
Towards Practical Infinite Stream Constraint
Programming: Applications and Implementation

Jasper C.H. Lee1 and Jimmy H.M. Lee2

1 Computer Laboratory, University of Cambridge, United Kingdom
chjl2@cam.ac.uk

2 Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Shatin, N.T., Hong Kong

jlee@cse.cuhk.edu.hk

Abstract. Siu et al. propose stream CSPs (St-CSPs) as a generalisation of finite
domain CSPs to cater for constraints on infinite streams, and a solving algorithm
that produces a deterministic Büchi automaton recognising the solution language.
As a novel application, we demonstrate how St-CSPs can model mathematically
and generate a PID controller for driving a self-balancing tray and an inverted
pendulum in real-time. We propose and prove the correctness of an improvement
to the implementation that eliminates numerous unnecessary states in the solution
automaton for St-CSPs involving the first temporal operator, thereby reduc-
ing solving time. We give two St-CSP examples that can benefit from our new
implementation techniques. Our approach always generates a solution automaton
not bigger than, but potentially exponentially smaller than, that produced by the
original implementation. Experimental results show substantial improvements.

1 Introduction

Streams of data are ubiquitous. They can either be discrete sequences on their own (e.g.
stock market data), or discrete samples of continuous signals (e.g. positional data with
respect to time). The evolution of such sequences is typically governed by some phys-
ical laws or mathematical equations. However, standard finite domain constraint satis-
faction problems (CSPs) do not model such problems very well, because they can only
model a finite segment of an otherwise infinite problem. To model such discrete time
constraint problems more naturally, Siu et al. [8, 11] introduce stream constraint satis-
faction problems (St-CSPs) by adapting temporal operators in Wadge and Ashcroft’s
[12] Lucid programming language. They give the definition of St-CSPs, and a solving
algorithm that produces a deterministic Büchi automaton recognising the solutions of
an St-CSP. The termination, soundness and completeness of their algorithm are proven.
They also suggest practical applications for St-CSPs, such as generating harmonic ac-
companiment to a melody, and the game engine for the once popular Digi Invaders3

game in early Casio calculators in the 1970s.
This paper is about practical stream constraint programming. The goal is to push

the limit of this relatively new member of the CP family, and take the first step towards

3 http://www.youtube.com/watch?v=1YafgAcmov4

putting the theoretical framework into practice. Since there are currently no common
modelling idioms, and we know little about implementation technology and applica-
tions, we approach this idea from two angles. First, we demonstrate that St-CSPs can be
used for solving interesting practical real life problems. Continuing the work on game
engine generation [8, 11], we model real-time hardware controllers as St-CSPs. Even
though discretisation and approximations have to be applied, we find that the approach
produces stable control on our hardware. Second, we propose an improvement for the
search algorithm to reduce solving time and the size of the solution automaton. Our im-
provement is restricted to a certain class of St-CSPs, and we give practical usages of this
class on two applications. We also prove the correctness of our technique. To demon-
strate the efficiency of our proposal, we give experimental results to compare our new
search algorithm against the original, showing orders of magnitude improvement both
in terms of runtime and solution automaton size.

2 Background

This section introduces the technical background for stream constraint solving. We first
state the definition of St-CSPs and related notions, followed by the constraint specifica-
tion language. The solving algorithm of Siu et al. [8, 11] is summarised.

2.1 Infinite Strings and Stream Constraint Satisfaction Problems

An infinite string α over an alphabet Σ is a function N0 → Σ. Given i, α(i) is an
individual daton of α at time point i. The set of all such strings with alphabet Σ is
denoted Σω . Infinite strings are also referred to as streams.

The notation α′ = α(i,∞) is used for the string suffix α′(j) = α(j + i). For a
language L, L(i,∞) = {α(i,∞) |α ∈ L}. As for a finite prefix of a string, infinite or
not, the notation α′ = α[0 : i] is used to denote the string α′(j) = α(j) if 0 ≤ j ≤ i
and undefined otherwise. A special case is when i < 0, denoting the empty string.

A stream constraint satisfaction problem (St-CSP) is a tuple P = (X,D,C) [8, 11],
whereX = {x1, . . . , xn} is a finite set of variables,D(x) = (Σ(x))ω is a function that
maps a variable to its domain which is the set of all infinite strings with alphabet Σ(x),
C is a finite set of constraints. A constraint c ∈ C is a relation R defined on an ordered
subset Scope(c) of variables. The relation gives all the valid simultaneous assignments
of values to variables in Scope(c). Every constraint c ∈ C must also be a deterministic
ω-regular language [2].

An assignment A(xi) ∈ D(xi) is a function mapping a variable to an element in
its domain. A satisfies a constraint c if and only if (A(xi1), A(xi2), . . . , A(xik)) ∈ c,
where Scope(c) = (xi1 , . . . , xik). The notion can be generalised to say that the string
β of tuples β(i) = (A(x1)(i), . . . , A(xn)(i)) satisfies the constraint c where X =
{x1, . . . , xn}. An St-CSP is satisfied by a variable assignment A or a string of tuples β
if and only if all constraints are satisfied.

As a corollary of the closure properties of deterministic ω-regular languages, the
solution set sol(P) = {t = (a1, a2, . . . , an) ∈

∏
iD(xi) | ∀ c ∈ C. t satisfies c} of an

St-CSP P is also a deterministic ω-regular language.

In addition, two St-CSPs P and P ′ are said to be equivalent, written as P ≡ P ′ as
usual, if and only if sol(P) = sol(P ′).

Given a set of constraints C and a point i, the shifted view (previously known in the
literature as the limited view [8, 11]) of C is defined as C(i,∞) = {ck(i,∞) | ck ∈ C}.
Similarly, given an St-CSP P = (X,D,C) and a point i, the shifted view of P is defined
as P̂ (i) = (X,D,C(i,∞)).

2.2 The Stream Constraint Language

In this paper, we are only concerned with St-CSPs whose variable alphabets are integer
intervals, i.e. [m,n]ω for some m ≤ n ∈ Z.

To specify constraints, there are primitives such as variable streams, which are the
variables in the St-CSP, and constant streams. For example, the stream 2 denotes the
stream a where a(n) = 2.

Three temporal operators, in the style of the Lucid programming language [12],
first, next and fby, are defined on streams. Suppose α and β are streams. We have
first α being the constant stream of α(0), and next α being the “tail” of α, i.e.
next α = α(1,∞). In addition, α fby β = γ is the concatenation of the head of α and
β, i.e. γ(0) = α(0) and γ(i) = β(i− 1) for i ≥ 1.

Furthermore, there are pointwise operators, such as integer arithmetic operators
{+, -, *, /, %}. They combine two streams point by point using the corresponding
arithmetic operator. Integer arithmetic relational operators are {lt, le, eq, ge, gt,
ne}. They compare the two argument streams pointwisely and return a pseudo-Boolean
stream, that is a stream in [0, 1]ω , where 0 denotes false and 1 denotes true. Pointwise
Boolean operators {and, or} act on any two pseudo-Boolean streams γ and η. The
final pointwise operator supported is if-then-else. Suppose γ is pseudo-Boolean,
and α, β are streams in general, then (if γ then α else β)(i) is α(i) if γ(i) = 1
and β(i) if γ(i) = 0.

Given these stream operators, we can now use the following relations to express
stream constraints. For integer arithmetic comparisons ◦ ∈ {<,<=,==,>=,>,!=}, the
constraint α ◦ β is satisfied if and only if the arithmetic comparison ◦ is true at every
point in the streams. Therefore, a constraint is violated if and only if there exists a time
point at which the arithmetic comparison is false.

Care should be taken to distinguish between constraints and the relational operators.
Relational operators take two streams and gives a pseudo-Boolean stream as an output.
Constraints, on the other hand, are relations on streams.

2.3 Normalising Constraints

Siu [11] defines an St-CSP to be in normal form if it contains only primitive constraints.
Primitive constraints are in one of the following three forms, assuming xi are stream
variables.

– Primitive first constraints: first xi == first xj
– Primitive next constraints: xi == next xj
– Primitive pointwise constraints: Constraints not involving first, next or fby.

Reducing all occurrences of first operators to the primitive form is beneficial,
since primitive first constraints can be enforced like a primitive pointwise constraint,
but can be deleted after the first time point.

All St-CSPs are reduced to an equivalent normal form before being submitted to the
solver. Siu [11] also gives a simple recursive translation of an St-CSP into this normal
form. Only the appearance of either “first expr”, “next expr” or “expr1 fby
expr2” may violate the normal form property. The cases are translated separately. By
adopting notations from programming language semantics theory [13], we write c [–]
for constraint contexts, i.e. constraints with placeholders for syntactic substitution. For
example, if c [–] = [– + 3 >= 4], then c [first α] = [(first α) + 3 >= 4]. We also
write a constraint rewriting transition as (C0, C1) (C ′0, C ′1), where C0, C1, C ′0 and
C ′1 are sets of constraints. C0 is the set of constraints that has to be further normalised,
and C1 is the set that is guaranteed to be in normal form already. Hence, the initial
constraint pair for the St-CSP (X , D, C) is (C, {}), and the rules are applied until none
are applicable.

1. (C0 ∪ {c [first expr]}, C1) (C0 ∪ {c [v1], v2 == expr}, C1 ∪ {first v1
== first v2, v1 == next v1}) where v1 and v2 are auxiliary variables not in any
of c [–], C0 and C1.

2. (C0 ∪ {c [next expr]}, C1) (C0 ∪ {c [v1], v2 == expr}, C1 ∪ {v1 == next
v2}) where v1 and v2 are auxiliary variables not in any of c [–], C0 and C1.

3. (C0 ∪ {c [expr1 fby expr2]}, C1) (C0 ∪ {c [v1], v2 == expr1, v3 == expr2},
C1 ∪ {first v1 == first v2, next v1 == v3}) where v1, v2 and v3 are auxiliary
variables not in any of c [–], C0 and C1.

2.4 Search Trees

A search tree for an St-CSP P is a tree with potentially infinite height. Its nodes are
St-CSPs, and the root node is P itself. The level of a node N is recursively defined
as 0 for the root node, and 1 + ` for non-root nodes N where ` is the level of the
parent of N . A child node Q′ = (X,D,C ∪ {c′}) is constructed from a parent node
P ′ = (X,D,C) at level k and an instantaneous assignment τ(x) ∈ Σ(x), where τ
takes a stream variable x and returns a daton value for it. In other words, τ gives a
scalar assignment to the daton of streams at time point k. The constraint c′ specifies
that for all x ∈ X , x(k) = τ(x) and for all i 6= k, x(i) is unconstrained. We write
P ′

τ→ Q′ for such a parent to child construction, and label the edge on the tree between
the two nodes with τ . Fig. 1 shows an example search tree.

It is also useful to identify a search node with its shifted view. For a search node
Q at level k, we identify it with the shifted view Q̂(k). Taking this view, if P̂ (k) =
(X,D,C) is the parent node of Q̂(k + 1), then Q̂(k + 1) = (X,D,C ∪ {c′})(1) =
(X,D, (C ∪ {c′})(1,∞)) where c′ is the same constraint as defined above.

Recall that a constraint violation requires only a single time point at which the
pointwise constraint is false. Therefore, we can generalise the definition of constraint
violation such that a finite prefix of an assignment can violate a constraint. A sequence
of instantaneous assignments from the root to a node is isomorphic to a finite prefix
of an assignment, and so the definition again generalises. Suppose F = (X,D,C)

is a node at level k such that {τi} is the sequence of instantaneous assignments that
constructs F from the root node, i.e. P τ0→ . . .

τk→ F . We say node F is a failure if and
only if {τi} violates a constraint c ∈ C.

(0,0) (0,1)

(0,0)

(0,0) (0,1)

(0,1)

Fig. 1: Example Search Tree

2.5 Solving St-CSPs

Given an St-CSP P , its search tree is explored using depth first search. Backtracking
happens when the current search node is a failure. A search nodeA at level k dominates
[8, 11] another search node B at level k′, written as B ≺ A, if and only if their shifted
views are equivalent (Â(k) ≡ B̂(k′)) andA is visited beforeB during the search. When
the algorithm visits a search node N that is dominated by a previously seen node M ,
the edge pointing to N is redirected to M instead. The resulting structure is isomorphic
to a deterministic Büchi automaton, which accepts all and only the solutions of P . Siu
et al. [8, 11] prove the termination, soundness and completeness of the algorithm.

3 Application on Real-Time PID Control

A proportional-integral-derivative (PID) controller [10] is a loop feedback control
mechanism. A process receives an input signal u(t) and gives an output y(t), which has
an error e(t) = y(t) − r(t) from a reference signal r(t). The PID controller produces
the input signal u(t) by adding a weighted sum of the following three components.
The proportional component is simply the error signal e(t). The integral component is∫ t
0
e(τ) dτ . The derivative component is e′(t). Fig. 2 shows the described structure.Kp,

Ki and Kd are the corresponding coefficients for the components in the weighted sum.
We can model a PID controller as an St-CSP. The first step is to discretise and scale

the domain of the error signal, such that the signal can be represented as an integer
stream e. For example, the error signal might have a real interval [−15, 15] as the do-
main representing an angle deviation. A possible discretisation is to map the interval
to the integer interval [−60, 60] by multiplication with 4 and rounding. The stream e
(the error and the proportional component) is unconstrained and acts as an input to the
automaton. At each state, the edge with the correct error value is selected in order to
proceed to the next state.

There is a tradeoff between having greater precision in the error stream and limiting
the size of the solution automaton. The standard approaches to determining the PID
coefficients are by experimentation or analysis of a mathematical model of the process.

Process −

P = Kpe(t)

I = Ki

∫ t
0
e(τ) dτ

D = Kd
de(t)
dt

+

y(t)

r(t)

e(t)u(t)

Fig. 2: PID Controller Schematics

A good discretisation of the error stream can therefore be similarly determined using
either of the approaches.

Given the discretisation, we can model the derivative component of the PID control
signal. For a stream of discrete time signals α, an analog of the derivative is the finite
difference α(i + 1) − α(i). Any linear scaling factor required for a better approxima-
tion can simply be absorbed into the Kd coefficient for the weighted sum. In order to
compute finite differences, a stream l is introduced with constraints l == 0 fby e. The
derivative stream d is therefore constrained by d == e - l. From this, we deduce that
the bounds for d is [−2c, 2c] if the bounds for e is [−c, c].

An analog of the integral for discrete signals is the finite sum
∑n

0 α(i). In an ideal
PID controller, the integral component can be unbounded. In practice, it is either re-
stricted by the real number representation of the machine or artificial bounds are intro-
duced. In our case, a bound b is also needed in order to have a finite alphabet for the
integral stream i. With the value of b decided, the integral stream can be computed using
the constraint i == 0 fby (if (i+e gt b) then b else (if (i+e lt -b) then -b
else i+e)). There is an alternative approximation for the integral stream if we know
the scaling factor applied to it is close to 0. In this case, instead of summing the error
discrete signals, we sum the sign of the error signals. That is, we introduce another
stream tempI with constraint tempI == 0 fby (i + if (e gt 0) then 1 else (if
(e lt 0) then -1 else 0)). Instead of using the previous constraint for computing
i, we use i == if (tempI gt b) then b else (if (tempI lt -b) then -b else
tempI). It is also possible to inline the definition of tempI into i, but we present this
as it is here for clarity. This alternative approximation is useful for keeping the alphabet
of the stream i small. Fig. 3 gives a generic PID controller model.

As discrete time controllers process input and output streams, St-CSPs are ideal for
modelling them. The typical way of implementing controllers is to program the con-
troller equations in an imperative language. Programming with destructive assignments
and various control flow commands can be error prone. Bentley [1] gives experimental
results that only 10% of professional programmers write correct code for an algorithm
as simple as the binary search. Using the St-CSP approach, the imperative code re-
quired in a program is only for traversing a solution automaton according to the sensor
error input stream and producing control signals to the output streams. This code has
to be engineered only once and is largely reusable. The St-CSP specification language
is declarative in nature without any side effects in its semantics. Hence, it inherits the

Streams e, ` with alphabet [−c, c]
Stream i with alphabet [−b, b]
Stream d with alphabet [−2c, 2c]

d == e - `
` == 0 fby e
i == 0 fby (if (i+e gt b) then b

else (if (i+e lt −b) then −b else i+e))

Fig. 3: Generic PID Controller

advantages of declarative programming over imperative programming, including read-
ability, conciseness, compositionality and referential transparency. Correctness and el-
egance are therefore more easily achievable than using a conventional programming
language like C.

A PID controller for a self-balancing tray4 was synthesised. The platform has a
tray holding a pingpong ball, two motors that allows it to rotate in 3D space and an
accelerometer that measures the orientation. The purpose of the controller is to maintain
the horizontal position of the tray as the platform rotates, such that the pingpong ball
does not fall out. We also applied the technique to control a self-balancing inverted
pendulum5. It has a vertical body, with wheels at the bottom to allow movement for
balancing the body as it tilts sideways. The controller actually uses a variant of PID
control with a second derivative component in addition to the original three. Also, a
complementary filter and a Kalman filter were applied to the gyroscope sensor input to
eliminate noise. The filters however are not part of our St-CSP model.

The traditional controllers of the above hardware happen to be simple and small,
even when implemented in C. We anticipate the advantages of our approach to become
more apparent when the controllers are more complex. The purpose of the current exer-
cise is really to demonstrate that CP can have applications in real-time hardware control.

4 Improved Handling of the first Operator

Our new approach focuses on the handling of streams constructed using the first
operator. Fig. 4 contains two St-CSPs that show some uses of first would increase
the number of states in the solution automaton, and some other uses would not. Problem
1 imposes that the first daton of x has to be less than the first daton of y, whilst Problem
2 requires all datons of x to be less than the first daton of y. Therefore, the constraint
in Problem 1 only concerns the first time point, whereas the effect of the constraint in
Problem 2 persists indefinitely.

The optimal solution automaton (Fig. 5), in the sense of having the fewest states,
for the St-CSP in Fig. 4a has two states, whilst the optimal solution automaton (Fig. 6)

4 A video demonstration of the self-balancing tray in operation can be found at
http://www.youtube.com/watch?v=dT56qAZt8hI

5 A video demonstration of the inverted pendulum can be found at
http://www.youtube.com/watch?v=5GvbG3pN0vY

Streams x, y with alphabet [0, 2]

first x < first y

(a) Problem 1

Streams x, y with alphabet [0, 2]

x < first y

(b) Problem 2

Fig. 4: Example St-CSPs

for the St-CSP in Fig. 4b is a three-state automaton. In fact, for the St-CSP in Fig. 4b,
as the size of the alphabet of y increases, the number of states in the optimal solution
scales linearly. This is because, for each value that first y takes, there is a different
upper bound on x. Therefore, a different state is needed for each value of first y.

Sstart

(0, 1)

(0, 2)

(1, 2)
(a, b) for all a, b ∈ [0, 2]

Fig. 5: Optimal Solution Automaton for first x < first y

Sstart

(0, 1)

(0, 2)

(1, 2)

(0, b) for all b ∈ [0, 2]

(0, b) or (1, b)

Fig. 6: Optimal Solution Automaton for x < first y

The difference between the two St-CSPs is that Problem 1 has a constraint that in-
volves only the first time point, whereas Problem 2 has a constraint that involves streams
with first operators and also other constructions of variable streams. These two ex-
amples demonstrate that constraints of the former kind do not increase the solution
automaton size in general, whilst constraints of the latter kind can potentially multiply
the size by a linear factor in the size of the stream alphabet.

However, the original solving approach [8, 11] produces an automaton (Fig. 7) of
linear size even for Problem 1, as a result of their normalisation rules. Stream expres-
sions of the form “first expr” are normalised with the introduction of primitive next
constraints (xi == next xj), which increase the size of the solution automaton be-
cause the daton values taken by xi has to be taken by the daton of xj at the next time
point. Therefore, different states are needed to distinguish between the different values,
effectively acting as memory for the automaton. Figure 8 shows an example of how
states act as memory, where the alphabet of xi is [0, 1] for simplicity. Each state in Fig.
8 is annotated with the last daton value of the stream xj that it represents.

Our proposed approach therefore is designed to avoid introduction of primitive next
constraints for normalising streams with first operators, by improving the normali-
sation and search procedure. Even though the proposal applies only to a certain class of
St-CSPs, we identify two practical uses for this class, which is presented in Sect. 5.

Sstart

(0, 1)

(0, 2)

(1, 2)

(a, b) for all a, b ∈ [0, 2]

(a, b)

Fig. 7: Siu et al. [8, 11]: Solution Automaton for first x < first y

Sstart

xj = 0

xj = 1

(0, a) for all a ∈ [0, 1]

(1, a)

(0, 0)

(1, 1)

(1, 0)(0, 1)

Fig. 8: Solution Automaton for xi == next xj

4.1 Constraint Normalisation

We propose to relax Siu’s normal form [11]. An St-CSP is in normal form if it contains
only constraints of the following two forms.

– Primitive next constraints: xi == next xj
– Primitive pointwise constraints that do not involve next or fby.

Note that, in our approach, constraints involving only the first temporal operator are
also considered as pointwise constraints.

The normalisation of next and fby streams is largely unchanged from Siu’s al-
gorithm [11]. The following is our new normalisation algorithm concerning first
streams.

1. (C0 ∪ {c [next first expr]}, C1) (C0 ∪ {c [first expr]}, C1)

2. (C0 ∪ {c [first first expr]}, C1) (C0 ∪ {c [first expr]}, C1)

3. (C0 ∪ {c [first (expr1 fby expr2)]}, C1) (C0 ∪ {c [first expr1]}, C1)

4. (C0 ∪ {c [first const]}, C1) (C0 ∪ {c [const]}, C1) where const is a con-
stant stream.

5. (C0 ∪ {c [first next expr]}, C1) (C0 ∪ {c [first v]},C1 ∪ {v == next
expr}) where expr is not of the form first expr1, next expr1 or expr1 fby
expr2, and v is an auxiliary variable not in any of c [–], C0 and C1.

To calculate the alphabets of auxiliary variables, we use interval arithmetic to con-
struct bounds of the expression represented by the variable.

Given our new definition of normal form, the search algorithm has to be adapted.

4.2 Search Algorithm

Constraint specifications are now assumed to be in the normal form defined in the last
section. The search algorithm we propose is again similar to the original approach [8,
11], but the constraints in our approach can change during search.

We now describe how we construct the set of constraintsC ′ of a child node Q̂(k+1)
from the set of constraints C of the parent node P̂ (k) and instantaneous assignment τk
if P̂ (k) τk→ Q̂(k + 1). The construction of τk should have been such that it satisfies all
the primitive next constraints imposed by τk−1, i.e. τk(xj) = τk−1(xi) for all primitive
next constraints xi == next xj , and also all primitive pointwise constraints in C. In
order to construct C ′, a direct copying from C is not correct. We observe that primitive
next constraints are invariant in all shifted views of an St-CSP. It is only the primitive
pointwise constraints that may change. In particular, streams with first operators are
no longer the same when we take the shifted view of the child node Q̂(k + 1). Such
streams have to be evaluated, meaning that all variable streams inside a first operator
have to be substituted by their assigned values from τk. The resulting stream expressions
thus contain only constant streams, pointwise operators and first operators. Since
first operators have no effect on constant streams, the expressions can always be
reduced to a constant stream by evaluating pointwise operations and deleting first
operators. We say we evaluate a constraint if and only if we evaluate all the stream
expressions with first operators in the constraint. After evaluating a constraint with
τk, we test whether it is a tautology. Since arithmetic is not decidable in general, we only
consider tautologies of the zeroth order, i.e. those not involving universally quantified
variables. If the constraint is a tautology, it is removed from the constraint set C.

Example 1. An example is given here to illustrate the construction process. Consider
the St-CSP in Fig. 9a, which is normalised to the one in Fig. 9b. We construct the
child node Q̂(1) from the root node and the instantaneous assignment τ0 = {(x =
0), (y = 0), (v = 2)}. Observe that given this τ0, any τ1 must obey τ1(y) = 2 due to
the primitive next constraint. The final result of C ′ is {x == 0, x < v, v == next y}:

– first x == first (x + y) is first substituted with values of τ0 and becomes
first 0 == first (0 + 0). The constraint is then evaluated into 0 == 0, which is
a tautology not involving any variables. Therefore, we remove the constraint from
C ′.

– x == first y is evaluated into x == 0. Since x is still present, the constraint is
not removed from C ′.

– v == next y and x < v are unchanged.

Dominance between search nodes is detected in the same way as the original ap-
proach [8, 11]. We say x is a signature stream if and only if x appears on the L.H.S.
of a primitive next constraint x == next y for some stream y. Suppose Q̂1(k1) is a
search node constructed from the instantaneous assignment τk1 and Q̂2(k2) is another
search node constructed from τk2 . Let their corresponding sets of constraints be C1 and
C2. We say that the two search nodes are equivalent if and only if C1 is syntactically
equivalent to C2 and τk1(x) = τk2(x) for all signature streams x. The proofs of Siu et
al. [8, 11] can be easily adapted to show that the detection is sound.

Streams x, y with alphabet [0, 2]

first x == first (x + y)
x == first y
x < next y

(a) Example St-CSP

Streams x, y, v with alphabet [0, 2]

first x == first (x + y)
x == first y
x < v, v == next y

(b) Normalised Example St-CSP

Fig. 9: Example St-CSPs Illustrating the Search Algorithm

The previous example also demonstrates how we remove all information about the
values taken for constraints involving only the first time point. They are always eval-
uated into a tautology that we recognise. Therefore, it is impossible for the solution
automaton to have any “memory” on what values were taken, meaning there are no dis-
tinct states distinguishing between the different values. This achieves the reduction in
automaton size we seek.

Our improvement is applicable whenever there exists a stream expression of the
form first expr that only appears in constraints involving the first time point, and
can take multiple values. The size of the solution automaton can be reduced by an ex-
ponential factor from the original approach [8, 11]. For example, for an St-CSP with
2n streams with alphabet [0, 1] and constraints first x2i == first x2i+1 for 0 ≤
i ≤ n − 1, our approach produces a two state automaton since all constraints are re-
moved after the first time point. In contrast, the original approach [8, 11] normalises the
problem and produces 2n streams constrained by primitive next constraints. There are
a total of 2n valid combinations of values taken by the streams with first operators.
Therefore, considering also the start state, an automaton of size 2n + 1 is produced.

We prove the soundness of our constraint construction algorithm in the following.
Recall from Sect. 2.4 that, if a parent node P has the set of constraints C, then the con-
straints of a child node Q are (C ∪{c′}) where c′ is the constraint stating x(0) = τk(x)
for all streams x and x(i) is unconstrained for all i > 0. Since our construction algo-
rithm takes shifted views into account, the following theorem proves the equivalence of
C ′ and (C ∪ {c′})(1,∞) where C ′ is the result of our construction.

Theorem 1. Suppose the constraint set C ′ of the shifted view of child node Q̂(k + 1)
is constructed from the constraint set C of the parent node P̂ (k) and the instantaneous
assignment τk. Then C ′ = (C ∪ {c′})(1,∞) where c′ is the constraint stating x(0) =
τk(x) for all streams x and x(i) is unconstrained for all i > 0.

Proof. C ′ ⊆ (C ∪ {c′})(1,∞): Let a(1,∞) be a string satisfying C ′ and a(0) =
(τk(x1), . . . , τk(xn)) where {xi} is the set of variables. Therefore a satisfies c′ by
construction. Consider an arbitrary constraint c ∈ C. If c is a primitive next constraint,
then a must satisfy c as c ∈ C ′ by construction. Otherwise, c is a primitive pointwise
constraint. If c does not involve first operators, then a(1,∞) must also satisfy c as
c ∈ C ′ by construction. If c does involve first operators, then a(1,∞) satisfies the
evaluated version of c, for the evaluated constraint is in C ′. Since stream expressions
with first operators are evaluated numerically according to τk = a(0), a(1,∞)
must therefore also satisfy c. The pointwise interpretation of c is satisfied by a(0) = τk
by construction, and therefore a satisfies c as a whole. To summarise, a satisfies any

constraint c ∈ C and also the constraint c′. Hence a(1,∞) satisfies (C ∪ {c′})(1,∞),
proving C ′ ⊆ (C ∪ {c′})(1,∞).

(C ∪ {c′})(1,∞) ⊆ C ′: Let b(1,∞) be a string that satisfies (C ∪ {c′})(1,∞)
and b(0) = τk. Stream b therefore satisfies (C ∪ {c′}) by construction. Consider an
arbitrary constraint c ∈ C ′. If c is a primitive next constraint, then c ∈ C as well, and
hence b(1,∞) satisfies c. Otherwise, c is a primitive pointwise constraint. If c ∈ C, then
b(1,∞) satisfies c. If not, then c is evaluated from a constraint c0 ∈ C using values of
τk. By definition, b satisfies c0. Therefore, b satisfies the constraint d constructed by
evaluating streams in c0 using values of τk. Stream d is thus a constraint not involving
any first operators, which implies that b(1,∞) satisfies d. Also observe that d is in
fact c, and so b satisfies c. Since c does not involve any temporal operators, b(1,∞)
must also satisfy c. From the above, regardless of the type of constraint c is, b(1,∞)
satisfies c. Therefore, (C ∪ {c′})(1,∞) ⊆ C ′. ut

5 Benefitting from the New Implementation

Our improvement applies only to certain usages of the first operator in an St-CSP.
In this section, we show possible uses of the first operator in applications that can
benefit from our new search algorithm.

5.1 Symmetry Breaking

The first operator can be used for breaking solution symmetry [4] in St-CSPs to
reduce search, in the same way symmetry breaking helps with solving standard CSPs.

Symmetry breaking is the avoidance of visiting symmetric counterparts of visited
search space. Suppose a CSP has value symmetry [9] σ and variable symmetry [9] σ′.
If {x0 = d0, x1 = d1, . . . , xn = dn} is a solution of P , then {x0 = σ(d0), . . . , xn =
σ(dn)} and {xσ′(0) = d0, . . . , xσ′(n) = dn} are also solutions respectively.

One technique for breaking value symmetry is by preassignment [7]. An analogous
technique for stream constraint solving is to preassign the first daton of streams by
constraints of the form “first x == const”. This is a constraint that only concerns
the first time point. However, since the stream with the first operator can only take
one value, preassignment constraints do not increase the sizes of solution automata
produced by even the original approach [8, 11].

To break variable symmetry, a lexicographical ordering of assigned values can be
imposed [5]. That is, suppose there is a fixed ordering on the set of variables. Extra
constraints are added to enforce that if x1 < x2, then d1 ≤ d2 where d1 and d2 are the
values assigned to x1 and x2 respectively. An analogous treatment with streams is to
enforce such ordering at the first time point by adding constraints such as first x1
<= first x2 and first x2 <= first x3.

Observe that streams with first operators in these lexicographical ordering con-
straints can take multiple values in general. Therefore, our improvement applies and
produces a smaller solution automaton than the original approach [8, 11]. Given n

streams with the same alphabet of size |Σ|, our solution automaton is smaller6 by a
multiplicative factor

(|Σ|+n−1
n

)
, which is the number of different valid assignments for

the first datons of each stream. Section 6 includes experimental results to show the
improvement.

5.2 Sequential Planning

Ghallab et al. [6] give a framework for encoding planning problems in traditional CSPs.
The framework first states a planning problem in the state variable representation, con-
sisting of state variables which are descriptions of the world that can change over
time, actions with preconditions and effects which cause changes to the world, and
rigid relations which describe the invariants in the world. For example, at(cat) is
a state variable that holds the location of the cat object. The move(o,a,b) action
has the precondition that at(o) = a and the effect that at(o) = b. adjacent =
{(desk,wall), (desk,bed)} is a rigid relation.

The state variable representation can then be encoded [6] as a CSP that expresses a
plan of length t. Each time point has an associated actiont variable, denoting the ac-
tion taken at time t. Each state variable is encoded as a constraint variable for every time
point, for example at(cat)0, . . ., at(cat)3 for a plan of length 3. Precondition con-
straints are used to enforce the preconditions of actions. They are of the form (actiont

= a) ⇒ (preconditions of a at time t − 1), such as (actiont = move(o,a,b))
⇒ (at(o)t−1 = a). Similarly, there are effect constraints of the form (actiont =
a) ⇒ (effects of a at time t). Finally, frame constraints enforce that actions do not
change anything other than their effects. For example, the constraint {(actiont =
move(o,a,b),has(balloon)t = c,has(balloon)t+1 = c |c is an object}.

With a St-CSP formulation, however, a variable for each time point is no longer
needed. Only one St-CSP variable is required for each state variable, and another St-
CSP variable for the action stream as St-CSP variables inherently span all time points.
Precondition and effect constraints do not need to be specified per time point either.
Observe that implication can be specified by inequality of pseudo-Boolean streams.
Hence the precondition constraints (actiont = move(o,a,b))⇒ (at(o)t−1 = a)
can be specified in an St-CSP as a single constraint next (action eq move(o, a, b))
<= at(o) eq a. It is a coincidence that the inequality appears typographically in the
reverse direction of the implication symbol.

Subsequently, to ensure that the goal is achieved within t time points, a goal con-
straint is added: first next next next ... next goal == 1 where there are
t next operators and goal is the pseudo-Boolean stream expression denoting whether
the goal has been achieved or not.

With traditional CSPs, the size of the specification for a t step planning problem
scales linearly with t. With St-CSPs, the size stays constant. Therefore, the St-CSP
approach achieves representational simplicity that is not possible with the standard CSP
approach. Another advantage is that, even though there may be potentially infinitely

6 This calculation excludes the start state, i.e. the size of the original automaton is
(|Σ|+n−1

n

)
×

(|S| − 1) + 1 where |S| is the size of our automaton.

many solutions to the St-CSP, the solution set can be represented by a finite description,
namely the solution automaton.

Example 2. The following is a simple example demonstrating the modelling technique.
Suppose there is a unique, physical document to be circulated to n individuals. Only
one individual may hold the document at any single time point. We use the state vari-
ables seen(i) to denote whether individual i has seen the document yet. The action
giveTo(i) has no preconditions and the effect that seen(i) becomes true (or 1).
Using the formalism above, we get the simple St-CSP in Fig. 10. In this example, we
do not specify the length of the plan.

Stream goal with alphabet [0, 1]
Stream giveTo with alphabet [0, n− 1]
Streams seen0, . . . , seenn−1 with alphabet [0, 1]

Constraints:
For each i, first goal = 0
first seeni == 0 goal >= (seen0 and . . . and seenn−1)
next seeni >= seeni or (giveTo eq i) next goal >= goal;

Fig. 10: Document Circulation Planning St-CSP

We can also use the first operator to specify initial conditions. For example, it can
be the case that the first individual who gets the document must be one of senior rank,
which is defined by the individual having a number smaller than (n−1)/2. We introduce
a constraint first giveTo < (n − 1)/2. Initial conditions produce constraints that
only involve the first time point. When an initial condition is not strict, such as the one
above, the streams with first operators can take multiple values. In this case, our
improvement applies again, resulting in a smaller solution automaton and faster search.
This shows that our new implementation has relevance to planning problems as well.

6 Experimental Results

We compare our implementation with the original implementation [8, 11] using both the
runtime and the size of the solution automaton as metrics. Experiments are conducted
on an Intel Core i7 (4 × 2.2GHz) machine with 16GB RAM. Both solvers are set to
timeout in 1 hour. A “-” in the results table means the solver failed to solve the test
case within the time limit. We also highlight the best results in bold per test case in the
tables. Note that, our implementation also includes improvements achieved by using
better data structures than the original.

6.1 Juggling Patterns

Siu et al. [8, 11] give juggling patterns generation as an application of stream constraint
solving. The St-CSP model describes the possible patterns of juggling moves obeying
physical laws, parametrised by the number b of balls being juggled and the maximum

number f of upward force units that can be applied to the balls. For physical reasons,
b ≤ f . This problem has variable symmetries. The test cases therefore contain symme-
try breaking constraints, and can demonstrate the efficiency of our improvement.

Table 1 gives the experimental results. Our implementation performs much better
than the original solver in both metrics. The reduction in time can be as much as 96%
for the case (b = 4, f = 6), which also achieves a 90% reduction in automaton size.

Table 1: Results for the Juggling Test Cases

Original New
Test Case Time (s) # of States Time (s) # of States
(b=4, f=4) 0.00 5 0.00 5
(b=4, f=5) 2.10 481 0.12 121
(b=4, f=6) 36.28 3601 1.27 361
(b=5, f=5) 0.10 6 0.01 6
(b=5, f=6) 238.41 3601 11.33 721
(b=6, f=6) 2.10 7 0.23 7

6.2 Document Circulation Planning Problem

We use the document circulation example in Sect. 5.2 as a class of test cases. The
initial condition described is also included in order to demonstrate our improvement.
The number n of individuals are varied to generate multiple test cases.

Table 2 gives the experimental results. It shows a significant reduction in both the
solving times and the sizes of the solution automata in all test cases. The reduction in
search time is at least 64% when n = 10 and can be as much as 97% when n = 13.
As for the sizes of the solution automata, the reduction is at least 53% when n = 10
and can achieve 67% when n = 13. The results for n = 14 are incomparable since the
original implementation [8, 11] failed to solve the test case within 1 hour.

Table 2: Results for the Document Circulation Test Cases

Original Implementation New Implementation
Test Case Time (s) # of States Time (s) # of States
n = 10 5.07 4093 1.81 1920
n = 11 24.23 10236 4.57 3968
n = 12 102.43 20476 11.50 7936
n = 13 1132.53 49147 28.38 16128
n = 14 - - 66.59 32256

7 Concluding Remarks

Our contributions in this paper are four-fold. First, we present a novel application of
St-CSPs in real-time PID control. We believe this is the first application of CSPs in
real-time control on real hardware. The technique was applied to two different pieces

of hardware and achieved stable performance as demonstrated in our video recordings.
Second, we propose an improvement on the solving technique, which can lead to orders
of magnitude reduction in both the search time and the size of the solution automaton.
Third, we identify symmetry breaking and the specification of initial conditions in se-
quential planning problems as good uses of our improvement. Last but not least, we
provide empirical evidence of the proposed improvement. All these takes us one step
closer to deploying infinite stream constraint programming in practice.

There is ample room for future work. Here are a few possibilities. We can investi-
gate the relationships among model checking [3], µ-calculus [3] and St-CSPs, as they
are all related to Büchi automata. We can also extend the constraint language with more
temporal operators, for example asa (as soon as), whenever and upon from the
Lucid language [12] to increase our framework’s expressiveness. In addition, the link
between standard CSPs and St-CSPs can be explored. Standard CSP solving techniques
may also help with solving St-CSPs.

Acknowledgements We are grateful to the kind comments and suggestions by the
anonymous referees. We thank Simon Wong for building the self-balancing tray and
inverted pendulum used for our demonstrations, and Kin-Hong Wong for his help with
PID control and robotics. Last but not least, the second author is indebted to Bill Wadge
for teaching him dataflow programming and Lucid 25 years ago.

References
1. Bentley, J.: Programming Pearls. Addison-Wesley (2000)
2. Büchi, J.: On a decision method in restricted second order arithmetic. In: Mac Lane, S.,

Siefkes, D. (eds.) The Collected Works of J. Richard Büchi, pp. 425–435. Springer New
York (1990)

3. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge, MA,
USA (1999)

4. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Constraint symmetry and
solution symmetry. In: Proc. AAAI’06. pp. 1589–1592 (2006)

5. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global constraints for lexico-
graphic orderings. In: Proc. CP’02. pp. 93–108 (2002)

6. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kauf-
mann Publishers Inc. (2004)

7. Harvey, W.: Symmetry breaking and the social golfer problem. In: Proc. SymCon’01 (2001)
8. Lallouet, A., Law, Y.C., Lee, J.H.M., Siu, C.F.K.: Constraint programming on infinite data

streams. In: Proc. IJCAI’11. pp. 597–604 (2011)
9. Law, Y.C., Lee, J.H.M.: Symmetry breaking constraints for value symmetries in constraint

satisfaction. CONSTRAINTS 11(2-3), 221–267 (2006)
10. Minorsky, N.: Directional stability of automatically steered bodies. Journal of the American

Society for Naval Engineers 34(2), 280–309 (1922)
11. Siu, C.F.K.: Constraint Programming on Infinite Data Streams. Ph.D. thesis, Department of

Computer Science and Engineering, The Chinese University of Hong Kong (2012)
12. Wadge, W.W., Ashcroft, E.A.: LUCID, the Dataflow Programming Language. Academic

Press Professional, Inc. (1985)
13. Winskel, G.: The Formal Semantics of Programming Languages : An Introduction. MIT

Press, Cambridge, MA, USA (1993)

