
Towards Breaking More Composition Symmetries in Partial
Symmetry Breaking

Jimmy H.M. Lee and Zichen Zhu∗

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

Abstract

The paper proposes a dynamic method, Recursive Symmetry Breaking During Search (ReSBDS),
for efficient partial symmetry breaking. We first demonstrate how Partial Symmetry Breaking
During Search (ParSBDS) misses important pruning opportunities when given only a subset of
symmetries to break. The investigation pinpoints the culprit and in turn suggests rectification.
The main idea is to add extra symmetry breaking constraints during search recursively to prune
also symmetric nodes of some pruned subtrees. Thus, ReSBDS can break extra symmetry com-
positions, but is carefully designed to break only the ones that are easy to identify and inexpen-
sive to break. We present theorems to guarantee the soundness and termination of our approach,
and compare our method with popular static and dynamic methods. When the variable (value)
heuristic is static, ReSBDS is also complete in eliminating all interchangeable variables (values)
given only the generator symmetries. We propose further a light version of ReSBDS method
(LReSBDS), which has a slightly weaker pruning power of ReSBDS but with a reduced over-
head. We give theoretical characterization on the soundness and termination of LReSBDS, and
comparisons on pruning strengths against other symmetry breaking methods including ReSBDS.
Extensive experimentations confirm the efficiency of ReSBDS and LReSBDS, when compared
against state of the art methods.

1. Introduction

Constraint Programming (CP) is a practical framework for modeling and solving combi-
natorial search and optimization problems, which are NP-complete in general. Mainstream
constraint-solving mechanisms encompass systematic exploration of the search tree augmented
with various forms and degrees of constraint propagation [1] to prune the search space. Symme-
tries are transformations that map a problem solution into an equivalent solution (and also from
non-solutions to non-solutions). Visiting symmetrical equivalents of traversed subtrees is fruit-
less. In many cases, all symmetrical variants of every deadend encountered during the search
must be explored before a solution can be found. The goal of symmetry breaking is to avoid
searching the symmetrical equivalents of visited search nodes, so as to increase solving efficien-
cy.

∗Corresponding author
Preprint submitted to Artificial Intelligence August 19, 2017

Table 1: Comparing ParSBDS, LDSB and ReSBDS/LReSBDS

Features ParSBDS LDSB
ReSBDS

LReSBDS
(a) can handle arbitrary kinds of symmetries Yes No Yes

(b) has relatively small overheads No Yes Yes
(c) is efficient in identifying and breaking symmetry compositions,

No Yes Yes
i.e., has strong side-effects

Symmetries can be broken statically [2, 3, 4, 5] or dynamically [6, 7, 8]. Static methods
alter the original problem by adding new constraints to eliminate symmetric parts and solutions.
In contrast, dynamic methods modify the search procedure to exclude exploration of symmet-
ric regions. There are pros and cons for each approach. Static methods are more commonly
adopted since they are easier to implement and incur relatively less overhead. Static symmetry
breaking constraints interact well (a) with one another to prune also extra composition symme-
tries in addition to the target symmetries, and (b) with problem constraints to increase constraint
propagation. However, static techniques are usually tailored for specialized symmetry types and
can be in conflict with search heuristics. An important advantage of dynamic techniques is the
flexibility to handle symmetries of all kinds and the compatibility with search heuristics.

In this paper, we focus on dynamic symmetry breaking, in particular the Symmetry Breaking
During Search (SBDS) method [7] that adds conditional symmetry breaking constraints during
search. The completeness of SBDS, however, relies on the fact that all symmetries are given to
SBDS to break. For problems with exponential number of symmetries, direct use of SBDS is im-
practical [7]. Apart from the large number of symmetry functions to implement, many symmetry
breaking constraints may be added to the constraint store, slowing down search significantly. The
first method to make SBDS practical is partial SBDS (ParSBDS). While SBDS tries to break all
symmetries in the problem, ParSBDS tackles only a selected subset of symmetries [4, 9]. This is
a direct application of partial symmetry breaking [10], which trades completeness for efficiency.
Apart from ParSBDS, other adaptations of SBDS include shortcut SBDS [7] and Lightweight
Dynamic Symmetry Breaking (LDSB) [11].

A starting point of our work is based on a simple observation: in many partial variants of
static methods, posting only a few symmetry breaking constraints can sometimes eliminate most
if not all symmetries in a problem. This is due to the fact that symmetry breaking constraints
intended for a particular symmetry often break more than just the intended symmetry as a side-
effect [12]. Thus, by carefully choosing the subset of symmetries to break, static methods can
break also a large number of composition symmetries. Unfortunately, ParSBDS fails to generate
the same strong side-effect. In a subsequent section, we give a detailed example showing how
ParSBDS misses pruning opportunities when compared to a static method and given the same
subset of symmetries to break.

Another starting point is LDSB, which is a further extension of shortcut SBDS designed for
small overhead and ability to break composition symmetries. However, LDSB [11] targets only
at symmetries that are common in constraint problems, has compact representation, and can be
easily and efficiently processed. This limits the applicability of LDSB.

We propose a generalization of ParSBDS that enjoys the benefits of both ParSBDS and LDSB
as summarized in Table 1. The main idea of Recursive SBDS (ReSBDS) is to add extra symmetry
breaking constraints during search recursively to prune also symmetric nodes of some pruned

2

subtrees. Thus, ReSBDS can break extra symmetry compositions. Our proposal features a care-
ful tradeoff between the number of constraints added and the benefits of extra pruning. We give
theoretical characterization on the soundness and termination of our method, and comparisons
on pruning strengths against other well-known symmetry breaking methods, such as LDSB [11]
and the LexLeader method [3]. When given generators of interchangeable variables (values)
according to a static search heuristic, ReSBDS is complete in eliminating the entire symmetry
group. We propose further a light version of ReSBDS method (LReSBDS), which has a slightly
weaker pruning power of ReSBDS but with a reduced overhead. We also give theoretical charac-
terization on the soundness and termination of LReSBDS, and comparisons on pruning strengths
against other symmetry breaking methods including ReSBDS. We perform extensive experimen-
tation on benchmarks of different natures and compare against state of the art static and dynamic
methods. Results confirm the feasibility and competitiveness of our proposal.

As evidenced by Walsh’s Spotlight Talk [13] at AAAI 2012, most recent successful symmetry
breaking work [4, 14, 15, 16, 17, 5, 18, 19, 20, 21, 12, 22, 23] has been static in nature. Our work
can help to revive interests of researchers in dynamic symmetry breaking and is the starting point
of a series of further work on dynamic symmetry breaking [24, 25, 26]. The paper enhances the
work of Lee and Zhu [27] and the Light ReSBDS algorithm by Lee and Zhu [24].

2. Background

In this section, we give some background on CSPs, symmetries as well as the two symmetry
breaking methods: LexLeader and SBDS.

2.1. Basic Definitions

A Constraint Satisfaction Problem (CSP) [1] P is a tuple (X,D,C) where X is a finite
set of variables, D is a finite set of domains such that each x ∈ X has a domain D(x) and
C is a set of constraints, each a subset of the Cartesian product D(xi1) × · · · × D(xik) of the
domains of the involved variables (scope). An assignment x = v assigns value v to variable x.
A full assignment is a set of assignments, one for each variable in X . A partial assignment is
a subset of a full assignment. A solution for P is a full assignment that makes every member
of C true. A constraint is generalized arc consistent (GAC) iff when a variable in the scope of
a constraint is assigned any value in its domain, there exist compatible values in the domains of
all other variables in the scope of the constraint. A CSP is GAC iff every constraint is GAC. In
the following, given a CSP P = (X,D,C), we use the short form P ∪ {c} for (X,D,C ∪ {c})
where c is a constraint.

In order to make sensible comparisons against other methods, we consider only search trees
with static variable and value orderings. A search tree for a CSP P with variables X is finite
and has CSPs as nodes. The root is P . A node P0 is a leaf node iff either P0 has a variable with
empty domain or the domains of all variables of P0 are singletons. Without loss of generality, we
consider search trees with binary branching, in which every non-leaf node has exactly two de-
scendants. Suppose a non-leaf node P1 has x and v ∈ D(x) as the branching variable and value.
The left and right children of P1 are cons(P1 ∪ {x = v}) and cons(P1 ∪ {x 6= v}) respectively
where cons() enforces some form of consistency to a CSP. We call x = v the branching assign-
ment from P1 to cons(P1 ∪ {x = v}). Each node P1 is associated with a partial assignment A1

which is the set of branching assignments collected from the root P to P1. If a node P0 is in a
subtree under node P1, P0 is the descendant node of P1 and P1 is the ancestor node of P0.

3

Throughout the paper, we assume that cons() enforces generalized arc consistency to the CSP
associated with each node. Given a node P0 with branching variable x and value v. The left child
cons(P0 ∪ {x = v}) of P0 and the entire subtree are pruned by its ancestor Pk during search if
v is pruned from D(x) in Pk. In addition, the right child of P0 is then merged with P0.

2.2. Symmetry, Group and Symmetry Breaking Methods

Here we consider symmetry as a property of the set of solutions. A solution symmetry [28]
is a solution-preserving permutation on assignments. A variable symmetry σ is a bijection on
variables that preserves solutions: if {xi = vi|1 ≤ i ≤ n} is a solution, then {xσ(i) = vi|1 ≤
i ≤ n} is also a solution. A value symmetry θ is a bijection on values that preserves solutions:
if {xi = vi|1 ≤ i ≤ n} is a solution, then {xi = θ(vi)|1 ≤ i ≤ n} is also a solution. A set of
variables X (values V) is interchangeable iff any bijection mapping from X → X (V → V) is
a variable (value) symmetry. A symmetry class [4] is an equivalence class of full assignments,
where two assignments are equivalent if there is some symmetry mapping one into the other.
Given two nodes P0 and P1 with partial assignments A0 and A1 respectively. P1 is a symmetric
node of P0 w.r.t. symmetry g if Ag0 ⊆ W1 where W1 is the set of assignments x = v where
D(x) = {v} in P1.

A group is a non-empty set Σ with a composition operator ◦ such that:

1. Σ is closed under ◦. That is, for all g, h ∈ Σ, g ◦ h ∈ Σ; and
2. there is an identity id ∈ Σ. That is, for all g ∈ Σ, g ◦ id = id ◦ g = g; and
3. every element g of Σ has an inverse g−1 such that g ◦ g−1 = g−1 ◦ g = id; and
4. ◦ is associative. That is, for all f, g, h ∈ Σ, (f ◦ g) ◦ h = f ◦ (g ◦ h).

A set of symmetriesG generates a group Σ iff every element of Σ can be written as a product
of elements in G with the composition operator ◦ and every product of any sequence of elements
of G is in Σ. G is called a set of generators for Σ, which is in turn the symmetry group of G.

A symmetry breaking method is sound (complete) iff it leaves at least (most) one solution
in each symmetry class. A symmetry breaking method breaks a symmetry g iff there exists a
remaining solution S after applying this method, Sg is pruned. A symmetry breaking method
eliminates a symmetry g iff for each remaining solution S after applying this method, Sg must
be pruned if S 6= Sg . A symmetry breaking method eliminates a symmetry group Σ iff all
symmetries in Σ except the identity one are eliminated.

Symmetry breaking method m1 is stronger in nodes (resp. solutions) pruning than method
m2, denoted by m1 �n (resp. �s) m2, when all the nodes (resp. solutions) pruned by
m2 would also be pruned by m1. Symmetry breaking method m1 is strictly stronger in n-
odes (resp. solutions) pruning than method m2, denoted by m1 �n (resp. �s) m2, when
m1 �n (resp. �s) m2 and m2 6�n (resp. 6�s) m1. Note that �n and �n imply �s and �s
respectively. Symmetry breaking method m1 is incomparable in nodes (resp. solutions) prun-
ing than method m2, denoted by m1 ∦n (resp. ∦s) m2, when m1 6�n (resp. 6�s) m2 and
m2 6�n (resp. 6�s) m1. Note that ∦s implies ∦n.

2.3. LexLeader and Its Partial Versions

The LexLeader method [3] adds constraints for each symmetry to the problem to ensure that
only the lexicographically least full assignments among all the symmetric full assignments are
allowed. Thus only one full assignment is chosen by LexLeader in each symmetry class. In this
way, all symmetries are broken. Given two vectors, x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉 of

4

n variables, the lexicographic ordering (lex) constraint, x ≤lex y, ensures that x is lexicograph-
ically less than or equal to y. Such lexicographic ordering constraint is added for each variable
symmetry according to a fixed variable order. Generalised arc consistency on lexicographic or-
dering between a pair of vectors, denoted as ≤lex or ≥lex, has been enforced [29]. For row
and column matrix symmetries, which are of exponential size, posting a lexicographic order-
ing constraint for each symmetry is impractical. DoubleLex [4] is a special case of LexLeader
which posts constraints under row-wise or column-wise canonical order, to break only adjacent
row and column interchangeability generator symmetries. Another partial symmetry breaking
method based on LexLeader is SnakeLex [21] which posts lexicographical ordering constraints
under snake ordering to break the same subset of symmetries as DoubleLex as well as an extra
linear number of row or column symmetries. Allperm [16] is another method to partially break
the matrix symmetries by constraining that the first row is less than or equal to all permutations
of all other rows.

2.4. Symmetry Breaking During Search and Its Variants

Given the set of all symmetries to a CSP, SBDS [7] adds symmetry breaking constraints for
each symmetry upon backtracking. Consider a node P0 in the search tree with partial assignment
A, branching variable x and value v. After backtracking from the node cons(P0 ∪ {x = v}), for
each solution symmetry g, SBDS adds the following symmetry breaking constraint to the node
cons(P0 ∪ {x 6= v}):

A ∧Ag ∧ (x 6= v)⇒ (x 6= v)g (1)

meaning that once A ∧ (x = v) has been searched, its symmetric partial assignments (A ∧ (x =
v))g for any g in the symmetry set under this subtree should not be searched at all. Note that
Equation (1) can be simplified to Ag ⇒ (x 6= v)g as A and x 6= v must hold in the subtree to
be searched. If Ag for symmetry g is satisfied at a node with partial assignment A, we call g an
active symmetry at this node; otherwise, it is inactive. If Ag for a symmetry g is false at a search
node with partial assignmentA, we say g is broken at this node; otherwise, it is non-broken. Note
that SBDS does not add symmetry breaking constraints for symmetries that are broken, as the
left hand side of (1) is false already. Partial SBDS (ParSBDS) is SBDS but handles only a given
subset of all symmetries, which are usually generator symmetries [4, 9].

Gent and Smith [7] also propose shortcut SBDS, which reduces overheads by breaking only
active symmetries (the symmetric counterpart of the partial assignment at the current node being
true) during search and thus adding only unconditional constraints. Similar to shortcut SBDS,
Lightweight Dynamic Symmetry Breaking (LDSB) [11], handles only active symmetries and
also their compositions. LDSB is restricted to breaking only certain kinds of symmetries, which
enjoy a compact representation and efficient processing, but gives little flexibility for users to
specify the symmetries to break. It provides a pattern syntax [11] for users to specify symmetries
to break, but works best on only symmetries for which these patterns are very compact.

3. Partial SBDS and Missing Pruning Opportunities

In partial symmetry breaking using static methods, Lee and Li [12] show that symmetry
breaking constraint intended for a particular symmetry always breaks more than just the intended
symmetry with a side-effect. This explains the reason why a few static symmetry breaking
constraints can sometimes eliminate most if not all symmetries in a problem. We will show

5

partial symmetry breaking using SBDS method (ParSBDS) cannot generate the same side-effect
as the static method of Crawford et al. [3].

In the following, we analyze how LexLeader [3] is stronger in both nodes and solutions
pruning than ParSBDS when variable and value orders are fixed and both are given the same
subset of symmetries. We use as example the matrix model of the n × n unconstrained matrix
problem with domain size d which contains only variables but no constraints. Suppose n = d =
2. The symmetries to break are interchangeable rows and columns, which are denoted by R and
C respectively.

Figure 1 gives the symmetry classes under matrix symmetries of the unconstrained matrix
problem with generators {R,C}. Symmetric solutions are connected by lines with horizontal
straightline and vertical curved double arrows marked by the corresponding symmetries. There
are 7 symmetry classes. Modeling the problem with 4 variables {x11, x12, x21, x22}, one for each
square with the domain of each variable being {1, 2}, we can break {R,C} using the LexLeader
method [3] by statically adding two constraints

〈x11, x12〉 ≤lex 〈x21, x22〉, 〈x11, x21〉 ≤lex 〈x12, x22〉

to choose the lexicographically least solutions according to the input order (x11, x12, x21, x22).
Only 7 solutions are left:©1 ,©2 ,©4 ,©6 ,©7 ,©8 and©16 . Solutions©3 and©5 are pruned by©2 .

Solution©9 is pruned by©3 and©5 . Solution©10 is pruned by©7 . Solution©11 is pruned by©6 .
Solution©13 is pruned by©4 . Solutions©12 and©14 are pruned by©8 . Solution©15 is pruned by©12

and©14 .

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

� �

�

	

��

��

��

��

��

��

Figure 1: Symmetry classes of the unconstrained matrix problem with generators {R,C}.

The ParSBDS method leaves 8 solutions:©1 ,©2 ,©4 ,©6 ,©7 ,©8 ,©15 and©16 by breaking {R,C}
with input variable order (x11, x12, x21, x22) and min value heuristic. We show the depth-first
search tree in Figure 2 where each solution leaf node is marked by its solution number. Upon
each backtrack, ParSBDS adds a symmetry breaking constraint Ag ⇒ (x 6= v)g for each non-
broken given symmetry g, where A is the partial assignment of the parent node, and x and v are
the branching variable and value of the parent node respectively. The constraints are labeled by
4.

6

• After backtracking from x22 = 1 at (a), R and C are broken as x22 = 1 is false.

• After backtracking from x21 = 1 at (b), symmetry R is broken as x21 = 1 is false. One
constraint (x11 = 1 ∧ x12 = 1)C ⇒ (x21 6= 1)C is added. Solution©3 is pruned.

• After backtracking from x12 = 1 at (c), symmetry C is broken as x12 = 1 is false. One
constraint (x11 = 1)R ⇒ (x12 6= 1)R is added. Solution©5 is pruned.

• After backtracking from x21 = 1 at (d), symmetry R is broken as x21 = 1 is false.
Symmetry C has been broken at (c). No symmetries are left in the subtree.

• After backtracking from x11 = 1 at (e), A is empty. Constraints (x11 6= 1)R and (x11 6=
1)C are added. Solutions©9 ,©10 ,©13 and©14 are pruned by the first constraint. Solutions©9 ,
©10 ,©11 and©12 are pruned by the second constraint.

• After backtracking from x22 = 1 at (f), two constraints (x11 = 2 ∧ x12 = 2 ∧ x21 =
2)R ⇒ (x22 6= 1)R and (x11 = 2 ∧ x12 = 2 ∧ x21 = 2)C ⇒ (x22 6= 1)C are added.

Figure 2: Search tree of utilizing ParSBDS to break generators {R,C}.

LexLeader can prune solution©15 but ParSBDS cannot. LexLeader prunes©15 because©15 is
lexicographically larger than©12 and©14 . For ParSBDS, after backtracking from x11 = 1 at (e)
in Figure 2, symmetry breaking constraints prune value 1 from D(x12) and D(x21). Solutions
©12 and©14 are thus pruned. There would not be any more backtrack from these pruned nodes in
the subtree of (b). However, ParSBDS is triggered to add symmetry breaking constraints only by
backtracking. Thus, no constraints are added to prune ©15 , which is symmetric to ©8 by simply
composing R and C.

We compare ParSBDS and LexLeader theoretically by considering only symmetries of the
form σ ◦ θ, which are compositions of a variable symmetry σ and a value symmetry θ. Such
symmetries σ ◦ θ are common in practice (variable and value symmetries are special cases) and
are bijections on assignments that preserve solutions: if {xi = vi|1 ≤ i ≤ n} is a solution, then

7

{xσ(i) = θ(vi)|1 ≤ i ≤ n} is also. Note σ ◦ θ = θ ◦ σ. LexLeader breaks value symmetries
using the element constraint [30].

When we compare the pruning power of LexLeader and ParSBDS in the following, we give
the set of inverse symmetries to LexLeader of the ones given by ParSBDS. The reason is because
LexLeader and ParSBDS are different in how they break symmetries. Consider two solutions s1
and s2 where s2 = sg1 for a symmetry g. Suppose s1 <lex s2, and ParSBDS and LexLeader are
used to break g under the static variable ordering used by LexLeader and min value ordering.
In this order, s1 is searched before s2. Once s1 is searched, s2 would be pruned by ParSBDS
since s2 = sg1. However, LexLeader cannot prune s2 since s1 <lex s2 satisfies the LexLead-
er constraint X ≤lex Xg . If, otherwise, symmetry g−1 is given to LexLeader, the constraint
s2 ≤lex sg

−1

2 is violated since s1 = sg
−1

2 and s2 >lex s1. Thus s2 can be pruned now.
With a proof technique similar to that by Puget [31] in comparing SBDS and dynamic lex

constraints, we give the following theorem.

Theorem 1. Suppose G and H are sets of variable and value symmetries so that γ ∈ G ⇔
γ−1 ∈ H . LexLeader �n ParSBDS and LexLeader �s ParSBDS by posting G to ParSBDS
and breaking H by LexLeader when both search with the same static variable ordering used by
LexLeader and min (max) value ordering.

Proof. We prove the symmetry breaking constraints added by ParSBDS during search will al-
ways be implied by the static symmetry breaking constraints added by LexLeader at the root
node. Suppose we are at the node cons(P0 ∪ {xt 6= vt}) after assigning t − 1 variables and
backtracking from a node cons(P0 ∪ {xt = vt}). ParSBDS adds to node cons(P0 ∪ {xt 6= vt})
the following symmetry breaking constraints

(xσ(1) = θ(v1)) ∧ · · · ∧ (xσ(t−1) = θ(vt−1))→ (xσ(t) 6= θ(vt)) (2)

for all γ ≡ σ ◦ θ in G where σ is a variable symmetry and θ is a value symmetry. LexLeader
(choosing the lexicographically least solution) adds the following constraints

〈x1, . . . xn〉 ≤lex 〈x1, . . . , xn〉σ
−1◦θ−1

(3)

at the root node for all γ−1 ≡ σ−1 ◦ θ−1 in H where n is the number of variables. Each of these
constraints implies the following n constraints

(x1 = θ−1(xσ(1))) ∧ · · · ∧ (xk−1 = θ−1(xσ(k−1)))→ (xk ≤ θ−1(xσ(k))) (4)

where k ∈ {1, . . . , n}. The tth constraint in the above n constraints can be rewritten as

(v1 = θ−1(xσ(1))) ∧ · · · ∧ (vt−1 = θ−1(xσ(t−1)))→ (xt ≤ θ−1(xσ(t))) (5)

at node cons(P0 ∪ {xt 6= vt}). With min value ordering, xt > vt at node cons(P0 ∪ {xt 6= vt}).
Therefore, combining (5) and xt > vt, we have:

(v1 = θ−1(xσ(1))) ∧ · · · ∧ (vt−1 = θ−1(xσ(t−1)))→ (vt < θ−1(xσ(t))) (6)

which can be rewritten as

(xσ(1) = θ(v1)) ∧ · · · ∧ (xσ(t−1) = θ(vt−1))→ (vt < θ−1(xσ(t))) (7)
8

It is straightforward to derive that (7) implies (2). Thus LexLeader implies (7) and also (2). In
other words, the symmetry breaking constraints added by ParSBDS during search will always be
implied by the static constraints added by LexLeader at the root node.

Now we show LexLeader can prune more nodes and solutions than ParSBDS. Consider the
unconstrained matrix problem in the above. Given only two generators {R,C} where R−1 = R
and C−1 = C, LexLeader has 13 nodes and leaves 7 solutions while ParSBDS has 15 nodes and
leaves 8 solutions. Therefore LexLeader �n ParSBDS and LexLeader �s ParSBDS.

4. Enhancing Partial SBDS

In order to circumvent the pitfalls of ParSBDS, we propose Recursive SBDS, which adds extra
constraints that are easy to derive, inexpensive to compute and can break many of the composition
symmetries. After that, we propose a lightweight version of ReSBDS to further reduce the
overhead. Formal characterizations and properties of these two methods, and comparisons with
other state of the art methods are given in the form of theorems. Experimental results show our
methods can strike good balances between the number of symmetry breaking constraints to add
and the extra prunings induced.

4.1. Recursive SBDS
Consider the unconstrained matrix problem in Figure 2 again. Given the generators {R,C},

ParSBDS will add at most two symmetry breaking constraints in each backtrack. After back-
tracking from x11 = 1 at (e), as A is empty, both symmetries are intact. ParSBDS adds x12 6= 1
and x21 6= 1. After 1 is pruned from D(x12), symmetric nodes P0 containing partial assignment
x12 = 1 are thus pruned in the subtree. Why should we not also prune P0’s symmetric nodes?
Adding (x12 6= 1)R, we get x22 6= 1. Solution©15 is pruned. Thus symmetry C ◦R is eliminated
by adding this extra constraint.

Given a set of symmetries, breaking the potentially exponential number of all symmetry
compositions is expensive in general. An important observation from the last example is that
some such compositions can be easy to identify and break. Generalizing from the example, we
give Recursive SBDS (ReSBDS) as follows.

1. Given the input symmetries G. Upon each backtrack, ReSBDS adds symmetry breaking
constraints added by ParSBDS.

2. ReSBDS maintains a backtrackable set T of assignments, which is initially empty at the
root node. Whenever ReSBDS adds a symmetry breaking constraint, Ag ⇒ (x 6= v)g

(where g ∈ G), we add the following into T :

• each (xi = vi) ∈ Ag , and

• (x = v)g .

3. After constraint propagation at every node P0 with partial assignment E during search,
ReSBDS performs:

• For each violated (xi = vi) ∈ T
– delete (xi = vi) from T in P0’s subtree
– add Eh ⇒ (xi 6= vi)

h for ∀h ∈ G and update T accordingly as in Step 2

• Initiate constraint propagation and repeat Step 3 if there is pruning; otherwise, go on
branching.

9

Since T is backtrackable, when the search backtracks, modifications to T must be undone.
Similar to ParSBDS, ReSBDS also does not add symmetry breaking constraints for symme-

tries that are broken. Moreover, if v 6∈ D(x), the assignment x = v would never be violated in
subsequent search and thus does not need to be recorded into T . Note also that T is a set. This
means if an assignment x = v has already been recorded in T , we do not need to record it again
in subsequent search.

Figure 3: Search tree of utilizing ReSBDS to break generators {R,C}.

We show the depth-first search tree of the 2 × 2 unconstrained matrix problem with domain
size 2 in Figure 3 which utilizes the above ReSBDS method to break the two generatorsR andC.
Upon each backtrack, ReSBDS adds a symmetry breaking constraint Ag ⇒ (x 6= v)g for each
non-broken given symmetry g, where A is the partial assignment of the parent node, and x and v
are the branching variable and value of the parent node respectively. This kind of constraints are
also added by ParSBDS and are labeled by4 in Figure 3. Once an assignment xi = vi in T is
violated at a node P , ReSBDS adds a symmetry breaking constraint Eh ⇒ (xi 6= vi)

h for each
non-broken given symmetry h, where E is the partial assignment of P . This kind of constraints
are additional constraints added at Step 3 and are indicated by♦ in Figure 3.

• After backtracking from x22 = 1 at (a), R and C are broken as x22 = 1 is false. T = ∅.

• After backtracking from x21 = 1 at (b), symmetry R is broken as x21 = 1 is false.
One constraint (x11 = 1 ∧ x12 = 1)C ⇒ (x21 6= 1)C is added. This constraint is
simplified to x22 6= 1 after doing symmetry computations. ReSBDS records x22 = 1 into
T . T = {x22 = 1}. After constraint propagation, 1 is immediately pruned from D(x22)
and solution ©3 is pruned. Assignment x22 = 1 is violated now and is deleted from T .
Extra constraints can be added according to this violation. Since symmetry R is broken,
constraint (x11 = 1 ∧ x12 = 1)C ⇒ (x22 6= 1)C is added. This constraint is simplified
to x21 6= 1 after doing symmetry computations. Assignment x21 = 1 has been violated

10

since (b) backtracks from x21 = 1. No assignments are put into T . T = ∅. And no further
pruning occurs.

• After backtracking from x12 = 1 at (c), symmetry C is broken as x12 = 1 is false.
One constraint (x11 = 1)R ⇒ (x12 6= 1)R is added. This constraint is simplified to
(x21 = 1) ⇒ (x22 6= 1) after doing symmetry computations. ReSBDS records x21 = 1
and x22 = 1 into T . T = {x21 = 1, x22 = 1}.

• After branching with x21 = 1 at (d), propagation of the symmetry breaking constraint
(x21 = 1) ⇒ (x22 6= 1) prunes 1 from D(x22) and prunes solution ©5 in subsequent
search. Assignment x22 = 1 is violated. Now T = {x21 = 1} after deleting x22 = 1
from T . Extra constraints can be added. Since symmetry C has been broken, constraint
(x11 = 1 ∧ x21 = 1)R ⇒ (x22 6= 1)R is added. This constraint is simplified to x12 6= 1
after doing symmetry computations. Assignment x12 = 1 has been violated since its
parent node backtracks from x12 = 1 at (c). No assignments are put into T . And no more
prunings take place.

• After backtracking from x21 = 1 at (e), symmetry R is broken as x21 = 1 is false.
Symmetry C has been broken at (c). No symmetries are left in the subtree. Moreover,
symmetry breaking constraint (x21 = 1)⇒ (x22 6= 1) is satisfied as x21 6= 1. Assignment
x21 = 1 in T is violated. However, both generator symmetries are broken, thus no extra
symmetry breaking constraints are added.

• After backtracking from x22 = 1 at (f), symmetries R and C have been broken at (e).
Assignment x22 = 1 in T is violated. However, both generator symmetries are broken, no
symmetry breaking constraints are added. T = ∅.

• After backtracking from x11 = 1 at (g), A is empty. Constraints (x11 6= 1)R and
(x11 6= 1)C are added. These constraints are x21 6= 1 and x12 6= 1 after doing symmetry
computations. ReSBDS records x21 = 1 and x12 = 1 into T . T = {x21 = 1, x12 = 1}.
After constraint propagation, 1 is immediately pruned fromD(x21) andD(x12). Solutions
©9 ,©10 ,©11 ,©12 ,©13 and©14 are pruned. Assignments x21 = 1 and x12 = 1 are violated and
are deleted from T . Constraints (x21 6= 1)R, (x21 6= 1)C , (x12 6= 1)R and (x12 6= 1)C

are added. They are x11 6= 1, x22 6= 1, x22 6= 1 and x11 6= 1 after doing symmetry
computations respectively. Only assignment x22 = 1 is not violated yet and is put into
T . Constraint propagation immediately prunes 1 from D(x22) and prunes solution ©15 .
Assignment x22 = 1 is violated and is deleted from T . Two constraints (x22 6= 1)R and
(x22 6= 1)C are added. No values can be further pruned. T = ∅.

We elaborate the meaning of T briefly in the following. There are two different reasons for
ReSBDS to add a symmetry breaking constraint Ag ⇒ (x 6= v)g for some g ∈ G at a node P .
First, ReSBDS follows ParSBDS to add a symmetry breaking constraint upon backtracking (4
in Figure 3). Second, P has partial assignment A with v being pruned from D(x) by constraint
propagation (♦ in Figure 3). ReSBDS needs to detect when exactly the intended symmetric
nodes to prune for an added symmetry breaking constraint are actually pruned. To achieve this,
we record in T all the assignments whose violations can indicate that Ag ⇒ (x 6= v)g is already
satisfied, in which case all nodes containing the partial assignments Ag ∧ (x = v)g under the
subtree of P are pruned.

11

At every node after constraint propagation, Step 3 of ReSBDS checks T to see if any stored
assignment is violated. Suppose assignment xi = vi is added to T at P0 because of the posted
symmetry breaking constraint Ag ⇒ (x 6= v)g . Suppose further a descendent node P1 of P0 has
partial assignment E with vi being pruned from D(xi) and (xi = vi) ∈ T . It means that every
node Ps in the subtree of P1 containing partial assignments E ∧ (xi = vi) are pruned. ReSBDS
adds additional constraints Eh ⇒ (xi 6= vi)

h for all non-broken given symmetries h. Suppose
Ps is associated with the partial assignment As. Consider all assignments xj = vj (which can
be none) in Ag ∧ (x = v)g but not in E∧(xi = vi). If all such assignments are true in As,
Ps is a symmetric node of a previously visited or pruned node w.r.t. g, which is intended to be
pruned by Ag ⇒ (x 6= v)g . Posting Eh ⇒ (xi = vi)

h can potentially break g ◦ h (when this
constraint has pruned a solution) for all h ∈ G. Otherwise, Ps is just an ordinary pruned node.
Posting Eh ⇒ (xi = vi)

h to prune the symmetric nodes of such ordinary pruned nodes is sound
but not useful for breaking compositions. Consider constraints added at43 in Figure 3. All Ps
containing x21 = 1 or x12 = 1 are pruned under (g) after doing constraint propagation. Each Ps
is symmetric to a previously visited node according to R or C. ReSBDS adds constraints at ♦3
in Figure 3. These constraints break the generator symmetric nodes of all Ps. While each Ps is
also generator symmetric to a visited node, composition symmetries are broken. Constraints at
♦3 break R ◦ C (and C ◦R) as they prune solution©15 .

ReSBDS, however, might have useless recordings which cannot help to break composition
symmetries. We will elaborate and propose a light version of ReSBDS to avoid such useless
recordings in the next section.

Given a CSP P = (X,D,C). We present the ReSBDS algorithm with given symmetries G
in the following1.

Algorithm 1 Branch(G,X,D,C)

Require:
G: non-broken symmetries;
X: variables;
D: domain of variables
C: constraints in the constraint store
E: the current partial assignment
x: the branching variable
v: the branching value
b: search direction;
T : recorded assignments
V T : violated assignments in T

1: Choice(x,v,b);
2: if b = 0 then
3: x.assign(v);

4: E = E ∧ (x = v);
5: else
6: x.prune(v);
7: AddCon(G,E, T, x, v);
8: end if
9: EnforceConsistency(C);

10: CheckT(T, V T);
11: while V T 6= ∅ do
12: for each xj = vj ∈ V T do
13: AddCon(G,E, T, xj , vj);
14: end for
15: EnforceConsistency(C);
16: CheckT(T, V T);
17: end while

We show how to implement ReSBDS in a depth first search solver in Algorithm 1. To add
the symmetry breaking constraint, we need to know the current partial assignment, which is

1In GitHub https://github.com/zichenzu/Recursive-SBDS, the implementation of ReSBDS is given with the help of
N-Queens as an illustrative example.

12

recorded in E. T is the backtrackable set that is maintained by ReSBDS while V T records the
set of violated assignments in T after constraint propagation at a search node.

Algorithm 1 shows the branching algorithm, i.e. how to branch at a search node. Choice()
creates a choice according to the current node which is used to decide the branching variable and
value, and whether to branch to its left or right child. If b = 0 (line 2), the node branches to the
left child with x = v (line 3) and E is updated (line 4); otherwise, it signifies a backtrack: search
is branched to the right child with x 6= v (line 6) and symmetry breaking constraints are added
by calling AddCon() (line 7). All the assignments in the added constraints are also recorded in
T by AddCon() (line 7). After enforcing GAC to each constraint in the constraint store using
EnforceConsistency(), we need to check whether some recorded assignments in T are violated
or not by calling CheckT() (line 10), where the violated assignments are recorded into V T (line
10). While there are violations (line 11), we add symmetry breaking constraints according to the
current E and G for each of the violated assignments (lines 12-14). We need to do consistency
enforcement (line 15), check violations (line 16), and add symmetry breaking constraints (lines
12-14) until there are no more violations (line 11).

Algorithm 2 AddCon(G,E, T, x, v)
1: for each h ∈ G do
2: add Eh ⇒ (x 6= v)h into C;
3: for each (xi = vi) ∈ (Eh ∧ (x = v)h) do
4: if (xi = vi) 6∈ T and vi ∈ D(xi) then
5: T = T ∧ (xi = vi);
6: end if
7: end for
8: end for

Algorithm 2 shows how to add symmetry breaking constraints according to the symmetries
inG, current partial assignment E and the branching assignment (from which the backtrack hap-
pens) or violated assignment x = v. For each of the non-broken symmetries in G, one symmetry
breaking constraint is added (line 2). We record in T all assignments in these symmetry breaking
constraints that are not violated and have not been recorded into T (lines 3-7) yet.

Algorithm 3 CheckT(T, V T)
1: V T = ∅;
2: for each xi = vi ∈ T do
3: if vi 6∈ D(xi) then
4: V T = V T ∧ (xi = vi);
5: delete xi = vi from T ;
6: end if
7: end for

Algorithm 3 checks whether some assignments recorded in T are violated. If an assignment
is violated (line 3), we record this assignment into V T and delete this assignment from T (lines
4-5). Such an assignment will never be recorded into T again in subsequent search.

Similar to the implementation of SBDS [7], ReSBDS does not add symmetry breaking con-
straints for broken symmetries and a boolean variable bPh is also constructed for each symmetry

13

h ∈ G at each node P representing whether Eh is satisfied or not where E is the partial assign-
ment of P . Along branching, bPh is incrementally computed in the following way. Suppose P is
branched to P ′ with branching assignment x = v. The partial assignment E′ of P ′ is extended
to E′ ≡ (E ∧ (x = v)). Now the value of bP

′

h for symmetry h ∈ G at P ′ is the conjunction of
the satisfaction of Eh and (x = v)h, i.e. bPh ∧ (x = v)h. Hence, we can compute the symmet-
ric partial assignment of the current partial assignment incrementally for each symmetry during
search. A further advantage of these boolean variables is that when a bPh is proven to be false at
P , its corresponding symmetry is broken at P as well as under the subtree of P .

Now we give theorems on the termination, space and time complexity of Algorithm 1.

Theorem 2. Algorithm 1 always terminates.

Proof. The number of all possible assignments is limited. Once an assignment is recorded into
V T , it would be removed from T (line 5 of Algorithm 3) and never recorded back to T due to
the condition in line 4 of Algorithm 2. Thus the while loop (lines 11-17) of Algorithm 1 always
terminates.

Theorem 3. Given a CSPP = (X,D,C) with |X| = n. The maximum size of T is
∑n−1
i=0 |D(xi)|.

Proof. The maximum size of T is
∑n−1
i=0 |D(xi)|, which is the number of all possible assign-

ments for the CSP P .

Theorem 4. Given a subset of symmetriesG and a CSP P = (X,D,C) with |X| = n. The time
complexity of Algorithm 1 is O(

∑n−1
i=0 |D(xi)|(n|G|+

∑n−1
i=0 |D(xi)|/2)).

Proof. The time complexity of Algorithm 2 and Algorithm 3 are O(|G||X|) and O(|T |) respec-
tively. The worst time complexity of Algorithm 1 happens when |V T | = 1 after calling Algo-
rithm 3 every time until T is empty. Thus the total time complexity is O(|T ||G||X| + |T |2/2).
While T has the maximum size

∑n−1
i=0 |D(xi)| and |X| = n, the time complexity of Algorithm 1

is O(
∑n−1
i=0 |D(xi)|(n|G|+ (

∑n−1
i=0 |D(xi)|)/2)).

4.2. Light ReSBDS
Domain filtering prunes values by an AC3-like [1] constraint propagation mechanism. If a

value v is pruned from the domain of a variable during the propagation of a constraint c, we say
this pruning is effected by constraint c.

The ReSBDS method utilizes a backtrackable set T to record useful assignments which might
be violated in the future. Suppose xi = vi is recorded in T since the constraint Ag ⇒ (x 6= v)g

is added at node P0. Suppose further this assignment is violated at a descendant node P1, i.e.
vi is pruned from D(xi). The pruning indicates that Ag ⇒ (x 6= v)g is already satisfied. This
pruning is effected either by a problem constraint or a symmetry breaking constraint. The latter
case has the following feature.

Lemma 1. Given a set of symmetries G. If, using the ReSBDS method, value vi is pruned from
D(xi) at node P1 effected by a symmetry breaking constraint, xi = vi must have been recorded
into T at node P1.

Proof. Given any symmetry breaking constraint Ag ⇒ (x 6= v)g added by ReSBDS, ReSBDS
records all assignments in Ag ∧ (x = v)g . If vi is pruned from D(xi) at node P1 and is effected
by a symmetry breaking constraint c ≡ Ag ⇒ (x 6= v)g , xi = vi must be in Ag ∧ (x = v)g .
Thus xi = vi must have been recorded into T at P1.

14

ReSBDS has the opportunity to record assignments whose violations generate extra con-
straints but cannot help to prune composition symmetries. Suppose a symmetry breaking con-
straint Ag ⇒ (x 6= v)g is added at node P0 and xi = vi and xj = vj are two of its assignments.
ReSBDS records both xi = vi and xj = vj into T and generates symmetry breaking constraints
once they are violated in subsequent search. Suppose xi = vi is violated at a descendant node P1

of P0 and xj = vj is violated at a descendant node P2 of P1. The symmetry breaking constraints
added at P1 due to the violation of xi = vi prune all symmetric nodes of nodes (if any) contain-
ingAg∧(x = v)g and in the subtree of P1. The violation of xj = vj in P2 which is a descendant
node of P1 thus cannot prune any symmetric nodes of nodes containing Ag ∧ (x = v)g and in
the subtree of P2. Constraints added due to the violation of xj = vj in P2 is therefore useless to
prune composition symmetries.

We would like to propose an adaptation of ReSBDS where extra symmetry breaking con-
straints are generated due to the violation of at most one assignment in each symmetry breaking
constraint. Lemma 1 gives us some hints on a light ReSBDS method (LReSBDS) by consider-
ing only the assignments violated by the propagation of symmetry breaking constraints. In this
way, we only need to add extra symmetry breaking constraints when a pruning is effected by a
symmetry breaking constraint. T is not needed anymore and time is saved since there is no need
to record assignments and check violations. Moreover, this ensures at most one assignment in
each symmetry breaking constraint is used to generate extra symmetry breaking constraints.

The LReSBDS method is given as follows.

1. Given the input symmetries G. Upon each backtrack, LReSBDS adds symmetry breaking
constraints added by ParSBDS.

2. After constraint propagation at every node P0 with partial assignment A during search,
LReSBDS performs:

• For each assignment (xi = vi) whose pruning is effected by a symmetry breaking
constraint

– add Ag ⇒ (xi 6= vi)
g for ∀g ∈ G

• Initiate constraint propagation and repeat Step 2 if new constraints are added; other-
wise, go on branching.

The depth-first search tree of the 2 × 2 unconstrained matrix problem with domain size 2 is
exactly the same as the one in Figure 3 after utilizing the LReSBDS method to break the two
generators R and C. Upon each backtrack, LReSBDS adds a symmetry breaking constraint
Ag ⇒ (x 6= v)g for each non-broken given symmetry g, where A is the partial assignment of the
parent node, and x and v are the branching variable and value of the parent node respectively.
This kind of constraints are also added by ParSBDS and are labeled by 4 in Figure 3. Once
a symmetry breaking constraint prunes a value vi from D(xi) at a node P , LReSBDS adds a
symmetry breaking constraint Eh ⇒ (xi 6= vi)

h for each non-broken given symmetry h, where
E is the partial assignment of P . This kind of constraints are additional constraints added at
Step 2 and are indicated by♦ in Figure 3.

The reason that ReSBDS and LReSBDS have the same search tree for the above example is
that there are no problem constraints. Thus the prunings of all violated assignments in T that can
add extra constraints are effected only by the symmetry breaking constraints when using ReS-
BDS. Combining Lemma 1 and the fact that LReSBDS only adds extra constraints according to
the prunings effected by the symmetry breaking constraints, we introduce the following lemma.

15

Lemma 2. Given the same set of symmetries to ReSBDS and LReSBDS. Suppose both use the
same variable and value orderings. If the prunings of all violated assignments in T are effected
by the symmetry breaking constraints when using ReSBDS, ReSBDS =n LReSBDS and ReSBDS
=s LReSBDS.

What about the cases when the conditions of Lemma 2 are not satisfed? Consider the ECCLD
problems in Section 5.1.4. Given the same set of interchangeability of adjacent rows (columns)
and using the same input variable ordering and minimum value ordering heuristic, LReSBDS and
ReSBDS result in search trees of different sizes, 3648007 nodes and 3648003 nodes respectively,
for the instance (6,8,4). In Section 4.3, we give formal characterizations and comparisons of the
node and solution pruning powers of LReSBDS and ReSBDS in the general case.

Similar with ReSBDS, there are two different reasons for LReSBDS to add a symmetry
breaking constraint. First, LReSBDS follows ParSBDS to add a symmetry breaking constraint
upon backtracking. Second, an assignment is violated due to the pruning effected by a symmetry
breaking constraint (rather than any constraint in ReSBDS). Now we do not need extra effort
to detect when exactly the intended assignment are actually pruned. We can “hack” into the
propagation algorithm so that once a value is pruned by the symmetry breaking constraint, extra
constraints are added.

Given a CSP P = (X,D,C). We present the LReSBDS algorithm with given symmetries G
in the following2.

Algorithm 4 BranchL(G,X,D,C)

Require:
G: non-broken symmetries;
X: variables;
D: domain of variables
C: constraints in the constraint store
E: the current partial assignment
x: the branching variable
v: the branching value
b: search direction;

1: Choice(x,v,b);
2: if b = 0 then
3: x.assign(v);
4: E = E ∧ (x = v);
5: else
6: x.prune(v);
7: AddConL(G,E, x, v);
8: end if

We show how to implement LReSBDS with the depth first search engine. Algorithm 4 shows
the branching algorithm, i.e. how to branch at a search node. Choice() has the same functionality
as in Algorithm 1. Here we do not need backtrackable sets T and V T . When branching to the
left, E needs to be updated (line 4). Otherwise, symmetry breaking constraints are added by
calling AddConL() upon backtracking (line 7).

Algorithm 5 shows how to add symmetry breaking constraints according to the given sym-
metries G, current partial assignment E and the branching assignment x = v where backtrack
happens or violated assignment x = v. For each of the non-broken symmetry in G, one symme-
try breaking constraint is added (line 2).

Once a constraint is added to the constraint store or some form of consistency is enforced
at a search node, Algorithm 6, an AC3-like constraint propagation algorithm, would be called

2In GitHub https://github.com/zichenzu/Light-Recursive-SBDS, the implementation of LReSBDS is further given
with the help of N-Queens as an illustrative example.

16

Algorithm 5 AddConL(G,E, x, v)
1: for each h ∈ G do
2: add Eh ⇒ (x 6= v)h into C;
3: end for

Algorithm 6 AC3(C)
1: Q = C;
2: while Q 6= ∅ do
3: Choose c from Q;
4: Remove c from Q;
5: if Propagate(c) then
6: Q = Q ∪ {c′|c′ ∈ C − {c} and c′ and c have same variable in their scope}
7: end if
8: end while

to trigger propagators of all constraints in the constraint store. In this algorithm, a constraint c
would be chosen from the constraint store (line 3) and deleted from Q (line 4). After that, we
call its propagator (line 5). If its propagator can prune some values (line 5), all other constraints
that have been deleted from Q but have the same variable in their scope with that in c would be
added back toQ (line 6). The while-loop would trigger all constraints inQ untilQ is empty (line
2).

Algorithm 7 SymConPro(G,E,A, x, v)
// constraint propagation algorithm of A⇒ (x 6= v)

1: if all assignments except xi = vi in A ∧ (x = v) are true then
2: xi.prune(vi);
3: AddConL(G,E, xi, vi);
4: end if

Algorithm 7 shows the constraint propagation algorithm of all symmetry breaking constraints
added by LReSBDS which is in the form A⇒ (x 6= v). Values are pruned when all assignments
except xi = vi in the assignment set A ∧ (x = v) are true (line 1). Now xi = vi is enforced to
be false (line 2). Additional symmetry breaking constraints are added according to this pruning
(lines 3). And these symmetry breaking constraints’ propagation is also done by Algorithm 7.
Hence the recursive addition of constraints is done by the propagation mechanism which stops
propagation only when every variable’s domain does not change and no extra constraints are
added then.

Similar to the implementation of SBDS and ReSBDS, LReSBDS does not add symmetry
breaking constraints for broken symmetries and also a boolean variable is constructed for each
symmetry h ∈ G at each node P representing whether Eh is satisfied or not where E is the
partial assignment of P . Along branching, bPh is incrementally computed in the similar way of
that in ReSBDS.

We give theorems on the termination of Step 2.

Theorem 5. Step 2 of LReSBDS always terminates.

17

Proof. The number of all possible assignments is limited. Once a value is pruned from its vari-
able’s domain, this value never be pruned from its variable’s domain again in subsequent con-
straint propagation. Thus the recursive addition of constraints will always terminate.

4.3. Theoretical Results
In this section, we give theorems on the properties of ReSBDS and LReSBDS in addition to

comparing the pruning power of ReSBDS and LReSBDS as well as against other state of the art
methods.

Theorem 6. (Soundness) Symmetry breaking constraints added by ReSBDS/LReSBDS leave at
least one solution in each symmetry class.

Proof. Gent and Smith [7] prove that ParSBDS does not exclude the solution occurring at the
leftmost position in the search tree in every symmetry class. The extra symmetry breaking con-
straints added by ReSBDS are generated according to the violation of some assignments. These
assignments comes from some already added symmetry breaking constraints, which are either
symmetry breaking constraints also added by ParSBDS or the extra constraints added by ReSBD-
S. While ParSBDS leaves the leftmost solution in each symmetry class, these extra constraints
are used only to prune the symmetric equivalent subtrees of pruned subtrees which either contain
no solutions or solutions symmetric to the leftmost solution discovered earlier.

Similar to ReSBDS, the extra symmetry breaking constraints added by LReSBDS are used
only to prune the symmetric equivalent subtrees of pruned subtrees which either contain no solu-
tions or solutions symmetric to the leftmost solution discovered earlier. The result for LReSBDS
follows directly.

In ParSBDS, the symmetry breaking constraints added at a descendant node are implied by
the constraints added upon backtracking from its ancestor node. Consider the depth-first search
tree in Figure 2 again. The symmetry breaking constraint added by ParSBDS at node (c) does
not need to be added upon backtracking to node (e) since the left hand side of the constraint
(x11 = 1)R ⇒ (x12 6= 1)R is implied by the symmetry breaking constraint (x11 6= 1)R posted
at (e). Thus all the symmetry breaking constraints added by ParSBDS at a search node P0 only
need to be posted locally to the subtree of P0 which means that they are removed from the
constraint store upon backtracking from an ancestor node of P0. This property also holds in
ReSBDS and LReSBDS.

Theorem 7. Given a set of symmetries G. Suppose P0 is an ancestor node of P1. The symmetry
breaking constraints generated by ReSBDS/LReSBDS at node P1 are implied by the constraints
generated by ReSBDS upon backtracking from P0.

Proof. There are two kinds of constraints added by ReSBDS at node P1.

1. P1 is backtracking from a node and symmetry breaking constraints are thus added. For the
same reason that ParSBDS posts constraints locally, these symmetry breaking constraints
are implied by the constraints added upon backtracking from P0.

2. A recorded assignment xi = vi is violated at node P1 with the current partial assignment
E1. Constraints Eh1 ⇒ (xi 6= vi)

h for all h ∈ G are added at P1. Suppose P0 has current
partial assignment E0 and P2 backtracks from P0. The constraints ¬Eh0 for all h ∈ G are
thus added upon backtracking from P0 at P2. While E0 ⊆ E1, Eh0 ⊆ Eh1 for all h ∈ G.
Thus ¬Eh0 implies ¬Eh1 and also implies Eh1 ⇒ (xi 6= vi)

h.
18

Therefore, the symmetry breaking constraints generated by ReSBDS at node P1 are implied by
the constraints generated by ReSBDS upon backtracking from P0.

Similarly, LReSBDS adds two kinds of constraints at node P1. The first one is the same
with that of ReSBDS. The second kind of constraint is added when a value vi is pruned from
D(xi) which is effected by a symmetry breaking constraint at node P1 with the current partial
assignment E1. Constraints Eh1 ⇒ (xi 6= vi)

h for all h ∈ G are added at P1. Suppose P0 has
current partial assignment E0 and P2 backtracks from P0. The constraints ¬Eh0 for all h ∈ G
are thus added upon backtracking from P0 at P2. While E0 ⊆ E1, Eh0 ⊆ Eh1 for all h ∈ G.
Thus ¬Eh0 implies ¬Eh1 and also implies Eh1 ⇒ (xi 6= vi)

h. Therefore, the symmetry breaking
constraints added by LReSBDS at node P1 are implied by the constraints added by LReSBDS
upon backtracking from P0.

The above theorem shows the symmetry breaking constraints added by ReSBDS and LReS-
BDS only need to be posted locally to the subtree of the node where they are generated.

We give theorems to compare the pruning power of LReSBDS with ReSBDS.

Theorem 8. Given a CSP with only variables, domains but no problem constraints and a subset
of symmetries G. ReSBDS =n LReSBDS when both use the same static variable and value
orderings and given the same set of symmetries.

Proof. Since there are no problem constraints, the prunings of all violated assignments in T are
effected by the symmetry breaking constraints when using ReSBDS. The result follows directly
from Lemma 2.

When there are problem constraints, things can get complicated. We have symmetry breaking
constraints added by ReSBDS but not by LReSBDS when the violation of a recorded assignment
in T is effected by a problem constraint. However, LReSBDS without these symmetry breaking
constraints can have more backtracks and results in more symmetry breaking constraints being
added. Thus their node pruning powers are incomparable in general.

Theorem 9. Given the same set of symmetries. ReSBDS ∦n LReSBDS when both use the same
static variable and value orderings.

Proof. Suppose CR and CL are the sets of all symmetry breaking constraints added by ReSBDS
and LReSBDS respectively.

When a violated assignment in T whose pruning is effected by a problem constraint, ReSBDS
will be triggered to add a symmetry breaking constraint c for each symmetry to CR. However,
LReSBDS will be triggered to add symmetry breaking constraints only when the pruning is
effected by symmetry breaking constraints. Thus the symmetry breaking constraints are added
only to CR but not CL.

The added symmetry breaking constraints c in ReSBDS may interact with problem con-
straints and can cause further non-solution parts to be pruned by problem constraints. If the
pruned assignments are not already in T , these prunings cannot trigger ReSBDS into adding
new symmetry breaking constraints. In LReSBDS, however, there will be eventually backtracks
from these non-solution parts and such backtracks will trigger addition of a symmetry breaking
constraint for each symmetry. Thus there are symmetry breaking constraints added to CL but not
CR.

Thus, the node pruning powers of ReSBDS and LReSBDS are incomparable in general.

19

According to our empirical results (to be reported below), ReSBDS always prunes more than
LReSBDS. However, their solution pruning powers remain the same.

Theorem 10. ReSBDS =s LReSBDS when given the same set of symmetries and both use the
same static variable and value orderings.

Proof. Suppose CR and CL are the sets of all symmetry breaking constraints added by ReSBDS
and LReSBDS respectively. We prove that each constraint that can prune solutions inCL are also
in CR or implied by the constraints in CR. Consider the resulting search trees ΥR of ReSBDS
and ΥL of LReSBDS. There are three cases to consider.

1. LReSBDS adds a constraint c0 ∈ CL at node P0 in ΥL due to a backtrack from node P1

and symmetry g, and P1 is pruned in ΥR. Suppose the parent node of P0 and P1 is P
in ΥL. Thus P0 is merged with P in ΥR. Constraint c0 in ΥL can prune solutions only
if P1 has solutions in its subtree. Thus P1 must be pruned by the the symmetry breaking
constraints added by ReSBDS. An assignment xi = vi in P1 must have been recorded into
T and violates at node P or its ancestor node. Assume this violation results constraint c′

being added by ReSBDS according to symmetry g. If the violation occurs at an ancestor
node of P in ΥR, c′ implies c0. Otherwise, c′ = c0.

2. LReSBDS adds a constraint c0 ∈ CL at node P0 in ΥL due to a backtrack from node P1

and symmetry g, and P1 is not pruned in in ΥR. If P0 is pruned in ΥR, since c0 is posted
locally to the subtree of P0, c0 cannot prune more nodes than ReSBDS. Otherwise, c0 is
added by ReSBDS at node P0.

3. LReSBDS adds a constraint c1 ∈ CL at node P1 in ΥL because the propagation of a
symmetry breaking constraint on symmetry g prunes value vi from D(xi) at P1. If P1 is
pruned in ΥR, c1 cannot prune more nodes than ReSBDS. Otherwise, assignment xi = vi
must have been recorded into T and violates at node P1 or its ancestor node. Assume this
violation results constraint c′ being added by ReSBDS according to symmetry g. If the
violation occurs at an ancestor node of P1 in ΥR, c′ implies c1. Otherwise, c′ = c1.

Thus we have ReSBDS�s LReSBDS. Next, we prove symmetry breaking constraints in CR but
not in CL cannot prune any solutions. Since these constraints are generated due to the violations
of recorded assignments in T which are effected by problem constraints, they can only prune
symmetric nodes of non-solution nodes. Thus ReSBDS =s LReSBDS.

We give theorems to compare the pruning power of ReSBDS and LReSBDS with with the
variants of LexLeader and SBDS methods.

Theorem 11. Given a CSP with only variables, domains but no problem constraints and a subset
of symmetriesG. ReSBDS�n ParSBDS and LReSBDS�n ParSBDS when all use the same static
variable and value orderings and given the same set of symmetries.

Proof. Suppose CP and CR are the sets of all symmetry breaking constraints added by ParSBDS
and ReSBDS respectively. We prove that each constraint in CP are also in CR or implied by the
constraints in CR. Consider the resulting search trees ΥP of ParSBDS and ΥR of ReSBDS.
Suppose a constraint c ∈ CP is added at a node P0 by ParSBDS in ΥP due to the backtracking
from node P1.

1. If P0 and P1 are both in ΥR, c is also added by ReSBDS and in CR.

20

2. If P0 is in ΥR but P1 is not, P1 must have been pruned at an ancestor node of P0 in ΥR. It
must be pruned due to the extra symmetry breaking constraints added by ReSBDS. Thus,
the pruning that occurs at the ancestor node would trigger ReSBDS to add extra symmetry
breaking constraints c′ which implies c.

3. If both P0 and P1 are not in ΥR, one of their ancestor nodes must have been pruned from
ΥR. Since c are only added at the subtree of P0 in ΥP , it is implied by the constraints
added by ReSBDS.

Thus we have ReSBDS �n ParSBDS. ReSBDS adds extra symmetry breaking constraints if an
assignment recorded in T is violated. Consider the unconstrained matrix problem again. Given
only two generators {R,C}, ReSBDS has 13 nodes while ParSBDS has 15 nodes. Thus ReSBDS
�n ParSBDS.

Since we further have ReSBDS =n LReSBDS, LReSBDS �n ParSBDS by Theorem 8.

With similar reasoning as in the proof of Theorem 9, the node pruning powers of ReSBD-
S/LReSBDS and ParSBDS are incomparable if there are problem constraints. Empirically, how-
ever, ReSBDS/LReSBDS usually results in a much smaller search tree than ParSBDS does.

Theorem 12. Given the same set of symmetries. ReSBDS/LReSBDS ∦n ParSBDS when both use
the same static variable and value orderings.

Proof. Similar to the proof of Theorem 9, ReSBDS/LReSBDS adds more extra composition
symmetry breaking constraints than ParSBDS, but ParSBDS without these symmetry breaking
constraints can have more backtracks and result in more symmetry breaking constraints being
added. Thus their node pruning powers are incomparable in general.

However, solution pruning power is not affected by the above case.

Lemma 3. Given the same set of symmetries. Symmetry breaking constraints added by ParSBDS
but not by ReSBDS cannot prune solutions when both use the same static variable and value
orderings.

Proof. Consider the resulting search trees ΥP of ParSBDS and ΥR of ReSBDS. Suppose a
constraint c is added at a node P0 by ParSBDS in ΥP due to the backtracking from node P1.
Constraint c cannot be added or implied by the constraints added by ReSBDS in ΥR only when
(a) P0 is in ΥR but P1 is not, (b) P1 is pruned by a problem constraint and (c) this pruned
assignment is not recorded into T . Since P1 is pruned by problem constraint in ΥR, no solutions
exist in the subtree of P1 in ΥP . Thus c cannot prune any symmetric solutions.

Theorem 13. Given the same set of symmetries. ReSBDS �s ParSBDS and LReSBDS �s ParS-
BDS when all use the same static variable and value orderings.

Proof. Lemma 3 shows all symmetry breaking constraints added by ParSBDS but not by ReS-
BDS cannot prune solutions. Thus ReSBDS �s ParSBDS. Consider the unconstrained matrix
problem again. Given only two generators {R,C}, ReSBDS leaves 7 solutions while ParSBDS
leaves 8 solutions. Therefore, ReSBDS �s ParSBDS.

Since we further have ReSBDS =s LReSBDS, LReSBDS�s ParSBDS by Theorem 10.

When comparing ReSBDS/LReSBDS with LexLeader and its partial methods, similar to
what we have done when comparing ParSBDS and LexLeader, we give ReSBDS and LReSBDS

21

the inversions of the symmetries broken by the LexLeader family of methods. ReSBDS and
LReSBDS are stronger in solutions pruning than LexLeader when we consider only symmetries
that are compositions σ ◦ θ of a variable symmetry σ and a value symmetry θ.

Theorem 14. Suppose G and H are sets of symmetries so that γ ∈ G⇔ γ−1 ∈ H . ReSBDS�s
LexLeader and LReSBDS �s LexLeader by posting G to ReSBDS and LReSBDS and breaking
H by LexLeader when all search with the same static variable ordering used by LexLeader and
min (max) value ordering.

Proof. We prove that all the symmetric solutions pruned by LexLeader will always be pruned
by ReSBDS. LexLeader (retaining the lexicographically least solution) adds the following con-
straints

〈x1, . . . xn〉 ≤lex 〈x1, . . . xn〉σ
−1◦θ−1

(8)

at the root node for all γ−1 ≡ σ−1 ◦ θ−1 in H where n is the number of variables, σ−1 is a
variable symmetry and θ−1 is a value symmetry. Each of these constraints implies the following
n constraints

(x1 = θ−1(xσ(1))) ∧ · · · ∧ (xk−1 = θ−1(xσ(k−1)))→ (xk ≤ θ−1(xσ(k))) (9)

where k ∈ {1, . . . , n}. ReSBDS adds the following constraint for all γ ≡ σ ◦ θ in G

(xσ(1) = θ(v1)) ∧ · · · ∧ (xσ(k−1) = θ(vk−1))→ (xσ(r) 6= θ(vr)) (10)

at a node P0 after assigning k−1 variables with the backtracking or violated recorded assignment
xr = vr.

Suppose solution s1 is pruned by the LexLeader constraints (8). There must exists a solution
s2 (pruned or not) and a symmetry (σ′)−1 ◦ (θ′)−1 in H such that s2 = s

(σ′)−1◦(θ′)−1

1 and
s1 >lex s2. Suppose s1 ≡ (x1 = a1 ∧ · · · ∧ xn = an) and s1 has the first t − 1 assignments
(according to variable order) same with s2. We must have

(aσ′(1) = θ′(a1)) ∧ · · · ∧ (aσ′(t−1) = θ′(at−1))→ (at > (θ′)−1(aσ′(t))) (11)

since s1 >lex s2. Suppose s1 cannot be pruned by ReSBDS. With the static variable ordering
used by LexLeader and min value ordering, s2 is searched earlier than s1 since s1 >lex s2.
Assume node Pi is the deepest common ancestor of s1 and s2 with the partial assignment x1 =
a1 ∧ · · · ∧ xt−1 = at−1 and the branching variable xt and value (θ′)−1(aσ′(t)) respectively.
There are two cases to consider.

1. The node cons(Pi ∪ {xt = (θ′)−1(aσ′(t))}) is not pruned. Upon backtracking from con-
s(Pi ∪ {xt = (θ′)−1(aσ′(t))}), ReSBDS adds symmetry breaking constraint

(xσ′(1) = θ′(a1)) ∧ · · · ∧ (xσ′(t−1) = θ′(at−1))→ (xσ′(t) 6= θ′((θ′)−1(aσ′(t)))) (12)

according to the symmetry σ′ ◦ θ′ ∈ G, which can be rewritten as

(xσ′(1) = θ′(a1)) ∧ · · · ∧ (xσ′(t−1) = θ′(at−1))→ (xσ′(t) 6= aσ′(t)). (13)

Thus solution s1 ≡ (x1 = a1 ∧ · · · ∧ xn = an) is pruned. CONTRADICTION.

22

2. The node Pi∧{xt = (θ′)−1(aσ′(t))} is pruned. It is pruned because xt = (θ′)−1(aσ′(t)) is
violated by the propagation of a symmetry breaking constraint at Pi or an ancestor node of
Pi since there exists a solution s2 in the subtree. Thus assignment xt = (θ′)−1(aσ′(t))
must have been recorded in T by ReSBDS at the time it is violated. Suppose xt =
(θ′)−1(aσ′(t)) is violated at node Pj with the partial assignment x1 = a1 ∧ · · · ∧ xs−1 =
as−1 where s ≤ t. ReSBDS adds the following constraint

(xσ′(1) = θ′(a1)) ∧ · · · ∧ (xσ′(s−1) = θ′(as−1))→ (xσ′(t) 6= θ′((θ′)−1(aσ′(t)))) (14)

when this violation happens according to the symmetry σ′◦θ′ ∈ G, which can be rewritten
as

(xσ′(1) = θ′(a1)) ∧ · · · ∧ (xσ′(s−1) = θ′(as−1))→ (xσ′(t) 6= aσ′(t)). (15)

Thus solution s1 ≡ (x1 = a1 ∧ · · · ∧ xn = an) is pruned. CONTRADICTION.

To show strictly stronger, we consider the n × n unconstrained matrix problem with n = 2 and
d = 3. Given only two generators {R,C} where R−1 = R and C−1 = C, LexLeader leaves 29
solutions while ReSBDS leaves 28 solutions. Therefore ReSBDS �s ParSBDS.

Theorem 10 further shows ReSBDS =s LReSBDS. Thus LReSBDS �s LexLeader follows
directly.

The DoubleLex [4] method, a special case of LexLeader, breaks adjacent rows and columns
interchangeability in matrix problems. Following directly from Theorem 14, we show that when
ReSBDS and LReSBDS are given the same adjacent rows and columns interchangeability sym-
metries, and searching with row-wise or column-wise variable ordering and min (max) value
ordering, ReSBDS and LReSBDS are strictly stronger in solutions pruning than DoubleLex.

Theorem 15. ReSBDS �s DoubleLex and LReSBDS �s DoubleLex.

Proof. ReSBDS �s DoubleLex and LReSBDS �s DoubleLex following directly from Theo-
rem 14. To show strictness, consider the ECCLD results in Table 6. ReSBDS and LReSBDS are
given the same subset of symmetries as that to DoubleLex, but ReSBDS and LReSBDS leave
less solutions than DoubleLex does for all cases.

Another partial symmetry breaking method of LexLeader, SnakeLex [21], breaks the same
subset of symmetries as DoubleLex as well as an extra linear number of symmetries that rows
(columns) with distance two are interchangeable. Following directly from Theorem 14, we show
that when ReSBDS and LReSBDS are given the same generator symmetries as SnakeLex, and
searching with snake-wise ordering and min (max) value ordering, ReSBDS and LReSBDS are
strictly stronger in solutions pruning than SnakeLex.

Theorem 16. ReSBDS �s SnakeLex and LReSBDS �s SnakeLex.

Proof. ReSBDS�s SnakeLex and LReSBDS�s SnakeLex following directly from Theorem 14.
To show strictness, consider the ECCLD results in Table 7. ReSBDS and LReSBDS are given
the same subset of symmetries as that to SnakeLex, but ReSBDS and LReSBDS leave less so-
lutions than SnakeLex does for all cases.

Even though LexLeader leaves 57 nodes while ReSBDS leaves 55 nodes for the n × n un-
constrained matrix problem with n = 2 and d = 3, ReSBDS is not stronger in nodes pruning
than LexLeader in general.

23

Theorem 17. Given the same set of symmetries. ReSBDS/LReSBDS ∦n LexLeader when both
search with the same static variable ordering used by LexLeader and min (max) value ordering.

Proof. ReSBDS �s LexLeader and LReSBDS �s LexLeader by Theorem 14. Thus LexLeader
6�n ReSBDS/LReSBDS. Next, we show ReSBDS/LReSBDS 6�n LexLeader using two examples
that exhibit this property for two different reasons.

Consider the CSP with variables {x1, . . . , x6} and {1, 2, 3} as domains. The constraint is:
x1 + x2 + x3 = x4 + x5 + x6. There are several variable symmetries. Here we consider
only the symmetry mapping xi onto x7−i which is identical to its inverse symmetry. LexLeader
adds constraint 〈x1, . . . x6〉 ≤lex 〈x6, . . . , x1〉 at the root node to break this symmetry. ReSBDS
adds conditional symmetry breaking constraints during search. Suppose we are at node P0 with
partial assignment {x1 = 1, x2 = 3, x3 = 1}. After backtracking from cons(P0 ∪ {x4 =
1}), the problem constraint would prune value 3 from D(x5) and D(x6). D(x5) is {1, 2},
x2 ≤ x5 is false. LexLeader thus guarantees x1 < x6. This prunes value 1 from D(x6). The
problem constraint again prunes value 3 from D(x4) and value 2 from D(x5). The solution
{1, 3, 1, 2, 1, 2} is found. ReSBDS adds the following two constraints

x6 = 1→ x5 6= 1, x6 = 1→ x5 6= 2

along branching to P0. Even though D(x5) is {1, 2}, these two constraints cannot prune value
1 from D(x6). Both ReSBDS and LexLeader return 84 solutions, but LexLeader has 175 nodes
in the search tree while ReSBDS has 187. The reason is because LexLeader adds one symmetry
breaking constraint for each symmetry, while ReSBDS posts the symmetry breaking constraints
separately and thus loses pruning opportunities. This shows that there are nodes pruned by
LexLeader that cannot be pruned by ReSBDS, i.e. ReSBDS 6�n LexLeader.

Consider another CSP with variables {x1, x2} and {0, 1} as domains. The constraint is:
x1 6= x2. The two values are interchangeable. LexLeader adds constraint 〈x1, x2〉 ≤lex
A(01)[〈x1, x2〉] at the root node to break this symmetry where A(01) = [1, 0] and A(01)[X] is
defined as the application of an element constraint to the variables in X . ReSBDS adds condi-
tional symmetry breaking constraints during search. Once the LexLeader constraint is added at
the root node, values 1 and 0 would be pruned from D(x1) and D(x2) respectively. ReSBDS,
however, would not add constraint x1 6= 1 until backtrack happens before which x1 is assigned
the value 0 and the solution {x1 = 0, x2 = 1} is found. Both ReSBDS and LexLeader return
1 solution, but LexLeader only has the root node while ReSBDS has an extra search node. The
reason is LexLeader posts all the symmetry breaking constraints at the root node, while ReSBDS
has to wait until there is a backtrack or a value vi being pruned from the domain of a variable
xi and (xi = vi) is already recorded in T . Only at that point are symmetry breaking constraints
added to do the value pruning. This shows again that there are nodes pruned by LexLeader that
cannot be pruned by ReSBDS, i.e. ReSBDS 6�n LexLeader.

Similar analysis can also show that there are nodes pruned by LexLeader that cannot be
pruned by LReSBDS in the last two examples. Thus LReSBDS 6�n LexLeader.

Even though their nodes pruning powers are incomparable, we shall demonstrate empirically
in our experiments, however, that ReSBDS/LReSBDS prunes many more symmetric solutions
and also more nodes than LexLeader in practice.

LDSB [11] is an improvement of shortcut SBDS. LDSB handles only active symmetries and
also their compositions. In addition, when v is pruned from the domain of variable x, LDSB not

24

only asserts (x 6= v)g but also (x 6= v)g◦h for each active symmetries g and h. This recursive step
is repeated in a breadth-first manner until no more new prunings are obtained [11]. LDSB is close
in spirit to ReSBDS and has smaller overhead, but also misses important pruning opportunities
since it only handles active symmetries. We give theorems to compare the nodes and solution
pruning power of ReSBDS/LReSBDS and LDSB. Since LDSB [11] can deal only with variable
symmetries and value symmetries, we restrict our attention to these symmetries.

Theorem 18. Given the same set of variable and value symmetries to ReSBDS and LDSB. Sup-
pose both use the same static variable and value orderings. If all non-broken symmetries at each
node during search are active symmetries, ReSBDS =n LDSB and ReSBDS =s LDSB; otherwise,
ReSBDS �n LDSB and ReSBDS �s LDSB.

Proof. If all non-broken symmetries g are active, ReSBDS only adds unconditional symmetry
breaking constraints and records these constraints’ variable-value pairs. After posting these un-
conditional symmetry breaking constraints (x 6= v)g , constraint propagation will immediately
prune the value vg from the domain of xg . ReSBDS continues to add constraints (x 6= v)g◦h also
in a breadth-first manner. Thus the set of constraints added by ReSBDS is same as that added
by LDSB when all non-broken symmetries are active symmetries. Now their pruning powers are
the same.

Otherwise, LDSB breaks only active non-broken symmetries and their compositions, but
ReSBDS breaks all non-broken symmetries (active and inactive) and their compositions. Hence,
ReSBDS is strictly stronger.

Theorem 19. Given the same set of variable and value symmetries to LReSBDS and LDSB. Sup-
pose both use the same static variable and value orderings. If all non-broken symmetries at each
node during search are active symmetries and the prunings of all assignments in each uncondi-
tional symmetry breaking constraint are effected by symmetry breaking constraint, LReSBDS =n

LDSB and LReSBDS =s LDSB; otherwise, LReSBDS �n LDSB and LReSBDS �s LDSB.

Proof. If all non-broken symmetries g are active, LReSBDS only adds unconditional symmetry
breaking constraints. After posting these unconditional symmetry breaking constraints (x 6= v)g ,
constraint propagation will immediately prune the value vg from the domain of xg . Since these
pruning is effected by symmetry breaking constraint, LReSBDS continues to add constraints
(x 6= v)g◦h for all non-broken symmetries h and also doing this in a breadth-first manner. Thus
the set of constraints added by LReSBDS is the same as that added by LDSB when all non-broken
symmetries are active symmetries. Now their pruning powers are the same.

Otherwise, LDSB breaks only active non-broken symmetries and their compositions, but L-
ReSBDS breaks all non-broken symmetries (active and inactive) and their compositions. Hence,
LReSBDS is strictly stronger.

Even when ReSBDS and LReSBDS are given only generators, they can be complete in spe-
cific situations.

Theorem 20. Given a fixed variable (value) ordering Π. Suppose G is the set of symmetries
such that adjacent variables (values) are interchangeable. Applying ReSBDS or LReSBDS on G
and searching with the Π variable (value) ordering eliminates all symmetries in Σ, where Σ is
the symmetry group of G.

25

Proof. For interchangeable variables, LexLeader can eliminate Σ by being only given G accord-
ing to any Π ordering. For interchangeable values, Walsh [32] proves VALSYMBREAK(G,X)
eliminates Σ, where VALSYMBREAK is a global lexicographic ordering constraint to break
value symmetries. Thus, results follow directly from Theorem 14.

Therefore, when breaking interchangeable variables and values, ReSBDS and LReSBDS
only need to be given adjacent variable or value interchangeabilities to eliminate the complete
symmetry group.

Theorem 21. Suppose G is the set of symmetries such that adjacent rows (columns) are inter-
changeable. Applying ReSBDS/LReSBDS on G and searching with the input variable variable
ordering and static value ordering eliminates all symmetries in Σ, where Σ is the symmetry group
of G.

Proof. For interchangeable rows (columns), LexLeader can eliminate Σ by being only given G
according to the input variable variable ordering and static value ordering. Thus, results follow
directly from Theorem 14.

Therefore, when breaking interchangeable rows and columns, ReSBDS and LReSBDS only
need to be given adjacent row or column interchangeabilities to eliminate the complete symmetry
group.

5. Experimental Results

This section reports experiments on five satisfaction problems and three optimization prob-
lems. In case of partial symmetry breaking, the symmetries to break are some generators of
the entire symmetry group. Our ReSBDS and LReSBDS implementations are modified directly
from the code base of SBDS and ParSBDS. When we propagate symmetry breaking constraints
which are actually nogoods, dynamic subscriptions (dynamic event sets [33], also known as
dynamic triggers [34]) are used.

We compare ReSBDS and LReSBDS against SBDS, ParSBDS and LDSB as well as state
of the art static symmetry breaking methods: (a) two partial symmetry breaking variants of
LexLeader, DoubleLex [4] and SnakeLex [21] for breaking matrix symmetries, (b) value prece-
dence [18] for breaking value interchangeability, (c) the SIGLEX constraint [19] for breaking
variable and value interchangeability and its descending-partition-size variation and (d) the static
method by Puget [17, 35] to break all variable symmetries in all-different problems and all value
symmetries in surjection problems. We do not compare with allperm [16] since its implementa-
tion is not available. All experiments are conducted using Gecode Solver 4.2.0 on Xeon E5620
2.4GHz processors.

We also compare against other state of the art dynamic symmetry breaking methods: sym-
metry breaking with lazy clause generation [36], GE-trees [8], GAP-SBDD [37] and GAP-
SBDS [38]. Here, we can do the comparison only indirectly for these four methods by using
results from the literature since they are not available on the Gecode platform. In Table 2, we
give the Passmark CPU marks [39] on the reported CPUs in the literature and the CPU of our
experimental machines. The higher the mark, the better the efficiency of the CPU.

We compare against SBDS, ParSBDS and LDSB since they are state of the art dynamic
methods and also starting point of our work. The other methods chosen for comparison are best
static and dynamic methods on handling the respective problems in the literature.

26

Table 2: Passmark CPU Marks on CPUs

CPU Name Passmark CPU Mark
2.6GHz Pentium IV processor 289
600MHz Intel PIII processor 238
Xeon Pro 2.4GHz processor 4875

Xeon E5620 2.4GHz processor 4875

Although Mears et al. [11] has designed a pattern syntax to specify the input symmetries for
LDSB, the syntax is not available in the Gecode implementation, which gives only a restricted
syntax to specify the types of symmetries and parameters. It is unclear exactly what symmetries
are processed by LDSB. In subsequent sections, we state only the types of symmetries given to
LDSB in our experiments.

In our tables, #s denotes the number of solutions, #f denotes the number of failures (num-
ber of failed leaf nodes) , #bt denotes the number of backtrack and t denotes the running time.
An entry with the symbol “ − ” indicates that the search timed out after the 1 hour limit. The
best results are highlighted in bold. SBDS uses SBDS to break all symmetries. DoubleLex
and SnakeLex lexicographically orders variable sequences in increasing order according to the
DoubleLex and SnakeLex methods. ParSBDS, LDSB ReSBDS and LReSBDS handle the giv-
en symmetries by ParSBDS, LDSB, ReSBDS and LReSBDS respectively. Unless otherwise
specified, the search order is defaulted to input variable order and min value order.

5.1. Satisfaction Problems
In this part, we give five experiments to show the benefit of our methods on finding all

solutions in satisfaction problems.

5.1.1. N -Queens
TheN -Queens problem is prob054 in CSPLib [40], which is to placeN queens on anN×N

chessboard so that none of the queens can attack each other. We model the N -Queens problem
the standard way using one variable per column. This model has 8 geometric symmetries which
are classified into variable symmetries, value symmetries and variable-value symmetries. All 8
geometric symmetries are given to SBDS. We give ParSBDS, ReSBDS and LReSBDS only the
two generators rx (reflection on the vertical axis) and d1 (reflection on the diagonal), which can
generate all 8 geometric symmetries. Note that all the symmetry breaking constraints added by
ReSBDS and LReSBDS according to these two generators are unconditional constraints. This
means that all non-broken symmetries at each node during search are active symmetries. Thus
the pruning power of ReSBDS and LReSBDS are identical according to Lemma 2. We thus
show their solutions and failures together and use TR and TL to denote the runtime of ReSBDS
and LReSBDS respectively. LDSB can only handle the rx, ry and r180 symmetries, which are
reflections on the vertical and horizontal axes and rotation of 180 degrees. They form a symmetry
group which is a subset of the geometric symmetry group. Following Mears et al. [11], we give
LDSB only the two generators rx and ry. SBC uses the static method by Puget [17, 35] to break
all variable symmetries in all-different problems and all value symmetries. Thus only rx and ry
can be broken by SBC.

Table 3 shows the results. SBC eliminates the smallest set of symmetric solutions and search
parts. Being given two symmetries, ReSBDS and LReSBDS achieve over 63% reduction in

27

Table 3: N -Queens (all solutions)

N SBC SBDS ParSBDS
#s #f t #s #f t #s #f t

14 141,988 1,819,871 7.25 45,752 823,621 5.92 140,438 1,361,836 6.64
15 940,824 11,242,568 45.38 285,053 4,825,631 34.33 859,654 7,951,827 39.50
16 5,726,294 67,306,747 268.22 1,846,955 30,221,334 219.05 5,646,963 50,928,933 265.16
17 39,043,343 469,901,695 1,891.50 11,977,939 200,005,686 1,502.88 36,078,885 337,758,336 1,796.78

N LDSB ReSBDS/LReSBDS
#s #f t #s #f tR tL

14 99,883 1,454,958 7.75 51,876 875,600 4.50 4.29
15 613,978 8,452,568 45.43 324,173 5,131,707 25.70 24.13
16 3,985,771 53,277,940 288.97 2,071,568 31,934,685 164.33 157.33
17 25,549,837 351,039,264 1,915.12 13,388,788 211,409,624 1,109.95 1,062.43

solution size and over 36% in failures when compared to ParSBDS. In terms of runtime, ReS-
BDS and LReSBDS are 1.56 and 1.64 times faster than ParSBDS on average respectively. This
shows the additional constraints we add can break more compositions and prune more symmetric
subtrees in an efficient way. LReSBDS runs 1.05 times faster than ReSBDS on average since
there is no need to record and check the violations of assignments in T . The saving is not that
prominent since there are only two symmetries added and both of them are active symmetries
if they are not broken yet during search. SBDS eliminates the symmetries in N -Queens com-
pletely and has the smallest solution size and search tree. ReSBDS and LReSBDS, which break
the symmetries only partially, are 1.34 and 1.40 times faster than SBDS on average respectively.
This shows partial symmetry breaking method can be efficient even for polynomially symmetric
CSPs [10]. LDSB performs worse than ParSBDS in search tree size and runtime. This example
demonstrates the main advantages of ReSBDS and LReSBDS: flexibility in choosing symme-
tries to break, and good balance in overhead and extra pruning. For ReSBDS, the maximum size
of T is 2. In more than 99.99% of the cases, the size of T is 0.

5.1.2. Graceful Graph
The graceful graph problem is prob053 in CSPLib [40], which is to find a labelling f of the

nodes of a graph with q edges so that each node is assigned a unique label from 0, . . . , q and
when each edge xy is labelled with f(x) − f(y), the edge labels are all different. The graceful
graph problem is an all-different problem [9]. We model this problem by one variable for a node.
For Kn × Pm graph, it has intra-clique permutations, inter-clique permutations, complement
symmetry, and their combinations. All variable and value symmetries and their combinations
are given to SBDS. ParSBDS is given n ∗ (n − 1)/2 symmetries to describe any two nodes in
each clique being permutable simultaneously and two more symmetries to describe inter-clique
permutation and complement symmetry.

ReSBDS, LReSBDS and LDSB are given (n − 1) symmetries to describe simultaneous
permutation of adjacent nodes in each clique and also one inter-clique permutation and one com-
plement symmetry. The intra-clique permutations and inter-clique permutations are actually row
and column symmetries in this model. All row and column interchangeabilities are eliminated
by ReSBDS and LReSBDS when given only interchangeabilities of adjacent rows (columns)

28

Table 4: Graceful Graph (all solutions)

n,m SBC GAP-SBDD GAP-SBDS LDSB
#s #f t #s #bt t #s #bt t #s #f t

3,2 8 652 0.01 4 13 0.73 4 9 0.53 8 470 0.01
4,2 30 40,749 0.62 15 173 9.9 15 165 8.5 30 27,103 0.57
5,2 2 2,735,546 34.31 1 4,402 426.89 1 4,390 388.71 2 1,794,653 31.84
6,2 0 164,725,514 2,674.42 0 103,682,981 2,299.51
3,3 568 200,500 1.83 380 128,151 1.51
4,3 1,408 116,706,469 1,225.29 958 72,564,505 1,032.01
2,4 354 12,666 0.13 233 7,678 0.11
3,4 25,508 109,204,827 949.21 16,625 63,845,298 720.35

n,m SBDS ParSBDS ReSBDS/LReSBDS
#s #f t #s #f t #s #f tR tL

3,2 4 343 0.01 16 797 0.01 8 470 0.01 0.00
4,2 15 21,140 1.35 60 54,762 0.81 30 27,103 0.53 0.30
5,2 1 1,421,771 363.03 4 3,668,283 48.26 2 1,794,653 26.12 25.80
6,2 − − − − − − 0 103,682,981 1,979.78 1,941.06
3,3 284 109,808 2.68 761 224,060 2.09 380 128,151 1.38 1.32
4,3 661 47,742,168 3,600.00 2,046 135,853,331 1,565.89 958 72,564,505 911.36 904.44
2,4 177 6,980 0.12 484 14,018 0.11 233 7,678 0.06 0.06
3,4 12,754 56,727,197 1,681.39 41,559 117,618,370 1,138.84 16,625 63,845,298 662.61 636.14

according to Theorem 21. Posting any extra symmetries to ReSBDS and LReSBDS as in the
case of ParSBDS is fruitless. We have also tried giving the same symmetries for ReSBDS to
ParSBDS. In this case, ParSBDS fails to solve most of the problem instances within the time
limit. Similarly, LDSB needs to be given only adjacent symmetries due to its power in pruning
composition symmetries.

Note that all the symmetry breaking constraints added by ReSBDS and LReSBDS according
to these two generators are unconditional constraints. This means that all non-broken symme-
tries at each node during search are active symmetries. Thus the pruning power of ReSBDS,
LReSBDS and LDSB are identical according to Lemma 2. We thus show the solutions and fail-
ures of ReSBDS and LReSBDS together and use tR and tL to denote the runtime of ReSBDS
and LReSBDS respectively. SBC uses the static method by Puget [17, 35] to break all vari-
able symmetries in all-different problems and all value symmetries. For GAP-SBDD [37] and
GAP-SBDS [38], we replicate their results from the literature [41].

Table 4 shows the results. Since we run more instances than those reported in the litera-
ture, instances not tested by GAP-SBDD and GAP-SBDS are given empty entries in the table.
SBDS eliminates all symmetries and has the smallest solution size and search tree. ReSBDS
and LReSBDS, which break the symmetries only partially, are 4.05 and 4.29 times faster than
SBDS on average respectively. LReSBDS performs the best and runs slightly faster than ReS-
BDS. When comparing with the other two complete methods, GAP-SBDD is solved under a
2.6GHz Pentium IV processor and GAP-SBDS is solved under a 600MHz Intel PIII processor.
According to Table 2, our CPU (Xeon E5620 2.4GHz processor) is 16.87 and 20.48 times faster
than the two reported CPUs respectively. However, LReSBDS runs 100 and 80 times faster than
GAP-SBDD and GAP-SBDS. This shows the gains of our efficient partial symmetry breaking

29

methods. Being given a smaller subset of symmetries, ReSBDS and LReSBDS achieve over
46% reduction in solution size and over 47% in failures when compared to ParSBDS. In terms
of runtime, ReSBDS and LReSBDS are 1.68 and 1.89 times faster than ParSBDS on average.
This demonstrates ReSBDS and LReSBDS break more composition symmetries and prune more
symmetric subtrees in an efficient way. LDSB has the same performance with ReSBDS and
LReSBDS in number of solutions left and search tree size. This demonstrates Theorem 18. The
runtime of LDSB, however, are 1.24 and 1.37 times slower than ReSBDS and LReSBDS on
average respectively due to the high overheads to handle symmetries. ReSBDS and LReSBDS
better the static partial method SBC by 19% reduction in solution size on average, 37% reduc-
tion in failures on average and 1.40 and 1.47 times faster in runtime on average respectively. For
ReSBDS, the maximum size of T is 4. In 99.11% of the cases on average, the size of T is 0.

5.1.3. The n× n Queen Problem
The n × n queen problem is to color an n × n chessboard with n colors, such that no line

(row, column or diagonal) contains the same color twice [42]. This can be seen as searching
for n non-intersecting solutions to the n queens problem. Each solution is given by the squares
containing one of the n colors. This problem can be modeled with n2 variables, one per square
of the chess board, and one all different constraint per line. Like the N -Queens problem, it
has 8 geometric symmetries. It also has value interchangeability and their compositions with
variable symmetries. All these symmetries are given to SBDS. ParSBDS is given the 8 geomet-
ric symmetries and any two of values are interchangeable. ReSBDS and LReSBDS are given
the 8 geometric symmetries and adjacent value interchangeability. All value interchangeabil-
ities have been eliminated by ReSBDS and LReSBDS when given only adjacent value inter-
changeabilities according to Theorem 20. Thus posting the extra number of value symmetries
to ReSBDS and LReSBDS as in the case of ParSBDS is fruitless. Since value symmetries are
inactive symmetries, LDSB needs to be given only the adjacent value interchangeabilities by
similar reasoning. LDSB is given the 8 geometric symmetries and value interchangeability.
For the static method, variable symmetries are broken by the following VAR constraints [43]:
x0 < xn−1, x0 < xn(n−1), x0 < xn2−1, x1 < xn. Value symmetries are broken by OCC which
is proposed by Puget [35] to break all value symmetries in surjection problems. The results of
GAP-SBDD and GE-tree are replicated from the literature [42] where GE-tree uses GE-tree
construction for the value symmetries and GAP-SBDD on the symmetry group for the variables.
Unfortunately, the CPU/machine used in their experimentation is not reported.

Table 5 shows the results. Again, we leave the entries empty if an instance is not tested
by GE-tree and GAP-SBDD. ReSBDS and LReSBDS are again much more time efficient and
break more symmetries than ParSBDS. ReSBDS, LReSBDS and LDSB leave the same number
of solutions and failures. This shows all non-broken symmetries are active symmetries under
this searching order. But LReSBDS runs the fastest. The static partial method VAR+OCC
leaves the smallest search tree size. LReSBDS leaves only slightly larger number of failures
than VAR+OCC, but its runtime is 3.8 times faster on average due to its small overhead. When
compared to the two complete methods, LReSBDS is 922 and 561 times faster than GE-tree
and GAP-SBDD on average respectively. For ReSBDS, the maximum size of T is 4. In 87.70%
of the cases on average, the size of T is 0.

5.1.4. Error Correcting Code - Lee Distance (ECCLD)
The ECCLD problem is prob036 in CSPLib [40]. The task is to find the maximum number

b of codes of length n drawn from 4 symbols {1, 2, 3, 4} such that the Lee distance between
30

Table 5: n× n Queens (all solutions)

N GE-tree GAP-SBDD VAR+OCC ParSBDS
#s t #s t #s #f t #s #f t

5 1 0.80 1 0.68 2 2 0.00 2 7 0.00
6 0 1.25 0 0.96 0 33 0.00 0 53 0.00
7 1 10.61 1 8.36 4 1,070 0.04 4 1,787 0.02
8 0 2,077.23 0 927.36 0 207,048 9.10 0 387,731 3.78
9 − − − − − −

N LDSB ReSBDS LReSBDS
#s #f t #s #f t #s #f t

5 2 6 0.00 2 6 0.00 2 6 0.00
6 0 38 0.00 0 38 0.00 0 38 0.00
7 4 1,076 0.01 4 1,076 0.01 4 1,076 0.01
8 0 207,055 2.51 0 207,055 2.40 0 207,055 2.14
9 0 232,274,005 3,285.32 0 232,274,005 3,311.21 0 232,274,005 2,863.27

any pair of codes is exactly c, where the Lee distance between two symbols a and b is min
{|a − b|, 4 − |a − b|}. We model it into a b × n matrix with domain {1 . . . 4}. Similar to Lee
and Li [12], in order to illustrate the effect on solution set size, we transform the optimization
problem to a satisfaction one by setting b in advance. This model has matrix symmetries which is
exponential to the problem size. We only try to break a subset of the available matrix symmetries
in the problem.

In Table 6, the symmetries are given as the following. ParSBDS is given the symmetry that
any two rows (columns) are interchangeable. ReSBDS, LReSBDS and DoubleLex are given
interchangeability of adjacent rows (columns). LDSB is given the interchangeable rows and
columns. Note ParSBDS is given more symmetries than ReSBDS. Given the same symmetries
as ReSBDS, ParSBDS fails to solve most of the problems within the time limit. To show the im-
provement of LReSBDS over ReSBDS and also their flexibility in choosing symmetries to break,
we also use these two methods to break interchangeability of adjacent rows (columns) as well as
cartesian-product of any two rows are interchangeable and any two columns are interchangeable.
Now we get ReSBDSc and LReSBDSc respectively.

Table 6 shows the results by using input order heuristic. ReSBDS and LReSBDS are 1.92
and 2.29 times faster than ParSBDS on average respectively with more symmetries broken more
efficiently. ReSBDS has smaller number of solutions and search tree size than DoubleLex. The
runtime of ReSBDS, however, does not gain too much from the smaller search tree size because
of the larger overhead of ReSBDS. After introducing our light version, LReSBDS leaves the
same number of solutions and almost the same number of failures as those of ReSBDS, and
is 1.31 times faster than DoubleLex on average. Given more symmetries, LReSBDSc is 1.89
times faster than ReSBDSc and has only slightly increase on number of failures. This shows
LReSBDS is much more efficient than ReSBDS and does not loss too much pruning power.
Now LReSBDSc is 2.48 times faster than DoubleLex on average. We can also see that LDSB
leaves many more solutions and is drastically less efficient than ReSBDS and LReSBDS. This
shows ReSBDS and LReSBDS can gain a lot by breaking also inactive symmetries and their
compositions. Another advantage over LDSB is again that ReSBDS and LReSBDS have the
flexibility of choosing the given symmetries to break. For ReSBDS, the maximum size of T is

31

Table 6: The ECCLD problem (all solutions)

n, c, b DoubleLex ParSBDS LDSB
#s #f t #s #f t #s #f t

5,2,10 87 41,571 8.88 136 94,472 26.18 572,041 8,439,178 1067.64
5,6,4 710,731 725,837 27.29 849,724 900,549 41.68 770,956 822,157 32.81
6,8,4 59,158 2,469,211 58.14 62,380 2,992,204 92.80 64,262 2,588,227 66.86
4,4,8 32,469 839,251 66.10 38,235 1,073,244 109.94 430,079 4,538,862 319.43
6,4,4 4,698,842 4,139,211 182.65 7,607,152 6,726,710 376.90 13,710,850 10,718,458 531.02
5,6,5 1,441,224 5,508,192 188.63 1,661,689 6,523,348 287.50 1,944,489 7,669,846 277.34
5,6,6 297,476 11,709,068 475.63 334,519 13,579,038 715.24 538,688 19,051,585 791.28
8,4,4 35,626,714 48,525,827 2,040.84 − − − − − −
6,4,5 29,345,816 73,522,873 3,076.87 − − − − − −

n, c, b ReSBDS LReSBDS
#s #f t #s #f t

5,2,10 76 33,672 6.88 76 33,672 6.51
5,6,4 530,819 537,118 24.79 530,819 537,118 20.30
6,8,4 45,024 1,778,978 54.87 45,024 1,778,980 43.75
4,4,8 25,543 631,717 57.19 25,543 631,717 50.13
6,4,4 3,746,439 3,278,563 191.46 3,746,439 3,278,563 146.96
5,6,5 1,044,674 4,005,819 170.31 1,044,674 4,005,819 141.16
5,6,6 221,236 8,553,011 449.17 221,236 8,553,011 353.14
8,4,4 28,982,779 39,163,464 2,122.88 28,982,779 39,163,464 1,700.11
6,4,5 23,059,956 57,225,832 2,952.21 23,059,956 57,225,832 2,406.25

n, c, b ReSBDSc LReSBDSc

#s #f t #s #f t
5,2,10 56 20,813 9.39 56 20,820 7.50
5,6,4 235,866 253,358 20.46 235,866 253,729 10.71
6,8,4 18,933 792,644 54.55 18,933 793,258 23.53
4,4,8 7,698 231,956 29.03 7,698 235,074 21.16
6,4,4 1,608,536 1,568,196 181.52 1,608,536 1,568,776 85.79
5,6,5 392,221 1,611,688 112.74 392,221 1,614,088 63.82
5,6,6 72,150 3,204,456 262.61 72,150 3,210,014 151.61
8,4,4 11,582,467 17,462,366 2,865.98 11,582,467 17,464,022 1,069.40
6,4,5 7,631,833 20,481,227 2,033.60 7,631,833 20,494,554 1,073.90

32

99, and the average size is 1.16. In 55.91% of the cases, the size of T is 0. For ReSBDSc, the
maximum size of T is 99, and the average size is 1.97. In 52.67% of the cases, the size of T is 0.

To compare with LexLeader in another variable order, we do the following experiments. In
Table 7, the variable heuristic is row-wise snake order. We choose row-wise snake order rather
than column-wise snake order because the static method SnakeLex performs better in row-wise
snake order for this problem. ParSBDS is given the same subset of symmetries as in Table 6.
ReSBDS, LReSBDS and SnakeLex are given interchangeability of adjacent rows (columns)
and interchangeability of rows with distance 1 which is exactly the symmetries that are broken
by SnakeLex. LDSB is given the interchangeable rows and columns. Given the same symmetries
as ReSBDS, ParSBDS again fails to solve most of the problems within the time limit. ReSBDSc
and LReSBDSc break the extra cartesian-product of any two rows are interchangeable and any
two columns are interchangeable than ReSBDS and LReSBDS respectively.

Table 7 shows the results with row-wise snake ordering. ReSBDS and LReSBDS are 1.83
and 2.24 times faster than ParSBDS on average respectively. ReSBDS has smaller number of
solutions and search tree size than SnakeLex. LReSBDS leaves the same number of solutions
and almost the same number of failures as those of ReSBDS but runs faster, and is 1.33 times
faster than SnakeLex on average. Given more symmetries, LReSBDSc is 1.56 times faster than
ReSBDSc and has only slightly increase on number of failures. This shows LReSBDS is much
more efficient than ReSBDS and does not loss too much pruning power. Note that for the last
instance, LReSBDSc leaves more solutions than ReSBDSc. This is because the heuristic is not
a static one. If we use static input variable order, they all leave 7,631,833 number of solutions.
Now LReSBDSc is 2.08 times faster than SnakeLex on average. Again, LDSB leaves many
more solutions and is drastically less efficient than ReSBDS and LReSBDS. For ReSBDS, the
maximum size of T is 91, and the average size is 1.32. In 54.71% of the cases, the size of T is
0. For ReSBDSc, the maximum size of T is 105, and the average size is 1.62. In 53.42% of the
cases, the size of T is 0.

5.1.5. Cover Array Problem (CA)
The Cover Array Problem CA(t, k, g, b), prob045 in CSPLib [40], is to construct a k×b array

A over Zg = 0, 1, 2, . . . , g−1 with the property that for any t distinct rows 1 ≤ r1 ≤ r2 ≤ · · · ≤
rt ≤ k, and any member (x1, x2, . . . , xt) of Zg there exists at least one column c such that xi
equals the (ri, c) − th element of A for all 1 ≤ i ≤ t. We use the integrated model [44], which
channels an original model and a compound model. This model also has matrix symmetries.
We again only try to break a subset of the available matrix symmetries in the problem for each
method which is same as that for ECCLD.

Table 8 shows the results by using input order heuristic. ReSBDS and LReSBDS are 2.23
and 3.08 times faster than ParSBDS on average respectively with more symmetries broken.
ReSBDS and LReSBDS have smaller number of solutions and search tree size than DoubleLex.
They gain little from the smaller search tree size because of the larger overhead of dynamically
generating and handling nogoods even though LReSBDS is 1.39 times faster than ReSBDS on
average. Given more symmetries, LReSBDSc is 1.60 times faster than ReSBDSc with almost the
same number of failures. This shows again LReSBDS is much more efficient than ReSBDS and
does not lose too much pruning power. Now LReSBDSc is 1.75 times faster than DoubleLex on
average. LDSB cannot solve any of the instances. This shows ReSBDS and LReSBDS can gain
a lot by breaking also inactive symmetries and their compositions. For ReSBDS, the maximum
size of T is 74, and the average size is 1.28. In 58.14% of the cases, the size of T is 0. For

33

Table 7: The ECCLD problem with row-wise snake ordering (all solutions)

n, c, b SnakeLex ParSBDS LDSB
#s #f t #s #f t #s #f t

5,2,10 107 93,517 14.07 108 176,753 37.88 875,690 11,018,305 1198.45
5,6,4 748,248 1,093,588 35.92 822,094 1,247,706 54.58 872,705 1,140,871 40.91
6,8,4 55,618 3,788,403 91.42 62,215 4,235,825 142.69 60,845 3,598,001 92.04
4,4,8 29,384 1,116,810 84.67 32,566 1,300,117 140.41 402,315 4,687,018 335.52
6,4,4 5,061,729 6,065,447 215.97 7,181,939 8,802,453 427.19 9,940,119 7,321,232 346.34
5,6,5 1,468,811 8,309,086 280.82 1,599,097 9,479,158 440.63 2,343,133 11,729,808 420.77
5,6,6 299,821 17,799,185 750.26 314,523 19,914,985 1,151.36 701,349 29,994,954 1,255.18
8,4,4 38,629,753 70,340,164 2,396.48 − − − − − −
6,4,5 29,668,229 84,182,877 3,257.11 − − − − − −

n, c, b ReSBDS LReSBDS
#s #f t #s #f t

5,2,10 76 64,308 12.46 76 64,358 10.01
5,6,4 545,702 799,420 36.03 545,702 807,629 29.31
6,8,4 45,890 2,766,514 98.51 45,890 2,780,946 80.53
4,4,8 20,714 734,565 77.62 20,714 764,219 63.07
6,4,4 3,187,304 3,637,032 181.79 3,187,304 3,687,033 150.47
5,6,5 1,085,771 6,097,164 281.18 1,085,771 6,186,192 234.19
5,6,6 223,894 12,955,195 779.37 223,894 13,178,222 618.44
8,4,4 23,786,633 39,901,361 1,922.32 23,786,633 40,151,576 1,599.00
6,4,5 17,861,886 50,359,248 2,568.60 17,861,886 50,954,100 2,142.48

n, c, b ReSBDSc LReSBDSc

#s #f t #s #f t
5,2,10 56 38,037 12.12 56 38,116 9.18
5,6,4 231,826 423,171 28.70 231,826 430,280 18.06
6,8,4 18,422 1,410,697 99.70 18,422 1,422,932 55.47
4,4,8 7,773 309,456 42.52 7,773 326,890 31.73
6,4,4 1,610,913 2,027,286 192.32 1,610,913 2,070,904 117.29
5,6,5 379,167 2,470,662 174.91 379,167 2,527,264 117.96
5,6,6 68,001 4,842,499 427.90 68,001 4,966,572 277.87
8,4,4 11,650,172 21,915,319 2,813.94 11,650,172 22,160,606 1,632.08
6,4,5 7,665,345 23,327,437 2,090.00 7,665,359 23,707,465 1,289.86

34

Table 8: The CA problem (all solutions)

t, k, g, b DoubleLex ParSBDS LDSB
#s #f t #s #f t #s #f t

2,3,3,11 6,824 778,271 9.81 7,111 839,993 37.25 − − −
2,4,4,16 3,456 661,726 32.31 3,456 661,919 80.37 − − −
2,3,3,12 86,960 4,195,254 50.87 91,905 4,538,035 211.67 − − −
2,3,3,13 820,844 16,611,790 202.16 875,686 17,974,093 880.72 − − −
2,3,5,25 161,280 16,542,398 580.65 161,280 16,542,485 2,282.55 − − −
2,3,3,14 6,096,380 57,811,324 722.98 6,543,422 62,503,556 3,262.27 − − −
2,3,3,15 37,309,730 188,015,587 2,493.98 − − − − − −

t, k, g, b ReSBDS LReSBDS
#s #f t #s #f t

2,3,3,11 6,676 750,606 18.98 6,676 750,606 12.68
2,4,4,16 3,456 659,587 40.59 3,456 659,587 32.77
2,3,3,12 84,464 4,046,266 97.81 84,464 4,046,266 67.90
2,3,3,13 794,015 16,037,217 389.42 794,015 16,037,217 271.50
2,3,5,25 161,280 16,541,873 849.22 161,280 16,541,873 638.84
2,3,3,14 5,884,689 55,870,750 1,411.71 5,884,689 55,870,750 1,026.92
2,3,3,15 − − − 35,982,708 181,894,353 3,369.66

t, k, g, b ReSBDSc LReSBDSc

#s #f t #s #f t
2,3,3,11 2,808 346,073 11.82 2,808 346,073 7.07
2,4,4,16 424 120,799 13.62 424 120,815 9.98
2,3,3,12 34,147 1,861,886 62.80 34,147 1,861,886 37.76
2,3,3,13 314,250 7,272,149 250.12 314,250 7,272,149 150.43
2,3,5,25 51,328 5,401,345 397.89 51,328 5,401,345 265.19
2,3,3,14 2,306,002 24,838,306 878.16 2,306,002 24,838,306 526.12
2,3,3,15 14,064,057 79,305,753 2,944.38 14,064,057 79,305,753 1,778.12

35

Table 9: The CA problem with column-wise snake ordering (all solutions)

t, k, g, b SnakeLex ParSBDS LDSB
#s #f t #s #f t #s #f t

2,3,3,11 6,905 5,641 0.12 7,111 5,588 0.23 7,182 5,650 0.14
2,4,4,16 3,456 11,705 0.73 3,456 12,622 2.03 4,158 12,093 0.79
2,3,3,12 88,515 55,203 1.16 91,903 54,568 2.39 93,042 55,451 1.47
2,3,3,13 839,869 445,851 10.30 875,645 440,645 21.81 887,409 447,618 12.73
2,3,5,25 161,280 21,893 5.78 161,280 21,893 9.01 161,280 21,893 6.02
2,3,3,14 6,265,234 2,939,321 73.30 6,542,989 2,906,360 165.32 6,632,928 2,945,668 92.75
2,3,3,15 38,484,136 16,175,606 427.60 40,199,167 16,004,730 1,053.86 40,748,373 16,180,801 541.86

t, k, g, b ReSBDS LReSBDS
#s #f t #s #f t

2,3,3,11 6,676 5,254 0.21 6,676 5,254 0.14
2,4,4,16 3,456 12,442 2.11 3,456 12,622 0.83
2,3,3,12 84,464 51,213 2.03 84,464 51,213 1.43
2,3,3,13 794,015 414,400 17.52 794,015 414,400 12.45
2,3,5,25 161,280 21,893 9.46 161,280 21,893 6.88
2,3,3,14 5,884,689 2,744,326 125.79 5,884,689 2,744,326 88.24
2,3,3,15 35,982,708 15,185,725 743.58 35,982,708 15,185,725 528.70

t, k, g, b ReSBDSc LReSBDSc

#s #f t #s #f t
2,3,3,11 5,643 4,889 1.19 5,643 4,889 0.46
2,4,4,16 3,456 12,428 14.90 3,456 12,608 9.65
2,3,3,12 68,133 48,113 11.43 68,133 48,113 3.84
2,3,3,13 620,802 382,688 100.22 620,802 382,688 31.37
2,3,5,25 161,280 21,656 695.91 161,280 21,656 436.66
2,3,3,14 4,505,830 2,484,332 743.61 4,505,830 2,484,332 233.97
2,3,3,15 − − − 27,177,359 13,514,690 1,369.44

ReSBDSc, the maximum size of T is 74, and the average size is 1.48. In 55.63% of the cases,
the size of T is 0.

Table 9 shows the results with column-wise snake ordering. We choose column-wise snake
order rather than row-wise snake order because the static method SnakeLex performs better in
column-wise snake order for this problem. ReSBDS and LReSBDS are 1.13 and 1.77 times
faster than ParSBDS on average respectively. ReSBDS and LReSBDS have smaller number
of solutions and search tree size than SnakeLex but no gains on the runtime due to their larger
overheads. LReSBDS is 1.60 times faster than ReSBDS on average. Given more symmetries,
LReSBDSc is 2.53 times faster than ReSBDSc and has almost the same number of failures.
This shows again LReSBDS is much more efficient than ReSBDS and does not loss too much
pruning power. Given more symmetries, ReSBDS and LReSBDS cannot further prune many
more symmetries so that the reduction of the search tree size cannot overweight the overhead
of handling more symmetry breaking constraints. However, LDSB leaves only slightly number
of solutions than ReSBDS and LReSBDS which shows that most non-broken symmetries are
active ones under this search order. For ReSBDS, the maximum size of T is 74, and the average
size is 1.75. In 55.77% of the cases, the size of T is 0. For ReSBDSc, the maximum size of T is

36

74, and the average size is 1.92. In 55.10% of the cases, the size of T is 0.

5.2. Optimization Problems
A Constraint Optimization Problem (COP) P is a tuple (X,D,C) with an objective function

f that maps full assignments to real numbers. An optimal solution s is a solution to (X,D,C)
such that f(s) ≤ f(s′) for all other solutions s′ of (X,D,C). We note that maximization can be
easily reformulated into a minimization problem. In this part, we give three experiments to show
the benefit of our methods on finding optimal solutions in optimization problems. Optimization
problems are quite sensitive to search heuristics. We employ dynamic heuristics for solving all
benchmarks in this section.

5.2.1. Concert Hall Scheduling
Concert hall scheduling [18] is to choose among n applications specifying a period and an

offered price to use k identical concert halls, to maximize profit. We take the benchmarks used
by Law and Lee [19], and test with k ∈ {8, 10}. The concert halls are interchangeable, and so
are applications within each partition.

We compare against the value precedence constraint [18] for breaking value interchange-
ability and LexLeader for breaking variable interchangeability (Precede), SIGLEX constraint
(Siglex) for breaking variable and value interchangeability [19] and its descending-partition-size
variation (Siglexdec). ParSBDS are given two sets of symmetries: any two variables within
each partition being interchangeable and any two values being interchangeable. All variable in-
terchangeabilities are eliminated by ReSBDS and LReSBDS when given only adjacent variable
interchangeabilities according to Theorem 20. Thus posting the composition variable symmetries
to ReSBDS and LReSBDS is fruitless. ReSBDS and LReSBDS are given two sets of symme-
tries: adjacent variables within each partition being interchangeable and adjacent values being
interchangeable. Thus ReSBDS and LReSBDS only adds unconditional constraints and have
the same pruning power according to Lemma 2. According to the symmetry pattern syntax, we
give LDSB variable interchangeabilities and value interchangeabilities.

This problem is quite sensitive to search heuristics. For each symmetry breaking method, we
experiment with several commonly used heuristics in the literature and report the best heuristic in
our results. For the three static methods, smallest domain first heuristic is used. For ParSBDS,
ReSBDS, LReSBDS and LDSB, the variable ordering heuristic chooses the variable with the
most constraints and breaks ties by the size of the partition containing the variables. This can
make more symmetries being broken at the upper level. Running the three static methods with
this search heuristic would reduce their performance.

We do not compare the solution set size since the problem is optimization in nature. Figures 4
and 5 show the timing results in logarithmic scale and graphical form for easy visualization. The
horizontal axis shows instance size, and the vertical axis shows the logarithmic mean time in
seconds taken to solve the set of instances to optimality. Any instance that is not solved within
the time limit is considered to have taken 1 hour for the purpose of calculating the mean. Results
show ReSBDS and LReSBDS perform similar and achieve the best performance, while Precede,
Siglex and ParSBDS perform the worst. ReSBDS and LReSBDS are significantly better than
Siglexdec since they have a much lower overhead and collaborate relatively well with the most-
constraining heuristic. ReSBDS and LReSBDS are also significantly better than ParSBDS due
to their lower overhead and stronger pruning power. LDSB has similar performance trends as
ReSBDS and LReSBDS, but is 3.18 and 3.28 times slower than ReSBDS and LReSBDS on
average respectively.

37

20 22 24 26 28 30 32 34 36 38 40

n

10-3

10-2

10-1

100

101

102

103

A
ve

ra
ge

 T
im

e
(S

ec
on

ds
)

Precede
Siglex
Siglexdec
ParSBDS
LDSB
ReSBDS
LReSBDS

Figure 4: Concert hall scheduling with k = 8 (optimal solution)

38

20 22 24 26 28 30 32 34 36 38 40

n

10-3

10-2

10-1

100

101

102

103

A
ve

ra
ge

 T
im

e
(S

ec
on

ds
)

Precede
Siglex
Siglexdec
ParSBDS
LDSB
ReSBDS
LReSBDS

Figure 5: Concert hall scheduling with k =10 (optimal solution)

39

Table 10: Concert hall scheduling, k = 8

SBDS-1UIP Static-1UIP LReSBDS
n

Xeon Pro 2.4GHz Xeon Pro 2.4GHz Xeon E5620 2.4GHz

#f t #f t #f t
20 84 0.04 134 0.05 100 0.01
22 181 0.07 183 0.07 155 0.01
24 275 0.10 486 0.15 172 0.01
26 282 0.10 685 0.25 445 0.02
28 1,611 0.68 1,041 0.42 501 0.02
30 761 0.27 2,300 0.52 987 0.05
32 1,522 0.40 5,712 1.31 1,080 0.07
34 2,636 1.10 4,406 1.60 4,951 0.16
36 3,156 1.40 5,707 2.37 1,941 0.10
38 5,053 1.91 10,518 3.51 50,015 0.94
40 6,648 2.96 18,169 6.40 2,564 0.20

Symmetry breaking with lazy clause generation [36] can also handle this problem well.
SBDS-1UIP and Static-1UIP combine SBDS and static methods with lazy clause generation
respectively. Their experiments were run on the Xeon Pro 2.4GHz processor, which is a dual
CPU version of our Xeon E5620 2.4GHz processor running on a Mac Pro. Thus, according to
Table 2 both CPUs have the same Passmark CPU marks, but their methods are implemented on
top of the CHUFFED solver [45] which is one of the fastest existing CP solvers. Table 10 shows
LReSBDS is 9.72 and 14.64 times faster than the replicated results [36] of SBDS-1UIP and
Static-1UIP. This again shows our method is very efficient to break a large number of symme-
tries with a small overhead.

5.2.2. Optimization Versions of CA
To achieve the near-orthogonal case of covering array which happens when every symbol

appears with the same frequency in each column, Kim et al. [46] introduce several metrics to
evaluate the quality of covering array. The second metric is to evaluate a covering array by
the average of the absolute equal occurrence discrepancy of each column. Our objective is to
minimize this metric. We use the smallest domain first heuristic to search the problem.

Table 11 shows the results. LDSB cannot solve most of the instances. ReSBDS and LReS-
BDS are 2.38 and 3.02 times faster than ParSBDS on average respectively with more symmetries
broken. LReSBDSc performs the best, and is 1.75 and 1.93 times faster than DoubleLex and
SnakeLex on average. This demonstrates that our methods are competitive against state of the
art symmetry breaking methods also in solving optimization problems.

We attempt also another metric: the sum variance in each column. Another objective is to
to minimize this metric. We again use the smallest domain first heuristic to search the problem.
Table 12 shows the results. Again, LDSB cannot solve most of the instances. LReSBDSc
performs the best for all cases and is 2.02 and 2.26 times faster than DoubleLex and SnakeLex
respectively on average. This gives an indication of the flexibility of our methods in dealing with
objective functions of different natures.

40

Table 11: The CA with equal occurrence discrepancy metric using smallest domain first heuristic (optimal solutions)
t, k, g, b DoubleLex SnakeLex LDSB ParSBDS

#f t #f t #f t #f t
2,3,3,14 2,962,642 51.25 3,516,052 59.22 − − 3,229,760 128.71
3,4,2,19 2,160,192 54.89 2,158,553 56.89 − − 2,560,706 238.44
2,4,3,12 3,517,349 78.27 1,332,316 37.34 34,322,416 951.08 4,064,546 177.89
3,4,2,21 6,315,708 163.37 6,280,422 168.49 − − 7,478,426 760.85
2,4,2,21 25,533,154 605.45 27,060,075 650.25 − − 35,616,203 3,197.30
2,3,4,17 65,581,343 1,395.84 89,065,478 1,760.79 − − 67,174,354 2,714.50
2,4,2,23 58,532,147 1,416.13 61,428,368 1,534.31 − − − −
2,4,3,11 129,861,034 2,804.75 151,142,159 3,428.13 − − − −
2,4,2,25 126,811,077 3,210.55 131,998,700 3,491.29 − − − −
t, k, g, b ReSBDS ReSBDSc LReSBDS LReSBDSc

#f t #f t #f t #f t
2,3,3,14 2,839,581 74.67 1,060,902 39.38 2,839,581 56.54 1,060,902 28.06
3,4,2,19 2,160,192 83.44 723,655 64.97 2,160,192 65.35 723,655 62.51
2,4,3,12 3,338,965 99.91 981,468 73.36 3,338,965 82.43 981,468 61.24
3,4,2,21 6,315,708 253.85 2,256,500 201.20 6,315,708 196.54 2,256,500 191.19
2,4,2,21 25,533,154 907.72 7,066,329 531.98 25,533,154 729.45 7,066,329 414.11
2,3,4,17 63,366,807 1,959.11 19,862,487 839.64 63,366,807 1,537.27 19,862,639 627.70
2,4,2,23 58,532,147 2,182.98 17,520,892 1,398.21 58,532,147 1,754.50 17,520,892 1,120.61
2,4,3,11 117,049,008 3,479.94 16,651,231 820.64 117,049,008 2,812.39 16,651,274 584.22
2,4,2,25 − − 40,796,022 3,525.42 − − 40,796,022 2,861.07

5.2.3. Optimization Versions of ECCLD
Two optimization versions of the ECCLD problem are formed by adopting the same two

metrics used in the CA problem. Again, we use the smallest domain first heuristic to search the
problems.

Tables 13 and 14 show the results using the two metrics respectively. LReSBDSc performs
the best in most of the cases under both metrics. It is 2.21 and 3.23 times faster than DoubleLex
and SnakeLex respectively on average for the first metric and is 2.27 and 4.09 times faster than
DoubleLex and SnakeLex respectively on average for the second metric. Our results confirm
the empirical efficiency of ReSBDS and LReSBDS in solving optimization problems.

5.3. Discussion
We have performed extensive experimentation on five satisfaction benchmarks and three op-

timization benchmarks to demonstrate the benefits of ReSBDS and LReSBDS over state of the
art symmetry breaking methods, including LexLeader and its partial variants, and SBDS and its
partial variant.

ReSBDS and LReSBDS often achieve great reductions in number of failures when they are
given the same or smaller subset of symmetries as ParSBDS. The substantial reduction in search
tree size implies shorter time to find all solutions or optimal solutions. The extra prunings are
attributed to the additional constraints added by ReSBDS and LReSBDS, which can break more
composition symmetries and prune more symmetric subtrees with small overheads. Moreover,
given the same subset of symmetries, LReSBDS runs slightly faster than ReSBDS since it does
not need to record and check the violations of assignments in the table T . Such savings become

41

Table 12: The CA with sum variance metric using smallest domain first heuristic (optimal solution)
t, k, g, b DoubleLex SnakeLex LDSB ParSBDS

#f t #f t #f t #f t
2,3,3,11 182,679 6.94 194,705 7.21 16,552,961 814.08 195,163 10.60
2,4,2,11 133,158 9.41 170,842 11.98 − − 196,840 21.41
3,4,2,13 220,868 24.31 228,780 26.40 − − 266,877 40.22
2,4,2,13 316,551 29.39 402,125 37.32 − − 466,709 65.25
3,4,2,15 1,150,037 135.29 1,172,823 139.70 − − 1,372,782 217.06
2,3,3,13 4,265,947 183.73 4,399,931 191.55 − − 4,636,439 294.41
3,4,2,17 4,001,900 490.75 4,054,157 503.36 − − 4,758,423 832.77
2,3,3,14 12,614,944 598.24 11,485,742 568.68 − − 13,861,109 995.31
2,3,5,25 8,607,119 1,245.33 15,321,558 2,156.11 − − 8,607,206 1,672.81
3,4,2,19 9,669,491 1,331.30 9,781,795 1,372.92 − − 11,473,843 2,339.41
2,3,3,15 29,984,808 1,659.95 22,485,875 1,260.35 − − 33,320,943 2,607.11
2,4,3,11 − − − − − − − −

t, k, g, b ReSBDS ReSBDSc LReSBDS LReSBDSc

#f t #f t #f t #f t
2,3,3,11 176,772 8.25 70,808 4.48 176,772 6.84 70,808 3.43
2,4,2,11 133,158 11.37 31,967 5.01 133,158 9.42 31,967 4.26
3,4,2,13 220,868 26.83 82,799 17.94 220,868 21.70 82,799 13.96
2,4,2,13 316,551 32.13 80,962 15.37 316,551 26.37 80,962 14.60
3,4,2,15 1,150,037 150.79 431,902 82.08 1,150,037 122.46 431,902 74.78
2,3,3,13 4,119,016 227.06 1,638,050 112.17 4,119,016 188.27 1,638,050 88.68
3,4,2,17 4,001,900 558.13 1,585,370 318.00 4,001,900 455.89 1,585,370 298.66
2,3,3,14 12,165,319 742.95 4,916,415 365.77 12,165,319 608.04 4,916,415 292.09
2,3,5,25 8,606,789 1,488.10 2,863,366 572.01 8,606,789 1,263.93 2,863,366 476.16
3,4,2,19 9,669,491 1,488.84 4,022,919 909.50 9,669,491 1,206.59 4,022,919 890.41
2,3,3,15 28,874,496 1,925.34 11,865,199 960.42 28,874,496 1,601.75 11,865,199 779.63
2,4,3,11 − − 26,942,200 1,872.37 − − 26,942,200 1,477.06

42

Table 13: The ECCLD with equal occurrence discrepancy metric using smallest domain first heuristic (optimal solutions)
n, c, b DoubleLex SnakeLex LDSB ParSBDS

#f t #f t #f t #f t
6,8,4 495 0.02 137 0.01 521 0.02 703 0.04
5,6,4 162,081 4.91 178,342 5.69 142,396 4.77 183,166 6.43
5,2,10 47,151 10.87 130,435 18.02 8,428,880 1,058.29 117,798 26.96
4,4,8 930,664 78.95 1,894,579 165.79 1,628,566 138.42 1,154,009 115.94
5,6,5 3,659,377 149.23 5,894,245 249.33 3,560,112 147.70 4,316,250 196.55
6,4,4 6,657,790 213.84 6,792,322 214.44 15,597,402 514.47 10,616,495 413.78
5,6,6 14,806,304 734.99 29,272,068 1,537.98 15,840,594 820.11 17,215,257 993.83
8,4,4 70,888,317 2,658.47 71,133,987 2,570.20 − − − −
6,4,5 − − − − − − − −

n, c, b ReSBDS ReSBDSc LReSBDS LReSBDSc

#f t #f t #f t #f t
6,8,4 485 0.02 431 0.06 485 0.02 431 0.03
5,6,4 122,144 4.16 61,444 3.70 122,144 3.89 61,455 2.47

5,2,10 32,148 6.62 18,825 8.91 32,148 6.26 18,840 7.04
4,4,8 701,833 64.17 246,831 32.84 701,833 61.01 248,068 25.39
5,6,5 2,769,574 120.29 1,169,259 79.81 2,769,574 114.45 1,169,874 54.10
6,4,4 5,220,364 202.72 2,344,101 170.36 5,220,364 176.21 2,344,368 98.42
5,6,6 11,537,662 623.48 4,445,326 372.96 11,537,662 586.70 4,449,381 252.85
8,4,4 56,921,268 2,546.01 24,060,919 2,868.86 56,921,268 2,266.00 24,062,397 1,277.98
6,4,5 − − 26,482,932 2,254.43 76,716,709 3,319.74 26,496,956 1,385.54

Table 14: The ECCLD with sum variance metric using smallest domain first heuristic (optimal solution)
n, c, b DoubleLex SnakeLex LDSB ParSBDS

#f t #f t #f t #f t
5,2,10 39,716 10.67 118,191 21.86 5,311,415 1,117.84 92,232 27.63
5,6,4 512,937 21.76 786,251 35.08 482,430 21.29 667,859 33.15
6,4,4 438,043 23.14 575,503 31.02 1,263,337 63.88 921,254 56.23
6,8,4 2,548,910 115.29 4,177,088 198.57 2,388,895 110.13 3,211,257 172.67
4,4,8 1,235,878 133.76 2,808,024 313.12 2,129,594 229.22 1,587,733 199.66
5,6,5 3,183,651 187.61 6,055,240 376.73 3,265,069 189.54 3,938,041 259.63
8,4,4 4,233,238 248.23 5,128,823 299.15 17,622,276 1,017.33 10,510,559 733.42
6,4,5 6,122,535 453.20 8,014,546 613.88 34,590,383 2,406.83 13,787,698 1,149.83
5,6,6 17,132,058 1,213.02 32,961,053 2,466.64 19,271,921 1,300.51 20,076,249 1,571.86

n, c, b ReSBDS ReSBDSc LReSBDS LReSBDSc

#f t #f t #f t #f t
5,2,10 27,178 7.83 15,995 8.77 27,178 7.16 16,010 7.18
5,6,4 381,195 17.91 186,315 13.64 381,195 16.62 186,572 9.30
6,4,4 355,032 21.47 200,693 23.32 355,158 18.93 200,959 14.06
6,8,4 2,016,686 99.89 938,192 80.26 2,016,686 92.12 938,994 47.18
4,4,8 953,623 110.33 365,531 57.21 953,623 103.84 367,806 44.99
5,6,5 2,437,614 151.48 1,054,715 96.20 2,437,614 142.04 1,055,841 67.48
8,4,4 3,593,791 243.57 1,953,238 322.82 3,595,151 213.55 1,955,421 175.71
6,4,5 4,611,994 382.12 2,181,030 308.97 4,612,836 346.04 2,183,365 209.26
5,6,6 13,510,979 981.19 5,249,356 545.90 13,510,979 920.31 5,255,319 384.98

43

more prominent with the increase in size of the subset of symmetries to break. When compared
against LDSB which is designed for breaking only active symmetries but limits the form of
symmetries to break, ReSBDS and LReSBDS perform significant better for their capabilities
to break both active and inactive symmetries. Unlike LDSB, ReSBDS and LReSBDS are not
restricted by pattern syntax and thus can break arbitrary symmetries.

In matrix problems, DoubleLex and SnakeLex are state of the art methods. ReSBDS and
LReSBDS are comparable in running time to DoubleLex and SnakeLex when given the same
subset of symmetries. When given slightly more symmetries, ReSBDS and LReSBDS can break
substantially more composition symmetries, which results in tangible reduction in search space
and runtime when compared to DoubleLex and SnakeLex.

When solving satisfaction problems in the experiments, we find all solutions. In case of
searching only for the first solution, symmetry breaking methods in general and the ReSBDS
family of methods in particular function similarly, and can help reduce search space by pruning
symmetric counterparts of visited search regions. However, we did some simple experiments
and confirmed that substantially less search effort is required to find the first solution in general.
There are two consequences. First, we are searching only an initial part of the search tree.
With less visited regions, there are less symmetric counterparts to avoid. Also some of these
symmetric counterparts may lie even beyond the first solution in the search tree. Second, there
are less branching and backtracking, and thus also less symmetry breaking nogoods being added
during search by the ReSBDS family of methods. Very often, these characteristics translate to
less symmetries being broken. As a result, symmetry breaking helps relatively little for first
solution search, as compared to all solution search.

6. Related Work

Symmetries can be broken statically or dynamically. We give the main and recent work on
symmetry breaking techniques.

6.1. Static Symmetry Breaking

In the static symmetry breaking approach, symmetry breaking constraints [2] are added to
a CSP to allow only some of the symmetrical regions to be traversed during search. Crawford
et al. [3] suggest a general scheme, called LexLeader, to add symmetry breaking predicates to
satisfiability problems. This constraint selects the lexicographically least solution to break sym-
metries of indistinguishable objects. Aloul et al. [47] improve this scheme by constructing more
efficient CNF representations of symmetry-breaking predicates. Efficient consistency enforcing
algorithms [29, 48, 49] are given for propagating the global lexicographical ordering constraints
≤lex. Walsh [14] gives an overview of the application and propagators of ≤lex to deal with
various symmetries for both integer and set variables. DoubleLex [4] is an incomplete but effi-
cient method for handling matrix symmetries by breaking only the row and column symmetries.
Multiset ordering constraints [15] and allperm constraints [16] are also available for breaking
row and column symmetries in matrix models [4], which are commonly found in many CSP-
s. SnakeLex [21] is similar to DoubleLex but is based on the snake ordering of variables. Yip
and Van Hentenryck [22] break matrix symmetries by utilizing LexLeader feasibility checkers
to verify, during search, whether the current partial assignment can be extended into a canoni-
cal solution. Narodytska and Walsh [23] study extensively the effect of variable ordering in the
LexLeader method. When the CSP has an AllDiff on all variables, the exponential number of

44

lex ordering constraints can be simplified to a linear number of inequality constraints [17]. Kat-
sirelos et al. [20] suggest to put together lexicographical ordering symmetry breaking constraints
and common global constraints to increase the propagation.

Several static symmetry breaking methods are also proposed for value symmetries. Petrie
and Smith [9] adapt LexLeader [3] for breaking value symmetries by imposing an appropriate
lexicographical ordering constraint on each value symmetry. Puget [30] and Walsh [14] give
propagation methods for value symmetry breaking constraints around the same time but inde-
pendently. Having to handle an exponential number of such constraints, Puget [30] propose a
polytime global filtering algorithm which performs forward checking. To eliminate symmet-
ric solutions due to interchangeable values [50, 51], Law and Lee [5, 18] formally define value
precedence and propose a specialized propagator for a pair of interchangeable values. Walsh [52]
extends the work of Law and Lee [5, 18] to a propagator for any number of interchangeable val-
ues. Assuming two redundant models connected by channeling constraints, Law and Lee [5, 18]
also show how value symmetries in one model can be broken using variable symmetry breaking
constraints in the dual. The Siglex constraint [19] is proposed for breaking variable and value
interchangeability together.

Lee and Li [12] introduce the novel notion of symmetry preservation, and demonstrate its
benefits in terms of more symmetries broken, and a smaller solution set and search space.

6.2. Dynamic Symmetry Breaking
Another approach is to break symmetries dynamically [53, 7, 6, 54]. Dynamic methods

modify the search procedure to exclude exploration of symmetric regions. A representative dy-
namic approach is Symmetry Breaking During Search (SBDS) [7, 38]. Upon backtracking from
a search decision, SBDS [7] adds a conditional symmetry breaking constraint for each symmetry
to remove all future nodes symmetric to the current node. Backofen and Will [53] introduce Sym-
metry Excluding Search (SES), which is similar to but more general than SBDS. SES allows a
search tree to branch over arbitrary constraints instead of simple unary assignment constraints in
SBDS. Symmetries form groups. Gent et al. [38] incorporate GAP, a computational group theory
system, to SBDS such that large symmetry groups can be handled efficiently. Recently, Mears
et al. [11] propose a formalization of the shortcut SBDS method called Lightweight Dynamic
Symmetry Breaking (LDSB) that handles only active symmetries and also their compositions.

Based on the notion of dominance detection, Symmetry Breaking via Dominance Detection
(SBDD) [6, 55, 56] tests at each search node if the next node is symmetric to a previously
explored node. Barnier and Brisset [56] propose SBDD+, an improvement of SBDD. The key
idea of the improvement is a deep pruning technique which allows to prune higher in the search
tree whenever possible. Gent et al. [37] again use computation group theory to extend SBDD, by
proposing a generic dominance checker, which avoids the necessity of implementing a specific
dominance checker in SBDD for each problem by a constraint programmer.

There is also research on the intersection of symmetry reasoning and nogood learning. Ben-
hamou et al. [57] add to the clause base all its symmetrical assertive clauses when an assertive
clause is detected during the search. Chu et al. [36] combine Lazy Clause Generation [58, 59]
and create the SBDS-1UIP method. Lazy Clause Generation generates 1UIP nogood [60] to help
reducing search in constraint programming. Once a 1UIP nogood is generated upon backtrack,
its symmetric parts are also posted as nogoods. SBDS-1UIP can exploit symmetries that cannot
be exploited by other static or dynamic symmetry breaking methods.

Another dynamic symmetry breaking method is by constructing GE-trees [8] which is a
search tree containing a unique representative of each class of full assignments. Such a search

45

tree also has the property that no node is isomorphic to any other node. Puget [61] proposes
dynamic lexicographic constraints (DLC) to use a dynamic variable order (the one used during
search) in the lexicographic constraints to avoid incompatibility with search heuristics.

Sellmann and Van Hentenryck [62] devise a polytime dominance tester for eliminating all
symmetries of interchangeable variables and values. Flener et al. [63] also propose dominance
detection search for other tractable symmetries such as piecewise variable and value symmetry.
They prove intractability results for some classes of CSPs to show the limits of dominance-
detection based symmetry breaking methods. To detect and break symmetries partially, Prest-
wich et al. [64] propose Symmetry Breaking by Nonstationary Optimisation (SBNO) which
combines local search with standard backtrack search.

Most recent successful symmetry breaking work has been static in nature, as evidenced by
Walsh’s Spotlight Talk [13] at AAAI 2012. Our starting point is partial SBDS which is general
and can cater for all symmetry types. The overhead of SBDS is big in general. Partial symmetry
breaking trades completeness for efficiency by breaking on a subset of symmetries. By carefully
controlling the overheads and cleverly breaking symmetry compositions in the context of partial
symmetry breaking, we come up with dynamic methods that are competitive both theoretically
and practically against the state of the art static methods, and yet enjoy the benefits of the dynamic
approaches.

7. Concluding Remarks

Our contributions are eight fold. First, we have identified the inadequacy of ParSBDS in
pruning symmetric solutions with respect to LexLeader. Based on this observation, second, we
propose ReSBDS which can utilize symmetry breaking constraints’ information to break ex-
tra symmetry compositions with low overhead. Third, we give formally the time complexity,
soundness and termination of ReSBDS and theoretical comparisons against ParSBDS, LexLead-
er, DoubleLex, SnakeLex and LDSB. Fourth, ReSBDS is shown to be complete to break all
interchangeable variables (values) given only generators when the variable (value) ordering is
fixed. Fifth, we also propose a light version of ReSBDS, LReSBDS, which can break extra sym-
metry compositions without recording assignments, and thus has lower overhead than ReSBDS.
Sixth, we give formally the soundness and termination of LReSBDS and theoretical comparisons
against ReSBDS, ParSBDS, LexLeader, DoubleLex, SnakeLex and LDSB. Seventh, LReSBDS
is also shown to be complete to break all interchangeable variables (values) given only generators
when the variable (value) ordering is fixed. Eighth, we demonstrate empirically the efficiency
of ReSBDS and LReSBDS against state of the art static and dynamic methods via extensive
experimentation.

Acknowledgement

We are grateful to the insightful comments and valuable suggestions by the anonymous re-
viewers of AAAI’14, CP’14 and the Artificial Intelligence Journal. Zhizhen Ye’s assistance with
lots of last minute experimentation work is much appreciated. This research has been supported
by the grant CUHK413713 from the Research Grants Council of Hong Kong SAR and a Direct
Grant from The Chinese University of Hong Kong.

46

References

[1] A. K. Mackworth, Consistency in networks of relations, Artificial intelligence 8 (1) (1977) 99–118.
[2] J.-F. Puget, On the satisfiability of symmetrical constrained satisfaction problems, in: Proceeding of the 7th Inter-

national Symposium on Methodologies for Intelligent Systems, 1993, pp. 350–361.
[3] J. Crawford, M. Ginsberg, E. Luks, A. Roy, Symmetry breaking predicates for search problems, in: Proceedings of

the Fifth International Conference on Principles of Knowledge Representation and Reasoning, 1996, pp. 148–159.
[4] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, T. Walsh, Breaking row and column symmetries

in matrix models, in: Proceeding of the 8th International Conference on Principles and Practice of Constraint
Programming, 2002, pp. 187–192.

[5] Y. C. Law, J. Lee, Global constraints for integer and set value precedence, in: Proceeding of the 10th International
Conference on Principles and Practice of Constraint Programming, 2004, pp. 362–376.

[6] T. Fahle, S. Schamberger, M. Sellmann, Symmetry breaking, in: Proceeding of the 7th International Conference on
Principles and Practice of Constraint Programming, 2001, pp. 93–107.

[7] I. Gent, B. Smith, Symmetry breaking in constraint programming, in: Proceeding of the 14th European Conference
on Artificial Intelligence, 2000, pp. 599–603.

[8] C. M. Roney-Dougal, I. P. Gent, T. Kelsey, S. Linton, Tractable symmetry breaking using restricted search trees,
in: Proceeding of the 16th European Conference on Artificial Intelligence, 2004, pp. 211–215.

[9] K. E. Petrie, B. M. Smith, Symmetry breaking in graceful graphs, in: Proceeding of the 9th International Confer-
ence on Principles and Practice of Constraint Programming, 2003, pp. 930–934.

[10] I. McDonald, B. Smith, Partial symmetry breaking, in: Proceeding of the 8th International Conference on Principles
and Practice of Constraint Programming, 2002, pp. 431–445.

[11] C. Mears, M. G. de la Banda, B. Demoen, M. Wallace, Lightweight dynamic symmetry breaking, Constraints 19 (3)
(2014) 195–242.

[12] J. H. Lee, J. Li, Increasing symmetry breaking by preserving target symmetries, in: Proceeding of the 18th Inter-
national Conference on Principles and Practice of Constraint Programming, 2012, pp. 422–438.

[13] T. Walsh, Symmetry breaking constraints: Recent results, in: Proceeding of the 26th AAAI Conference on Artificial
Intelligence, 2012, pp. 2192–2198.

[14] T. Walsh, General symmetry breaking constraints, in: Proceeding of the 12th International Conference on Principles
and Practice of Constraint Programming, 2006, pp. 650–664.

[15] A. Frisch, I. Miguel, Z. Kiziltan, B. Hnich, T. Walsh, Multiset ordering constraints, in: Proceeding of the 18th
International Joint Conference on Artificial Intelligence, 2003, pp. 221–226.

[16] A. Frisch, C. Jefferson, I. Miguel, Constraints for breaking more row and column symmetries, in: Proceeding of
the 9th International Conference on Principles and Practice of Constraint Programming, 2003, pp. 318–332.

[17] J. Puget, Breaking symmetries in all different problems, in: Proceeding of the 19th International Joint Conference
on Artificial Intelligence, 2005, pp. 272–277.

[18] Y. Law, J. Lee, Symmetry breaking constraints for value symmetries in constraint satisfaction, Constraints (2006)
221–267.

[19] Y. C. Law, J. Lee, T. Walsh, J. Yip, Breaking symmetry of interchangeable variables and values, in: Proceeding of
the 13th International Conference on Principles and Practice of Constraint Programming, 2007, pp. 423–437.

[20] G. Katsirelos, N. Narodytska, T. Walsh, Combining symmetry breaking and global constraints, in: Recent Advances
in Constraints, Springer, 2009, pp. 84–98.

[21] A. Grayland, I. Miguel, C. M. Roney-Dougal, Snake Lex: An alternative to Double Lex, in: Proceeding of the 15th
International Conference on Principles and Practice of Constraint Programming, 2009, pp. 391–399.

[22] J. Yip, P. Van Hentenryck, Symmetry breaking via LexLeader feasibility checkers, in: Proceeding of the 22th
International Joint Conference on Artificial Intelligence, 2011, pp. 687–692.

[23] N. Narodytska, T. Walsh, Breaking symmetry with different orderings, in: Proceeding of the 19th International
Conference on Principles and Practice of Constraint Programming, 2013, pp. 545–561.

[24] J. Lee, Z. Zhu, An increasing-nogoods global constraint for symmetry breaking during search, in: Proceeding of
the 20th International Conference on Principles and Practice of Constraint Programming, 2014, pp. 465–480.

[25] J. Lee, Z. Zhu, Filtering nogoods lazily in dynamic symmetry breaking during search, in: Proceeding of the 24th
International Joint Conference on Artificial Intelligence, 2015, pp. 339–345.

[26] J. Lee, Z. Zhu, Breaking more composition symmetries using search heuristics, in: Proceeding of the 30th AAAI
Conference on Artificial Intelligence, 2016, pp. 3418–3425.

[27] J. Lee, Z. Zhu, Boosting SBDS for partial symmetry breaking in constraint programming, in: Proceeding of the
28th AAAI Conference on Artificial Intelligence, 2014, pp. 2695–2702.

[28] F. Rossi, P. Van Beek, T. Walsh, Handbook of constraint programming, Elsevier, 2006.
[29] A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, T. Walsh, Global constraints for lexicographic orderings, in: Proceeding

of the 8th International Conference on Principles and Practice of Constraint Programming, 2002, pp. 93–108.

47

[30] J.-F. Puget, An efficient way of breaking value symmetries, in: Proceeding of the 21st AAAI Conference on
Artificial Intelligence, 2006, pp. 117–122.

[31] J.-F. Puget, A comparison of SBDS and Dynamic Lex Constraints, in: The Sixth International Workshop on Sym-
metry and Constraint Satisfaction Problems, 2006, pp. 56–60.

[32] T. Walsh, Breaking value symmetry, in: Proceeding of the 13th International Conference on Principles and Practice
of Constraint Programming, 2007, pp. 880–887.

[33] C. Schulte, P. J. Stuckey, Efficient constraint propagation engines, ACM Transactions on Programming Languages
and Systems 31 (1) (2008) 2:1–2:43.

[34] I. Gent, C. Jefferson, I. Miguel, Watched literals for constraint propagation in Minion, in: Proceeding of the 12th
International Conference on Principles and Practice of Constraint Programming, 2006, pp. 182–197.

[35] J.-F. Puget, Breaking all value symmetries in surjection problems, in: Proceeding of the 11th International Confer-
ence on Principles and Practice of Constraint Programming, 2005, pp. 490–504.

[36] G. Chu, P. Stuckey, M. de la Banda, C. Mears, Symmetries and lazy clause generation, in: Proceeding of the 22th
International Joint Conference on Artificial Intelligence, 2011, pp. 516–521.

[37] I. P. Gent, W. Harvey, T. Kelsey, S. Linton, Generic SBDD using computational group theory, in: Proceeding of the
9th International Conference on Principles and Practice of Constraint Programming, 2003, pp. 333–347.

[38] I. P. Gent, W. Harvey, T. Kelsey, Groups and constraints: Symmetry breaking during search, in: Proceeding of the
8th International Conference on Principles and Practice of Constraint Programming, 2002, pp. 415–430.

[39] PassMark Software, Passmark CPU mark, https://www.cpubenchmark.net/cpu list.php, captured
on May 7, 2017 (2017).

[40] I. Gent, T. Walsh, CSPLib: a benchmark library for constraints, in: Proceeding of the 5th International Conference
on Principles and Practice of Constraint Programming, 1999, pp. 480–481.

[41] K. Petrie, Combining SBDS and SBDD, Tech. rep., APES-86-2004. Available from http://www.dcs.st-
and.ac.uk/apes/apesreports.html (2004).

[42] T. Kelsey, S. Linton, C. Roney-Dougal, New developments in symmetry breaking in search using computational
group theory, in: Artificial Intelligence and Symbolic Computation, 2004, pp. 199–210.

[43] J.-F. Puget, Elimination des symétries dans les problemes injectifs, in: Premières Journées Francophones de Pro-
grammation par Contraintes, 2005, pp. 259–266.

[44] B. Hnich, S. D. Prestwich, E. Selensky, B. M. Smith, Constraint models for the covering test problem, Constraints
(2006) 199–219.

[45] G. Chu, Improving combinatorial optimization, Ph.D. thesis, The University of Melbourne (2011).
[46] Y. Kim, D.-H. Jang, C. M. Anderson-Cook, Selecting the best wild card entries in a covering array, Quality and

Reliability Engineering International.
[47] F. Aloul, K. Sakallah, I. Markov, Efficient symmetry breaking for Boolean Satisfiability, in: Proceeding of the 18th

International Joint Conference on Artificial Intelligence, 2003, pp. 271–276.
[48] M. Carlsson, N. Beldiceanu, Revisiting the lexicographic ordering constraint, Tech. Rep. T2002-17, Swedish Insti-

tute of Computer Science (2002).
[49] M. Carlsson, N. Beldiceanu, Arc-consistency for a chain of lexicographic ordering constraints, Tech. Rep. T2002-

18, Swedish Institute of Computer Science (2002).
[50] B. Benhamou, Study of symmetry in Constraint Satisfaction Problems, in: Proceedings of the 2nd Workshop on

Principles and Practice of Constraint Programming, 1994, pp. 246–254.
[51] I. Gent, A symmetry breaking constraint for indistinguishable values, in: Proceedings of the 1st International

Workshop on Symmetry in Constraint Satisfaction Problems, 2001, pp. 469–473.
[52] T. Walsh, Symmetry breaking using value precedence, in: Proceeding of the 17th European Conference on Artificial

Intelligence, 2006, pp. 168–172.
[53] R. Backofen, S. Will, Excluding symmetries in constraint-based search, in: Proceeding of the 5th International

Conference on Principles and Practice of Constraint Programming, 1999, pp. 73–87.
[54] F. Focacci, M. Milano, Global cut framework for removing symmetries, in: Proceeding of the 7th International

Conference on Principles and Practice of Constraint Programming, 2001, pp. 77–92.
[55] J.-F. Puget, Symmetry breaking revisited, in: Proceeding of the 8th International Conference on Principles and

Practice of Constraint Programming, 2002, pp. 446–461.
[56] N. Barnier, P. Brisset, Solving the Kirkman’s schoolgirl problem in a few seconds, in: Proceeding of the 8th

International Conference on Principles and Practice of Constraint Programming, 2002, pp. 477–491.
[57] B. Benhamou, T. Nabhani, R. Ostrowski, M. R. Saidi, Enhancing clause learning by symmetry in SAT solvers, in:

ICTAI’10, 2010, pp. 329–335.
[58] T. Feydy, P. J. Stuckey, Lazy clause generation reengineered, in: Proceeding of the 15th International Conference

on Principles and Practice of Constraint Programming, 2009, pp. 352–366.
[59] O. Ohrimenko, P. Stuckey, M. Codish, Propagation via lazy clause generation, Constraints (2009) 357–391.
[60] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: Engineering an efficient SAT solver, in:

48

Proceedings of the 38th annual Design Automation Conference, 2001, pp. 530–535.
[61] J.-F. Puget, Dynamic Lex constraints, in: Proceeding of the 12th International Conference on Principles and Prac-

tice of Constraint Programming, Springer, 2006, pp. 453–467.
[62] M. Sellmann, P. Van Hentenryck, Structural symmetry breaking, in: Proceeding of the 19th International Joint

Conference on Artificial Intelligence, 2005, pp. 298–303.
[63] P. Flener, J. Pearson, M. Sellmann, P. Van Hentenryck, M. Ågren, Dynamic structural symmetry breaking for

constraint satisfaction problems, Constraints 14 (4) (2009) 506–538.
[64] S. D. Prestwich, B. Hnich, H. Simonis, R. Rossi, S. A. Tarim, Partial symmetry breaking by local search in the

group, Constraints 17 (2) (2012) 148–171.

49

