
Breaking More Composition Symmetries Using Search Heuristics

Jimmy H.M. Lee and Zichen Zhu∗

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
{jlee,zzhu}@cse.cuhk.edu.hk

Abstract

The pruning power of partial symmetry breaking depends on
the given subset of symmetries to break as well as the in-
teractions among symmetry breaking constraints. In the con-
text of Partial Symmetry Breaking During Search (ParSBDS),
the search order determines the set of symmetry breaking
constraints to add and thus also makes an impact on node
and solution pruning. In this paper, we give the first for-
mal characterization of the pruning behavior of ParSBDS and
its improved variants. Introducing the notion of Dominance-
Completeness (DC-ness), we show that ParSBDS and vari-
ants eliminate the symmetry group of the given subset of
symmetries if the resultant search tree is DC, and give an
example scenario. Unfortunately, building a DC tree is not
always possible. We propose two search heuristics with the
aim of having more nodes dominated and thus also pruned
during search. Extensive experimentation demonstrates how
the proposed heuristics and their combination can drastically
reduce the solution set size, search space and runtime when
compared against the state-of-the-art static and dynamic sym-
metry breaking methods.

Introduction
Symmetries are common in many constraint problems. They
can be broken statically (Crawford et al. 1996; Flener et al.
2002) or dynamically (Fahle, Schamberger, and Sellmann
2001; Roney-Dougal et al. 2004; Sellmann and Van Hen-
tenryck 2005). Static methods alter the original problem by
adding new constraints to remove symmetric solutions. In
contrast, dynamic methods modify the search procedure to
exclude exploration of symmetric regions. Practical symme-
try breaking methods often trade completeness for efficiency
by only breaking a subset of symmetries (Flener et al. 2002;
Grayland, Miguel, and Roney-Dougal 2009; Mears et al.
2014). The pruning power of partial symmetry breaking
depends on the given subset of symmetries (Jefferson and
Petrie 2011) to break as well as the extra composition sym-
metries that are broken by the interactions among symmetry
breaking constraints (Lee and Li 2012).

In the context of Partial Symmetry Breaking During
Search (ParSBDS) (McDonald and Smith 2006) that adds

∗This research has been supported by the grant CUHK413713
from the Research Grants Council of Hong Kong SAR.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

conditional symmetry breaking constraints dynamically, the
search order determines the set of symmetry breaking con-
straints to add, and thus affects the extra composition sym-
metries to be broken and makes an impact on node and so-
lution pruning (McDonald and Smith 2006). We propose a
search order under which ParSBDS can break more com-
position symmetries. In this paper, we give the first formal
characterization of the pruning behavior of ParSBDS and its
state-of-the-art variants (Lee and Zhu 2014a; 2014b). Re-
lying on a generalization of (symmetry) dominance (Puget
2002; Fahle, Schamberger, and Sellmann 2001), we prove
that ParSBDS and variants prune all and only nodes that
are dominated. We introduce the notion of Dominance-
Completeness (DC-ness), show that ParSBDS and variants
eliminate the symmetry group of the given subset of sym-
metries if the resultant search tree is DC, and give a sit-
uation where this happens. Unfortunately, building a DC
tree is not always possible. We approximate it using two
search heuristics. We propose the “Most Frequent Deci-
sion First” and “Most Symmetries Active” search heuris-
tics with the aim of having more nodes dominated (thus
also pruned) during search. Unlike popular search heuris-
tics that are either variable based (Bessiere and Régin 1996;
Boussemart et al. 2004), value based (Dechter and Pearl
1988; Frost and Dechter 1995) or a simple combination of
both, our proposed heuristics select a variable-value pair (de-
cision) to assign. Extensive experimentation demonstrates
how our proposed heuristics and their combination can dras-
tically reduce the solution set size, search space and run-
time when compared against the state-of-the-art static and
dynamic symmetry breaking methods.

Background
A constraint satisfaction problem (CSP) P is a tuple
(X,D,C) where X is a finite set of variables, D is a finite
set of domains such that each x ∈ X has a domain D(x)
and C is a set of constraints, each is a subset of the Cartesian
productD(xi1)×· · ·×D(xik) of the domains of the involved
variables (scope). We abuse notation to say that D ⊆ D′ iff
D(x) ⊆ D′(x) for all x ∈ X . A constraint is generalized
arc consistent (GAC) iff when a variable in the scope of a
constraint is assigned any value in its domain, there exist
compatible values (called supports) in the domains of all the
other variables in the scope of the constraint. An assignment



assigns a value v to a variable x. A full assignment is a set
of assignments, one for each variable in X . A solution to P
is a full assignment satisfying every constraint in C.

We consider search trees with binary branching, in which
every non-leaf node has exactly two children. The root node
is a CSP P . Suppose a non-leaf node P1 has x and v ∈ D(x)
as the branching variable and value. The left and right chil-
dren of P1 are cons(P1 ∪{x = v}) and cons(P1 ∪{x 6= v})
respectively where cons() enforces some form of consis-
tency (which could be none) to a CSP. We call x = v the
branching decision of P1. Each node P1 is associated with
a partial assignment A1 which is the set of branching deci-
sions collected from the root P to P1. A search node is either
the root or a node resulting from branching in the search tree.
A fail node is a search node in which either (a) a variable has
empty domain or (b) a constraint has all variables assigned
but is violated.

A symmetry is a solution-preserving bijection on assign-
ments. A set of variablesX (values V ) is interchangeable iff
any bijection mapping from X → X (V → V ) is a variable
(value) symmetry. Consider a symmetry group Σ. A symme-
try class (Flener et al. 2002) is an equivalence class of full
assignments, in which every pair of assignments can map
into each other with some symmetry g ∈ Σ.

A set of symmetries G generates a group Σ if every prod-
uct of any sequence of elements of G is in Σ with the com-
position operator ◦ and every element of Σ can be written as
a product of elements inG. We callG a set of generators for
Σ, which in turn is the symmetry group of G.

We assume symmetries are already detected once a CSP
is given. We focus on how to break these symmetries ef-
ficiently. Given a symmetry group Σ to a CSP, Symmetry
Breaking During Search (SBDS) (Gent and Smith 2000)
adds conditional constraints for each symmetry upon back-
tracking. Consider a node P in the search tree with partial
assignment A and branching decision x = v. After back-
tracking from the node cons(P ∪{x = v}), for each symme-
try g ∈ Σ, SBDS adds the constraint ¬(A∧ (x = v))g to the
node cons(P ∪{x 6= v}) meaning that onceA∧(x = v) has
been searched, its symmetric partial assignments (A ∧ (x =
v))g for any g ∈ Σ in this subtree should not be searched at
all. A symmetry g is active at a node with partial assignment
A iff Ag is true.

Partial SBDS (ParSBDS) (McDonald and Smith 2006) is
SBDS but deals with only a subset of all symmetries. Re-
cursive SBDS (ReSBDS) (Lee and Zhu 2014a) extends Par-
SBDS by breaking not only the given symmetries but also
some symmetry compositions. Consider the input symme-
tries G. Upon each backtracking, ReSBDS adds symme-
try breaking constraints added by ParSBDS, and also main-
tains a backtrackable set T of assignments, which is initially
empty at the root node. Whenever ReSBDS adds a symme-
try breaking constraint, ¬(A∧ (x = v))g (where g ∈ G), all
assignments in (A ∧ (x = v))g are recorded into T . Once
an assignment xi = vi in T is violated at node P with par-
tial assignment B, ReSBDS adds ¬(B ∧ (xi = vi))

h for
any given symmetry h to the current node. Some symme-
try compositions g ◦ h are thus broken this way. This vio-
lated assignment xi = vi is deleted from T . All assignments

in (B ∧ (xi = vi))
h are recorded into T . ReSBDS recur-

sively initiates constraint propagation and checks violations
to add extra constraints until no new constraints are added. A
light version, (LReSBDS) (Lee and Zhu 2014b), of ReSBDS
is also proposed. Upon each backtracking, LReSBDS adds
symmetry breaking constraints added by ParSBDS, and also
adds extra symmetry breaking constraints¬(B∧(xi = vi))

h

for any given symmetry h when xi = vi is pruned by a sym-
metry breaking constraint at a node P with partial assign-
ment B.

Symmetry Breaking During Search
We give a formal analysis to characterize exactly the prun-
ings effected by ParSBDS, ReSBDS and LReSBDS. We
generalize the definition of (symmetry) dominance (Puget
2002) in the context of ParSBDS and its variants. A theorem
is proved to show that all and only nodes which are domi-
nated are pruned by these symmetry breaking methods.

We give some basic definitions. A CSP P = (X,D,C)
entails an assignment (x = v) if D(x) = {v}. Consider
a subset of symmetries G whose symmetry group is Σ.
Suppose τ is a search tree, and P0 and P1 are two search
nodes. P1 is descendant symmetric to P0 iffAg

0 ⊆ E1 where
g ∈ Σ, A0 is the partial assignment of P0 and E1 is the set
of assignments entailed by P1. Furthermore, if in addition
g ∈ G ⊆ Σ, P1 is G-descendant symmetric to P0, and P1 is
a (G-)descendant symmetric node of P0.
P1 being (G-)descendant symmetric to P0 means that

P1 is symmetric to P0 or a descendant node of P0. Upon
backtracking from node P0, ParSBDS adds constraints to
prune all of P0’s G-descendant symmetric nodes. ReSBDS
and LReSBDS subsume ParSBDS and add also extra con-
straints to prune G-descendant symmetric nodes of some
pruned nodes. Domain filtering prunes values by an AC3-
like (Mackworth 1977) constraint propagation algorithm.
During the propagation of c with current domain D, if a
value v is pruned from D(x), we say this pruning is effected
by constraint c and happens under domain D.

Consider a search tree τ and a search node P0 =
cons(X,D0, C) with partial assignment A0. If v is pruned
from D0(x) during the consistency enforcement of P0 un-
der domain D′ ⊆ D0, P1 = (X,D1, C) is a deleted node
of P0 where D1(x′) = D′(x′) for all x′ ∈ X − {x} and
D1(x) = {v}. The partial assignment of P1 isA0∪{x = v}.
All deleted nodes at a search node are partitioned into two
sequences Γ and Π as explained in the following.

Note that deleted nodes are not search nodes. Depending
on the constraint propagation algorithm, once a deleted node
is generated at a search node, it is appended to the sequences
Γ and Π immediately. Consider the partial search tree in Fig-
ure 1. Nodes P1 and P3 have deleted nodes. Consider a dy-
namic symmetry breaking method. Deleted nodes in Π are
used to further prune their G-descendant symmetric nodes
while deleted nodes in Γ are not.

ParSBDS adds symmetry breaking constraints only upon
backtracking and does not utilize deleted nodes to further
prune symmetric parts. Π is always empty when using Par-
SBDS. All deleted nodes are put into Γ. ReSBDS adds extra
symmetry breaking constraints if an assignment x = v that



�� ����

�� ���

�� ����

�� ���

Figure 1: A Partial Search Tree.

has been recorded into the backtrackable set T is pruned.
All deleted nodes due to the pruning of such an assignment
are thus put into Π when using ReSBDS. All other deleted
nodes are put into Γ. LReSBDS adds extra symmetry break-
ing constraints when a pruning is effected by a symmetry
breaking constraint. All deleted nodes due to such prun-
ings are put into Π when using LReSBDS. All other deleted
nodes are put into Γ.

In the following, a node of a search tree τ is either a search
node or a deleted node. We thus extend the definition of “(G-
)descendant symmetric” to cater for also deleted nodes of a
search tree.

Deleted nodes are generated due to consistency enforce-
ment of constraints in search nodes. If no consistency is en-
forced and constraints are used only to check their viola-
tions, no values are pruned by constraint filtering algorithms.

Lemma 1. If no consistency is enforced during search, there
are no deleted nodes in the search tree.

We define simple relations between search nodes and
deleted nodes of a search tree, assuming depth first search.
Consider a search tree τ and two search nodes P0 and P1 in
τ . Node P0 is to the left of P1 iff there exists a search node
P in τ such that P0 is in P ’s left subtree and P1 is in P ’s
right subtree. P0 is searched before P1 iff P0 is to the left of
P1 or P0 is an ancestor node of P1.

In Figure 1, P0 is to the left of P1, P2 and P3. P0 and P1

are searched before P2 and P3.
Consider a search tree τ and two nodes P0 and P1 of τ .

P0 precedes P1 iff

1. P0 and P1 are search nodes. P0 is to the left of P1; or

2. P0 is a search node and P1 is a deleted node of a search
node P . P0 is to the left of P ; or

3. P0 is in Π of a search node P and P1 is a search node. P
is searched before P1; or

4. P0 is in Π of a search node P and P1 is a deleted node of
node P ′. P is searched before P ′; or

5. P0 and P1 are in Π of a search node. P0 is before P1 in Π.

Precedence defines a partial order on all nodes of a search
tree. In Figure 1, P0 precedes P1, all of P1’s deleted nodes,

P2, P3 and all of P3’s deleted nodes. All nodes in ΠP1 pre-
cede P2, P3 and all of P3’s deleted nodes. Any node in ΠP1

or ΠP3
precedes all nodes after it in ΠP1

or ΠP3
respectively.

Consider a subset of symmetries G, a search tree τ and
two nodes P0 and P1 of τ . P0 dominates P1 iff P0 precedes
P1 and P1 is G-descendant symmetric to P0.

Note that the notions of precedence and dominance are al-
ways associated with a specific symmetry breaking method.
We have the following lemma.

Lemma 2. Consider a subset of symmetries G. If a node
P0 dominates node P1, all of P0’s ancestors nodes which
precede P1 dominate P1.

Proof. AssumeAi andEi denote the partial assignment and
the set of entailed assignments of node Pi. Suppose P2 is
an ancestor node of P0. Then A2 ⊆ A0. Since P1 is G-
descendant symmetric to P0, we have Ag

0 ⊆ E1 where g ∈
G. Thus, Ag

2 ⊆ Ag
0 ⊆ E1. This means P1 is G-descendant

symmetric to P2. If P2 further precedes P1, P2 dominates
P1.

A node is pruned in a search tree iff it is either a deleted
node or a fail node.

Theorem 1. Consider a subset of symmetries G. Par-
SBDS/ReSBDS/LReSBDS prunes all and only dominated
nodes in the resulting search tree.

Proof. Upon backtracking from a node P0 to a node P1,
ParSBDS adds constraints to prune all nodes that are dom-
inated by P0 in the subtree of P1. Lemma 2 shows that all
nodes dominated by a descendant node of P0 in the sub-
tree of P1 would also be dominated by P0. All constraints
added at each ancestor node of P1 are also posted at P1.
Thus all nodes in the subtree of P1 which are dominated by
any search nodes that are to the left of P1 are pruned by
the constraints posted at P1. Similarly, ReSBDS/LReSBDS
adds extra constraints at each search node P to prune all
nodes that are dominated by a deleted node in Π of node P
or of some search node that is searched before P .

In other words, dominated nodes are exactly the ones
pruned by the associated symmetry breaking method.

Dominated nodes are deleted nodes if GAC is enforced at
each search node on all constraints. If no consistency is en-
forced, dominated nodes are fail nodes. If all constraints are
enforced GAC, ReSBDS utilizes dominated nodes as well
as other deleted nodes to do extra prunings in subsequent
search. LReSBDS utilizes a subset of dominated nodes to
do extra prunings.

Lemma 3. Suppose all constraints are enforced GAC. A
subset of symmetries G are broken by ReSBDS/LReSBDS.
All dominated nodes are in the sequence Π of a search node
in the resulting search tree when using ReSBDS. All deleted
nodes in Π of each search node are dominated nodes when
using LReSBDS.

Proof. ReSBDS adds constraints to prune dominated nodes
and all assignments in these constraints are recorded into T.
Once a dominated node is pruned by ReSBDS, a recorded
assignment in T must be pruned. This dominated node is



thus put into Π. For LReSBDS, all deleted nodes in Π are re-
sults of prunings effected by symmetry breaking constraints,
i.e. pruned by LReSBDS. Since LReSBDS prunes only
dominated nodes, these deleted nodes are dominated.

If all constraints are made GAC, ReSBDS is stronger than
ParSBDS in pruning power (Lee and Zhu 2014a). If no con-
sistency is enforced, we have the following theorem.
Theorem 2. If no consistency is enforced, ParSBDS, Re-
SBDS and LReSBDS have the same pruning power.

Proof. According to Lemma 1, there are no deleted nodes.
The sequence Π of each search node is empty. No extra con-
straints can be added by ReSBDS and LReSBDS.

Breaking More Composition Symmetries
In the following, we show how search orders can affect the
number of dominated nodes. After that, we give a theorem
stating when the entire symmetry group is eliminated in par-
tial symmetry breaking. A possibility is when the search tree
is Dominance-Complete (DC). Unfortunately, it is not al-
ways possible to build such a search tree. We propose two
effective search heuristics to approximate DC-ness.

We use as example the 2×2 unconstrained matrix problem
with domain size 2. The problem model has no constraints
but a 2× 2 matrix of variables {x11, x12, x21, x22}, one for
each square with domain {1, 2}. The generator symmetries
are G = {R,C}, where R and C are interchangeable rows
and columns respectively. Figures 2 and 3 give two solution
symmetry classes. Symmetric solutions are numbered and
connected by lines with double arrows marked by the corre-
sponding generator symmetries.

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

Figure 2: Symmetry Class α

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

Figure 3: Symmetry Class β

We show two partial search trees under different search
orders with ParSBDS and no consistency enforcement in
Figures 4 and 5 in which the gray triangles are pruned. Each
solution in symmetry class α (Figure 2) is marked by its
solution number. Solutions 2 and 3 are pruned in Figure 4
since P2 and P3 are dominated by P0 and P1 (AR

0 ⊆ E3,
AC

0 ⊆ E2,AR
1 ⊆ E2 andAC

1 ⊆ E3 whereAi andEi denote
the partial assignment and the set of entailed assignments of
node Pi). Solution 4 in Figure 4 is not pruned since P0 can-
not dominate solution 4 which is only descendant symmet-
ric, but not G-descendant symmetric, to P0. Solutions 2, 3
and 4 are pruned in Figure 5 as P3 is dominated by nodes
P1 and P2 (AR

1 ⊆ E3, AC
2 ⊆ E3). In Figure 4, solution 4 is

not dominated since it precedes solutions 2 and 3 to which
solution 4 is only symmetric according to the given gener-
ators individually. This shows that search orders affect the
number of dominated nodes.

�

�

�

�

Figure 4: First Search Tree

�

�

�

�

Figure 5: Second Search Tree

To analyze how symmetry breaking methods can break
composition symmetries, we give the following definitions.
Consider a symmetry group Σ, and a search tree τ and two
nodes P0 and P1 of τ . P0 rules over P1 iff P0 precedes P1

and P1 is descendant symmetric to P0. A node P is a master
node iff it is not ruled over by any node in τ . A symmetry
breaking method eliminates a symmetry g in a search tree τ
iff for any two search nodes which are not fail nodes, no one
rules over the other according to g. A symmetry breaking
method eliminates a symmetry group Σ in τ iff all symme-
tries in Σ except the identity one are eliminated in τ .

If the entire symmetry group Σ is posted, P0 dominates
P1 if P0 rules over P1. Theorem 1 proves all dominated
nodes are pruned by SBDS. Thus the entire symmetry group
is eliminated since all non-master nodes are dominated and
thus pruned. This explains why SBDS is complete. For par-
tial symmetry breaking, we give the following theorem fol-
lowing directly from the definition of “eliminate”.

Theorem 3. Consider a set of symmetriesG to break whose
symmetry group is Σ. Σ is eliminated by ParSBDS/Re-
SBDS/LReSBDS in a search tree τ if every node P of τ is
either a master node or a dominated node.

Master nodes would never be dominated and pruned by
symmetry breaking methods. We thus would like to domi-
nate all non-master nodes so that they can be pruned.

Dominance Completeness
Solution 4 is not dominated in Figure 4 since it is only ruled
over but not dominated by solution 1 and all of solution 1’s
ancestor nodes are to the left of solution 4. How can we make
a ruled over node P , which is not dominated by a master
node, dominated?

The following theorem gives a way to use dominated
nodes to dominate more nodes during search.

Theorem 4. Consider a subset of symmetries G, and a
search tree τ and two nodes P0 and P1 of τ where P0 with
partial assignment A0 dominates P1 according to symmetry
g ∈ G. If the partial assignment of P1 is Ag

0, all nodes that
are ruled over by P0 according to symmetry g ◦ h for all
h ∈ G and preceded by P1 are dominated by P1.

Proof. Suppose P2 is ruled over by P0 according to symme-
try g ◦ h where h ∈ G, i.e. Ag◦h

0 ⊆ E2 where E2 is the set
of entailed assignments of P2. As P1 has partial assignment



Ag
0, P2 is G-descendant symmetric to P1 according to h. If

P1 also precedes P2, P1 dominates P2.

Consider a subset of symmetries G and a search tree τ .
Suppose for any dominated nodeP1 which is dominated by a
node P0 with partial assignment A0 according to symmetry
g ∈ G, P1 has partial assignment Ag

0 and precedes all its
G-descendant symmetric nodes which are not dominated by
any node that precedes P1 or is searched before the search
node where P1 is pruned. τ is Dominance-Complete (DC).

Theorem 4 ensures that all nodes that are ruled over but
not dominated by a master node would be dominated by a
dominated node in a DC search tree. The entire symmetry
group Σ is thus eliminated by Theorem 3.

Theorem 5. Consider a set of symmetriesG to break whose
symmetry group is Σ. Σ is eliminated by ParSBDS/Re-
SBDS/LReSBDS in a DC search tree.

In a DC tree, assuming depth first search, the nodes to
visit next are the ones already dominated by the searched
part. After they are visited, all their G-descendant symmet-
ric nodes which are not visited yet are dominated. The fol-
lowing theorem gives a special case when a DC tree can be
built.

Theorem 6. Consider a fixed variable (value) ordering γ
and adjacent variables (values) interchangeability G. Ap-
plying ReSBDS on G and searching with the γ variable
(value) ordering builds a DC search tree.

Proof. Suppose a constraint ¬(A ∧ (x = v))g for g ∈ G
is posted by ReSBDS. This constraint has not been satisfied
iff Ag = A and xg 6= x (vg 6= v). Now ¬(x = v)g is im-
mediately enforced to be true and a deleted node P ′ with
partial assignment A ∧ (x = v)g is generated and put into
the Π sequence by ReSBDS. As Ag = A, the partial assign-
ment of P ′ is equivalent to (A∧ (x = v))g . Moreover, since
the search order is γ, P ′ precedes all its G-descendent sym-
metric nodes which have not been visited or dominated yet.
Thus, the resultant search tree is DC.

We do not have an efficient algorithm to construct search
trees that are DC, when possible, in general yet. However,
we have examined all search trees of the 2×3 unconstrained
matrix problem with domain size 2, given only adjacent row
and column interchangeability as symmetries. None satisfies
DC and none eliminates the entire symmetry group. In the
following, we propose two efficient search heuristics aiming
at dominating as many nodes as possible.

Most Frequent Decision First
ParSBDS/ReSBDS/LReSBDS adds symmetry breaking
constraints to prune dominated nodes. Each of these con-
straints is the negation of a set of assignments. All nodes in
subsequent search which entail such a set of assignments are
dominated nodes. DC can be approximated in the following
way. Once a symmetry breaking constraint ¬(A∧ (x = v))g

is added, simply choose one of the assignments in this con-
straint as the next branching decision until search has to
backtrack (in which case this constraint is violated). Now all
nodes which entail Ag ∧ (x = v)g are searched first, and all

their G-descendant symmetric nodes which are not visited
yet would be dominated. If there are more than one symme-
try breaking constraints posted by ParSBDS/ReSBDS/LRe-
SBDS in the constraint store, we choose the decision which
occurs most frequently among all symmetry breaking con-
straints in the constraint store at the current search node
as the next branching decision. Such a decision tends to
allow more dominated nodes to be encountered in subse-
quent search. We call this the Most Frequent Decision First
(MFDF) heuristic.

Keeping Most Symmetries Active

� �

�
�

Figure 6: First Search Tree

� �

�

�

Figure 7: Second Search Tree

The MFDF heuristic does not help if there are no symme-
try breaking constraints in the constraint store yet. Consider
another two partial search trees under different search or-
ders with ParSBDS and no consistency enforcement in Fig-
ures 6 and 7 for solutions in symmetry class β (Figure 3).
The gray triangles are pruned and gray solution nodes out-
side of gray triangles are fail nodes. At nodes P , P0 and
P1 of each search tree, MFDF cannot choose any useful
decision to branch since no symmetry breaking constraints
are in the constraint store yet. In Figure 6, the search order
x11 = 1∧ x22 = 1 excludes solutions 6 and 7 from the sub-
tree of P1. There is no way to let these two solutions precede
and thus dominate solution 8 in subsequent search anymore.
In Figure 7, solution 8 is pruned as P2 is dominated by the
common ancestor P0 of solutions 6 and 7.

We thus try to build a search order such thatG-descendant
symmetric nodes (solutions 6 and 7) of a node P (solution
5) are visited earlier than other nodes (solution 8) that are
ruled over but not dominated yet. To achieve this, we choose
the decision which keeps most symmetries active as the next
branching decision. In this way, the given symmetries are
broken at deeper levels and the deepest common ancestor of
a node P and its G-descendant symmetric nodes are very
close to the leaves. This increases the chance that, once a
master node is visited, its G-descendant symmetric nodes is
visited soon. We call this the Most Symmetries Active (MSA)
heuristic. The number of active symmetries of a CSP are
reduced rapidly along the branching. Thus MSA is useful
usually at upper search levels.

We combine MSA and MFDF (MFDF+MSA) in the fol-
lowing way: if there are symmetry breaking constraints in
the constraint store of the current search node, use MFDF;
otherwise, use MSA. In the experimental part, we compare



MFDF, MSA and MFDF+MSA against the smallest domain
first (with ties broken by the input variable order) and mini-
mum value (SDF+MV) heuristic. Our three heuristics break
ties by SDF+MV.

Experimental Results
This section gives five experiments. We choose the most
efficient dynamic partial symmetry breaking method LRe-
SBDS (Lee and Zhu 2014b) to break the given gen-
erator symmetries under SDF+MV, MSA, MFDF and
MFDF+MSA respectively. We compare against Dou-
blelex (Flener et al. 2002) which is an efficient partial static
method to break matrix symmetries, Precedence (Law and
Lee 2004) which is an efficient static method to break
value interchangeability and VAR constraints (Puget 2005b;
2005a) which is an efficient static method to break variable
symmetries with alldifferent constraints. We also compare
against the complete and dynamic method SBDS (Gent and
Smith 2000). Unless otherwise specified, the search order
is defaulted to SDF+MV. For better efficiency, the increas-
ing nogoods global constraint and its filtering algorithm (Lee
and Zhu 2014b) are used in LReSBDS and SBDS. We ran
more instances than those reported here for space reasons,
and report only the representative cases.

All experiments are conducted using Gecode Solver 4.2.0
on Intel C2D E8400 3.0Ghz (7GB). In our tables, #s, #f
and t denote number of solutions, failures and runtimes
in seconds respectively. The best results are highlighted in
bold.

Unconstrained Matrix Problem.
To show the improvement of our heuristics without interac-
tion with problem constraints, we solve the unconstrained
matrix problem which is modeled by an n × m matrix
of variables with domain {1, . . . , d}. This model has ma-
trix symmetries, value interchangeability and their compo-
sitions. We first deploy DoubleLex and Precedence. LRe-
SBDS is given adjacent rows (columns) interchangeability,
cartesian-product of adjacent rows interchangeability and
adjacent columns interchangeability, and adjacent value in-
terchangeability to break.

MFDF reduces the number of solutions in all benchmarks
(Table 1) and MSA is on par with SDF+MV. The combina-
tion MFDF+MSA performs the best. The solution size is re-
duced to 39% on average when compared to SDF+MV. This
shows more composition symmetries are broken. The run-
time is improved 2.30 times on average taking advantage of
the search tree reduction. Compared with the static method,
MFDF+MSA runs 3.23 times faster on average.

Error Correcting Code-Lee Distance.
The Error Correcting Code-Lee Distance problem is
prob036 in CSPLib (Gent and Walsh 1999). We follow Lee
and Li (2012) in the modeling and turning the optimization
problem into a satisfaction problem with parameters (n, c, b)
to illustrate the effect on solution set size. This model has
matrix symmetries and no value symmetries. Thus, Prece-
dence is not used here. We post the same subset of matrix

symmetries to break as in the unconstrained matrix problem
for LReSBDS.

More composition symmetries are broken using MFDF
(Table 2). MSA, however, seems to interact badly with the
problem constraints, and make bad early decisions. The
combined heuristic MFDF+MSA reduces the solution size
to 60% on average. However, its runtime is not the fastest
since MSA does not cooperate well with the problem con-
straints. MFDF runs the fastest and is 1.51 times faster on
average than SDF+MV. Compared with the static method
DoubleLex, MFDF runs 3.02 times faster on average taking
advantage of breaking more symmetries.

NNQueen.
The NNQueen problem is to color an n × n chessboard
with n colors, such that no lines (row, column or diagonal)
contain the same color twice (Kelsey, Linton, and Roney-
Dougal 2004). We model it with n2 variables, one per square
of the chess board. It has 8 geometric symmetries, value
interchangeability and their compositions. We first deploy
VAR and Precedence. LReSBDS is given the 8 geometric
symmetries and adjacent value interchangeability.

MFDF does not contribute (Table 3) since all symme-
try breaking constraints added by LReSBDS are uncon-
ditional in the resultant search tree and thus dominated
nodes are pruned immediately. Only exploiting MSA in
LReSBDS, half of the solutions are eliminated. Moreover,
MSA runs 1.53 and 1.38 times faster than SDF+MV and
VAR+Precedence on average respectively.

Diagonal Latin Square.
The Diagonal Latin Square problem is to assign n numbers
to the cells of an n × n board with no numbers occurring
more than once in each row, column and the two diagonals.
This problem is modeled as an n × n matrix of variables,
each with domain {1, . . . , n}. It has the same set of symme-
tries with NNQueen and all three symmetry breaking meth-
ods work the same as that in NNQueen. Table 4 shows the
results. With similar reason to the case of NNQueen, MFDF
only changes the search tree slightly. Exploiting MSA, half
of the solutions are eliminated. MSA runs 2.03 and 1.98
times faster than SDF+MV and VAR+Precedence on aver-
age respectively.

N -Queens.
We model the N -Queens problem the standard way using
one variable per column. All 8 geometric symmetries are
given to SBDS. We give LReSBDS only the two generators
rx (reflection on the vertical axis) and d1 (reflection on the
diagonal). Since all constraints added by LReSBDS accord-
ing to these two symmetries are unconditional, MFDF is not
useful in here. We thus only run LReSBDS under the default
heuristic and MSA. When using MSA, we choose to keep
symmetry rx active when N is odd and keep symmetry d1
active when N is even.

When compared with the complete SBDS which elimi-
nates all symmetric solutions, MSA only leaves 0.48% re-
dundant symmetric solutions on average (Table 5). This



Table 1: Unconstrained Matrix Problem
DoubleLex+Precedence LReSBDS LReSBDSMFDF LReSBDSMSA LReSBDSMFDF+MSA

n,m, d #s t #s t #s t #s t #s t
3 6 4 29,808,607 59.97 19,080,577 41.73 12,006,046 28.92 19,320,572 50.25 8,703,246 22.98
4 4 4 7,493,397 14.57 4,867,420 9.95 3,084,246 6.34 3,832,171 8.66 2,082,126 4.69
4 5 4 621,064,372 1,267.37 359,626,461 835.16 202,192,112 459.11 289,610,732 673.60 122,929,688 295.44
3 5 5 18,760,547 37.81 13,766,350 27.90 7,828,201 16.87 12,008,380 26.74 5,300,942 13.04
3 6 5 676,207,419 1,402.60 471,039,224 1,036.72 253,358,428 551.98 470,773,863 1,177.35 174,712,527 423.80
4 4 5 78,724,080 148.87 58,598,557 116.63 34,925,945 70.18 37,913,437 81.74 20,535,746 47.31

Table 2: Error Correcting Code-Lee Distance
DoubleLex LReSBDS LReSBDSMFDF LReSBDSMSA LReSBDSMFDF+MSA

n, c, b #s #f t #s #f t #s #f t #s #f t #s #f t
6,4,4 4.70M 4.03M 173.99 2.33M 2.11M 95.04 1.54M 1.29M 58.91 2.39M 3.08M 116.84 1.51M 1.65M 68.09
5,6,5 1.44M 6.26M 210.89 0.64M 3.00M 99.93 0.41M 1.95M 66.45 0.63M 7.61M 249.40 0.38M 3.82M 130.23
5,6,6 0.30M 16.85M 664.51 0.14M 8.38M 343.17 0.09M 7.19M 291.81 0.11M 38.09M 1,650.21 0.08M 20.65M 929.60
8,4,4 35.63M 44.44M 1,966.97 16.96M 22.68M 1,042.14 11.03M 13.79M 648.12 18.18M 33.77M 1,384.89 10.84M 16.95M 729.61
6,4,5 29.35M 73.05M 3,045.02 12.83M 32.46M 1,392.44 7.60M 18.81M 835.21 13.02M 36.04M 1,564.07 7.46M 20.76M 915.48

demonstrates MSA can eliminate almost the entire symme-
try group given only the two generators. Now MSA runs
2.29 times faster than SBDS on average taking advantage
of less symmetries posted and the efficient heuristic. The
search tree size is reduced substantially when N is odd and
only slightly when N is even.

Conclusion

Our contributions are two efficient search heuristics
grounded on formal analysis. First, we generalize the notion
of dominance and characterize exactly the prunings effected
by ParSBDS and variants. Second, we show how search or-
ders can affect the number of dominated nodes given a sub-
set of symmetries and give a theorem to state when the entire
symmetry group is eliminated. Third, we introduce DC-ness
and prove that a DC search tree ensures symmetry group
elimination. Fourth, we propose two decision-based search
heuristics as well as their combination to approximate DC
effectively as a result of theoretical studies. Fifth, we demon-
strate the consistent advantages of our proposal with exten-
sive experimentation.

Our method focuses on binary branching, and can be gen-
eralized easily to n-ary branching (or labeling). A limitation
of our method is that it will not work with non decision-
based branching, such as bisection branching (< on the left
and ≥ on the right).

SBDD (Fahle, Schamberger, and Sellmann 2001; Gent et
al. 2003) is another widely used dynamic symmetry break-
ing method, which works by checking whether the current
search node is dominated by a node that is visited earlier.
It will be interesting to study if our approach can also be
extended to partial symmetry breaking version of SBDD.
In addition, Sellmann and Van Hentenryck (2005) propose
DSSB, a polynomial-time dominance-detection algorithm,
to break simultaneous piecewise variable and value symme-
try. It is also interesting to investigate the relation between
DSSB and DC tree.

References
Bessiere, C., and Régin, J.-C. 1996. Mac and combined
heuristics: Two reasons to forsake FC (and CBJ?) on hard
problems. In CP’96, 61–75.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L. 2004.
Boosting systematic search by weighting constraints. In
ECAI’04, 146–150.
Crawford, J.; Ginsberg, M.; Luks, E.; and Roy, A. 1996.
Symmetry breaking predicates for search problems. In
KR’96, 148–159.
Dechter, R., and Pearl, J. 1988. Network-based heuristics
for constraint-satisfaction problems. Artificial Intelligence
34:1–38.
Fahle, T.; Schamberger, S.; and Sellmann, M. 2001. Sym-
metry breaking. In CP’01, 93–107.
Flener, P.; Frisch, A.; Hnich, B.; Kiziltan, Z.; Miguel, I.;
Pearson, J.; and Walsh, T. 2002. Breaking row and column
symmetries in matrix models. In CP’02, 187–192.
Frost, D., and Dechter, R. 1995. Look-ahead value ordering
for constraint satisfaction problems. In IJCAI’95, 572–578.
Gent, I., and Smith, B. 2000. Symmetry breaking in con-
straint programming. In ECAI’00, 599–603.
Gent, I., and Walsh, T. 1999. CSPLib: a benchmark library
for constraints. In CP’99, 480–481.
Gent, I. P.; Harvey, W.; Kelsey, T.; and Linton, S. 2003.
Generic SBDD using computational group theory. In CP’03,
333–347.
Grayland, A.; Miguel, I.; and Roney-Dougal, C. M. 2009.
Snake Lex: an alternative to Double Lex. In CP’09, 391–
399.
Jefferson, C., and Petrie, K. 2011. Automatic generation of
constraints for partial symmetry breaking. CP’11 729–743.
Kelsey, T.; Linton, S.; and Roney-Dougal, C. 2004. New
developments in symmetry breaking in search using compu-
tational group theory. In Artificial Intelligence and Symbolic
Computation, 199–210.



Table 3: NNQueen
VAR+Precedence LReSBDS LReSBDSMFDF LReSBDSMSA LReSBDSMFDF+MSA

n #s #f t #s #f t #s #f t #s #f t #s #f t
7 4 854 0.02 4 860 0.02 4 860 0.02 2 459 0.01 2 459 0.01
8 0 149,573 1.99 0 149,580 2.14 0 149,580 2.18 0 109,304 1.50 0 109,304 1.50
9 0 140,316,433 2,076.10 0 140,316,441 2,301.54 0 140,316,441 2,303.44 0 94,994,393 1,503.19 0 94,994,393 1,526.57

Table 4: Diagonal Latin Square
VAR+Precedence LReSBDS LReSBDSMFDF LReSBDSMSA LReSBDSMFDF+MSA

n #s #f t #s #f t #s #f t #s #f t #s #f t
6 128 814 0.01 128 819 0.01 128 945 0.01 64 569 0.01 64 569 0.01
7 171,200 168,098 2.48 171,200 168,104 2.53 171,200 175,738 2.88 85,600 72,050 1.25 85,600 72,050 1.25

Table 5: N -Queens
SBDS LReSBDS LReSBDSMSA

N #s #f t #s #f t #s #f t
15 285,053 2,861,030 19.44 324,173 3,092,401 12.82 287,095 1,621,554 7.11
16 1,846,955 17,553,738 121.48 2,071,568 18,884,559 81.09 1,854,141 16,676,355 72.42
17 11,977,939 114,336,279 816.30 13,388,788 123,139,684 542.16 12,046,226 66,466,624 305.81
18 83,263,591 789,951,820 5,830.79 91,967,520 847,352,319 3,721.53 83,526,571 733,909,932 3,318.02
19 621,012,754 5,726,127,348 42,252.00 685,143,337 6,139,933,399 27,665.70 623,676,737 3,383,027,220 16,295.00

Law, Y. C., and Lee, J. 2004. Global constraints for integer
and set value precedence. In CP’04, 362–376.
Lee, J., and Li, J. 2012. Increasing symmetry breaking by
preserving target symmetries. In CP’12, 422–438.
Lee, J., and Zhu, Z. 2014a. Boosting SBDS for partial
symmetry breaking in constraint programming. In AAAI’14,
2695–2702.
Lee, J., and Zhu, Z. 2014b. An increasing-nogoods global
constraint for symmetry breaking during search. In CP’14,
465–480.
Mackworth, A. K. 1977. Consistency in networks of rela-
tions. Artificial intelligence 8(1):99–118.
McDonald, I., and Smith, B. 2006. Partial symmetry break-
ing. In CP’06, 207–213.
Mears, C.; de la Banda, M. G.; Demoen, B.; and Wallace,
M. 2014. Lightweight dynamic symmetry breaking. Con-
straints 19(3):195–242.
Puget, J.-F. 2002. Symmetry breaking revisited. In CP’02,
446–461. Springer.
Puget, J.-F. 2005a. Breaking symmetries in all different
problems. In IJCAI’05, 272–277.
Puget, J.-F. 2005b. Elimination des symétries dans les prob-
lemes injectifs. In Premières Journées Francophones de
Programmation par Contraintes.
Roney-Dougal, C. M.; Gent, I. P.; Kelsey, T.; and Linton, S.
2004. Tractable symmetry breaking using restricted search
trees. In ECAI’04, 211–215.
Sellmann, M., and Van Hentenryck, P. 2005. Structural sym-
metry breaking. In IJCAI’05, 298–303.


