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Abstract

Lee and Leung make practical the consistency enforcement ofglobal cost func-
tions in Weighted Constraint Satisfaction Problems (WCSPs). The main idea of
their approach lies in the derivation of polynomial time algorithms for the com-
putation of the minimum cost of global cost functions. In this paper, we inves-
tigate how soft arc consistency can also be applied on globalcost functions with
no known efficient minimum cost computation algorithms. We proposepolytime
linear projection-safe (PLPS)cost functions, which have a polynomial size integer
linear formulation and can maintain this good property across projection/extension
operations. We observe that the minimum of the linear relaxation gives a good ap-
proximation to the minimum of the integer formulation. Thisis used as the basis
for the enforcement ofrelaxed formsof existing soft arc consistencies. By using
the linear formulations, we can easily enforce conjunctions of overlapping PLPS,
which give stronger pruning power. We further proposepolytime integral linear
projection-safe (PILPS)cost functions, which are PLPS cost functions with guar-
anteed integral solutions to the linear relaxation. We prove theorems to compare
the consistency strengths among PLPS, PILPS and their conjunctions. Extensive
experimentations are conducted to compare our proposed algorithms against state
of the art global cost functions consistency enforcement algorithms and integer
programming. Empirical results agree with our theoreticalpredictions, and con-
firm orders of magnitude improvement in terms of pruning and runtime by our
proposals.

1 Introduction

Weighted Constraint Satisfaction Problems (WCSPs) [46] isa soft constraint frame-
work for modeling over-constrained problems and those withpreferences. It provides
a general model for different applications, such asresource allocation[12], combi-
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natorial auctions, electronic markets[45], bioinformatics[44], probabilistic reason-
ing [37], planning[17], protein design[4], crop allocation problem[2], etc.

A WCSP consists of a finite set of variables, a finite domain of possible values for
each variable and a conjunction of cost functions. A cost function returns a cost for
each tuple. Each variable assignment is associated with a cost. The costs could be used
to represent preferences to the variable assignments.

Solving a WCSP is to find an assignment to the variables with the minimum cost.
Such an assignment often represents the most preferred or the least violated situa-
tion. The basic solution technique for WCSPs is branch-and-bound search augmented
with various forms of consistencies, such as NC* [24], AC* [24], FDAC* [25], and
EDAC* [20]. These consistency techniques retrieve hidden information from cost
functions by transporting costs and remove infeasible values from variable domains
to prune the search space.

A good library of global cost functions is essential for us tomodel complex real-
life problems in WCSPs. A global cost function often has higharities but also a special
semantics, which allows for the design of tailor-made and efficient algorithms to en-
force consistencies. Lee and Leung [30, 28] suggestprojection safety, which is based
on three requirements for consistencies to be practically enforced on global cost func-
tions. First, computation of the minimum must be efficient. Second, projections and
extensions on the cost functions can be performed efficiently. Third, projections and
extensions on the cost functions will not destroy the first two efficiency requirements.
Lee and Leung [30, 28] further demonstrate that flow-based global cost functions [48]
satisfy the first two requirements and give instances that are flow-based projection-
safe. In addition, Leeet al. [31] show that another class of cost functions, calledpoly-
nomially decomposablecost functions, can satisfy these three requirements and give
instances of cost functions which are polynomially decomposable.

Our goal is to introduce more practical global cost functions into the existing cat-
alog. Many global cost functions are useful, but either their minimum computations
are NP-hard or no polynomial time algorithms for computing their minimum costs
have been discovered yet. An example is the soft variants of the DISJUNCTIVE con-
straint [21], which schedule jobs without overlapping in a non-preemptive scheduling
problem. Known algorithms for computing their minimum costare exponential.

We first show that the efficient minimum computations of global cost functions de-
pend on the efficient enforcement ofgeneralized arc consistency (GAC)[11] of their
hard constraint counterparts. There are previous results on the NP-hardness of enforc-
ing GAC on several global constraints, which immediately lead to the same results for
the minimum computation of their soft variants. It is natural to ask whether there are
methods to still use such cost functions efficiently in different ways in WCSPs. We
address this problem forcost functions which can be modeled as integer linear pro-
grams with relaxed consistencies. By solving the integer linear programs with linear
relaxation, approximations of their minima are obtained and used in the enforcement
of the relaxed consistencies. Such consistencies can be enforced efficiently by linear
programming algorithms due to their excellent average casebehavior. We call this class
of cost functionspolytime linear projection-safe (PLPS)1 cost functions.

1Formerly “polynomially linear projection-safe” [33].
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We also consider the conjunctions of PLPS cost functions since the integer linear
programming formulations of PLPS cost functions allow themto be conjoined easily.
We present empirical results to demonstrate the benefits of propagating on conjunctions
in terms of both runtime and pruning in general.

We introduce and give sufficient conditions for a special subclass of PLPS cost
functions, namelypolytime integral linear projection-safe (PILPS)2 cost functions.
Our results show that propagating on individual PILPS cost functions using the ex-
act (or relaxed since they are the same) consistencies is weaker than propagating on
the conjunction of all these PILPS cost functions using the relaxed versions of the con-
sistencies. These results give exact characterization on the strength of the relaxed and
exact consistencies on conjunctions of PILPS cost functions as compared against the
corresponding exact consistencies on individual PILPS cost functions.

We also give experiments on various benchmarks to show the efficiency of our
approaches. We compare soft instances of the car sequencingproblem, examination
timetabling problems, and fair scheduling with different modelings. Empirical results
of our experiments agree with our theoretical prediction: compared with enforcing
exact consistencies on individual cost functions, enforcing relaxed consistencies on
conjoined cost functions gives orders of magnitude improvements, both in runtime and
search space reduction. The rest of the paper is organized asfollows. Section 2 pro-
vides backgrounds and necessary definitions for the rest of the paper. Section 3 gives
our problem statements. We mainly focus on cost functions whose minimum computa-
tion has no known polynomial time algorithm (yet). Section 4definespolytime linear
projection-safe (PLPS)cost functions and Section 5 gives a list of relaxed consisten-
cies. PLPS cost functions can be modeled as integer linear programs. A good lower
bound of an integer linear program’s minimum can be computedusing the program’s
linear relaxation. Such a lower bound can be used to define a weaker but more efficient
form of (approximated) consistency notions. Section 6 discusses the conjunctions of
PLPS cost functions, and gives theoretical and empirical results showing that propa-
gating the conjoined cost functions is beneficial. Section 7definespolytime integral
linear projection-safe (PILPS)cost functions as a special subclass of PLPS cost func-
tions. Section 8 shows that propagating on individual PILPScost functions using the
exact consistencies is weaker than propagating on the conjunction of all these PILPS
cost functions using the relaxed versions of the consistencies. Section 9 shows by
experiments that our approach give significant improvements on solving real-life prob-
lems. Section 10 gives related work, whereas Section 11 summarizes our work and
gives possible directions for future works.

This paper combines and extends the work of Leeet al. [33, 32].

2 Background

We give the preliminaries on weighted constraint satisfaction problems (WCSPs), global
cost functions, and integer linear programs.

2Formerly “polynomially integral linear projection-safe”[32].
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2.1 Weighted Constraint Satisfaction Problems

Weighted constraint satisfactionis a special subclass of valued constraint satisfac-
tion [46] based on a cost valuation structureV (k) = ([0 . . . k],⊕,≤). The structure
V (k) contains a set of integers[0, . . . , k], wherek > 0, with standard integer ordering
≤. Addition⊕ is defined bya⊕ b = min(k, a+ b), while subtraction⊖ is defined for
anya andb, wherea ≥ b, by:

a⊖ b =

{

a− b, if a 6= k;
k, otherwise

Definition 2.1 [46] A Weighted Constraint Satisfaction Problem (WCSP)is a tuple
(X , D, C, k), where:

• X = {x1, x2, . . . , xn} is a set ofvariables;
• D(xi) ∈ D is the finitedomainof values for each variablexi ∈ X , only one

value of which can be assigned toxi;
• C is a set ofcost functionsWS ∈ C with scopeS = {xs1 , xs2 , . . . , xsn} ⊆ X

that map a tupleℓ ∈ L(S), whereL(S) = D(xs1)× · · · ×D(xsn), to a cost in
V (k).

Without loss of generality, we assumeC = {W∅} ∪ {Wi |xi ∈ X} ∪ C+. W∅ is
the constant nullary cost function, representing the lowerbound of the WCSP.Wi is a
unary cost function associated with variablexi ∈ X , returning theunary costfor each
valuev ∈ D(xi). C+ is a set of cost functions with scopes of two or more variables.
For simplicity, we denote the minimum of a cost functionWS asmin{WS}.

An assignment on a set of variables can be represented by a tuple ℓ. We denoteℓ[xi]
to be the value assigned toxi, andℓ[S] to be the tuple formed from the assignment on
variables in the setS ⊆ X .

Definition 2.2 Given a WCSP(X ,D, C, k), we define thecostof a tupleℓ ∈ L(X ) as

cost(ℓ) =W∅ ⊕
⊕

xi∈X

Wi(ℓ[xi])⊕
⊕

WS∈C+

WS(ℓ[S])

A tupleℓ is feasibleif cost(ℓ) < k. A tupleℓ is solutionof the WCSP if its cost is
minimum among all the feasible tuples.

WCSPs are typically solved with basic branch-and-bound search augmented with
different consistency techniques, which remove infeasible values from domains while
preserving the equivalence of the problem,i.e. the cost of the solution is unchanged.

Definition 2.3 A projectionof costα, whereα ≤ min{WS(ℓ) | ℓ[xi] = v ∧ ℓ ∈
L(S)}, fromWS toWi with respect tov ∈ D(xi), is a transformation of(WS ,Wi) to
(W ′

S ,W
′
i ) with respect to a valuev ∈ D(xi) and a costα, such that:

W ′
i (u) =

{

Wi(u)⊕ α if u = v,
Wi(u) otherwise.

W ′
S(ℓ) =

{

WS(ℓ)⊖ α if ℓ[xi] = v,
WS(ℓ) otherwise.
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Anextensionof costα , whereα ≤Wi(v), fromWi toWS with respect tov ∈ D(xi),
is a transformation of(WS ,Wi) to (W ′′

S ,W
′′
i ) with respect to a valuev ∈ D(xi) and

a costα, such that:

W ′′
i (u) =

{

Wi(u)⊖ α if u = v,
Wi(u) otherwise.

W ′′
S (ℓ) =

{

WS(ℓ)⊕ α if ℓ[xi] = v,
WS(ℓ) otherwise.

Different consistency notions have been defined for WCSPs including NC* [24],
(G)AC* [24, 18], FD(G)AC* [25, 30], and (weak) ED(G)AC* [20,30].

Definition 2.4 [24] Suppose we are given a WCSPP = (X ,D, C, k).

• A variablexi ∈ X is NC* iff:

– W∅ ⊕Wi(v) < k for all valuesv ∈ D(xi), and;
– there exists a valuev ∈ D(xi) such thatWi(v) = 0.

• A WCSP is NC* iff all its variables are NC*.

NC* [24] increasesW∅ by projecting costs from unary cost functions and removes
infeasible values. It helps the branch and bound search to detect unsatisfiability by
checking if an empty domain exists orW∅ reaches the upper boundk.

The procedureenforceNC*() in Algorithm 1 enforces NC* for a WCSP
(X ,D, C, k) [26]. The algorithm first projects cost from each variable. Then
it removes infeasible values according to the lower boundW∅. The procedure
unaryProject() projects a suitable cost fromWi toW∅ to produce a unary sup-
port, while the procedurepruneVal() removes the infeasible values which are not
NC*.

ProcedureenforceNC*()1

foreachxi ∈ X do unaryProject(xi);2

foreachxi ∈ X do pruneVal(xi);3

4

ProcedureunaryProject(xi)5

α := min{Wi};6

W∅ :=W∅ ⊕ α;7

foreachv ∈ D(xi) doWi(v) :=Wi(v)⊖ α;8

9

ProcedurepruneVal(xi):Boolean10

foreachv ∈ D(xi) s.t.Wi(v)⊕W∅ = k do11

D(xi) := D(xi)\{v};12

13

Algorithm 1 : Enforcing NC* for a WCSP

The definition of GAC* [18, 28, 30] involves the minimum of cost functions.
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Definition 2.5 [18, 28, 30] Suppose we are given a WCSPP = (X ,D, C, k), a cost
functionWS ∈ C+, and a variablexi ∈ S.

• A variablexi ∈ S is GAC* with respect toWS iff

– xi is NC*, and;
– for each valuev ∈ D(xi),

min{WS(ℓ) | ℓ ∈ L(S) ∧ ℓ[xi] = v} = 0

• A WCSP isGAC* iff all variables are GAC* with respect to all cost functionsin
{WS |WS ∈ C+ ∧ xi ∈ S}.

The definition is slightly different from the one given by Cooperet al. [15], which also
requires for every tupleℓ ∈ L(S),WS(ℓ) = k if W∅⊕

⊕

xi∈S Wi(ℓ[xi])⊕WS(ℓ) = k.
Based on NC* [24] and GAC* [18, 28, 30], FDGAC* [28, 30] and weak EDGAC* [29,

30] are defined. Enforcing FDGAC* [28, 30] and weak EDGAC* [29, 30] is more
complex, but they still rely on minimum computation.

2.2 Global Constraints and Global Cost Functions

A global constraint[6, 5, 43], denoted by GC(S,A1, . . . , Ak), is a family of hard con-
straints with precise semantics, parametrized by the variable scopeS and other possible
extra argumentsA1, . . . , Ak. Usually, global constraints cannot be propagated effi-
ciently using generic consistency algorithms due to their high arity scope. Dedicated
and efficient propagation algorithms are designed by exploiting their special structures.
Examples of global constraints include ALL DIFFERENT [27], GCC [41], SAME [7],
AMONG[5], and REGULAR [38] constraints.

Global cost functions[50, 30] are soft variants of global constraints. A global
cost function, denoted by WGCµ(S,A1, . . . , Ak), is a family of cost functions in
WCSP which returns the results computed by the violation measureµ associated with
the global constraint GC(S,A1, . . . , Ak). The cost function WGCµ returns 0 iff a
given tupleℓ ∈ L(S) satisfies GC. Ifℓ violates GC, WGCµ returnsµ(ℓ) using
the violation measure to reflect how much the GC is violated. Similar to global con-
straints, efficient algorithms for consistency enforcement have been designed for global
cost functions, based on flow networks [30, 29] and dynamic programming [31]. For
examples, the cost functions WALL DIFFERENTvar and W ALL DIFFERENTdec [28,
30] are derived from two different violation measures, namely variable-based and
decomposition-based [39, 48] measures, of ALL DIFFERENTrespectively.

In the rest of the paper, we denote a global cost function byWS , whereS is the
scope of the cost function.

2.3 Integer Linear Programming

Integer linear programs [49] is a special case of linear programs [19] where all vari-
ables are also required to be integral. Without loss of generality, we consider only the
minimization of the integer linear programs.
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Definition 2.6 An integer linear programI is a mathematical optimization problem
defined as follows:

min cTx
Ax ≤ b

x ∈ Zn

The vectorx = [x1, x2, . . . , xn]
T is a vector ofvariables, which take values from the set

of integersZ based on a set of inequalities. The inequalities are defined byA ∈ Qm·n,
b ∈ Qm, with n being the number of variables,m the number of problem constraints,
andQ being the set of rational numbers. The expressioncTx, wherec ∈ Qn, is the
objective function ofI to be minimized.

For simplicity, we overload the definition of a tupleγ to represent anassignment
that is taken byx. We define solutions of the integer linear program as follows.

Definition 2.7 Suppose we are given an integer linear programI as in Definition 2.6.
A feasible solutionis a tupleγ that satisfies the inequalitiesAx ≤ b. An optimal
feasible solutionis a feasible solutionγopt which minimizes the objective functioncTx.
We also define theminimumof I, written asmin(I), to be the minimum value of the
objective function attained by an optimal feasible solution.

Solving an integer linear program is NP-hard in general [49]. One key technique to
approximate the solution of an integer linear program islinear relaxation[49].

Definition 2.8 [49] A linear relaxationof an integer linear program is the linear pro-
gram where all the variables are no longer required to be integral.

The linear relaxation of an integer linear programI removes the integrality re-
quirement, enlarges the set of feasible solutions, and provides a lower bound on the
minimum ofI. Since a linear program without integrality constraints ispolynomially
solvable [19], linear relaxation provides polynomial-time approximation for an integer
linear program. Under certain conditions, solving linear relaxation can also give the
exact solution of an integer linear program [49].

3 NP-Hard Global Cost Functions

In this paper, we say that a global cost function isNP-hard iff it is NP-hard to com-
pute its minimum cost. Many useful global cost functions areNP-hard. In particular,
a special class of such global cost functions is derived fromglobal constraints, the
generalized arc consistency(GAC) [11] of which is NP-hard to maintain.

Definition 3.1 [11] Given a CSPP = (X ,D, C), we say that a constraintCS ∈ C is
GAC iff for everyxi ∈ S and for every valuevi ∈ D(xi), there exists a tupleℓ ∈ L(S)
such thatℓ[xi] = vi andℓ satisfiesCS .

Lemma 3.2 Suppose we are given a constraintCS for which the following problem of
enforcing GAC is NP-hard:
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ISITGAC(CS)

Instance. A constraintCS , the variablesxi ∈ S, and the domainsD(xi) for
everyxi ∈ S

Question. For everyxi ∈ S and for every valuevi ∈ D(xi), does there exist a
tupleℓ ∈ L(S) such thatℓ[xi] = vi andℓ satisfiesCS?

Define a cost functionWS to be the soft variant ofCS . The following problem of
computing the minimum cost ofWS

ISOPTIMAL (WS , p)

Instance. A global cost functionWS , a fixed integerp, the variablesxi ∈ S,
and the domainsD(xi) for everyxi ∈ S

Question. Does there exist a tupleℓ ∈ L(S) such thatWS(ℓ) ≤ p?

is NP-hard.

Proof Solving ISITGAC(CS) is equivalent to solving ISOPTIMAL (WS , 0) k times,
wherek = O(|S|dmax) anddmax = maxxi∈S{|D(xi)|}, with D(xi) = {vi} for
each variablexi ∈ S and each valuevi ∈ D(xi). If I SOPTIMAL (WS , 0) is in the
complexity classP , so is ISITGAC(CS). The result follows by contradiction. �

We give an example using SLIDING SUM [35]. The global constraint SLIDING SUM(S,Π)
is defined based on a set ofwindowspi ∈ Π. A windowpi is a tuple〈li, ui, Si〉, which
places a restriction on the sum of a set of variables inSi ⊆ S not less than a lower
boundli and not greater than an upper boundui.

Definition 3.3 [9] The constraintSUM(S, l, u), accepts a tupleℓ ∈ L(S) iff

l ≤
⊕

xi∈S

ℓ[xi] ≤ u

Definition 3.4 [35] The constraintSLIDING SUM(S,Π), whereΠ = {pi | i =
1 . . .m} andpi = 〈li, ui, Si〉, accepts a tupleℓ ∈ L(S) iff for everypi ∈ Π,

li ≤
⊕

xj∈Si

ℓ[xj ] ≤ ui

Soft variants of SLIDING SUM can be derived by the fact that SLIDING SUM is a
conjunction of multiple SUM constraints [9].

Using the decomposition-based violation measure, we can define
W SLIDING SUMdec(S) by summing up the violation of each SUM constraints
measured by value-based violation measure.

Definition 3.5 The cost functionW SUMval(S, l, u) returns the cost of a tupleℓ ∈
L(S) as:

W SUMval(S, l, u)(ℓ) = max(
⊕

xi∈S

ℓ[xi]− u, l −
⊕

xi∈S

ℓ[xi], 0)
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Definition 3.6 The cost functionW SLIDING SUMdec(S,Π) returns the cost of a tuple
ℓ ∈ L(S) as:

W SLIDING SUMdec(S,Π)(ℓ) =

m
⊕

i=1

W SUMval(Si, li, ui)(ℓ[Si])

Note that the definitions are similar to those given by Bessi`ereet al. [35].
We show that WSLIDING SUMdec is NP-hard by Lemma 3.2.

Theorem 3.7 Computing the minimum ofW SLIDING SUMdec is NP-hard.

Proof Enforcing GAC on a SUM constraint is NP-hard [9]. As the SLIDING SUM con-
straint can be represented by a conjunction of multiple SUM, enforcing GAC on SLID -
INGSUM is NP-hard. Since WSLIDING SUMdec is derived from the SLIDING SUM

constraint, by Lemma 3.2, the result follows. �

In addition to NP-hard cost functions, there are also cost functions which have
no known polynomial time algorithms for their minimum cost computation yet. One
example is the WDISJUNCTIVEval cost function derived from the DISJUNCTIVEcon-
straint [21]. To handle these cost functions in WCSPs,Polytime Linear Projection-
Safe(PLPS) cost functions are proposed.

4 Polytime Linear Projection-Safety

Koster [23] suggests a method to formulate global cost functions into integer linear
programs by treating them as table cost functions and modeling the cost of each tuple
by an inequality. However, the number of linear inequalities used can be exponential
in the size of the scope of the cost function, which is undesirable if we are looking for
efficient ways to solve them. We limit the size of alinear cost functionand give the
definition of apolytime linear cost function.

Definition 4.1 A linear cost functionWS is a cost function which can be represented
by an integer linear programIWS

such thatmin{WS} = min(IWS
).

A Polytime linearcost functionWS is a linear cost function with the corresponding
integer linear programIWS

, which has a polynomial number of inequalities and a
polynomial number of variables with respect to|S| andmaxxi∈S{|D(xi)|}.

One example of polytime linear cost functions is WSLIDING SUMdec.

Example 4.2 TheW SLIDING SUMdec cost function is polytime linear. It can be ex-
pressed as an integer linear programIWS

defined as:

min
∑

pj∈Π(Lj + Uj) s.t.
lj ≤

∑

xh∈Sj

∑

v∈D(h) v · cxh,v − Lj + Uj ≤ uj ∀pj ∈ Π
∑

v∈D(xi)
cxi,v = 1 ∀i = 1 . . . n

Lj ≥ 0, Uj ≥ 0 ∀pj ∈ Π
0 ≤ cxi,v ≤ 1 ∀xi ∈ S, v ∈ D(xi)
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Definedmax = maxxi∈S{|D(xi)|}. The integer linear programIWS
usesdmax · |S|+

2 · |Π| variables and3 · |Π|+ dmax · (|S|+ 1) inequalities.

However, enforcing consistencies in WCSPs requires projections and extensions.
The cost function may not be polytime linear after such operations. Lee and Leung [30]
propose the notion ofT projection-safety which is a requirement for a cost function
to preserve the propertyT after projections and extensions. We further study the case
whenT is polynomial linearity.

Definition 4.3 A Polytime Linear Projection-Safe (PLPS)cost functionWS is a poly-
time linear cost function such that for allW ′

S derived by a series of projections from
and/or extensions toWS ,W ′

S is polytime linear.

In the following, we first define a set of conditionsPL, and show thatPL is suffi-
cient for polytime linear projection-safety.

Definition 4.4 A cost functionWS satisfiesPL if:

1. WS is polytime linear with the corresponding integer linear programIWS
,

2. there exists a surjective functionΛ′ mapping each feasible solutionγIWS
of IWS

to each tupleℓ ∈ L(S), and;
3. for each valuev ∈ D(xi) in each variablexi ∈ S, there exists an injection

mapping an assignment{xi 7→ v} to a 0-1 variablecxi,v in IWS
such that

if ℓ = Λ′(γIWS
) for a feasible solutionγIWS

in IWS
and a tupleℓ ∈ L(S),

wheneverℓ[xi] = v, γIWS
[cxi,v] = 1; wheneverℓ[xi] 6= v, γIWS

[cxi,v] = 0.

Lemma 4.5 Suppose we are givenWS satisfyingPL, i ∈ S andv ∈ D(i), and that
W ′

S is obtained by projectingα fromWS toWi(v), or extendingα fromWi(v) toWS .
The resultant cost functionW ′

S satisfiesPL.

Proof We only prove the part for projection, while the part for extension is similar. As-
sumeWS is a PLPS cost function andIWS

is the corresponding integer linear program
of WS . We first consider the part concerning projection,i.e.W ′

S is defined as:

W ′
S(ℓ) =

{

WS(ℓ)⊖ α if ℓ[xi] = v
WS(ℓ) otherwise

We show thatW ′
S is also a polytime linear cost function (condition 1). Afterpro-

jection, we can construct a new integer linear programIW ′

S
from IWS

by adding an
additional term−αci,v to the objective function ofIWS

. The resulting integer linear
programIW ′

S
corresponds toW ′

S , since:

min(IW ′

S
) = min(IWS

)⊖ αci,v
= min{WS} ⊖ αci,v

=

{

min{WS} ⊖ α if ci,v = 1
min{WS} if ci,v = 0

= min{W ′
S}.
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Thus,W ′
S is linear with the corresponding integer linear programIW ′

S
and satisfies

condition 1. Moreover, sinceIW ′

S
has the same set of variables and linear inequalities

asIWS
has,W ′

S also satisfies conditions 2 and 3. The result follows. �

Theorem 4.6 If a global cost functionWS satisfiesPL, it is a PLPS cost function.

Proof Initially, WS satisfiesPL. From Definition 4.4,WS is polytime linear. Assume
W ′

S is obtained from a series of projection and extension operations. By Lemma 4.5,
W ′

S still satisfiesPL and thusW ′
S remains polytime linear. The result follows. �

Theorem 4.6 gives sufficient conditions for a global cost function to be PLPS. In
addition, the proof of Lemma 4.5 demonstrates a general procedure for performing
projections and extensions on PLPS cost functions.

As an example, we show that the WSLIDING SUMdec cost function is a PLPS cost
function.

Theorem 4.7 The cost functionW SLIDING SUMdec is PLPS.

Proof By Theorem 4.2, the WSLIDING SUMdec cost function is polytime linear with
the corresponding integer linear programIWS

(conditions 1 and 2). For condition 3,
we observe inIWS

that, if xi = d, cxi,d = 1; otherwisecxi,d = 0. By Theorem 4.6,
the W SLIDING SUMdec cost function is PLPS. �

Consider the following WCSPP = (X ,D, {WS}, k):

• X = {x1, x2, x3};
• D(x1) = D(x2) = D(x3) = {1, 2, 3};
• WS = W SLIDING SUMdec({x1, x2, x3}, {p1, p2}), wherep1 = 〈3, 4, {x1, x2}〉

andp2 = 〈4, 5, {x2, x3}〉

The corresponding integer linear program ofWS is:

min L1 + U1 + L2 + U2 s.t.
3 ≤ cx1,1 + 2cx1,2 + 3cx1,3 + cx2,1 + 2cx2,2 + 3cx2,3 − L1 + U1 ≤ 4
4 ≤ cx2,1 + 2cx2,2 + 3cx2,3 + cx3,1 + 2cx3,2 + 3cx3,3 − L2 + U2 ≤ 5

cx1,1 + cx1,2 + cx1,3 = 1
cx2,1 + cx2,2 + cx2,3 = 1
cx3,1 + cx3,2 + cx3,3 = 1

L1 ≥ 0, U1 ≥ 0, L2 ≥ 0, U2 ≥ 0
0 ≤ cxi,d ≤ 1 ∀xi ∈ S, d ∈ D(xi)

Suppose a cost of 2 is projected fromWS to Wx1
with respect tox1 = 1, such that

WS becomesW ′
S . The corresponding integer linear program ofW ′

S can be constructed
from that ofWS by adding a term to its objective function as underlined below. The
other parts of the corresponding integer linear program ofW ′

S are the same as that

11



of WS and soW ′
S is also PLPS. The corresponding integer linear program ofW ′

S

becomes:

min L1 + U1 + L2 + U2−2cx1
s.t.

3 ≤ cx1,1 + 2cx1,2 + 3cx1,3 + cx2,1 + 2cx2,2 + 3cx2,3 − L1 + U1 ≤ 4
4 ≤ cx2,1 + 2cx2,2 + 3cx2,3 + cx3,1 + 2cx3,2 + 3cx3,3 − L2 + U2 ≤ 5

cx1,1 + cx1,2 + cx1,3 = 1
cx2,1 + cx2,2 + cx2,3 = 1
cx3,1 + cx3,2 + cx3,3 = 1

L1 ≥ 0, U1 ≥ 0, L2 ≥ 0, U2 ≥ 0
0 ≤ cxi,d ≤ 1 ∀xi ∈ S, d ∈ D(xi)

Solving integer linear programs is NP-hard in general, but linear relaxation allows
the minimum of the corresponding integer linear programs ofPLPS cost functions to
be approximated in polynomial time. Accordingly, relaxed consistency notions for
WCSPs can be defined. They are weaker but can be enforced more efficiently.

Readers are referred to the Appendix for more examples of PLPS cost functions.

5 Relaxed Consistency Notions

Given a PLPS cost functionWS and its corresponding integer linear programIWS
, we

definerelaxed min(IWS
) to be the minimum ofIWS

with linear relaxation. We have
the following theorem according to the properties of linearrelaxation.

Lemma 5.1 [49] Given an integer linear programIWS
, the following always holds:

relaxed min(IWS
) ≤ ⌈relaxed min(IWS

)⌉ ≤ min(IWS
)

The pair of⌈ ⌉ symbols represents the ceiling function, where⌈x⌉ gives the smallest
integer not less thanx.

Proof It is straightforward to see thatrelaxed min(IWS
) ≤ min(IWS

) with the prop-
erties of linear relaxation. On the other hand,min(IWS

) is defined as an integer in
WCSPs, and so the smallest integer not less thanrelaxed min(IWS

) must be smaller
than or equal tomin(IWS

). The result follows. �

The definition of relaxed consistencies is based on theapproximated minimumof cost
functions. Theapproximated minimumof a PLPS cost function is defined as follows.

Definition 5.2 Given a PLPS cost functionWS and its corresponding integer linear
programIWS

, we define theapproximated minimumofWS , written asapprox min{WS},
to be:

approx min{WS} = relaxed min(IWS
)

Suppose we are given a PLPS cost functionWS . By definition,min(IWS
) =

min{WS}. The next lemma is a re-statement of Lemma 5.1.

12



Lemma 5.3 Given a PLPS cost functionWS and its corresponding integer linear pro-
gramIWS

, we have the following inequalities:

approx min{WS} ≤ ⌈approx min{WS}⌉ ≤ min{WS}

The definition of approximated minimum leads to the definition of a relaxed version of
GAC* [18, 28, 30] calledrelaxed GAC*.

Definition 5.4 Suppose we are given a WCSPP = (X ,D, C, k), a cost functionWS ∈
C+ and a variablexi ∈ S.

• A variablexi ∈ S is relaxed GAC*with respect toWS iff:

– xi is NC*, and;
– for each valuevi ∈ D(xi),

approx min{WS(ℓ) | ℓ ∈ L(S) ∧ ℓ[xi] = vi} ≤ 0

• A WCSP isrelaxed GAC*iff all variables are relaxed GAC* with respect to all
cost functions in{WS | WS ∈ C+ ∧ xi ∈ S}.

Unlike GAC*, supporting tuples are not required in relaxed GAC* since we cannot
guarantee the existence of a tupleℓ′ such thatWS(ℓ

′) is equal to the approximated
minimum. We only ensure that the approximated minimum is always smaller than
or equal to the minimum costmin{WS(ℓ)}. On the other hand, suppose a costα =
min{WS(ℓ)} is projected from the cost functionWS(ℓ), wheremin{W ′

S(ℓ)} is greater
than0 after projectingα in enforcing GAC*, it is possible forrelaxed min(IW ′

S
(ℓ)) ≤

0. So relaxed GAC* allowsapprox minWS(ℓ) to be less than or equal to0.
To compare the strength of GAC* and relaxed GAC*, we adopt thefollowing defi-

nition from Lee and Leung [30].

Definition 5.5 [30] Given a problemP representable by two modelsφ(P ) andψ(P ),
we say that a consistencyΦ onφ(P ) is strictly strongerthan another consistencyΨ on
ψ(P ) iff ψ(P ) isΨ wheneverφ(P ) is Φ, but not vice versa.

By Lemma 5.3, we immediately have the following theorem.

Theorem 5.6 GAC* [18, 28, 30] is strictly stronger than relaxed GAC*.

The procedureenforceRelaxedGAC*() in Algorithm 2 enforces relaxed
GAC* for a WCSP(X ,D, C, k) and is a simple adaptation ofenforceGAC*() in
Algorithm 4 given by Lee and Leung [30]. The differences (compared to [30]) be-
tween the procedures of enforcing GAC* and relaxed GAC* are underlined.

The procedureenforceRelaxedGAC*() in Algorithm 2 is correct and must
terminate. Its complexity can be analyzed by abstracting the worst-case time com-
plexity of projectApproxMinCost() asfapproxMin, which mainly consists of
solving a linear program. The ellipsoid method can be used tosolve linear programs
which can be characterized by polynomial complexity. Usingan argument similar to
the proof of Larrosa and Schiex’s [26] Theorems 12 and 21, thecomplexity can be
stated as follows.
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ProcedureenforceRelaxedGAC*()1

Q := X ;2

while Q 6= ∅ do3

xj := pop(Q);4

flag := false;5

foreachWS s.t.{xj} ⊂ S do6

foreachxi ∈ S \ {xj} do7

flag := flag ∨ projectApproxMinCost(WS, xi);8

pruneVal(xi);9

if D(xi) is changedthenQ := Q∪ {xi};10

if flag then11

foreachxi ∈ X do12

pruneVal(xi);13

if D(xi) is changedthenQ := Q∪ {xi};14

15

Function projectApproxMinCost(WS, xi):Boolean16

flag := false;17

foreachv ∈ D(xi) do18

α := max(⌈approx min{WS(ℓ)|ℓ ∈ L(S) ∧ ℓ[xi] = v}⌉, 0);19

if Wi(v) = 0 ∧ α > 0 then flag := true;20

Wi(v) :=Wi(v)⊕ α;21

foreachℓ ∈ L(S) s.t. ℓ[xi] = v do WS(ℓ) :=WS(ℓ)⊖ α;22

unaryProject(xi);23

return flag;24

25

Algorithm 2 : Enforcing relaxed GAC* for a WCSP

Theorem 5.7 The procedureenforceRelaxedGAC*() must terminate and has a
time complexity ofO(r2edfapproxMin + n2d2), wherer is the maximum arity of all
cost functions,d is the maximum domain size,e = |WS | andn = |X |.

Proof The while loop at line 3 iterates at mostO(nd) times. A variable is pushed
into the queueQ only if the domain of a variable has changed at line 10 or line 14,
which happens at mostnd times. So, the procedure must terminate. We consider
the time complexity at each iteration. Line 8 executes at most O(r · |N(j)|) times,
whereN(j) is the set of cost functions restrictingxj . The overall time complexity is
O(r2edfapproxMin + n2d2) Thus, it must terminate. �

Corollary 5.8 The procedureenforceRelaxedGAC*() must terminate. The re-
sultant WCSP is relaxed GAC*, and equivalent to the originalWCSP.

Algorithm 2 can also transform any WCSP to an equivalent one which is relaxed
GAC*, the proof is similar to that of enforcing GAC* [30].
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Note thatapprox min{WS} does not always return an integer. The valueα′ =
max(⌈approx min{WS(ℓ)|ℓ ∈ L(S) ∧ ℓ[xi] = v}⌉, 0) is used instead. The correct-
ness of usinga′ in projections can be shown as follows.

We are given thatIWS
is an integer linear program corresponding to a PLPS cost

functionWS and there exists a costα = min{WS} to be projected in enforcing GAC*.
SupposeW ′′

S is the resultant cost function after projectingα′ = ⌈approx min{WS}⌉
fromWS , we have the following theorem.

Theorem 5.9 min{W ′′
S } ≥ 0.

Proof First of all,α = min{WS} = min(IWS
). Supposemin{W ′

S} is the resultant
cost function after projectingα fromWS in enforcing GAC*,min{W ′

S} ≥ 0. Solv-
ing IWS

by linear relaxation obtains an approximated minimumrelaxed min(IWS
) =

approx min{WS} to be projected. By Lemma 5.1,α′ = ⌈relaxed min(IWS
)⌉ ≤

min(IWS
) = α. Thus,min{W ′′

S } ≥ min{W ′
S} ≥ 0. The result follows. �

We can also define the relaxed version of FDGAC* [29, 30] and weak
EDGAC* [29, 30], calledrelaxed FDGAC*andrelaxed weak EDGAC*respectively.

Definition 5.10 Suppose we are given a WCSPP = (X ,D, C, k), and a cost function
WS ∈ C+ and a variablexi ∈ S.

• A variablexi ∈ S is relaxed DGAC*with respect toWS if:

– xi is NC*, and;
– for each valuevi ∈ D(xi),

approx min{WS(ℓ)⊕
⊕

xj∈S∧j>i

Wj(ℓ[xj ]) | ℓ ∈ L(S) ∧ ℓ[xi] = vi} ≤ 0

• A WCSP isrelaxed FDGAC*iff all variables are relaxed GAC* and relaxed
DGAC* with respect to all cost functions in{WS |WS ∈ C+ ∧ xi ∈ S}.

Similar to weak EDGAC* [29, 30], the definition of relaxed weak EDGAC* is based
oncost-providing partitions[29, 30].

Definition 5.11 [29, 30] Given a WCSPP = (X ,D, C, k), we define acost-providing
partitionBxi

for a variablexi ∈ X to be a set of sets{Bxi,WS
| xi ∈ S} such that:

• |Bxi
| is the number of cost functions whose scopes includexi;

• Bxi,WS
⊆ S;

• Bxi,WSj
∩Bxi,WSk

= ∅ for any two different constraintsWSk
,WSj

∈ C+, and;

•
⋃

Bxi,WS
∈Bxi

Bxi,WS
= (

⋃

WS∈C+∧xi∈S S) \ {xi}.

Definition 5.12 Suppose we are given a WCSPP = (X ,D, C, k), and a variable
xi ∈ S with the associated cost-providing partitionBxi

.

• A variablexi ∈ S is relaxed weak EGAC*if:
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– xi is NC*, and;
– there exists a valuevi ∈ D(xi) such that:

approx min{
⊕

xi∈S

WS(ℓ)⊕
⊕

xj∈Bxi,WS

Wj(ℓ[xj ])|ℓ ∈ L(S)∧ℓ[xi] = vi} ≤ 0

• A WCSPis relaxed weak EDGAC*iff it is relaxed FDGAC* and all variables
are relaxed weak EDGAC*.

By Lemma 5.3, we immediately have the following theorems.

Theorem 5.13 FDGAC* [29, 30] is strictly stronger than relaxed FDGAC*.

Theorem 5.14 Weak EDGAC* [29, 30] is strictly stronger than relaxed weak
EDGAC*.

The procedures of enforcing relaxed FDGAC* and relaxed weakEDGAC* are
similar to those of enforcing FDGAC* [28, 30] and weak EDGAC*[29, 30] respec-
tively. ThefindSupport() function in thefindFullSupport() function in al-
gorithm 5 from Lee and Leung [30] is replaced by theprojectApproxMinCost()
function, which is similar to that of enforcing relaxed GAC*.

6 Conjoining PLPS Cost Functions

If two constraints or cost functions share more than one variable, theyoverlap. In the
rest of the paper, we consider conjunctions of overlapping cost functions.

Definition 6.1 Given two cost functionsWS1
andWS2

, we defineWS1
⊕WS2

to be
their conjunction, i.e. for each tupleℓ ∈ L(S1 ∪ S2):

(WS1
⊕WS2

)(ℓ) =WS1
(ℓ[S1])⊕WS2

(ℓ[S2])

In general, enforcing a consistency on individual cost functions may not imply the same
consistency on their conjunction. An example is given by Bessièreet al. [10]: enforc-
ing GAC on two overlapping ALL DIFF [27] constraints does not imply GAC on their
conjunction. It is easy to check that a similar result also holds for cost functions. By
discovering extra pruning opportunities, propagating on conjunctions of cost functions
may reduce more search space than propagating on individualcost functions can.

This issue is especially important for two reasons. First, many global cost func-
tions can be decomposed into conjunctions of overlapping and simpler (global) cost
functions. Second, every PLPS cost function has an associated integer linear program.
PLPS cost functions can be conjoined together easily by combining their corresponding
integer linear programs in a straightforward manner.

Definition 6.2 Given two integer linear programsIWS1
andIWS2

, we defineIWS1
∧

IWS2
to be their combination by taking the union of their linear inequalities and adding

up their objective functions.
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We are demonstrating that it is worthwhile computationallyto propagate on conjunc-
tions of PLPS cost functions using relaxed consistencies.

The following theorem ensures that conjunctions of PLPS cost functions are PLPS.

Lemma 6.3 SupposeWS1
and WS2

are PLPS cost functions. The conjunction
Wconj ≡WS1

⊕WS2
is also PLPS.

Proof SupposeWS1
andWS2

have their corresponding integer linear programIWS1

andIWS2
respectively. The integer linear programIWconj

for Wconj can simply be
formed byIWconj

≡ IWS1
∧IWS2

. It is easy to check thatWconj satisfies the conditions
in Definition 4.4. �

An immediate question is whether a conjunction of PLPS cost functions always
gives a stronger bound than using the individual PLPS cost functions, given that the
same level of consistency is maintained.

Definition 6.4 Given a WCSPP = (X ,D, C, k), we define theconjoined WCSPPconj

to be a tuple(X ,D, Cconj , k), whereCconj = {Wconj} andWconj ≡
∧

WS∈C
WS with

the corresponding scopeSconj =
⋃

WS∈C
S.

We show that GAC*, FDGAC* and weak EDGAC* onPconj are strictly stronger
than their counterparts onP respectively by the following theorem.

Theorem 6.5 Supposeα-consistency is one of GAC*, FDGAC*, and weak EDGAC*.
Thenα-consistency onPconj is strictly stronger thanα-consistency onP .

Proof We prove the part for GAC*. The proofs for the other consistencies are similar.
AssumePconj is GAC*, butP is not GAC*. There exists a variablexi ∈ X with

a valuea ∈ D(xi) and a cost functionWS ∈ C in P such thatmin{WS(ℓ) | ℓ[xi] =
a ∧ ℓ ∈ L(S)} > 0. Therefore,

min{Wconj | ℓ[xi] = a ∧ ℓ ∈ L(Sconj)}
≥

⊕

WS∈C
min{WS(ℓ) | ℓ[xi] = a ∧ ℓ ∈ L(S)} > 0

So no simple support exists fora andxi cannot be GAC* with respect toWconj .
The converse is not true. A counter-example is the WALL DIFFvar(S) cost func-

tion [39] , which returns the minimum number of variable assignments inS that are
needed to be changed so thatS contains only distinct values.
Consider WS1

= W ALL DIFFvar{x1, x2, x3} and WS2
=

W ALL DIFFvar{x2, x3, x4}, whereD(x1) = {a, b},D(x2) = D(x3) = {a, b, c} and
D(x4) = {b, c}. It is easy to check thatWS1

andWS2
are GAC*, butWS1

⊕WS2
is

not since the minimum whenx1 = a is 1. The result follows. �

When exact consistencies are replaced by their relaxed versions, the result similar
to that of Theorem 6.5 does not hold unfortunately. We use an example to explain.
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ConsiderCPLPS = {WS1
,WS2

}, whereWS1
andWS2

are both PLPS. SupposePconj

is relaxed GAC*. For a givenxi ∈ S1 ∩ S2 anda ∈ D(xi):

0 ≥ approx min{Wconj | ℓ[xi] = a ∧ ℓ ∈ L(Sconj)} (1)

≥ approx min{WS1
(ℓ) | ℓ[xi] = a ∧ ℓ ∈ L(S1)} ⊕

approx min{WS2
(ℓ) | ℓ[xi] = a ∧ ℓ ∈ L(S2)} (2)

Since the approximated minimum can be negative, we cannot conclude from equation
(2) that bothWS1

andWS2
are relaxed GAC*. One can lead to positive approximated

minimum while another one leads to negative. However, this peculiar bad situation
does not happen often in practice and we will demonstrate that it is worthwhile to prop-
agate on conjunctions instead of individual cost functionsin the following experiment.
Additional experimental results can be found in Section 9.

In our experiments, the consistencies GAC*, FDGAC*, weak EDGAC*, and their
relaxed versions are implemented in Toulbar2 v0.9. IBM ILOGCPLEX Optimizer
12.2 is used as the (integer) linear programs solvers in Toulbar2.

Variables with smaller domains and values with lower unary costs are assigned first.
The experiments are conducted on an Intel Core2 Duo E7400 (2 x2.80GHz) machine
with 4GB RAM. In each benchmark, we use different parameter settings to construct
different instances and 10 random cases are generated with each parameter setting.

The average number of backtrack (bt) and the average runtimein seconds (time) for
solved cases are reported. The runtime includes the CPU timeused by both Toulbar2
and CPLEX. Next to the runtime, we also report separately in brackets the CPU time
used by CPLEX. The best result is highlighted in bold.

In this experiment, we use the Generalized Car Sequencing Problem (Generalizing
prob001 in CSPLib), which aims to find a sequence forn cars of different types to be
built. Each type of carsu ∈ U has a specific set of optionsIu ⊆ I to equip the car
with. To equip an optioni ∈ I on a specific type of carsu ∈ U , a costcu,i is required.
Each assembly line is allowed to spend a maximum ofmi cost on each optioni for
everysi cars in total.

We model this problem withn = {xj | j = 1, . . . , n} variables with domains
u. Each variablexj represents thejth car to be built in the sequence. A GCC con-
straint [41] is used to ensure that the correct number of carsof each type is assembled
according to the plan. The WSLIDING SUMdec cost functions, which are PLPS, are
used to ensure the restrictions for each assembly line. We further soften the problems
by assigning a random unary cost from 0 to 9 to each value in thedomain of each
variable, and replacing the hard global constraints with their soft variants. We assume
that there are preferences. For example, an assembly line may prefer the same type
of cars to be assembled consecutively. Such preferences canbe modeled by table cost
functions. We fix|I| = 5 andu = n/2 and use instances with differentn in our
experiments.

As each instance consists of (only) PLPS cost functions, we can compare 2 different
models respectively, which are using: (1) individual PLPS cost functions, and (2) a
single PLPS cost function formed by conjoining all PLPS costfunctions.

Results are shown in Table 1. First and foremost, applying relaxed consistencies on
the conjoined PLPS cost functions is substantially better than applying the correspond-
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Table 1: The generalized car sequencing problem using WSLIDING SUMdec

(1) Modeling with PLPS cost functions

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
10 805.7 135.78 (42.74) 7.4 2.37 (1.23) 6.9 1.94 (0.97)
12 * * 15.1 7.17 (3.84) 14.4 4.99 (2.49)
14 * * 34.7 69.42 (39.62) 29.0 41.85 (23.53)
16 * * * * * *
18 * * * * * *

(2) Modeling with conjoined PLPS cost functions

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
10 21.8 0.43 (0.18) 5.0 0.43 (0.25) 2.6 0.50 (0.32)
12 31.1 0.74 (0.4) 12.2 0.95 (0.61) 6.8 1.14 (0.77)
14 114.0 3.33 (2.00) 20.6 2.02 (1.39) 7.7 2.22 (1.64)
16 2297.5 108.25 (73.76) 123.2 15.16 (10.95) 58.1 11.65 (8.58)
18 * * 746.4 78.24 (52.14) 491.5 68.89 (44.94)

ing consistencies on the PLPS cost functions individually both in terms of pruning and
runtime. Analyzing the cases with conjoined cost functionsfurther, we observe that in
instances with smaller size, relaxed FDGAC* and relaxed weak EDGAC* do not infer
a much better bound than relaxed GAC*. The reduction in search space does not com-
pensate for the overhead, and the simpler and less costly relaxed GAC* gives better
results in such instances. On the other hand, relaxed weak EDGAC* performs better
in terms of the number of backtracks and run-time in bigger instances. Enforcement of
the stronger consistencies becomes worthwhile in such cases.

7 Polytime Integral Linear Projection-Safety

The experimental results show that it is often beneficial to conjoin the PLPS cost func-
tions in terms of runtime. In this section, we define a subclass of PLPS cost functions
calledPolytime Integral Linear Projection-Safe(PILPS) cost functions with which we
can give exact pruning characteristic of relaxed consistencies on conjunctions, while
improvements in pruning cannot be guaranteed theoretically for conjunctions of PLPS
cost functions.

Definition 7.1 A polytime integral linearcost functionWS is a polytime linear cost
function such that the linear relaxation of its corresponding integer linear program
IWS

always gives an integral minimum.

An immediate observation is that the exact minimum of a polytime integral linear cost
function can be obtained by solving the linear relaxation oftheir corresponding integer
linear programs, which can be done in polynomial time [49].
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Lemma 7.2 If WS is a polytime integral linear cost function,

min{WS} = approx min{WS}

Theorem 7.3 Minimum computation of polytime integral linear cost functions is poly-
nomial.

Proof Follows directly from Lemma 7.2.

Recall the notion ofT projection-safety. In addition to flow-basedness [28, 30]
and polytime linearity [32], polytime integral linearity is another good propertyT that
should be maintained across projections/extensions. Therefore, it makes sense to re-
quire cost functions to bePolytime Integral Linear Projection-Safe(PILPS), which is
a special subclass of PLPS cost functions.

Definition 7.4 A Polytime Integral Linear Projection-Safe (PILPS)cost functionWS

is a polytime integral linear cost function such that for allW ′
S derived from a series of

projections from and/or extensions toWS ,W ′
S is polytime integral linear.

We give a possible sufficient condition to identify PILPS cost functions.

Theorem 7.5 A cost functionWS is PILPS if it satisfies the following conditions:

1. WS satisfies the conditions given in Definition 4.4 with the associated linear
programIWS

, and;
2. IWS

is totally dual integral or the associated matrix ofIWS
is totally unimodular.

Proof By Theorem 4.6,WS is PLPS. Moreover, if a linear program istotally dual in-
tegralor its associated matrix istotally unimodular, its minimum must be integral [36].
The result follows. �

One example of PILPS cost functions is WALL DIFFvar [39].

Theorem 7.6 The cost functionW ALL DIFFvar is PILPS.

Proof AssumeS = {x1, . . . , xn}. The cost function WALL DIFFvar(S) can be rep-
resented by the following integer linear programIWS

with associated totally unimod-
ular matrix:

min
∑

a∈DS
ua s.t.

∑n
i=1 cxi,a + ua ≤ 1 ∀a ∈ DS

ua ≥ 0 ∀a ∈ DS

0 ≤ cxi,a ≤ 1 ∀a ∈ DS , 1 ≤ i ≤ n

whereDS =
⋃i=1

n D(xi). The minimum ofIWS
= min{W ALL DIFFvar(S)}.

Flow-based projection-safe cost functions [28, 30] are PILPS functions, which we state
in the following theorem.

Theorem 7.7 Flow-based projection-safe cost functions [28, 30] are PILPS.
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Proof Every flow-based projection-safe cost function has a corresponding minimum
cost network flow problem, which in turn has a corresponding integer linear program
with a totally unimodular matrix [36]. The cost function, the flow problem, and the
integer linear program share the same minimum. Since the integer linear program
always has integral solutions when solved by linear relaxation, the result follows. �

Corollary 7.8 The following cost functions are PILPS:

• W ALL DIFFvar andW ALL DIFFdec [39];
• W GCCvar andW GCCval [48];
• W SAMEvar [48];
• W REGULARvar [38, 48] andW REGULARedit [48], and;
• W AMONGvar [47].

Proof All cost functions except WAMONGvar [47] are flow-based projection-safe by
Lee and Leung [28, 30]. WAMONGvar [47] can be modeled by WREGULARvar [38]
using deterministic finite automata with the number of states polynomial inn. The
results follow by Theorem 7.7.

8 Conjoining PILPS Cost Functions

Polytime integral linear projection-safe cost functions are interesting since their con-
junctions are PLPS. By Lemmas 6.3 and 7.2, we have the following corollaries.

Corollary 8.1 SupposeWS1
and WS2

are PILPS cost functions. The conjunction
Wconj ≡WS1

⊕WS2
is PLPS.

Corollary 8.2 SupposeWS is PILPS, andα-consistency is one of GAC*, FDGAC*
and weak EDGAC*. Relaxedα-consistency onWS is equivalent toα-consistency on
WS .

In general, it is NP-hard to compute the minimum of the conjunction of overlap-
ping PILPS cost functions, since the conjunction of their corresponding linear pro-
grams may not always give an integral minimum [49]. As conjunctions of PILPS cost
functions remain PLPS, linear programming techniques allow its approximated mini-
mum to be computed efficiently, and relaxed forms of exact consistencies can thus be
enforced. We have the following result when relaxed consistencies are enforced on
the conjunction of PILPS cost functions compared to the corresponding (non-relaxed)
consistencies enforced on the individual cost functions.

Suppose we are given a WCSPPPILPS = (X ,D, CPILPS , k), where each cost
functionWS ∈ CPILPS is PILPS with corresponding integer linear programIWS

.
We show that relaxed (FD)GAC* and relaxed weak EDGAC* on the conjoined WCSP
PPILPS , defined asPconj , are strictly stronger than (FD)GAC* and weak EDGAC*
on individual cost functions inPPILPS respectively by the following theorem.

Theorem 8.3 Supposeα-consistency is one of GAC*, FDGAC* and weak EDGAC*.
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1. α-consistency onPconj is strictly stronger than relaxedα-consistency onPconj;
2. Relaxedα-consistency onPconj is strictly stronger thanα-consistency on
PPILPS .

Proof Since relaxed consistencies are the weaker forms of exact consistencies, Result
1 holds.

We prove Result 2 on GAC*, while those for other consistencies are similar.
AssumePconj is relaxed GAC*, butPPILPS is not GAC*. There exists a variable

xi ∈ X with a valuea ∈ D(xi) and a cost functionWS ∈ CPILPS in PPILPS such
thatmin{WS(ℓ) | ℓ[xi] = a ∧ ℓ ∈ L(S)} > 0. Since all cost functionsWS ∈ CPILPS

are PILPS,

approx min{Wconj | ℓ[xi] = a ∧ ℓ ∈ L(S)}
≥

⊕

WS∈CPILPS
approx min{WS | ℓ[xi] = a ∧ ℓ ∈ L(S)}

=
⊕

WS∈CPILPS
min{WS(ℓ) | ℓ[xi] = a ∧ ℓ ∈ L(S)} > 0

Thus,a cannot have any simple support andxi cannot be relaxed GAC* with respect
toWconj in Pconj .

The same counter example as in the proof of Theorem 6.5 can show that the con-
verse is not true. The result follows. �

We further give theoretical results to support Theorem 8.3.We show that when
compared withPconj, an exponential number of extra steps are needed during the
branch-and-bound search forPPILPS to discover the same bound. This example is
similar to the one given by Bessièreet al. [10].

Theorem 8.4 Supposeα-consistency is one of GAC*, FDGAC* and weak EDGAC*.
There exists a WCSPPPILPS such that if we enforce relaxedα-consistency onPconj

and α-consistency onPPILPS in branch-and-bound search, an exponential size of
search tree is needed to be explored forPPILPS to infer the same minimum cost as in
the case ofPconj.

Proof We prove the part for relaxed GAC*. The proofs for the other consistencies are
similar. Consider a WCSPP ′

PILPS = (X ∪ Y ∪ Z,D, CPILPS , k), where,

• X = {x1, . . . , xn}, Y = {y1, . . . , y2n}, Z = {z1, . . . , zn};
• D(xi) = [1, 2n− 1] for xi ∈ X ,D(yi) = [1, 4n− 1] for yi ∈ Y , andD(zi) =
[2n, 4n− 1] for zi ∈ Z;

• CPILPS = {W ALL DIFFvar(X ∪ Y ), W ALL DIFFvar(Y ∪ Z)}.

Consider the WCSPP ′
conj = (X ∪ Y ∪ Z,D, Cconj, k) whereCconj = {Wconj}

andWconj ≡W ALL DIFFvar(X ∪ Y )⊕W ALL DIFFvar(Y ∪ Z). The former gives
an increase ofW∅ by 1,which can be inferred by enforcing relaxed GAC* onCconj.
In P ′

PILPS , every subset ofn or fewer variables has at least2n − 1 values in their
domains, and every subset ofn+1 to 3n variables has4n− 1 values in their domains.
Thus, to infer an increment ofW∅ by 1 in P ′

PILPS by enforcing GAC* onCPILPS,
we must instantiate at leastn− 1 variables. �
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An immediate application of Theorem 8.3 is on existing global cost functions with
polytime minimum computation which we have mentioned above. We note that their
dedicated polynomial time algorithms are usually more efficient than linear program-
ming approaches. In many cases, however, the minimum computation for their con-
junctions is NP-hard. For example, Bessièreet al. [10] show the above result on the
hard ALL DIFF constraints [27] and it can be generalized to the WALL DIFFvar [39],
W ALL DIFFdec [39], W GCCvar [48], W GCCval [48], and W SAMEvar [48] cost
functions. Régin [42] also shows the above result on the hard AMONG [6] constraints.
The result can be generalized to the WAMONGvar [47], W REGULARvar [38, 48],
and W REGULARedit [48] cost functions.

Theorem 8.3 suggests that enforcing the relaxed consistencies on the conjunction
of such PILPS cost functions can be more efficient and worthwhile than handling
them individually using exact consistencies. By propagating the conjunction of PILPS
cost functions, extra pruning opportunities can be discovered which may reduce more
search space than propagating the individual cost functions.

In the next section, we show by experiments that modeling cost functions as PILPS
cost functions and propagating their conjunctions are moreefficient then propagating
them separately.

9 Experimental Results

In this section, we report experiments on PLPS and PILPS costfunctions using the
same settings used in Section 6. We demonstrate the efficiency of our framework by
comparing performances against flow-based projection-safe cost functions [30] and
integer linear programming. Again, the average number of backtracks (bt) and the
average runtime in seconds (time) for solved cases are reported. We put an asterisk (*)
for an entry if the execution of one of the 10 instances exceeds the timeout of 3600
seconds, and bold the best results for each benchmark.

9.1 Using PLPS cost functions

Our first set of experiments aims at demonstrating the feasibility and efficiency of PLPS
cost functions and their conjunctions. We observe that somePLPS cost functions can
be decomposed into flow-based projection-safe cost functions, on which we can en-
force exact consistencies using flow algorithms [28, 29, 30]. However, flow-based
projection-safe cost functions are also PLPS (actually even PILPS) by Theorem 7.7.
Exact consistency can also be maintained using our linear programming approach.
Last but not least, we can maintain exact consistencies on PLPS cost functions and
their conjunctions by the integer programming approach.

We thus consider the following 6 possible scenarios for eachbenchmark. Each
scenarioincludes three components: the model, relaxed versus exactconsistencies,
and algorithms used.

(a) modeling by individual PLPS cost functions and enforcing relaxed consistencies
using a linear programming approach;
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(b) modeling by individual PLPS cost functions and enforcing exact consistencies by
computing exact minimum using an integer linear programming approach;

(c) modeling by conjoined PLPS cost functions and enforcingrelaxed consistencies
using a linear programming approach;

(d) modeling by conjoined PLPS cost functions and enforcingexact consistencies by
computing exact minimum using an integer linear programming approach;

(e) (if possible) modeling by the flow-based projection-safe cost functions obtained by
decomposing the PLPS cost functions used in (a), and enforcing exact consisten-
cies using flow algorithms, and;

(f) (if possible) modeling by the flow-based projection-safe cost functions obtained by
decomposing the PLPS cost functions used in (a), and enforcing exact consisten-
cies using linear programming approach.

For each benchmark, we do the following micro comparisons inaddition to identi-
fying the best approach. First, we compare scenarios (a) against (b) and (c) against (d)
to see the trade-offs between higher pruning of the integer programming approach ver-
sus lower overhead of the linear programming approach. Second, when possible, we
compare scenarios (e) against (f) to see the overhead of calling a linear programming
solver when flow-based algorithms are available to compute exact consistencies in both
cases. Third, we compare (a) against (c) and (b) against (d) to see the power of con-
junction under the same consistency enforcement. Fourth, we compare (e) against (a)
and (c) to see the advantage of the PLPS approach in modeling with more complex cost
functions over the flow-based cost functions.

9.1.1 Generalized Car Sequencing Problem

Our first benchmark is the Generalized Car Sequencing Problem described at the end
of Section 6. In scenarios (a) and (b), we use individual WSLIDING SUMdec cost func-
tions in the model, whereas the WSLIDING SUMdec cost functions are conjoined into
one cost function in scenarios (c) and (d). In scenarios (e) and (f), W SLIDING SUMdec

are decomposed into multiple WSUMval cost functions, which are in turn modeled by
the flow-based projection-safe WREGULARvar [48] cost functions.

Results are shown in Table 2. We observe that enforcing stronger consistencies can
give better performance in general. However, in scenario (b), FDGAC* gives better
runtime in scenario (d) whenn = 10. In scenario (c), relaxed GAC* can outperform
relaxed FDGAC* and weak EDGAC*, even relaxed GAC* is a weakerconsistency.
The reason is that the better lower bound inferred by stronger consistencies may not
compensate for the extra overhead in comparison to weaker consistencies when the
instances are small and relatively easier to solve. However, as the instances grow larger,
stronger consistency is more beneficial as the lower bound inferred is good enough to
compensate the extra overhead.

Scenario (b) gives slightly better results in terms of the number of backtracks
than (a). Exact consistencies are enforced in scenario (b) by the integer programming
approach and give better bounds. We observe that enforcing exact consistencies by
integer programming requires much more time than enforcingthe corresponding re-
laxed consistencies by linear programming. This becomes the dominating factor of

24



the runtime, as shown by the CPLEX processing time. However,the bounds inferred
after such great effort are not good enough to compensate theextra time needed. As
observed, scenario (b) can prune the search space for less than1.23 times, but the run-
time increases up to23 times more than (a). We also observe that the reduction of
backtracks becomes smaller and the increase in runtime becomes greater when the in-
stances grow larger. Similar results can be found when we compare scenarios (c) and
(d). As observed, scenario (d) can prune the search space forless than1.16 times, but
the runtime increases up to20 times more than (c).

Scenarios (e) and (f) are modeled by the WREGULARvar cost functions. Both
models give the same number of backtracks, but scenario (e) outperforms (f) in terms
of runtime. According to Corollary 8.2, the linear programming approach has the same
strength as flow-based algorithms in terms of the consistencies on PILPS cost func-
tions. Thus, both scenarios give the same number of backtracks in every instance.
However, calling a linear programming solver incurs higheroverheads than applying
the flow algorithm. Thus, scenario (f) takes1.7-2.3 times longer to solve the instances.

We have already discussed in Section 6 that conjoining PLPS cost functions gives
a better lower bound in most cases. Scenario (c) prunes more and requires less time
than (a) by conjoining PLPS cost functions. When enforcing (relaxed) weak EDGAC*,
scenario (c) prunes up to4 times more and runs19 times faster than (a). Similarly,
scenario (d) performs better than (b) because (d) also conjoins PLPS cost functions.
When enforcing (relaxed) weak EDGAC*, scenario (d) prunes up to4 times more and
runs up to62 times faster than (b). We also observe that the reduction in search spaces
increases when the instances grow larger.

Our approaches (scenarios (a) and (c)) give better performances than the state-
of-the-art flow-based approach (scenario (e)) since scenario (e) decomposes the cost
functions used in (a) and (c). When enforcing (relaxed) weakEDGAC*, scenario (a)
runs up to2.8 times faster with number of backtracks reduced up to6.2 times of those
in (e). Scenario (c) performs much better, which runs up to155 times faster with
number of backtracks reduced up to23 times. As more cost functions are used in
scenario (e), worse lower bounds are given when consistencies are enforced on the
individual decomposed cost functions.

Throughout this benchmark, scenario (c) outperforms all other scenarios. When
compared with the flow-based approach of handling global cost functions in WCSP
(scenario (e)), scenario (c) can solve the instances up to20 times faster than the flow-
based approach when (relaxed) weak EDGAC* is used. Scenario(c) also outperforms
other scenarios using the (integer) linear programming approach. It runs up to19 times
faster than scenario (a),444 times faster than (b),18 times faster than (d), and37
times faster than (f) when (relaxed) weak EDGAC* is enforced. In addition, with our
method, large instances liken = 18 can be solved within the given time limit, while
the flow-based approach cannot.

9.1.2 Magic Series Problem

The Magic Series Problem (prob019 in CSPLib) is to find a sequence ofn variables
which forms a magic series. A non-empty finite seriesS(n) = (s0, s1, . . . , sn) is
magic if and only if there aresi occurrences ofi ∈ S(n) for each integeri ranging
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Table 2: The generalized car sequencing problem using WSLIDING SUMdec

(a) W SLIDING SUMdec

n
Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
10 805.7 135.78 (42.74) 7.4 2.37 (1.23) 6.9 1.94 (0.97)
12 * * 15.1 7.17 (3.84) 14.4 4.99 (2.49)
14 * * 34.7 69.42 (39.62) 29.0 41.85 (23.53)
16 * * * * * *
18 * * * * * *

(b) W SLIDING SUMdec with exact consistencies

n
GAC* FDGAC* weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
10 724.1 386.60 (246.77) 7.1 14.07 (13.12) 5.6 15.89 (14.68)
12 * * 13.0 32.46 (28.51) 12.4 31.06 (27.54)
14 * * 31.7 1107.29 (1078.93) 26.9 986.10 (969.25)
16 * * * * * *
18 * * * * * *

(c) Conjoined WSLIDING SUMdec

n
Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
10 21.8 0.43 (0.18) 5.0 0.43 (0.25) 2.6 0.50 (0.32)
12 31.1 0.74 (0.4) 12.2 0.95 (0.61) 6.8 1.14 (0.77)
14 114.0 3.33 (2.00) 20.6 2.02 (1.39) 7.7 2.22 (1.64)
16 2297.5 108.25 (73.76) 123.2 15.16 (10.95) 58.1 11.65 (8.58)
18 * * 746.4 78.24 (52.14) 491.5 68.89 (44.94)

(d) Conjoined WSLIDING SUM
dec with exact consistencies

n
GAC* FDGAC* weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
10 20.3 4.83 (4.52) 4.8 2.16 (1.96) 2.5 2.21 (2.05)
12 29.5 5.13 (4.78) 11.3 4.27 (3.91) 6.5 3.72 (3.43)
14 103.6 104.97 (103.60) 18.2 27.33 (26.61) 7.1 15.79 (15.03)
16 * * 106.2 298.70 (294.58) 54.6 205.13 (202.46)
18 * * * * * *

(e) W REGULARvar with exact consistencies using flow algorithms

n
GAC* FDGAC* Weak EDGAC*

bt time bt time bt time
10 2166.0 66.45 8.6 6.80 7.9 4.34
12 * * 30.4 24.39 28.3 14.37
14 * * 202.6 57.20 180.0 43.41
16 * * * * * *
18 * * * * * *

(f) W REGULARvar

n
Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
10 2166.0 125.58 8.6 12.78 (6.05) 7.9 10.17 (4.07)
12 * * 30.4 41.67 (20.32) 28.3 31.20 (14.07)
14 * * 202.6 122.78 (60.61) 180.0 81.04 (34.37)
16 * * * * * *
18 * * * * * *
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from 0 ton. For example,S(6) = (3, 2, 1, 1, 0, 0, 0) is an example of a magic series as
there are three 0’s, two 1’s, a 2, a 3, and no 4, 5, and 6 inS(6).

To model this problem, a sequence of variablesS = {si} is used to represent the
series. For each variable, we place a WEGCCvar(S, si) cost function (please refer to
the Appendix) to restrict the occurrences of each value. We assume preferences over
variable values, which are modeled as table cost functions.In scenarios (a) and (b), we
use the individual WEGCCvar cost functions in the model, whereas in scenarios (c)
and (d), the WEGCCvar cost functions are conjoined into a single cost function.

Definition 9.1 The cost functionW AMONG VARvar(S, n, V ) returns the cost of a
tupleℓ ∈ L(S ∪ {n}) as:

W AMONG VARvar(S, n, V )(ℓ) = |ℓ[n]− occ(V, ℓ[S])|

whereocc(V, ℓ) = |{i | ℓ[xi] ∈ V }|.

In scenarios (e) and (f), WEGCCvar are decomposed into multiple
W AMONG VARvar cost functions, which are in turn modeled by the flow-based
projection-safe WREGULARvar [38, 48] cost functions.

Results are shown in Table 3. We observe that enforcing stronger consistencies can
give better performance. With similar reasoning as in the previous section, scenarios (a)
and (c) give higher number of backtracks but require less time to solve than (b) and (d)
respectively. Scenario (b) can reduce the search space for less than1.13 times, but the
runtime increases up to17 times more than (a). Similarly, scenario (d) can reduce the
search space for less than1.13 times, but the runtime increases up to88 times more
than (c).

Again, scenario (f) gives the same number of backtracks as (e) but requires more
time to solve, due to the higher overhead in solving linear programs. Scenario (f) takes
12 times longer to solve the instances, and unable to solve instances withn ≥ 15 within
the given time limit.

Conjoining PLPS cost functions also gives better results inthis benchmark, as ob-
served in Table 3. Scenarios (c) and (d) give higher number ofbacktracks but require
less time to solve than (b) and (d) respectively. Scenario (c) backtracks up to4.1 times
less and runs52.5 times faster than (a). Similarly, scenario (d) reduces the number of
backtracks up to3.8 times more, and run13.5 times faster than (b).

When compared with the flow-based approach (scenario (e)), using conjunctions
of cost functions (scenarios (a) and (c)) gives better results when instances are large.
Scenario (a) can reduce the number of backtracks up to3.8 times more than (e). When
comparing the runtime, scenario (c) outperforms (e) in all cases. Scenario (c) runs up
to 149 times faster with search space reduction up to16 times more than (e). However,
results vary between scenarios (a) and (e). when applying different consistencies with
different instance sizes. With GAC*, scenario (a) runs faster than (e), and able to solve
larger instances within the given time limit. With strongerconsistency like FDGAC*
and EDGAC*, scenario (e) runs faster than (a) for smaller instances, due to the extra
time required to enforce the consistency. As the instance grows larger, we observe
scenario (a) is much more beneficial. With FDGAC*, scenario (a) outperforms (e)
whenn ≥ 18. With weak EDGAC*, scenario (a) can outplay (e) whenn ≥ 15. We
also observe that scenario (a) runs up to3.6 times faster than (e) when (a) outplays (e).
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Table 3: The magic square problem using WEGCCvar

(a) W EGCCvar

n
Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
12 2713.2 229.41 (116.53) 125.7 85.03 (31.29) 87.9 17.20 (7.26)
15 5830.0 359.79 (208.21) 201.3 179.06 (81.28) 120.8 35.66 (16.38)
18 * * 352.6 218.67 (95.47) 283.9 143.69 (63.91)
21 * * * * * *
24 * * * * * *

(b) W EGCCvar with exact consistencies

n
GAC* FDGAC* weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
12 * * 113.0 792.01 (740.13) 83.1 190.13 (180.34)
15 * * 186.2 1036.53 (941.22) 110.2 517.90 (498.31)
18 * * * * 251.2 2391.05 (2320.94)
21 * * * * * *
24 * * * * * *

(c) Conjoined WEGCCvar

n
Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
12 357.4 6.69 (2.11) 73.5 1.88 (0.87) 35.5 1.82 (0.82)
15 1242.0 29.15 (12.36) 96.1 3.41 (1.71) 59.1 2.16 (1.14)
18 2654.2 65.22 (27.80) 136.0 5.43 (2.53) 69.7 3.55 (1.83)
21 5646.2 171.26 (83.80) 196.9 8.14 (4.32) 93.4 6.24 (3.34)
24 22100.4 755.12 (383.41) 831.6 45.91 (26.08) 211.4 19.26 (9.59)

(d) Conjoined WEGCCvar with exact consistencies

n
GAC* FDGAC* weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
12 316.5 503.68 (499.27) 70.2 136.50 (135.61) 33.9 78.21 (77.24)
15 * * 93.0 187.25 (185.63) 56.7 116.04 (115.09)
18 * * 134.1 351.94 (349.18) 66.1 176.95 (175.36)
21 * * 183.2 719.61 (715.90) 90.5 382.80 (379.53)
24 * * * * * *

(e) W REGULARvar with exact consistencies using flow algorithms

n
GAC* FDGAC* Weak EDGAC*

bt time bt time bt time
12 13028.0 288.03 182.0 20.17 154.9 14.59
15 * * 497.1 105.17 314.3 57.12
18 * * 1166.4 667.77 1094.0 529.10
21 * * * * * *
24 * * * * * *

(f) W REGULARvar

n
Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
12 * * * * 154.9 179.16 (73.92)
15 * * * * * *
18 * * * * * *
21 * * * * * *
24 * * * * * *
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Scenario (c) also outperforms other scenarios in addition to (e), which uses the
flow-based approach. Scenario (c) runs up to40 times faster than (a),675 times faster
than (b),61 times faster than (d), and98 times than (f). Under scenario (c), the instances
can be solved up to40.5 times faster than (a),61.3 times faster then (d), and10.4 times
faster than (f). Scenario (c) can also solve larger instances liken = 24 within the given
time limit, which is not possible in other scenarios.

9.1.3 Weighted Tardiness Scheduling Problem

The Weighted Tardiness Scheduling Problem [34] is to find a schedule ofn jobs to
be processed, and avoid two jobs processing at the same time.Eachith job requires
a processing timepi, and to be processed without interruption. Eachith job also has
a due datedi by which it should ideally be finished. In the problem, a set oftotal
available time slotsT are given to process all jobs. If a job cannot be finished exactly
on the due date, an earliness/tardiness penalty is given. Iftwo jobs run at the same
time, a penalty is also given for extra resources.

To model this problem as WCSP,n variables{xi | i = 1, . . . , n} with domains
T denote respectively when theith job starts. To model earliness/tardiness penalties,
we place a unary cost functiont(xi) on each variablexi, which returns0 only when
xi + pi = di, and random non-zero values otherwise. To model penalties for running
more than one job at the same time slot, a WDISJUNCTIVEval cost function (please
refer to the Appendix) is placed on each pair of jobs. We also place preferences on
the starting time for each job, which can be modeled as table cost functions. In our
experiment, we assume the number of total available time slots |T | = 4n.

The W DISJUNCTIVEval cost functions are modeled differently in each scenario.
In scenarios (a) and (b), we use the individual WDISJUNCTIVEval cost functions in
the model, whereas in scenarios (c) and (d), the WDISJUNCTIVEval cost functions are
conjoined into one cost function. Note that scenarios (e), (f) are omitted, since there
are no efficient ways to decompose WDISJUNCTIVEval into simpler cost functions to
the best of our knowledge.

Results are shown in Table 4. Again, we observe that enforcing stronger consisten-
cies can give better performance. Similar to Section 9.1.1,scenarios (a) and (c) give
higher number of backtracks but require less time to solve than (b) and (d) respectively.
For example, whenn = 7, scenario (b) reduces the number of backtracks only1.06
times more than (a), but the runtime is increased by126 times. Similar results can be
found between scenarios (c) and (d). Whenn = 7, the number of backtracks in sce-
nario (c) is reduced by at most1.12 times, but the runtime is increased up to74 times
more than (d).

The results also show conjoining cost functions is beneficial. The number of back-
tracks in scenario (c) is reduced up to2.4 times more, but the runtime is up to3.1 times
faster than (a). Similarly, scenario (d) reduces the numberof backtracks up to2.1 times
than (b). Unlike scenario (c), (d) shows its benefit on runtime only whenn ≥ 6. For
example, whenn = 7, scenario (d) runs3.9 times faster than (b).

Similar to Table 3, the results show that scenario (c) outperforms all other scenarios.
With (relaxed) weak EDGAC*, scenario (c) runs up to3.1 times faster than (a),183
times faster than (b), and64 times faster than (d). Instances withn = 9 can also be
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Table 4: The weighted tardiness scheduling problem using WDISJUNCTIVEval

(a) W DISJUNCTIVEval

n
Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
5 91.0 2.77 (1.38) 45.1 2.42 (1.14) 32.0 2.20 (1.03)
6 1335.3 17.11 (8.75) 832.1 11.47 (5.81) 184.3 4.15 (1.74)
7 4928.1 30.40 (16.43) 2462.3 17.95 (7.91) 623.5 5.82 (2.92)
8 13074.8 132.92 (68.32) 4928.6 66.38 (31.06) 1128.3 25.74 (12.58)
9 * * 11769.9 385.32 (196.76) 4590.6 141.71 (74.91)

(b) W DISJUNCTIVEval with exact consistencies

n
GAC* FDGAC* Weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
5 87.4 15.01 (13.63) 41.7 12.37 (11.07) 28.1 8.76 (7.58)
6 1208.9 140.31 (131.38) 729.9 109.42 (103.14) 159.9 80.35 (78.19)
7 * * * * 584.2 738.10 (735.21)
8 * * * * * *
9 * * * * * *

(c) Conjoined WDISJUNCTIVEval

n
Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
5 69.3 1.90 (0.84) 40.9 2.02 (0.95) 28.0 1.85 (0.89)
6 652.3 11.78 (5.06) 465.3 7.08 (3.48) 117.8 2.77 (1.38)
7 3563.2 20.68 (10.03) 1273.6 10.55 (4.92) 415.6 4.02 (2.08)
8 5643.8 103.83 (52.92) 2763.1 59.08 (32.89) 763.1 16.57 (8.78)
9 16153.9 582.76 (317.90) 5018.4 214.50 (139.42) 1935.3 45.51 (24.37)

(d) Conjoined WDISJUNCTIVEval with exact consistencies

n
GAC* FDGAC* weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
5 66.1 19.25 (17.97) 35.6 15.93 (14.28) 26.8 11.42 (10.16)
6 572.0 170.39 (163.93) 382.3 82.35 (78.69) 116.2 20.45 (19.08)
7 * * 1137.2 783.59 (778.04) 400.4 256.64 (254.83)
8 * * * * * *
9 * * * * * *
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solved in scenario (c) within the given time limit by enforcing GAC* only, which is not
possible for other scenarios.

9.2 Using PILPS Cost Functions

To demonstrate the efficiency of using PILPS cost functions,we consider existing flow-
based projection-safe cost functions which are also PILPS.Exact consistencies on such
cost functions can be maintained using flow algorithms. Or wecan also enforce relaxed
consistencies on their conjunctions as in the best scenario(c) in Section 9.1.

We consider the following 2 scenarios for each benchmark.

(g) modeling by conjoined flow-based projection-safe cost functions and enforcing
relaxed consistencies using a linear programming approach, and;

(h) modeling by the flow-based projection-safe cost functions and enforcing exact con-
sistencies using flow algorithms.

To utilize the global cost functions described above, we soften the following prob-
lems by replacing the global constraints by their soft variants. Random preferences are
added to the instances in the form of table cost functions.

9.2.1 Car Sequencing Problem

The car sequencing problem (prob001 in CSPLib) is a specialized version of the gen-
eralized car sequencing problem, where the cost of an optionto equip on one type
of cars is always1, i.e. each assembly line is only allowed to equip an optioni on
at mostmi cars for everysi cars. Instead of using WSLIDING SUMdec, overlapping
W AMONGvar [47] cost functions are used to ensure the new restrictions.Instances
with differentn are used to compare the runtime and the number of backtracks.In sce-
nario (h), we use the individual flow-based projection-safeW AMONGvar cost func-
tions in the model, whereas, in scenario (g), the WAMONGvar cost functions are
conjoined into one cost function.

Results are shown in Table 5. In both scenarios, (relaxed) weak EDGAC* gives
better performance with exceptions. In scenario (h), instances withn = 12 andn = 14
can be solved faster with FDGAC* than weak EDGAC*, due to the high overhead of
weak EDGAC*. However, weak EDGAC* outruns FDGAC* whenn ≥ 16, as the
pruning in the search space compensates the extra overhead.

We also observe that conjoining cost functions are beneficial when instance is large.
Conjunction gives stronger pruning power. Scenario (g) canreduce the number of
backtracks up to500 times more than (h). However, conjunction also incurs extra
overhead, which cannot be compensated when the instances are small. For example,
whenn = 12, scenario (g) runs slower than (h). When the instance size grows, the
reduction in the search space is large enough to compensate the overhead. For example,
whenn = 18, scenario (g) runs up to20 times faster than (h).
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Table 5: The car sequencing problem with WAMONGvar

(g) Conjoined WAMONGvar

n
Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
12 159.1 3.30 (1.60) 11.9 0.66 (0.41) 8.4 0.86 (0.54)
14 326.4 8.43 (4.23) 13.8 2.59 (1.76) 11.1 1.38 (0.87)
16 1366.2 44.96 (25.25) 16.5 3.44 (2.17) 13.1 2.49 (1.66)
18 1875.1 89.45 (54.23) 21.3 8.27 (5.59) 18.4 3.74 (2.36)
20 * * 239.2 240.13 (152.24) 78.0 61.29 (43.05)

(h) W AMONGvar with exact consistencies using flow algorithms

n
GAC* FDGAC* Weak EDGAC*

bt time bt time bt time
12 1582.7 0.30 19.7 0.02 18.4 0.04
14 58528.6 14.69 43.5 0.08 42.9 0.15
16 * * 836.8 6.40 561.9 2.46
18 * * 10657.8 86.10 9129.9 75.04
20 * * * * * *

9.2.2 Examination Timetabling Problem

The examination timetabling problem is to find a schedule forn examinations overd
days fors groups of students. Each group of students is required to attend a partic-
ular set of examinations. The aim of the problem is to minimize the total number of
days in which one student attends more than one examination.To model this problem,
we usen variables{xi | i = 1, . . . , n} with domaind. Each variablexi represents
when theith examination is scheduled on. For each group of students attending a
particular set of examinations,{e1, . . . , en}, a W ALLDIFFvar(S) [39] cost function,
whereS = {xe1 , . . . , xen}, is used to denote the violation cost of students having to
attend two or more examinations on the same day. We also add preferences on exam-
inations. For example, some examinations are preferred to be scheduled on the same
day. The preferences can be modeled as table cost functions.We fix s = n/2 and
d = n/2, and use differentn in our experiment. In scenario (h),we use the individual
flow-based projection-safe WALLDIFFvar(S) cost functions in the model, whereas in
scenario (g), the WALLDIFFvar(S) cost functions are conjoined into one cost func-
tion.

Results are shown in Table 6. In most cases, (relaxed) weak EDGAC* outperforms
all others consistencies. Although we find that relaxed FDGAC* outplays relaxed weak
EDGAC* whenn = 20 in scenario (g), the0.12-second difference is insignificant. By
conjoining PILPS cost functions, scenario (g) outperforms(h). Scenario (g) prunes
the search space up to174 times more and runs up to22 times faster than (h). We
also observe that the instances withn ≥ 30 can be solved within the time limit in
scenario (g) but not in (h).

9.2.3 Fair Scheduling

The fair scheduling problem [5] is to schedulen persons intos shifts overd days such
that the schedule isfair, i.e. each person should be assigned to the same number of the
ith shift. We model the problem bynd variables{xij | i = 1, . . . , n ∧ j = 1, . . . , d}
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Table 6: The soft examination timetabling problem with WALLDIFFvar

(g) Conjoined WALLDIFFvar

n
Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
20 8921.7 425.84 (253.94) 28.5 4.18 (2.83) 12.3 4.30 (2.87)
25 * * 51.8 17.67 (10.95) 22.8 16.14 (9.37)
30 * * * * 47.6 50.86 (28.33)
35 * * * * 68.0 91.75 (46.58)

(h) W ALLDIFFvar with exact consistencies using flow algorithms

n
GAC* FDGAC* Weak EDGAC*

bt time bt time bt time
20 * * 3594.8 77.65 306.7 10.16
25 * * 9024.0 390.81 2530.5 138.74
30 * * * * * *
35 * * * * * *

with domains. Each variable{xij} denotes the shift for theith person on thejth

day. We use the WSAMEvar({xp1,j | j = 1, . . . , d}, {xp2,j | j = 1, . . . , d}) [48]
cost functions between each pair of personsp1 andp2 to model the restrictions. In our
experiment, we also add preferences on personal choices, e.g. someone may prefer to
be scheduled on some particular shifts. Such preferences are modeled by table cost
functions. We fixs = 5 andd = 5 and use differentn in our experiment. In sce-
nario (h), we use the individual flow-based projection-safeW SAMEvar cost functions
in the model, whereas in scenario (g), the WSAMEvar cost functions are conjoined
into one cost function.

Table 7: The soft fair scheduling problem with WSAMEvar

(g) Conjoined WSAMEvar

n
Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
6 1693.8 110.22 (43.25) 74.3 11.26 (5.29) 24.1 7.94 (3.30)
8 * * 115.9 25.32 (12.68) 57.1 14.55 (7.23)
10 * * 194.5 83.34 (47.83) 76.6 44.23 (21.34)
12 * * 783.9 590.81 (261.74) 175.3 86.42 (40.63)

(h) W SAMEvar with exact consistencies using flow algorithms

n
GAC* FDGAC* Weak EDGAC*

bt time bt time bt time
6 * * 292.7 13.42 163.7 9.15
8 * * 1292.2 89.53 793.6 50.73
10 * * 5063.8 292.07 1154.6 189.47
12 * * * * * *

Results are shown in Table 7. In all scenarios, (relaxed) weak EDGAC* outper-
forms other consistencies. Similar to Table 6, scenario (g)runs up to4.3 times faster
and prunes up to26 times more than (h). Larger instance liken = 12 can also be
solved within the given time limit in scenario (g), while it is not the case in (h).
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9.2.4 Comparing the WCSP and the Integer Linear programmingApproaches

Earlier, we use slightly easier problem instances so that wecan make sensible com-
parisons with the weaker consistencies and the flow-based implementations. Note that
integer linear programming solver can also solve our benchmarks competitively. We
now use more difficult instances with more preferences (table cost functions) to com-
pare the performances of modeling the problem withinteger linear programs(ILPs)
solved by the IBM ILOG CPLEX Optimizer 12.2 with both of the scenarios above.
Those instances consist of non-linear parts, which are generated by adopting the fea-
tures of the instances used by Alloucheet al. [4]. We use the encoding method of
Koster [23] to formulate binary cost functions as integer linear programs, while global
cost functions are formulated as integer linear programs using the similar method as
for PILPS cost functions.

Table 8: Comparison with integer linear programming
(a) Soft car sequencing

n
(h) & weak EDGAC* (g) & relaxed weak EDGAC* ILPs

bt time bt time (CPLEX) time
12 1169.6 2.827 66.5 4.10 (2.90) 63.28
14 4663.7 18.18 664.4 8.71 (5.83) 469.09
16 41383.1 310.87 4087.5 20.59 (8.99) *
18 * * 30658.0 117.17 (20.68) *
20 * * 322598.7 1517.01 (28.94) *

(b) Soft examination timetabling

n
(h) & weak EDGAC* (g) & relaxed weak EDGAC* ILPs

bt time bt time (CPLEX) time
20 15009.0 18.24 14881.7 18.21 (3.38) *
25 24852.6 73.87 24191.8 47.81 (12.78) *
30 28991.1 313.56 27597.3 98.13 (33.88) *
35 58346.6 1110.21 54515.3 212.08 (59.47) *

(c) Soft fair scheduling

n
(h) & weak EDGAC* (g) & relaxed weak EDGAC* ILPs

bt time bt time (CPLEX) time
6 8493.2 47.43 7279.5 21.25 (4.99) 1339.19
8 16553.1 133.07 13637.9 79.43 (24.34) *
10 39838.9 632.94 29654.8 141.45 (42.04) *
12 89478.5 2215.57 59231.7 317.94 (98.46) *

Results are shown in Tables 8. We only show the results for scenarios (g) and (h)
using (relaxed) weak EDGAC* as they perform the best among the other (relaxed)
consistencies in the same scenario under the same setting. Similar to Tables 5, 6,
and 7, our WCSP scenario using conjunctions of PILPS cost functions (scenario (g))
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runs faster and prunes more than the scenario with individual cost functions with the
flow-based approach (scenario (h)). We observe that, in scenario (g), the number of
backtracks can be reduced up to17 times, and the solution can be found up to15 times
faster. On the other hand, our scenarios run faster in general when compared with
the ILP models using CPLEX as the integer linear program solver. For example, in
soft car scheduling problem, the instances can be solved under scenario (g) up to53
times faster than using the ILP approach. In soft fair scheduling, scenario (g) gives the
optimal solutions63 times faster than using the ILP approach. We also observe that in
soft examination timetabling, modeling by ILP fails to solve all instances at the given
time limits, while WCSP can.

10 Related Work

Our research extends previous work by (a) also considering global cost functions with
no known polynomial time algorithms for minimum cost computation, and (b) improv-
ing pruning by considering conjunctions of global cost functions.

Lee and Leung [28, 30] make practical the processing of global cost functions by
defining the framework ofT projection-safety. They study the special case when
T is flow-basedness, and propose efficient flow algorithms for enforcing GAC* and
FDGAC* of global cost functions. Lee and Leung [29] define andgive efficient algo-
rithms for the enforcement of weak EDGAC*, which is strongerthan both GAC* and
FDGAC*. Leeet al. [31] give theoretical properties ofr-projections with respect to
tractable projection-safety, and propose new consistencyenforcement algorithms for
polynomially decomposable cost functionsbased on dynamical programming.

On the other hand, Alloucheet al. [3] give examples on the global cost functions
that can bedecomposed into binary or ternary table cost functions. They show that if
the hyper-graph representing the cost functions from decomposing a global cost func-
tion is Berge-acyclic,enforcing Terminal Directional Arc Consistency [3] and Virtual
Arc Consistency [14, 15] on the decomposed cost functions and the original cost func-
tion are equivalent.

11 Conclusions

Our contributions are five-fold. First, we define thepolytime linear projection-safe
(PLPS) cost functionsbased on theirinteger linear programformulations with size
polynomial in their number of variables and maximum domain size. The minima of
PLPS cost functions can be computed by solving their relatedinteger linear programs.
We also give sufficient conditions for polytime linear projection-safety. Second, we
proposerelaxed consistencieson PLPS cost functions, which are weaker but the en-
forcement can be much more efficient compared to the exact counterparts. The ap-
proximated minimum of PLPS cost functions can be computed byapproximating their
related integer linear programs with linear relaxation. Wegive proofs for the feasi-
bility of projecting the smallest integral cost which is notless than the approximated
minimum. Thus, we can define the relaxed version for the exactconsistency notions,
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including GAC*, FDGAC*, and weak EDGAC*, by reformulating their requirements
based on the minima of a set of cost functions replaced by their approximated minima.
Third, we propose the use of the conjunctions of PLPS cost functions. We show that
the conjunctions of PLPS cost functions remain PLPS, so thatrelaxed consistencies can
still be applied on them. We show that propagating on a conjunction using the exact
consistencies is stronger than propagating on the individual cost functions. Although
it is not always true when relaxed consistencies are enforced, the benefits of using the
conjunctions of PLPS cost functions are shown experimentally. Fourth, we definepoly-
time integral linear projection-safe (PILPS) cost functions, which is a subclass of PLPS
cost functions. PILPS cost functions are special PLPS cost functions and their exact
minima can be computed by solving their corresponding integer linear programs with
linear relaxation. In addition, the minimum of an PILPS function can be computed in
polynomial time. The same is not necessarily true for the conjunctions of PILPS cost
functions, which we show to be still PLPS. Our central results show that propagating
on individual PILPS cost functions using the exact (or relaxed since they are the same)
consistencies is weaker than propagating on the conjunction of all these PILPS cost
functions using the relaxed versions of the consistencies,which is in turn weaker than
propagating on the conjunction using the exact consistency. The latter is NP-hard in
general. Therefore, it is always more desirable to propagate on conjunctions of PILPS
cost functions using even just relaxed consistencies. The results are useful when we
have cost functions whose minimum computation is polynomial time but that for con-
junctions of such cost functions is not. We show that flow-based projection safe [28, 30]
cost functions are PILPS, but minimum computation of their conjunctions is NP-hard
in general. Fifth, we demonstrate the practicality of our framework with empirical re-
sults. We conduct experiments on several examples of PLPS and PILPS cost functions,
together with their conjunctions, against the current approaches as well as pure inte-
ger programming approach. We observe orders of magnitude inruntime and search
space improvements when the conjunctions of PLPS or PILPS cost functions are used
together with relaxed consistencies. The results agree with our theoretical predictions.

We highlight three possible directions of future work. The first question is whether
we can enhance the relaxed consistencies for stronger consistency notions like op-
timal soft arc consistency (OSAC) [16, 15], virtual arc consistency (VAC) [14, 15]
andk-consistency [13]. Currently, we only give the relaxed versions of GAC* [44],
FDAC* [28, 30], and weak EDGAC* [29, 30]. Those consistency notions can be re-
laxed by replacing the minima into approximated minima in their conditions. It might
not be straightforward to relax consistency notions with different kinds of conditions
and those involving rational costs such as OSAC [16, 15] and VAC [14, 15]. It is
interesting to see if there are different ways to relax the consistency notions. The sec-
ond question is whether we can give exact characterizationsof the conditions leading
to PLPS and PILPS cost functions. Currently, we only give sufficient conditions but
necessary conditions may allow us to identify many more useful and yet efficiently im-
plementable global cost functions. The third question looks at the possible connection
between P(I)LPS cost functions and the well-studied class of submodular functions,
which might the required integrality property.
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Appendix

More Examples of PLPS Cost Functions

We give two additional examples of Polytime Linear Projection-Safe (PLPS) cost func-
tions: the WEGCC and WDISJUNCTIVE/W CUMULATIVE cost functions.

The W EGCCCost Function

The EGCC(SX , SY ) global constraint [40, 22] accepts a tupleℓ ∈ L(SX ∪ SY ) iff
occ(v, ℓ[SX ]) = yv for everyyv ∈ SY , whereocc(j, ℓ) is the number of occurrences
of j in ℓ. Its soft variant WEGCCvar(SX , SY ) is defined based on the variable-based
violation measure.

Definition 1 The cost functionW EGCCvar(SX , SY ) returns the cost of a tupleℓ ∈
L(SX ∩ SY ) as:

W EGCCvar(SX , SY )(ℓ) =
⊕

yv∈SY

|ℓ[yv]− occ(v, ℓ[SX ])|

Note that WEGCCvar(SX , SY ) is NP-hard. Quimperet. la [40] have shown that
enforcing GAC on EGCC is NP-hard.

W EGCCvar(SX , SY ), whereSX = {x1, . . . , xn} andSY = {yv1 , . . . , yvm},
can be modeled as a PLPS cost function. The corresponding integer linear program is
defined as follows.

min
∑m

j=1(Lj + Uj) s.t.
∑n

i=1 cxi,vj − (
∑

h∈D(yvj
) h · cyvj

,h)− Lj + Uj = 0 ∀j = 1 . . .m
∑m

j=1 cxi,vj = 1 ∀vj ∈ D(xi) ∀i = 1 . . . n
∑m

j=1 cxi,vj = 0 ∀vj /∈ D(xi) ∀i = 1 . . . n
∑

h∈Dyvj

cyvj
,h = 1 ∀j = 1 . . .m

Lj ≥ 0, Uj ≥ 0 ∀j = 1 . . .m
0 ≤ cxi,vj ≤ 1 ∀xi ∈ SX , vj ∈ D(xi)
0 ≤ cyvj

,h ≤ 1 ∀yvj ∈ SY , h ∈ Dyvj

Definedmax to be the maximum domain size for the variables inS = SX ∩ SY . The
corresponding integer linear program uses(|SX | + |SY | + 2) · dmax variables and
4 · |SY |+2 · |SX |+dmax · (|SX |+ |SY |) inequalities. Ifxi = vj , cxi,vj = 1; otherwise
cxi,vj = 0. If yvj = h, cyvj

,h = 1; otherwisecyvj
,h = 0.

For example, consider the following WCSPP = {X ,D, {WS}, k}:

• X = {x1, x2, ya, yb};
• D(x1) = D(x2) = {a, b},D(ya)D = (yb) = {0, 1, 2};
• WS = W EGCCvar({x1, x2}, {ya, yb}).
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WS(a, a, 2, 1) = 1 since|ya − occ(a, (x1, x2))| + |yb − occ(b, (x1, x2))| = 1. The
corresponding integer linear program is shown as follows.

minL1 + U1 + L2 + U2 s.t.
cx1,a + cx2,a − cya,1 − 2cya,2 − L1 + U1 = 0
cx1,b + cx2,b − cyb,1 − 2cyb,2 − L2 + U2 = 0

cx1,a + cx1,b = 1
cx2,a + cx2,b = 1

cya,0 + cya,1 + cya,2 = 1
cyb,0 + cyb,1 + cyb,2 = 1

L1 ≥ 0, U1 ≥ 0, L2 ≥ 0, U2 ≥ 0
0 ≤ cxi,j ≤ 1 ∀xi, j, xi ∈ S, j ∈ D(xi)

The W DISJUNCTIVE/W CUMULATIVE Cost Function

The DISJUNCTIVE(S,Π) global constraint [21] accepts a tupleℓ ∈ L(S) iff (ℓ[xi] +
pi ≤ ℓ[xj ]) ∨ (ℓ[xj ] + pj ≤ ℓ[xi]) for every pair ofxi, xj ∈ S andpi, pj ∈ Π. Its
soft variant WDISJUNCTIVEval(S,Π) is defined based on the value-based violation
measure.

Definition 2 TheW DISJUNCTIVEval(S,Π) returns the cost of a tupleℓ ∈ L(S) as:

W DISJUNCTIVEval(S,Π)(ℓ) =
T
⊕

t=0

n
⊕

i=1,pi∈Π

max(|{i|ℓ[xi] ≤ t ≤ ℓ[xi]+pi}|−1, 0)

The CUMULATIVE (S,Π,K) constraint [1] accepts a tupleℓ ∈ L(S) iff |{i |
ℓ[xi] ≤ t ≤ ℓ[xi] + pi}| ≤ K for everyxi ∈ S andpi ∈ Π, which is a generalized
version of DISJUNCTIVE(S,Π). Its soft variant is defined based on the value-based
violation measure.

Definition 3 TheW CUMULATIVE val(S,Π,K) returns the cost of a tupleℓ ∈ L(S)
as:

W CUMULATIVE val(S,Π,K)(ℓ) =

T
⊕

t=0

n
⊕

i=1,pi∈Π

max(|{i|ℓ[xi] ≤ t ≤ ℓ[xi]+pi}|−K, 0)

Note that the WDISJUNCTIVEval(S,Π) and W CUMULATIVE val(S,Π,K) cost
functions are NP-hard. Aggoun and Beldiceanu [1] have shownthat enforcing GAC on
the DISJUNCTIVE and CUMULATIVE constraints is NP-hard.

W DISJUNCTIVEval(S,Π), whereS = {x1, . . . , xn}, can be modeled as a PLPS
cost function. The corresponding integer linear program isdefined as follows.

min
∑

t∈T Ut s.t.
∑n

i=1

∑t

j=max(t−pi,0)
cxi,j − Ut ≤ 1 ∀t ∈ T

∑

d∈D(xi)
cxi,d = 1 ∀i = 1, 2, . . . , n

0 ≤ cxi,d ≤ 1 ∀xi ∈ S, d ∈ D(xi)
Ut ≥ 0 ∀t ∈ T
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Definedmax to be the maximum domain size for the variables inS, the corresponding
integer linear program uses|S| · dmax + |T | variables and|T | + |S| + |S| · dmax

inequalities. Ifxi = d, cxi,d = 1; otherwisecxi,d = 0.
W CUMULATIVE val(S,Π,K), whereS = {x1, . . . , xn}, can be modeled as a

PLPS cost function. The corresponding integer linear program is defined as follows.

min
∑

t∈T Ut s.t.
∑n

i=1

∑t

j=max(t−pi,0)
cxi,j − Ut ≤ K ∀t ∈ T

∑

d∈D(xi)
cxi,d = 1 ∀i = 1, 2, . . . , n

0 ≤ cxi,d ≤ 1 ∀xi ∈ S, d ∈ D(xi)
Ut ≥ 0 ∀t ∈ T

Definedmax to be the maximum domain size for the variables inS, the corresponding
integer linear program uses|S| · dmax + |T | variables and|T | + |S| + |S| · dmax

inequalities. Ifxi = d, cxi,d = 1; otherwisecxi,d = 0.
For example, consider the WCSPP = {X ,D,WS , k}:

• X = {x1, x2};
• D(x1) = D(x2) = {0, 1, 2, 3};
• WS = W DISJUNCTIVEval({x1, x2}, {2, 3}).

WS(2, 0) = 1 since whent = 2, x1 ≤ t ≤ x1+2 andx2 ≤ t ≤ x2+3 and the two jobs
overlap each other, and

⊕T

t=0

∑n

i=1 |{i|xi ≤ 2 ≤ xi + pi}| = 1. The corresponding
integer linear program is shown as follows.

minU0 + U1 + U2 + U3 + U4 s.t.
cx1,0 + cx2,0 − U0 ≤ 1

cx1,0 + cx1,1 + cx2,0 + cx2,1 − U1 ≤ 1
cx1,1 + cx1,2 + cx2,0 + cx2,1 + cx2,2 − U2 ≤ 1
cx1,2 + cx1,3 + cx2,1 + cx2,2 + cx2,3 − U3 ≤ 1
cx1,3 + cx1,4 + cx2,2 + cx2,3 + cx2,4 − U4 ≤ 1

cx1,0 + cx1,1 + cx1,2 + cx1,3 = 1
cx2,0 + cx2,1 + cx2,2 + cx2,3 = 1

U0 ≥ 0, U1 ≥ 0, U2 ≥ 0, U3 ≥ 0, U4 ≥ 0
0 ≤ cxi,d ≤ 1 ∀xi ∈ S, d ∈ D(xi)
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