
Finding Good Subtrees for Constraint Optimization Problems
Using Frequent Pattern Mining

Hongbo Li1, Jimmy H.M. Lee2∗, He Mi1 and Minghao Yin1*

1School of Information Science and Technology, Northeast Normal University, Changchun, China
{lihb905, mih221, ymh}@nenu.edu.cn

2Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
jlee@cse.cuhk.edu.hk

Abstract

Making good decisions at the top of a search tree is important
for finding good solutions early in constraint optimization.
In this paper, we propose a method employing frequent
pattern mining (FPM), a classic datamining technique, to find
good subtrees for solving constraint optimization problems.
We demonstrate that applying FPM in a small number of
random high-quality feasible solutions enables us to identify
subtrees containing optimal solutions in more than 55% of
problem instances for four real world benchmark problems.
The method works as a plugin that can be combined with
any search strategy for branch-and-bound search. Exploring
the identified subtrees first, the method brings substantial
improvements for four efficient search strategies in both total
runtime and runtime of finding optimal solutions.

Introduction
Constraint programming (CP) is a powerful paradigm
for solving discrete combinatorial optimization problems.
Depth-first branch-and-bound search (BBS) is a complete
method for solving constraint optimization problems
(COPs). BBS can be divided into two phases. The first
phase finds an optimal solution and the second phase
proves the optimality. If a better solution is found earlier,
BBS could prune the search space more efficiently. Thus,
much work has been done on devising search strategies to
speed up the first phase. For instance, Chu and Stuckey
use machine learning to design search strategies (Chu and
Stuckey 2015). Counting-Based Search (Pesant 2016) uses
cost-based solution density to guide search. Objective-
Based Selector (OBS) (Palmieri and Perez 2018) uses
objective variables as a feature for decisions within search
strategies. To find good solutions early, the Bound-Impact
Value Selector (BIVS) (Fages and Prud’Homme 2017)
chooses the value of a variable that would lead to the best
objective bound after a propagation.

We note also the multitude of recent work in integrating
CP and datamining/machine learning. On the one hand, the
CP-based approaches offer a trade-off between generality

∗Corresponding authors
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and efficiency for some classic datamining problems, such
as clustering (Dao, Duong, and Vrain 2017) and frequent
pattern mining (Guns, Nijssen, and Raedt 2011; Lazaar et al.
2016; Schaus, Aoga, and Guns 2017; Guns et al. 2017). On
the other hand, a number of studies have shown the benefits
of applying machine learning in constraint solving (Epstein
and Petrovic 2007; Xu, Stern, and Samulowitz 2009; Loth
et al. 2013; Hurley et al. 2014; Chu and Stuckey 2015;
Balafrej, Bessiere, and Paparrizou 2015; Bachiri et al. 2015;
Xia and Yap 2018; Cappart et al. 2019). In addition, some
datamining techniques have been applied in heuristic meth-
ods for solving some combinatorial problems (Samorani and
Laguna 2012; Zhou, Hao, and Duval 2017).

This work proposes to employ frequent pattern mining
(FPM), a classic datamining technique, to speed up the
first phase of BBS for solving COPs. The intuition behind
the proposed method is that the frequent patterns extracted
from high-quality solutions identify promising regions in
the search space that are worthy of being explored first.
The method runs a FPM algorithm to mine useful patterns
from a set of high-quality feasible solutions, called probes,
which are generated by a random probing procedure. After
the mining, the best patterns are selected according to a
measurement considering the qualities of the probes con-
taining the pattern, the support number and pattern length,
and the top patterns are combined to generate a partial
assignment. Then we run BBS exploring first the subtree
under this partial assignment before the rest of the complete
search tree. The method is not a search heuristic per se,
and can be readily combined with any search strategies
for BBS. It identifies and zooms directly into a subtree
with high possibility of containing optimal solutions. We
expect the method to work well on loosely constrained
optimization problems, where feasible solutions are easy to
find by probing.

We have tested the method on the Uncapacitated
Warehouse Location Problem (UncapWLP), the
Multidimensional-Knapsack Problem (MKnap), the
Traveling Tournament Problem with Predefined Venues
(TTPPV) and the Traveling Salesman Problem (TSP). The
results show that the method finds the subtrees involving
optimal solutions in over 55% of benchmark instances.

Improvements in both total runtime and runtime of finding
optimal solutions are demonstrated when combining our
method with four efficient search strategies which are
different combinations of OBS, BIVS and some other
popular heuristics.

Background
This work crosses two disciplines. We employ the method
of data science to help constraint solving and optimization.
In the following, we give basic definitions of Constraint
Programming and Frequent Pattern Mining.

Constraint Programming
A Constraint Optimization Problem (COP) P is a 4-tuple
P = 〈X ,D, C,F〉, where X is a set of variables, the domain
dom(x) ∈ D specifies the set of possible values for each
x ∈ X , C is a set of constraints and F is an objective
function. Each constraint specifies the allowed combinations
of values for a subset of variables. An assignment A to
variables X ⊆ X is a set of instantiations of the form x/v,
one for each x ∈ X to assign v to x where v ∈ dom(x).
If X = X , then A is a complete assignment, or otherwise
a partial assignment. An assignment to a single variable
is called a singleton-assignment, denoted by s-assignment.
The objective F maps every complete assignment to a
real number. A complete assignment S that satisfies all
constraints is a feasible solution to P . Without loss of
generality, we consider here minimization and a feasible
solution S∗ is an optimal solution if F(S∗) ≤ F(S),
where S is any other feasible solution to P . In case of
maximization, optimal solutions are defined simply with
≤ replaced by ≥. The solution space of P contains all
complete assignments. Given a partial assignment A. The
sub-space of A is the set of all complete assignments that
can be extended from A.

A COP P can be solved by BBS augmented with con-
straint propagation. BBS explores the solution space with
depth-first backtracking tree search resulting in a search
tree. Whenever a new feasible solution S is found, S is
recorded as the best solution found so far and F(S) is
used to bound subsequent search to ensure the next feasible
solution found must be better than S. Search continues until
no more feasible solutions are found after exhausting the
search space. The last solution found is an optimal solution
of P . Given a partial assignment A. The subtree under A is
the result of exploring the sub-space of A using BBS. An
optimal subtree is any subtree of P’s search tree containing
an optimal solution.

Frequent Pattern Mining
FPM was first proposed for mining transaction databases
to analyze market baskets (Agrawal, Imielinski, and Swami
1993). Let I be the set of all items. A set I ⊆ I is an itemset.
The length of I is |I|. A l-itemset (or l-pattern) has length l.
A transaction is an itemset. Let T be a transaction database
(a set of transactions), where each Ti ∈ T is an itemset over
I. A transaction T supports an itemset I if I ⊆ T . The
set of all transactions supporting I is denoted by cover(I),

and |cover(I)| is the support number of I . An itemset I is a
frequent pattern if its support number is at least a specified
support threshold sup.

The FPM problem aims to find all the frequent patterns
with a specified support threshold in a given transaction
database. There are three basic FPM methodologies: Apri-
ori (Agrawal and Srikant 1994), FP-growth (Han, Pei, and
Yin 2000) and Eclat (Zaki 2000).

We will apply frequent pattern mining method in finding
good subtrees. Thus, each item is a s-assignment. An itemset
is either a partial assignment or a complete assignment. A
transaction is a feasible solution. A transaction database is a
set of feasible solutions. In this work, mining is not the major
challenge, so any FPM algorithm can be employed. We
adopt Eclat in the method since the transactions information
will be used to select the best frequent patterns and it is
easy for Eclat to track the transactions supporting the mined
frequent patterns.

The Motivation
Our work is based on the intuition that a sub-space con-
taining an optimal solution usually involves some high-
quality solutions. On the contrary, if we find a sub-space
involving a number of high-quality solutions, it may involve
an optimal solution. Even the sub-space does not contain
an optimal solution, it may contain some other high-quality
solutions. Thus, the frequent patterns extracted from high-
quality solutions identify promising regions in the search
space that are worthy of being explored first.

To check whether the intuition is true at least on some
problems, we did an experiment on an instance of the
Multidimensional-Knapsack Problem with 20 items and
422601 feasible solutions, which is the fourth instance in
mknap1 in the OR-Library1. This is the largest instance of
mknap1, for which we can generate all feasible solutions
within 4 hours. We first find all feasible solutions of the
instance, and consider the top 42260 solutions (top 10%
according to the objectives of the solutions) as high-quality
solutions and do frequent pattern mining in the 42260
solutions with support threshold 21130. After finding all the
frequent patterns, the one with largest basic(I)×quality(I)
is selected, and it is an optimal subtree. So the intuition
seems to work on at least some problems.

The basic score and quality score of each frequent pattern
I are defined as follows:

basic(I) = |cover(I)| × |I| (1)

A frequent pattern with more supports and larger length
is usually preferred, because a frequent pattern with more
support is more promising and a larger frequent pattern leads
the search to a smaller search space. However, a frequent
pattern with larger length usually has a smaller number of
supports. We want these conflicting quantities to be both
large, so that the basic score tries to balance support number
and pattern length, where the product is the larger the better.

1http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/mknapinfo.html

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

d% 0.01% 0.02% 0.03% 0.04% 0.05% 0.06% 0.07% 0.08% 0.09%
#samples 42 84 126 169 211 253 295 338 380
opt rates 33% 35% 44% 51% 62% 71% 76% 80% 90%

d% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9%
#samples 422 845 1267 1690 2113 2535 2958 3380 3803
opt rates 86% 98% 100% 99% 100% 100% 100% 100% 100%

Table 1: Results of mining in samples of all solutions

It is an estimation of the effectiveness of a subtree.

quality(I) =
√
aveSol(I)× bestSol(I) (2)

The quality score considers the average quality of the so-
lutions (aveSol(I)) and the quality of the best solution
(bestSol(I)) supporting the pattern I . The square root in the
formula is to make the number smaller. The quality score
gives a raw estimation of the quality of a subtree, and should
be the smaller the better for minimization problems and the
larger the better for maximization.

From a statistical perspective, if we have sufficient ran-
dom samples of all solutions, they can reflect properties of
the whole feasible solution space. So the second question
is whether we can find such structures by analyzing a set
of samples of all the feasible solutions. Then we performed
another test. We randomly select d% samples (#samples
is the number of samples) from all the 422601 feasible
solutions and do the mining on the top 10% of the samples
which are considered as high-quality solutions. The results
are shown in Table 1. For each d%, we run 100 independent
tests that generate 100 different sample sets with random
seed from 0 to 99. The “opt rates” row of the table presents
the percentages of the best frequent patterns that are optimal
subtrees. For example, with d% = 0.3%, we have 1267
sample solutions, the mining is done in the top 126 samples,
and the best frequent pattern found is an optimal subtree
for each of the 100 different sample sets generated with
different seeds. The results show that, for this instance, we
can do analysis in about 1000 random sample solutions to
find the structure of the solution space containing 422601
feasible solutions. Therefore, on some problems, we can
find an optimal subtree by mining in a set of high-quality
solutions which are selected from a set of random samples
of all the feasible solutions.

Frequent Pattern Mining for Solving COPs
We propose Frequent Pattern Mining based Search (FPMS)
for solving COPs. The method applies frequent pattern
mining in a set of high-quality random solutions to find a
good subtree. BBS explores the good subtree first, and then
continues exploring the rest of the entire search tree. The
framework of FPMS is presented in Algorithm 1.

Generating Transaction Database
It is impractical to find all feasible solutions and select
some random ones, so we achieve random sampling using

Algorithm 1: FPMS
Input: a COP
Output: an optimal solution

1 Tr% ← PROBING(t, r%);
2 topFPs← MINING(Tr%, sup,min,max, num);
3 subtree← GENERATESUBTREE(topFPs);
4 start BBS with subtree as initial assignment;

a random probing procedure. The PROBING procedure at
line 1 of Algorithm 1 generates t distinct feasible solutions
with a simple backtracking procedure by selecting a random
variable x and assigning it with a random value in dom(x)
followed by constraint propagation at each search node.
The random search procedure backtracks whenever a failure
is detected and is restarted every time a feasible solution
is found. Every new solution is recorded. Note that no
constraints are added at restart to forbid a solution being
found more than once during probing, but such duplicate
solutions will be recorded only once. Then it returns the
top r% good solutions with the best objective values as the
transaction database Tr%.

Finding A Good Subtree
At line 2 of Algorithm 1, the MINING procedure adopts
and adapts the classic ECLAT algorithm to find all frequent
patterns with support numbers greater than or equal to sup
and lengths between min and max.

A subtree specified by an itemset I has a higher chance
of being an optimal subtree than a subtree specified by an
itemset I ′ which is a superset of I , since the latter subtree is
involved in the former one. So the longer frequent patterns
have higher risks of not being optimal subtrees. On the
contrary, too short a frequent pattern may not be helpful
to the search. From the analysis in previous section, we
know that with the same length a frequent pattern with more
support is preferred, therefore, the MINING procedure sets a
starting support threshold sup to a relative large number and
runs the ECLAT algorithm. If sup is too large for finding
frequent patterns, sup is recursively reduced by half. The
procedure repeats until either frequent patterns are found or
sup is less than a minimum threshold. If no frequent patterns
are found eventually, we run a normal BBS.

After finding all frequent patterns, the top num ones are
selected by considering the basic score and quality score
introduced in last section. We assume the objective value

F(S) ≥ 0. In solving a minimization problem, we would
like to select a frequent pattern I that has smaller quality(I)
and larger basic(I). So the MINING procedure returns the
top num ones with the smallest quality(I)

basic(I) for minimization
problems. In solving maximization problems, we want I
with both larger quality(I) and larger basic(I). So it returns
the top num ones with largest quality(I)× basic(I).

Algorithm 2: GENERATESUBTREE(topFPs)
Input: a set of frequent patterns.
Output: a FIFO queue subtree

1 subtree← an empty queue;
2 for each s-assignment appears in topFPs do
3 count the number of its appearance in topFPs;
4 for each frequent pattern FP in topFPs do
5 sort the s-assignments in FP with descending

ordering of their appearances;
6 for each s-assignment x/v in FP do
7 if subtree contains no s-assignment of x then
8 add x/v at the end of subtree;

9 return subtree;

Finally, the GENERATESUBTREE procedure combines the
top num frequent patterns to generate a subtree. It first
counts the number of each assignment appeared in topFPs.
Then at line 4 of Algorithm 2, it visits the frequent patterns
with the ascending (descending) order of the measurement
for minimization (maximization) problems. For each FP ,
it visits the s-assignments with the descending order of the
numbers of their appearances in topFPs, because we want
the most promising s-assignment to be assigned first.

Here is an example. Given topFPs involving three fre-
quent patterns FP1 = {x1/a, x2/b, x3/c}, FP2 = {x2/b,
x3/c, x4/d1} and FP3 = {x2/b, x4/d2, x5/e}, where FP1

is better than FP2 which is better than FP3 with respect
to the measurement. The appearances of the s-assignments
x1/a, x2/b, x3/c, x4/d1, x4/d2, x5/e are 1, 3, 2, 1, 1, 1
respectively. Note that x4 takes different values in FP2 and
FP3. The algorithm will visit FP1 first. After sorting, the
s-assignments in FP1 are x2/b, x3/c, x1/a. So x2/b is the
first s-assignment added into subtree. x3/c is the second
and x1/a is the third. Then FP2 will be visited. The s-
assignments in FP2 are x2/b, x3/c, x4/d1. And x2/b will
be tried first, but the variable x2 is already contained in
subtree, so it will not be added into subtree again (line
7 of Algorithm 2), neither is x3/c. The fourth one to add
into subtree is x4/d1. Finally, FP3 will be visited. After
sorting, the s-assignments in FP3 are x2/b, x4/d2, x5/e,
but x2/b and x4/d2 will not be added into subtree, because
their variables are already contained in subtree (line 7 of
Algorithm 2). And x5/e is the fifth one added into subtree.
So the GENERATESUBTREE procedure returns a queue with
x2/b, x3/c, x1/a, x4/d1, x5/e. Assuming that x1/a is
not contained in any optimal solution and the other four
are contained in a same optimal solution. Then the subtree
specified by the queue has depth 5, but the optimal subtree

has depth 2.

Branch-and-Bound Search Strategy
At line 3 of Algorithm 1, BBS is invoked to explore the sub-
tree specified by subtree first, and then continues exploring
the rest of the entire search tree. This is a normal depth-
first BBS except that the initial assignments are specified.
A simple strategy presented in Algorithm 3 makes FPMS
work as a plugin that can be combined with any standard
search strategy heu. Initially, at each node of a search tree,
the algorithm selects and removes a variable-pair in subtree.
This ensures that the subtree specified by subtree will be
explored first. Each variable-pair in subtree is used only
once, so that the search will not be limited in the subtree
and the whole search tree will be explored. After subtree is
exhausted, the standard search strategy heu takes over.

Algorithm 3: SEARCHSTRATEGY(subtree, heu)
Input: a queuet of variable-value pairs; a search

strategy heu
Output: a variable-value pair

1 if subtree is not empty then
2 select and remove the first x/v from subtree;
3 return x/v;
4 return a variable-value pair selected by heu;

Discussions
In frequent pattern mining problems, a very small support
threshold usually gets a number of frequent patterns and a
very large support threshold may get no frequent patterns. In
most cases, the number of frequent patterns increases with
decreasing the support threshold sup. If a sup value fails to
find a frequent pattern, then sup - 1 will likely have no, or
very few frequent patterns which are short. Reducing sup
by half instead may help to find proper frequent patterns
quickly. Although the strategy has a risk of finding a large
number of frequent patterns suddenly, this is not a problem
since we have a measurement to select the best frequent
pattern from all the discovered patterns. For instance, the
ECLAT algorithm finds no frequent pattern with sup = 20.
Assuming that there is a useful frequent pattern I1 with
length 5 and support number 14. If sup is recursively
reduced by 1, then we may find a frequent pattern I2 with
length 2 and support number 18. I2 is not useful since it
may be too short to speed up the search. If sup is reduced by
half, then the second round runs the ECLAT algorithm with
sup = 10. Both I1 and I2 will be found, and the best one will
be selected by the measurement.

In selecting the best frequent pattern, we select the largest
quality(I) × basic(I) for maximization but the smallest
quality(I)
basic(I) for minimization. One might wonder why we

cannot simply select the largest −quality(I) × basic(I)
for minimization instead. This is because the largest
−quality(I) × basic(I) does not get the best frequent
pattern for minimization problem, since we want a frequent

pattern with a larger basic(I) but for the same quality(I),
that would give a larger −quality(I) × basic(I) with a
smaller basic(I).

Constraint programming has been successfully applied
in finding frequent patterns. One may wonder about why
CP techniques are adopted for the mining procedure. First,
finding a good subtree for a COP and solving the COP
cannot be easily combined into one problem. If we use CP
to find frequent patterns, we still need to solve the two
problems separately. Second, the aim of this work is to
show FPM can help constraint solving. The classic ECLAT
algorithm is sufficiently efficient for this purpose. Thirdly,
a closed or maximal frequent pattern seems to be more
relevant for FPMS, but finding such patterns with CP is
another optimization problem which might be costly. Our
target is not to spend too much time on the mining, because
we cannot practically ensure the found subtree is optimal.
However, utilizing closed or maximal frequent patterns is
interesting future possibility.

Some complete search strategies may combine heuristic
search with BBS, e.g. using heuristic search to find an initial
high-quality solution quickly before running BBS, which
gives a good initial upper bound. The idea of utilizing the
initial upper bound can be combined with FPMS. Besides,
one may want to use the initial high-quality solution as
the search entrance for BBS. However, it is not easy to
decide which s-assignments in the initial solution should
be used at the top of the search tree. Our proposal is better
since (a) we are mining from a set of high-quality solutions
instead of relying on only one and (b) the mining procedure
tells us exactly which s-assignments to use since they are
frequent. BBS is a depth first strategy. If the top decisions
are incorrect, it still needs huge efforts to finish the search.

One might argue that FPMS is similar to streamlining
constraints (Gomes and Sellmann 2004) since both drive
search to a specific area of the search tree. The main
difference between the two methods is that FPMS is a
complete method that it explores the whole search tree after
exploring the specific area, whereas streamlining constraints
destory completeness.

A major limitation of FPMS is that it is suitable for only
loosely constrained optimization problems where feasible
solutions are easy to find but an optimal solution is hard to
find. This is because the probing procedure uses a random
search strategy. If feasible solutions are hard to find, the
random search strategy will cost much time to generate the
transaction database. In order to use the probes to reflect
the whole search space, the database should contain the
solutions that are generated randomly. So FPMS relies on
the probes generated by a random search. If we use some
more effective search strategies, the transaction database
may contain bias since such search strategies are usually
guided by some measurements.

Experiments
The experiments were run in Choco 4.10 (Prud’homme,
Fages, and Lorca 2017). The environment is JDK8 under
CentOS 6.4 with Intel Xeon CPU E7-4820@2.00GHz pro-

cessor and 58 GB RAM. We have tested FPMS on four
different benchmarks:

UncapWLP MKnap TTPPV TSP
r% L N L N L N L N
1% 60 8 276 32 55 14 12 6
2% 64 8 268 32 42 11 11 6
5% 61 8 240 31 43 10 6 5
10% 49 8 244 32 48 11 7 5
20% 25 8 206 29 43 12 7 5
30% 24 8 192 29 41 11 4 4

Table 2: Results of optimal subtrees found in transaction databases
generated with different top rate r% (with top number 10)

UncapWLP MKnap TTPPV TSP
top number L N L N L N L N

1 28 8 122 29 39 11 6 4
5 43 8 206 32 48 12 6 4

10 49 8 244 32 48 11 7 5
20 48 8 299 32 48 11 6 4
50 48 8 322 32 48 11 6 4

Table 3: Results of optimal subtrees found with different top
number of frequent patterns (with top rate 10%)

Problem Total
Optimal Subtree Found?

Unknown No Yes Y-Rate
UncapWLP 15 7 0 8 100%

MKnap 38 5 3 30 91%
TTPPV 20 0 9 11 55%

TSP 15 9 1 5 83%

Table 4: Number of instances where FPMS finds optimal subtrees

• UncapWLP: the 15 instances from OR-Library2. The
decision variables are binary indicating whether a ware-
house is open. The real numbers in the original data files
are rounded down to integer numbers in the experiment.

• MKnap: the 55 instances of mknap1 and mknap2 from
OR-Library. 17 instances where all strategies costs less
than 1 second to complete search are eliminated. The
decision variables are binary indicating whether an item is
in the knapsack. The real numbers in the original data files
are rounded down to integer numbers in the experiment.

• TTPPV: the balanced 8-team instances under the 5 prede-
fined venues from CSPLib3. With the predefined venues,
2http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/uncapinfo.html
3http://www.csplib.org/Problems/prob068/

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/uncapinfo.html
http://www.csplib.org/Problems/prob068/

Search Problem 10 100 1000 2000 3000 3600 Complete Overall

DW
BIVS

UncapWLP 2 : 1 2 : 3 2 : 1 3 : 2 3 : 3 3 : 3 8 : 8 8 :7
MKnap 8 : 17 5 : 14 2 : 14 1 : 14 1 : 14 1 : 14 23 : 26 8 : 30
TTPPV 9 : 8 6 : 14 7 : 6 2 : 4 1 : 0 0 : 0 12 : 14 4 : 16

TSP 3 : 0 3 : 2 7 : 1 7 : 1 7 : 0 7 : 0 6 : 6 11 : 4

ABSO
BIVS

UncapWLP 2 : 3 1 : 6 0 : 4 0 : 6 0 : 7 0 : 7 8 : 8 4 : 11
MKnap 6 : 11 3 : 10 2 : 7 1 : 6 1 : 5 0 : 6 32 : 32 15 : 23
TTPPV 10 : 7 3 : 15 4 : 8 4 : 3 1 : 0 0 : 0 20 : 19 14 : 6

TSP 2 : 1 2 : 3 7 : 3 7 : 3 7 : 3 7 : 3 5 : 6 10 : 5

ABSO
MinVS

UncapWLP 2 : 1 1 : 7 0 : 4 0 : 6 1 : 6 1 : 6 8 : 8 3 : 12
MKnap 4 : 20 3 : 14 1 : 12 0 : 13 0 : 13 0 : 12 25 : 30 9 : 29
TTPPV 10 : 7 4 : 12 2 : 3 0 : 0 0 : 0 0 : 0 20 : 20 10 : 10

TSP 1 : 1 2 : 3 1 : 9 2 : 8 2 : 8 1 : 8 5 : 6 3 : 12

ABSO
OBSVS

UncapWLP 3 : 1 1 : 7 0 : 4 1 : 5 1 : 6 1 : 6 8 : 8 3 : 12
MKnap 5 : 17 0 : 14 0 : 11 0 : 10 0 : 10 0 : 10 28 : 33 6 : 32
TTPPV 11 : 8 5 : 11 1 : 3 0 : 0 0 : 0 0 : 0 20 : 20 9 : 11

TSP 1 : 2 1 : 4 3 : 7 1 : 9 1 : 8 1 : 7 6 : 6 1 : 14

Table 5: The overall comparison of naive search and FPMS

we tested 5 instances with circular distances and 15 in-
stances with the real distances. The real distances are NL8,
Super8 and Galaxy8 from OR-Library4. The modelling
follows Pesant’s description (Pesant 2012). Each decision
variable O[i][j] means the opponent of team i in round j.

• TSP: the 15 instances are real world problems from
TSPLib5. The largest one we tested contains 52 cities,
since all the strategies cannot complete the search when
city number is larger than 29. The modelling uses circuit,
element and sum constraints. The decision variables are
the successors variables.

Given d the maximum domain size of decision variables,
the number m of solutions in Tr% is set to 20×d. The initial
support threshold is set to 20. To avoid some lucky patterns
being frequent, the minimum support threshold is set to 3.
To make the found frequent patterns having suitable basic
scores (useful lengths and sufficient supports), the max
length is set to 5 and the min length of frequent patterns
is set to 3 (or 2 if the number of variables in less than 20).
Timeout of total runtime is 1 hour and timeout of MINING
procedure is 1 minute. If the mining is timeout, it returns
the best found frequent patterns so far. If not specified, the
random seed is 0. Universally optimal parameters for all
problems do not exist. Therefore, we did not spend too much
time on tuning the parameters. The above parameters are set
with simple intuitions and small experiments.

Firstly, we investigated two important parameters of F-
PMS, the top rate r% of selecting the good sample solutions
and the top number of frequent patterns for generating

4https://mat.gsia.cmu.edu/TOURN/
5https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/

software/TSPLIB95/tsp/

the subtree. In Table 2, we present the results of optimal
subtrees found in different transaction databases generated
with different rates of top sample solutions. These databases
contain the the same number of transactions, so a smaller
rate needs a larger number of random sample solutions and
more time to generate all random solutions. The L column is
the total length of optimal subtrees for each problem and the
N column is the number of instances where optimal subtrees
are found. The results show that with the increasing of r%,
the total length decreases in general. This is also observed in
the numbers of instances where optimal subtrees are found.

In Table 3, we present the results of optimal subtrees
generated with different numbers of top frequent patterns.
The results show that with the increasing of top number,
the total length increases in general, so is the number of
instances where optimal subtrees are found. When the top
number is large, some frequent patterns with relatively low
quality are selected and these patterns affect the ordering
of the s-assignments. As a result, we lose some accura-
cy of measuring the s-assignments, and some wrong s-
assignments are put at the head of subtree.

In the following, we select the parameters balance time
cost, optimal subtree length and accuracy of ordering the
s-assignments, e.g. top 10% sample solutions and top 10
frequent patterns. We summarize the numbers of instances
where FPMS finds optimal subtrees in Table 4. The un-
known instances are due to timeout. Excluding the unknown
instances, the Y-Rate column presents the proportions of
instances where optimal subtrees are found. The results
show that FPMS finds the optimal subtrees for over 55% of
the instances, by mining in a relatively small number (20×d)
of probes.

Secondly, to examine the efficiency of FPMS, the follow-

https://mat.gsia.cmu.edu/TOURN/
https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/
https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/

Instance
Optimal Subtree Length FPMS Naive Search

VarNum FPM Longest Mean Total FBT Obj Mining Total FBT Obj
UncapWLP-103 25 5 8 0.68 1391 125 893758 0.09 999 400 893758
UncapWLP-104 25 8 5 0.35 430 13.6 928918 0.10 769 52 928918

MKnap-WEISH22 80 11 7 0.91 1962 486 8947 1.38 2660 2301 8947
MKnap-WEISH23 80 10 7 0.89 681 201 8344 2.95 1358 996 8344

TTPPV-NL8d 56 6 3 0.24 3493 21.2 23269 0.16 2905 1678 23269
TTPPV-Galaxy8c 56 4 2 0.19 2456 91 1491 0.14 3469 1279 1491

TSP-gr24 24 1 1 0.1 1129 718 1272 0.74 1123 652 1272
TSP-fri26 26 0 1 0.07 772 104 937 0.47 3600 - 1016

Table 6: Detailed comparison results of representative hard instances.

ing variable heuristics are considered: the classic dom/wdeg
(DW) (Boussemart et al. 2004) and ABSO, which is the
combination of OBS (Palmieri and Perez 2018) and activity-
based search(Michel and Van Hentenryck 2012). The fol-
lowing value heuristics are considered: BIVS (Fages and
Prud’Homme 2017), the classic minimum value of domain
(MinVS) and the OBS value selector (OBSVS)(Palmieri and
Perez 2018). We have plugged FPMS into four search strate-
gies including DW+BIVS, ABSO+BIVS, ABSO+MinVS
and ABSO+OBSVS, which are recommended in (Fages and
Prud’Homme 2017; Palmieri and Perez 2018). All search
strategies without FPMS are collectively coined as naive
search. To make the comparison fair, all the strategies are
equipped with the sampling procedure and the best sample
bound is used as the initial upper bound.

In Table 5, we present the overall results. The better one
in each comparison is in bold. In each cell with n1 : n2,
n1 is for naive search and n2 is for FPMS. Columns 2-
7 present that in different time limits (from 10 seconds
to 3600 seconds), the numbers of instances where the
corresponding strategy finds better solutions than the other.
For instance, the 2 : 3 in the cell at row 2 column 4
means that, there are 2 instances of UncapWLP where the
naive search of DW+BIVS finds better solutions in 100
seconds, and 3 instances where the FPMS of DW+BIVS
finds better solutions. On the other instances of UncapWLP,
they find same quality of solutions in 100 seconds. The
Complete column presents the number of instances where
the searches complete and the Overall column presents the
overall comparison with respect to the following rules:

1. If both of them complete the search, then the one that
costs less cpu time performs better; else go to 2.

2. If only one of them completes the search in 1 hour, then
the complete one performs better; else go to 3.

3. If they find a same solution quality in 1 hour, then the
one costs less cpu time performs better; else go to 4.

4. The one finds a better solution in 1 hour performs better.
It is shown that in 10 seconds time limit, we got mixed

results, but in 100 and 1000 seconds time limits, FPMS
performs better than naive search in general. on Mknap,
FPMS clearly dominates naive search in all the four search
strategies. On UncapWLP, FPMS outperforms naive search

in three search strategies and loses slightly in DW+BIVS.
On TTPPV, FPMS performs better in DW+BIVS and AB-
SO+OBSVS, and it wins slightly in ABSO+MinVS, but it is
outperformed in ABSO+BIVS. On TSP, there is a clear trend
that naive search performs better in the two strategies with
BIVS and FPMS performs better in the other two strategies.
This is because BIVS is efficient for TSP, as in shown in
(Fages and Prud’Homme 2017). The initial subtree built by
BIVS is already a good subtree. However, when the value
selector is not very efficient, FPMS dominates naive search
on TSP. Therefore, the results indicate that when a search
strategy is efficient for a problem, FPMS may not help, but
it is helpful when there is no specific search strategy for the
problem.

In Table 6, we present detailed comparison results of
some hard and largest instances that can be solved by
ABSO+BIVS in 1 hour. To our best knowledge, our work
is the first that finds optimal subtrees without searching.
Therefore, to examine the effect of FPMS, we compared
also the length of optimal subtrees generated by FPMS
and that generated by a random subtree generator, which
simulates search with random variable and value ordering.
The generator uses a random search strategy to generate
a random subtree. At each node of the search tree, it
randomly selects an uninstantiated variable x and assigns
it with a random value in dom(x). Constraint propagation
is performed after each instantiation. The search terminates
when the first failure is detected. Then we count the number
of optimal s-assignments from the root s-assignment to the
leaf. The counting procedure terminates when the first non-
optimal s-assignment is found. Then we get the length of the
optimal subtree in the random subtree. For each instance,
we have generated 100 random subtrees with random seeds
from 1 to 100. Note that some of the random subtrees
contain optimal subtrees with length 0, since the root s-
assignment is not optimal. In the Optimal Subtree Length
columns, we present the length of optimal subtrees found
by different strategies. The VarNum column is the number
of variables in the instance which is the upper bound of
the length of an optimal subtree. The FPM column is the
length of the optimal subtree found by FPMS. The Longest
column is the length of the longest optimal subtree of the 100

random subtrees, and the Mean column is the mean length of
100 random optimal subtrees. Note that some of the random
subtrees makes a wrong decision at the root node. Thus the
length of such optimal subtrees is 0. From the Mean column.
we can see that random search is expected to find fewer
optimal subtree. The length of optimal subtrees found by
FPMS is much larger than the average of those found by the
random strategy. Even the longest one of the 100 random
optimal subtrees is outperformed by that of FPMS in the
majority of these instances.

In the FPMS and Naive Search columns, the Total
columns are total time cost, the FBT columns are the time
cost of finding the best solution and the Obj columns are
the corresponding objectives. The Mining column is the
time cost of frequent pattern mining. We can see that the
mining time costs are much less than the total time costs.
FPMS finds subtrees with length up to one third of variable
number (on UncapWLP-104). On most of these instances,
FPMS finds the best solution faster than naive search,
although it costs more time to prove the optimality on
some of the instances. On the TSP-gr24 instance, although
FPMS finds a short optimal subtree, it is still outperformed
by naive search since BIVS is efficient on TSP. On the
other TSP instance, although no optimal subtree is found,
FPMS performs much better than naive search, since BIVS
fails to find a good subtree and FPMS finds a good one.
Note that FPMS finds an optimal solution much faster
than naive search on the two TTPPV instances. This is not
contradictory with the results in Table 5, because FPMS
performs much better than naive search in the 100 second
limit in ABSO+BIVS on TTPPV.

In summary, although FPMS is not guaranteed to find
optimal subtrees, it finds optimal subtrees for more than
half of the benchmark instances. On some of the instances,
FPMS finds the optimal solutions much faster than naive
search. It brings improvements in general.

Conclusion
In this paper, we propose FPMS for solving constraint
optimization problems. The method applies frequent pattern
mining on a set of high-quality solutions generated by
random probing. The best frequent patterns are used as
the initial assignments for branch-and-bound search. The
experiments show that FPMS mines in a small number of
random solutions and finds a subtree involving an optimal
solution for more than 55% instances of UncapWLP, MK-
nap, TTPPV and TSP. In general, FPMS finds good subtrees
involving high-quality solutions or even optimal solutions,
and brings improvements in both total runtime and runtime
of finding an optimal solution.

Acknowledgments
The authors thank Anthony Palmieri and Guillaume Perez
for sharing the source codes of Objective-Based Selector.
This work is supported by the National Natural Science
Foundation of China under Grants (61802056, 61976050,
61972384, 61972063) and the Fundamental Research Funds
for the Central Universities under Grant 2412018ZD017.

References
[Agrawal and Srikant 1994] Agrawal, R., and Srikant, R.
1994. Fast algorithms for mining association rules. In Proc.
VLDB’94, 487–499.

[Agrawal, Imielinski, and Swami 1993] Agrawal, R.;
Imielinski, T.; and Swami, A. 1993. Mining association
rules between sets of items in large databases. In Proc.
SIGMOD’93, 207–216. ACM.

[Bachiri et al. 2015] Bachiri, I.; Gaudreault, J.; Quimper,
C. G.; and Chaib-draa, B. 2015. RLBS: an adaptive
backtracking strategy based on reinforcement learning for
combinatorial optimization. In Proc. ICTAI’15.

[Balafrej, Bessiere, and Paparrizou 2015] Balafrej, A.;
Bessiere, C.; and Paparrizou, A. 2015. Multi-armed bandits
for adaptive constraint propagation. In Proc. IJCAI’15,
290–296. AAAI Press.

[Boussemart et al. 2004] Boussemart, F.; Hemery, F.;
Lecoutre, C.; and Sais, L. 2004. Boosting systematic search
by weighting constraints. In Proc. ECAI’04, volume 16,
146–150.

[Cappart et al. 2019] Cappart, Q.; Goutierre, E.; Bergman,
D.; and Rousseau, L. M. 2019. Improving optimization
bounds using machine learning decision diagrams meet deep
reinforcement learning. In Proc. AAAI’19.

[Chu and Stuckey 2015] Chu, G., and Stuckey, P. J. 2015.
Learning value heuristics for constraint programming. In
Proc. CPAIOR’15, 108–123. Springer.

[Dao, Duong, and Vrain 2017] Dao, T. B. H.; Duong, K. C.;
and Vrain, C. 2017. Constrained clustering by constraint
programming. Artificial Intelligence 244:70–94.

[Epstein and Petrovic 2007] Epstein, S., and Petrovic, S.
2007. Learning to solve constraint problems. In Proc.
ICAPS’07, Workshop on Planning and Learning.

[Fages and Prud’Homme 2017] Fages, J. G., and
Prud’Homme, C. 2017. Making the first solution
good. In Proc. ICTAI’17. IEEE.

[Gomes and Sellmann 2004] Gomes, C., and Sellmann, M.
2004. Streamlined constraint reasoning. In Proc. CP’04,
274–289. Springer.

[Guns et al. 2017] Guns, T.; Dries, A.; Nijssen, S.; Tack, G.;
and Raedt, L. D. 2017. MiningZinc: a declarative framework
for constraint-based mining. Artificial Intelligence 244:6–
29.

[Guns, Nijssen, and Raedt 2011] Guns, T.; Nijssen, S.; and
Raedt, L. D. 2011. Itemset mining: a constraint
programming perspective. Artificial Intelligence 175:1951–
1983.

[Han, Pei, and Yin 2000] Han, J.; Pei, J.; and Yin, Y. 2000.
Mining frequent patterns without candidate generation. In
Proc. SIGMOD’00, 1–12. ACM.

[Hurley et al. 2014] Hurley, H.; Kotthoff, L.; Malitsky, Y.;
and O’Sullivan, B. 2014. Proteus: a hierarchical portfolio of
solvers and transformations. In Proc. CPAIOR’14.

[Lazaar et al. 2016] Lazaar, N.; Lebbah, Y.; Loudni, S.;
Maamar, M.; Lemière, V.; Bessiere, C.; and Boizumault, P.

2016. A global constraint for closed frequent pattern mining.
In Proc. CP’16, 333–349. Springer.

[Loth et al. 2013] Loth, M.; Sebag, M.; Hamadi, Y.; and
Schoenauer, M. 2013. Bandit-based search for constraint
programming. In Proc. CP’13, 464–480. Springer.

[Michel and Van Hentenryck 2012] Michel, L., and
Van Hentenryck, P. 2012. Activity-based search for
black-box constraint programming solvers. In Proc.
CPAIOR’12, 228–243. Springer.

[Palmieri and Perez 2018] Palmieri, A., and Perez, G. 2018.
Objective as a feature for robust search strategies. In Proc.
CP’18, 328–344. Springer.

[Pesant 2012] Pesant, G. 2012. A constraint programming
approach to the traveling tournament problem with prede-
fined venues. In Proc. PATAT’12, 303–315.

[Pesant 2016] Pesant, G. 2016. Counting-based search for
constraint optimization problems. In Proc. AAAI’16, 3441–
3447. AAAI Press.

[Prud’homme, Fages, and Lorca 2017] Prud’homme, C.;
Fages, J.-G.; and Lorca, X. 2017. Choco Documentation.
TASC - LS2N CNRS UMR 6241, COSLING S.A.S.

[Samorani and Laguna 2012] Samorani, M., and Laguna, M.
2012. Data-mining-driven neighborhood search. INFORMS
Journal on Computing 24:210–227.

[Schaus, Aoga, and Guns 2017] Schaus, P.; Aoga, J. O. R.;
and Guns, T. 2017. Coversize: A global constraint for
frequency-based itemset mining. In Proc. CP’17, 529–546.
Springer.

[Xia and Yap 2018] Xia, W., and Yap, R. H. C. 2018.
Learning robust search strategies using a bandit-based
approach. In Proc. AAAI’18, 431–437. AAAI Press.

[Xu, Stern, and Samulowitz 2009] Xu, Y.; Stern, D.; and
Samulowitz, H. 2009. Learning adaptation to solve
constraint satisfaction problems. In Proc. LION’09.

[Zaki 2000] Zaki, M. J. 2000. Scalable algorithms for
association mining. IEEE Transactions on Knowledge and
Data Engineering 12:372–390.

[Zhou, Hao, and Duval 2017] Zhou, Y.; Hao, J.; and Duval,
B. 2017. When data mining meets optimization:
a case study on the quadratic assignment problem.
http://arxiv.org/abs/1708.05214v1.

	Introduction
	Background
	Constraint Programming
	Frequent Pattern Mining

	The Motivation
	Frequent Pattern Mining for Solving COPs
	Generating Transaction Database
	Finding A Good Subtree
	Branch-and-Bound Search Strategy

	Discussions
	Experiments
	Conclusion

