constraints.
To generate dominance breaking constraints, it remains to
construct an appropriate σ for the purpose. In the following
section, we show that this is possible for certain classes of ob-
jectives and constraints in the COP by limiting our attention
to dominance relation between assignment constraints.

5 Dominance and Assignment Constraints
The bijective mapping in Theorem 3 needs to satisfy the
irreflexivity, betterment and implied satisfaction conditions.
Fulfilling irreflexivity turns out to be simple.

Theorem 4. Given a COP P = (X,D,C, f), and two con-
straints c and c′ overX ′ ⊆ X . If Θc∩Θc′ = ∅, all mappings
σ : Θc 7→ Θc′ and their transitive closures are irreflexive.

Proof. Since Θc ∩ Θc′ = ∅, θ 6= θ′∀(θ, θ′) ∈ σ. If (θ̄, θ̄′) ∈
σ, then (θ̄′, ∗) /∈ σ where ∗ is any full assignment. Thus, the
transitive closure of σ is also irreflexive.

Fulfilling betterment and implied satisfaction for general
constraints is difficult, but we consider a special class of con-
straints which arises out of partial assignments. A partial as-
signment θ with scope F is technically not a constraint, but
essentially a set of equations, the conjunction of which, i.e.∧
e∈θ(e), can be interpreted as a constraint. We call it an as-

signment constraint. To avoid confusion in notation, we use
AC(θ) to denote an assignment constraint for the partial as-
signment θ. The scope of AC(θ) is also F , and the length is
|F |. We are interested in the conditions when an assignment
constraint AC(θ) dominates another AC(θ′) with the same

scope. Note that ¬AC(θ′) is in the form of a nogood [Kat-
sirelos and Bacchus, 2005]. We call it a dominance breaking
nogood with respect to P .

If θ 6= θ′, then ΘAC(θ) ∩ ΘAC(θ′) = ∅ and irreflexivity in
Theorem 3 holds. What remains is to find a bijective mapping
σ that satisfies betterment and implied satisfaction.

Suppose there are two assignment constraints AC(θ) and
AC(θ′) with the same scope F ⊆ X . We define the mu-
tation mapping as σm : ΘAC(θ) 7→ ΘAC(θ′), which maps
a full assignment θ̄ ∈ ΘAC(θ) to σm(θ̄) ∈ ΘAC(θ′) such
that σm(θ̄) = (θ̄\θ) ∪ θ′. We note that every full assignment
θ̄ ∈ ΘAC(θ) has the form θ̄ = θ∪{x = v|x 6∈ F∧v ∈ D(x)}.
Thus, σm(θ̄) = θ′ ∪ {x = v|x 6∈ F ∧ v ∈ D(x)}, which
“mutates” the θ component of θ̄ to become θ′. The following
proposition shall be useful in our later discussion.
Proposition 1. Given a mutation mapping σm : ΘAC(θ) 7→
ΘAC(θ′). ∀θ̄ ∈ ΘAC(θ), θ̄\θ = σm(θ̄)\θ′.

In the following, we give sufficient conditions for differ-
ent classes of objectives and constraints to fulfill betterment
and implied satisfaction. Unless otherwise stated, all formal
results in the remainder of this section are given with the
following context: given a COP P = (X,D,C, f) and two
partial assignments θ and θ′ with the same scope F and the
associated mutation mapping σm : ΘAC(θ) 7→ ΘAC(θ′).

5.1 The Betterment Condition
Now we show the sufficient conditions for betterment hold for
σm, namely ∀θ̄ ∈ ΘAC(θ), f(θ̄) ≤ f(σm(θ̄)). The key idea
is to define the projection f↓var(θ) of f onto var(θ) so that
the relative magnitude of f(θ̄) and f(σm(θ̄)) can be deter-
mined. In the following, we consider two types of objectives:
separable and supermodular/submodular functions.

Separable Objectives
A function f is separable if it can be written as a linear com-
bination of functions of individual variables, i.e. for a full as-
signment θ̄ = (v1, . . . , vn), f(θ) = f1(v1) + · · · + fn(vn),
where each component is fi : Z 7→ R. For a partial assign-
ment θ, we define f ↓var(θ) (θ) = fi1(vi1) + · · · + fil(vil)
where (xij = vij) ∈ θ for j = 1, . . . , l.
Theorem 5. Suppose the objective f is a separable function.
If f↓F(θ) ≤ f↓F(θ′), then ∀θ̄ ∈ ΘAC(θ), f(θ̄) ≤ f(σm(θ̄)).

Proof. Suppose θ̄ = (v1, . . . , vn) ∈ ΘAC(θ) and σm(θ̄) =
(v′1, . . . , v

′
n), then we have

f(θ̄) = f↓F(θ) +
∑
xij

/∈F

fij (vij)

f(σm(θ̄)) = f↓F(θ′) +
∑
xij

/∈F

fij (v′ij)

by grouping the terms. By Proposition 1, θ̄\θ = σm(θ̄)\θ′,
and

∑
xij

/∈F fij (vij) =
∑
xij

/∈F fij (v′ij). Thus f(θ̄) ≤
f(σm(θ̄)) ⇐⇒ f↓F(θ) ≤ f↓F(θ′).

A typical example of separable functions is the linear function
f(θ) =

∑
i wivi, where wi ∈ R.

Supermodular and Submodular Objectives
A supermodular function is a set function g : 2V 7→ R that
assigns each subset S ⊆ V a value g(S) ∈ R such that

g(S ∪ T)− g(S) ≤ g(S′ ∪ T)− g(S′)

for every S, S′ ⊆ V with S ⊆ S′ and T ⊆ V \S′. We
could treat a supermodular function as an objective in a bi-
nary COP P = (X,D,C, f) where ∀x ∈ X,D(x) = {0, 1}.
A full assignment θ̄ can be associated with a set S(θ̄) =
{i|(xi = 1) ∈ θ̄}, and we say f is equivalent to a super-
modular function g if f(θ̄) = g(S(θ̄)). Similarly for a partial
assignment θ, S(θ) = {i|(xi = 1) ∈ θ}, and we define
f↓var(θ)(θ) = g(S(θ))

Theorem 6. Suppose the objective f is equivalent to a super-
modular function g. If f↓F(θ) ≤ f↓F(θ′) and S(θ) ⊆ S(θ′),
then ∀θ̄ ∈ ΘAC(θ), f(θ̄) ≤ f(σm(θ̄)).

Proof. Since g is a supermodular,
g(S(θ) ∪ T)− g(S(θ)) ≤ g(S(θ′) ∪ T)− g(S(θ′))

for S(θ) ⊆ S(θ′) ⊆ V = {1, . . . , n} and any set T ⊆
V \S(θ′). For a full assignment θ̄ ∈ ΘAC(θ), we let T =

{i|(xi = 1) ∈ θ̄ ∧ xi /∈ F}. Since θ̄ = θ ∪ {x = v|x /∈
F ∧ v ∈ D(x)}, we have f(θ̄) = g(S(θ) ∪ T). Furthermore,
since θ̄′ = σm(θ̄) = (θ̄\θ) ∪ θ′, f(θ̄′) = g(S(θ′) ∪ T). Then

f(θ̄) ≤ f(θ̄′)− g(S(θ′)) + g(S(θ))

⇐⇒ f(θ̄) ≤ f(θ̄′)− f↓F (θ′) + f↓F (θ)

Since f↓F (θ) ≤ f↓F (θ′), the above inequality implies that
f(θ̄) ≤ f(θ̄′).

A function g is submodular if −g is supermodular. Thus
minimizing a supermodular function is equivalent to maxi-
mizing a submodular function. We note that Theorems 3
and 6 (and also Theorem 5) can be easily adapted for max-
imization problems. Linear functions are also examples of
submodular functions. Another typical example is the cut
function in a graph with non-negative weights on edges.

5.2 The Implied Satisfaction Condition
Now we consider the implied satisfaction condition in The-
orem 3. We give sufficient conditions for when ∀θ̄ ∈
ΘAC(θ), σm(θ̄) ∈ sol(P) implies θ̄ ∈ sol(P). Note that a
full assignment θ̄ ∈ sol(P) if θ̄ satisfies all c ∈ C. It suffices
to consider each constraint c separately.

We say a partial assignment θ is applied to c ∈ C by replac-
ing every occurrence of x in c by value v for all (x = v) ∈ θ
where x ∈ var(c) ∩ var(θ). The resulting constraint cθ has
scope var(c)\var(θ). The following proposition is useful to
prove implied satisfaction for various constraints in later sub-
sections.
Proposition 2. ∀θ̄ ∈ ΘAC(θ) and a constraint c ∈ C, if
cθ′ ⇒ cθ, then σm(θ̄) satisfies c⇒ θ̄ satisfies c.

Proof. By Proposition 1, let β = θ̄\θ = σm(θ̄)\θ′. Since
cθ′ ⇒ cθ, cθ′ ⊆ cθ. Thus, β satisfies cθ′ ⇒ β satisfies cθ,
which means σm(θ̄) satisfies c⇒ θ̄ satisfies c.

The types of constraints we will study include domain con-
straints, linear inequalities, Boolean disjunctions and the alld-
ifferent and alldifferent except 0 constraints.

Domain Constraints
A domain constraint c = (x ∈ D(x)) is a unary constraint
which restricts a variable x to take values from a set D(x).
The condition for implied satisfaction is straightforward.

Theorem 7. Given a domain constraint c = (x ∈ D(x))
and a full assignment θ̄ ∈ ΘAC(θ). If either (a) x /∈ F or
(b) (x ∈ F) and v ∈ D(x) for some (x = v) ∈ θ, then cθ
implies cθ′.

Proof. Suppose x /∈ F . Then cθ = c = cθ′, which means
σm(θ̄) satisfies c iff θ̄ satisfies c. Suppose x ∈ F and v ∈
D(x) for some (x = v) ∈ θ. In this case, cθ is always true.
Thus ∀θ̄ ∈ ΘAC(θ), θ̄ always satisfies c.

Linear Inequality Constraints
A linear inequality constraint has the form c = (

∑
wixi ≤ b)

where wi, b ∈ R. The sufficient condition for implied satis-
faction is stated as follows.

Theorem 8. Given a linear inequality constraint c =
(
∑
wixi ≤ b). If e ≤ e′ where e =

∑
(xi=vi)∈θ wivi and

e′ =
∑

(xi=v′i)∈θ′
wiv
′
i, then cθ′ implies cθ.

Proof. cθ = (
∑

(xi /∈F wixi ≤ b − e) and cθ′ =

(
∑
xi /∈F wixi ≤ b − e′). Since e ≤ e′, b − e ≥ b − e′.

Thus, cθ′ implies cθ.

Boolean Disjunctions
The Boolean disjunction constraint ∨x∈Sx requires at least
one Boolean variable x ∈ S takes the true value.

Theorem 9. Given a Boolean disjunction constraint c =
(∨xi). If e′ implies e where e = ∨(xi=vi)∈θvi and e′ =
∨(xi=v′i)∈θ′v

′
i, then cθ′ implies cθ.

The proof idea is similar to that of Theorem 8.

Alldifferent and Alldifferent except 0 Constraints
The alldifferent constraint [Régin, 1994] enforces that all
variables in a set S take distinct values.

We say a partial assignment θ has no duplicated values if
∀e, e′ ∈ θ where e = (xi = vi), e

′ = (xi′ = vi′), vi 6= vi′ .
The sufficient condition for implied satisfaction requires the
set of assigned values to variables in S to be the same.

Theorem 10. Given a constraint c = alldifferent(S) where
S ⊆ X . Let V = {v|(x = v) ∈ θ ∧ x ∈ F ′} and V ′ =
{v′|(x = v′) ∈ θ′ ∧ x ∈ F ′} where F ′ = F ∩ var(c). If
V = V ′ and both θ and θ′ have no duplicated values, then
cθ′ implies cθ.

Proof. The alldifferent constraint can be expressed as c =
alldifferent({x|x ∈ var(c)\F} ∪ {x|x ∈ var(c) ∩ F}).
Since V = V ′,

cθ = alldifferent({x|x ∈ var(c)\F} ∪ V)

= alldifferent({x|x ∈ var(c)\F} ∪ V ′)
= cθ′

Thus, cθ′ ⇐⇒ cθ.

The alldifferent except 0 constraint [Beldiceanu et al.,
2010] is a special case of the alldifferent constraint where all
variables in a set S are required to take distinct values except
for those variables that are assigned value 0. We say a par-
tial assignment θ has no duplicated values except 0 if ∀(xi =
vi), (xi′ = vi′) ∈ θ such that v 6= vi′ ∨ v = 0 ∨ vi′ = 0.
The sufficient condition is also related to the set of assigned
values of θ and θ′ to variables in S.

Theorem 11. Given c = alldifferent except 0 (S) where
S ⊆ X . Let V = {v|(x = v) ∈ θ ∧ x ∈ F ′ ∧ v 6= 0}
and V ′ = {v′|(x = v′) ∈ θ′ ∧ x ∈ F ′ ∧ v′ 6= 0} where
F ′ = F ∩ var(c). If both θ and θ′ have no duplicate values
except 0 and V ⊆ V ′, then cθ′ implies cθ.

The proof idea is similar to that of Theorem 10.

5.3 Compatibility between Dominance Nogoods
So far we only consider the soundness of the generated dom-
inance nogoods for a COP P . When all generated dominance
breaking nogoods are added to P , we need to ensure that not
all optimal solutions are eliminated. We now show a suffi-
cient condition for preservation of the optimal value of P .

Given two partial assignments θ = (vi1 , . . . , vil) and θ′ =
(v′i1 , . . . , v

′
il

) with the same scope F , we say θ is lexicograph-
ically smaller than θ′, denoted as θ <lex θ′, if there exists
xij ∈ F such that vij < v′ij and vij′ = v′ij′∀j

′ < j. We say
θ surpasses θ′ if either (a) f ↓var(θ) (θ) < f ↓var(θ′) (θ′) or
(b) f ↓var(θ)(θ) = f ↓var(θ′)(θ′) ∧ θ <lex θ′. Note that the
lexicographical ordering is a total order. The following the-
orem states that it is sufficient to enforce the condition that θ
surpasses θ′ so that adding all identified dominance breaking
nogoods ¬AC(θ′) to P will not change the satisfiability or
optimal value.

Theorem 12. Given f is either a separable or supermodular
function. If AC(θ) ≺ AC(θ′) and θ surpasses θ′, the lexico-
graphically smallest optimal solution satisfies ¬AC(θ′).

Proof. Suppose f↓var(θ)(θ) < f↓var(θ′)(θ′). We claim that
any solution satisfying AC(θ′) is not optimal.

• If f is separable, then

f(θ̄) = f↓var(θ)(θ) + f↓X\var(θ)(θ̄\θ)

Since θ̄′\θ′ = θ̄\θ, any solution satisfying AC(θ′) can-
not be optimal since

f(θ̄′) = f↓var(θ′)(θ′) + f↓X\var(θ′)(θ̄′\θ′)
= f↓var(θ′)(θ′) + f↓X\var(θ)(θ̄\θ)
> f↓var(θ)(θ) + f↓X\var(θ)(θ̄\θ)
> f(θ̄)

• If f is supermodular, by theorem 6 we have S(θ) ⊆
S(θ′). So,

f(θ̄′) ≥ f(θ̄) + g(S(θ′))− g(S(θ))

≥ f(θ̄) + f↓var(θ′) (θ′)− f↓var(θ) (θ)

> f(θ̄)

Thus, an optimal solution will not satisfy AC(θ′) if f↓var(θ)
(θ) < f↓var(θ′)(θ′).

Otherwise, suppose f ↓var(θ) (θ) = f ↓var(θ′) (θ′) and
θ <lex θ′. Let θ̄′ ∈ ΘAC(θ′) be an optimal solution of P .
Since θ <lex θ′ and θ̄\θ = θ̄′\θ′, σ−1m (θ̄′) <lex θ̄

′. That is, if
an optimal solution θ̄′ satisfies ΘAC(θ′), there must be another
optimal solution σ−1m (θ̄′) which is lexicographically smaller
than θ̄′. By contrapositive, the lexicographically smallest op-
timal solution cannot satisfy AC(θ′).

6 Dominance Nogood Generation
Given a length l. Using results in Section 5, we can check if
an assignment constraint AC(θ) dominates another AC(θ′)
with the same scope. Once this is established, ¬AC(θ′) can
be added to P for dominance breaking. Note that we can
generate dominance breaking nogoods for all COPs contain-
ing objectives and constraints listed in Section 5.

First we would like to consider the number of such pairs of
assignment constraints.

Theorem 13. Given a COP P = (X,D,C, f) and a length
l ≤ |X|. Suppose max(|D(xi)|) = d for xi ∈ X . There are
O(
(|X|
l

)
·
(
dl

2

)
) pairs of assignment constraints AC(θ) and

AC(θ′) where θ 6= θ′ and var(θ) = var(θ′) = F , |F | = l.

Proof. The candidate pairs can be enumerated by first se-
lecting l variables xi1 , . . . , xil from X . And then we select
two distinct tuples from D(xi1) × · · · × D(xil), which has(∏

k=1,...,l |D(xik
)|

2

)
≤
(
dl

2

)
ways in total. Hence, there are

totally O(
(|X|
l

)
·
(
dl

2

)
) such candidate pairs.

Using the simple generate-and-test method to find and
compare all possible pairs of partial assignments is ineffi-
cient. We note that sufficient conditions for betterment in
Theorems 5 and 6, and those for implied satisfaction in The-
orems 7 to 11 are nothing but constraints on the desired pairs
of partial assignments. Thus, we model dominance nogood
generation as constraint satisfaction problems.

1 int: n; int: l; int: d;
2 array [1..l] of var 1..n: F;
3 array [1..l] of var 1..d: v1;
4 array [1..l] of var 1..d: v2;
5 constraint increasing(F);
6

7 % betterment
8 ...
9 % implied satisfaction

10 ...
11 % compatibility
12 ...

The above code template shows our basic nogood genera-
tion model in MiniZinc [Nethercote et al., 2007]. Given a
COP P = (X,D,C, f). We assume that |X| = n and
d = max(|D(xi)|) for xi ∈ X . Note that the desired pairs
of partial assignments θ and θ′ have the same scope. We use
an array F to represent the common index set of variables in
the scope. We also use v1 and v2 to represent the assigned
values in θ and θ′ respectively. Thus, if ∃i ∈ {1, . . . , l} such

that F [i] = k, v1[i] = t1 and v2[i] = t2, then (xk = t1) ∈ θ
and (xk = t2) ∈ θ′. Note that there are variable symmetries
in the array F , and we break the symmetries by enforcing
F [i] < F [i+ 1] for all i = 1, . . . , l − 1.

With the stated variables, one can post constraints for bet-
terment, implied satisfaction and compatibility according to
the objective f and constraints c ∈ C. Using Theorems 4
to 12, each constraint/objective of the problem model P
corresponds to O(1) constraints in the generation model in
MiniZinc. Such a model can be generated mechanically by
analyzing the problem model in only one pass in negligible
time as compared to nogood generation and model solving
time.

7 Experimental Evaluation
In this section, we present experimental results to demon-
strate empirically the effectiveness of the generated domi-
nance nogoods. We use MiniZinc 2.2.3 [Nethercote et al.,
2007] to model both the problems and nogood generation re-
spectively, and the back-end solver is Chuffed [Ohrimenko
et al., 2009]1. Our experiments use four benchmarks, 10 in-
stances for each problem configuration.
• The 0-1 knapsack problem (KP) is a classical com-

binatorial optimization problem with a linear ob-
jective and a linear inequality constraint. We
use instances from https://people.eng.unimelb.edu.au/
pstuckey/dom-jump/ where the number of items n =
100, 150, 200, 250, 300.
• The Disjunctively constrained knapsack problem

(DCKP) [Yamada et al., 2002] extends KP so that some
pairs of items cannot be selected simultaneously. The
extra condition can be modeled as a Boolean disjunc-
tion. For each instance of KP with n items, we augment
the instance by randomly picking bηn(n − 1)/2c
incompatible pairs of items where η = 0.002.
• The Capacitated Concert Hall Scheduling Problem

(CHSP) [Gange and Stuckey, 2018] is to schedule a set
A of applications to a set H of concert halls. Each
application a ∈ A has a period [sa, ea], an offered
price pa and a requirement ra, and each concert hall
h ∈ H has a capacity ch. The problem is to max-
imize a separable function with domain and alldiffer-
ent except 0 constraints. For n = 20, 25, 30, 35, 40, we
generate random instances with 10 halls and n applica-
tions, 1 ≤ sa ≤ ea ≤ 100, 200 ≤ ra, ch ≤ 1000 and
10 ≤ pa

ea−sa+1 . To demonstrate the effectiveness of our
methods on harder instances, we present only instances
which cannot be solved by the model with manual dom-
inance breaking constraints within 60 seconds.
• The Weighted Maximum Cut Problem (WMCP) is a sub-

modular maximization problem to find a partition (S, S̄)
of vertices in a weighted undirected graph. For n ∈
{35, 40, 45, 50}, we generate random graphs with n ver-
tices by independently sampling each edge with prob-
ability p = 0.1 whose weights are random integers in

1All models and experimental data are available at https://github.
com/AllenZzw/Automatic-Dominance-Breaking.

[1, 10]. As far as we know, no manual dominance break-
ing constraints exist for this problem, and we omit such
a model in the experiments.

The problem models, the manual dominance breaking con-
straints, and the search strategies are from the literature.

We compare our method against the basic problem model
(no-dom), and the model with manual dominance break-
ing constraints [Chu and Stuckey, 2012; Gange and Stuckey,
2018] (manual). We attempt to generate and augment the
basic models with all nogoods of length up to 2 (2-dom), 3
(3-dom) and 4 (4-dom), but subjecting to a uniform timeout
limit of 3600s for all benchmark instances.

Figures 1(a) to 1(d) show the average solving (blue solid
bar) and dominance nogood generation time (red diagonal
hatch bar) in log scale. The red bars (generation time) is
stacked on the blue ones (solving time). Note that the ratio
of the bars does not reflect time percentage. The generation
time should not be read directly as the length of the red bars,
but should be the difference of the total time and the solving
time.

We first compare the problem solving time of our method
against no-dom and manual to understand the strength of
our generated dominance breaking nogoods. The five bars for
each problem configuration correspond to the time for man-
ual, no-dom, 2-dom, 3-dom and 4-dom respectively (except
for WMCP where we omit manual). It is clear that the gen-
erated dominance breaking constraints can drastically reduce
the solving time for all benchmarks. In KP and DCKP, no-
dom timeouts in all testing instances, while our method can
reduce the solving time to within 10 minutes even for the
largest instances. If we choose to compare against the time-
out limit, then our method is 17142.6 and 19999.6 times faster
than no-dom respectively. The speed-up of our method over
no-dom is up to 125.7 times for CHSP, and up to 10.0 times
for WMCP.

Comparing against manual, our method is always more ef-
ficient. In particular, our method is up to 1475.0 times faster
than that of manual for KP, and the improvements for DCKP
and CHSP are up to 2568.5 times and 115.4 times respec-
tively. In general, 3-dom is always better than 2-dom. When
the nogoods of 4-dom cannot be completely generated within
the timeout limit, the comparison of the solving efficiency be-
tween 3-dom and 4-dom is inconclusive.

We also compare the total time (solving time + genera-
tion time) of our method with the solving time of no-dom
and manual. Obviously, more time is needed to generate
more nogoods. There is a trade-off between between stronger
pruning and generation time. Still, our method comes out on
top with 3-dom being the best. For KP, the speed-up is up
to 4444.4 times compared with no-dom (timeout limit), and
12.5 times compared with manual. Similarly for DCKP, our
method is faster than no-dom and manual by up to 665.4
times and 38.1 times respectively. As for CHSP, our method
runs up to 142.2 and 102.0 times faster than both no-dom
and manual respectively. For WMCP, our method is up to
7.0 times faster than no-dom.

We note that the solving time for many instances exceed
the timeout limit, especially for no-dom and manual, and the

https://people.eng.unimelb.edu.au/pstuckey/dom-jump/
https://people.eng.unimelb.edu.au/pstuckey/dom-jump/
https://github.com/AllenZzw/Automatic-Dominance-Breaking
https://github.com/AllenZzw/Automatic-Dominance-Breaking

(a) KP Time (b) DCKP Time

(c) CHSP Time (d) WMCP Time

Figure 1: Experimental Results for Comparison: 1(a) to 1(d) compare the nogood generation and problem solving time in log scale.

actual acceleration of generated nogoods can be even higher.

Figures 2(a) to 2(d) compare different methods by show-
ing the number of solved instances versus the running time
for each benchmark. For both KP and DCKP, 3-dom can
solve all instances within 10 minutes and 50 minutes respec-
tively, and is better than all other methods, while no-dom
times out on all instances. In addition, manual solves only
around 30 and 20 instances out of 50 for KP and DCKP re-
spectively. For CHSP, no-dom and manual can solve at most
38 instances out of 50, while all these instances can be solved
by our method within 10 minutes. As for WCMP, the per-
formance of 4-dom is the best among all solving methods.
no-dom can only solve 32 instances out of 40, while 4-dom
can solve 39.

While we do not show pruning strength in the graphs, 3-
dom and 4-dom all prune substantially more than manual.
In other words, our method is able to generate dominance
breaking nogoods that have not been discovered by manual
derivation methods.

8 Concluding Remarks

Automatic generation of dominance breaking constraints is
made possible by focusing on nogoods. Our theorems on suf-
ficient conditions enable us to formulate nogood generation
effectively as constraint satisfaction. An important advan-
tage is the ability to control the strength of the generated no-
goods. Our method discovers dominance breaking nogoods
that had not been discovered before. The method can also be
easily integrated into existing constraint modeling systems or
solvers. There are several future research directions. A lim-
itation of our method is that the nogoods are generated in-
stance by instance, and the benefit of the dominance nogoods
may not compensate the overhead for generation. One pos-
sibility is to improve the efficiency of nogood generation in
general. Another limitaion is that our method can only be
applied when the objective and all constraints in the problem
can be analysed for betterment and implied satisfaction. We
also expect similar results to be proven for other objectives
and constraints, especially for global constraints with some

(a) KP Solved Instances (b) DCKP Solved Instances

(c) CHSP Solved Instances (d) WMCP Solved Instances

Figure 2: Experimental Results for Comparison: 2(a) to 2(d) show the number of solved instances versus total time.

sort of monotonic behavior.

Acknowledgments
We are grateful to the anonymous referees of IJCAI-20 for
their useful comments and suggestions.

References
[Aldowaisan, 2001] Tariq Aldowaisan. A new heuristic and

dominance relations for no-wait flowshops with setups.
Computers & Operations Research, 28(6):563–584, 2001.

[Beldiceanu et al., 2010] Nicolas Beldiceanu, Mats Carls-
son, and Jean-Xavier Rampon. Global constraint catalog,
2010.

[Chu and Stuckey, 2012] Geoffrey Chu and Peter J Stuckey.
A generic method for identifying and exploiting domi-

nance relations. In Principles and Practice of Constraint
Programming, pages 6–22, 2012.

[Gange and Stuckey, 2018] Graeme Gange and Peter J
Stuckey. Sequential precede chain for value symmetry
elimination. In International Conference on Principles
and Practice of Constraint Programming, pages 144–159.
Springer, 2018.

[Getoor et al., 1997] Lise Getoor, Greger Ottosson, Markus
Fromherz, and Björn Carlson. Effective redundant con-
straints for online scheduling. In The Eleventh AAAI Con-
ference on Artificial Intelligence, pages 302–307, 1997.

[Ibaraki, 1977] Toshihide Ibaraki. The power of dominance
relations in branch-and-bound algorithms. Journal of the
ACM (JACM), 24(2):264–279, 1977.

[Katsirelos and Bacchus, 2005] George Katsirelos and
Fahiem Bacchus. Generalized nogoods in CSPs. In The
Nineteenth AAAI Conference on Artificial Intelligence,
pages 390–396, 2005.

[Korf, 2004] Richard E Korf. Optimal rectangle packing:
New results. In The Fourteenth International Conference
on Automated Planning and Scheduling, pages 142–149,
2004.

[Land and Doig, 1960] AH Land and AG Doig. An auto-
matic method of solving discrete programming problems.
Econometrica: Journal of the Econometric Society, pages
497–520, 1960.

[Mears and de la Banda, 2015] Christopher Mears and
Maria Garcia de la Banda. Towards automatic domi-
nance breaking for constraint optimization problems.
In Twenty-Fourth International Joint Conference on
Artificial Intelligence, 2015.

[Monette et al., 2007] Jean-Noël Monette, Pierre Schaus,
Stéphane Zampelli, Yves Deville, Pierre Dupont, et al. A
cp approach to the balanced academic curriculum prob-
lem. In Seventh International Workshop on Symmetry and
Constraint Satisfaction Problems, volume 7, 2007.

[Nethercote et al., 2007] Nicholas Nethercote, Peter J
Stuckey, Ralph Becket, Sebastian Brand, Gregory J
Duck, and Guido Tack. Minizinc: Towards a standard
CP modelling language. In International Conference
on Principles and Practice of Constraint Programming,
pages 529–543. Springer, 2007.

[Ohrimenko et al., 2009] Olga Ohrimenko, Peter J Stuckey,
and Michael Codish. Propagation via lazy clause genera-
tion. Constraints, 14(3):357–391, 2009.

[Prestwich and Beck, 2004] Steven Prestwich and J Christo-
pher Beck. Exploiting dominance in three symmetric
problems. In Fourth international workshop on symmetry
and constraint satisfaction problems, pages 63–70, 2004.

[Régin, 1994] Jean-Charles Régin. A filtering algorithm
for constraints of difference in CSPs. In The Eighth
AAAI Conference on Artificial Intelligence, pages 362–
367, 1994.

[Yamada et al., 2002] Takeo Yamada, Seija Kataoka, and
Kohtaro Watanabe. Heuristic and exact algorithms for the
disjunctively constrained knapsack problem. Information
Processing Society of Japan Journal, 43(9), 2002.

	Introduction
	Background
	Automatic Generation of Dominance Breaking Nogoods
	Dominance Relations Between Constraints
	Dominance and Assignment Constraints
	The Betterment Condition
	Separable Objectives
	Supermodular and Submodular Objectives

	The Implied Satisfaction Condition
	Domain Constraints
	Linear Inequality Constraints
	Boolean Disjunctions
	Alldifferent and Alldifferent_except_0 Constraints

	Compatibility between Dominance Nogoods

	Dominance Nogood Generation
	Experimental Evaluation
	Concluding Remarks

