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ABSTRACT

Taking advantages of popular Resolvent-based (Rslv) and Min-

imum conflict set (MCS) nogood learning, we propose two

new techniques: Unique nogood First Resolvent-based (UFRslv)

and Redundant conflict value assignment Free Resolvent-based

(RFRslv) nogood learning. By removing conflict value assign-

ments that are redundant, these two new nogood learning tech-

niques can obtain shorter and more efficient nogoods than Rslv

nogood learning, and consume less computation effort to generate

nogoods than MCS nogood learning.

We implement the new techniques in two modern distributed

constraint satisfaction algorithms, nogood based asynchronous for-

ward checking (AFCng) and dynamic ordering for asynchronous

backtracking with nogood-triggered heuristic (ABT-DOng). Com-

paring against Rslv and MCS on random distributed constraint sat-

isfaction problems and distributed Langford’s problems, UFRslv

and RFRslv are favourable in number of messages and NCCCSOs

(nonconcurrent constraint checks and set operations) as metrics.

1. INTRODUCTION
In distributed reasoning, the variables, domains and constraints

are distributed among a set of agents. To solve the problem, the

agents communicate with each other by sending messages. Un-

like centralized constraint solving, the efficiency of a distributed

constraint satisfaction algorithm depends on not only the computa-

tion cost in each agent, but also the communication cost between

agents [5]. Usually the additional communication cost of sending

one message is much more than one internal constraint check in an

agent [9]. Yeoh et al. [11] simulate multi-agent systems with the as-

sumption that the cost of sending a message in fast communication

is 0 and the cost of sending one message in slow communication is

1000 times of the cost of one constraint check in terms of runtime.

It is thus desirable to pay more attention to communication cost in

solving algorithms, especially in slow communications.

Many distributed systematic search-based distributed constraint

satisfaction algorithms are nogood-based, such as asynchronous

weak-commitment search algorithm (AWC) [12], nogood-based

asynchronous forward checking (AFCng) [8] and dynamic order-

ing for asynchronous backtracking with nogood-triggered heuristic

(ABT-DOng) [13]. A nogood is made of a subset of the inconsis-

tent current partial assignments obtained by an agent. It indicates
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the value assignments in this nogood cannot be involved in any so-

lution simultaneously. We can regard a nogood as a new constraint

generated during search that is not explicitly stated in original prob-

lem. Thus, we refer to making nogoods as nogood learning [4].

Modern nogood learning techniques include resolvent-based

(Rslv) nogood learning [4, 1] and minimum conflict set (MCS) no-

good learning [6]. The first is also called the highest possible lowest

variable (HPLV) heuristic [1] which is a heuristic used mainly to

select an appropriate nogood of each removed value for generat-

ing combined nogoods. This technique ensures that the generated

nogood is short each time a wipe-out occurs, but cannot guarantee

this nogood is the shortest. At the same time, the variables related

to the value assignments in the nogood can be relatively high ac-

cording to the variable order [1]. Then, the algorithm can do earlier

backtrack to reduce search. Rslv nogood learning is widely used in

distributed constraint satisfaction algorithms [12, 8, 13].

MCS nogood learning generates as nogood a minimum conflict

set, which is the smallest subset of current partial assignments that

cause a deadend. The shorter the nogood, the more search space

it can prune. However, the cost of identifying such a set is usually

very high [6, 4]. Usually, distributed satisfaction algorithms would

not choose it as the technique to do nogood learning.

By doing more internal reasoning in agents, we may get more ef-

ficient nogoods which can prune more search space, and the large

search space pruning can cut down communication cost substan-

tially. However, too much internal reasoning may slow down the

whole solving process. There is a trade-off between the computa-

tion effort and the quality of nogoods.

We observe that the nogoods generated by Rslv nogood learn-

ing may have redundant conflict value assignments, which are not

needed. Thus, we propose efficient ways to remove some redundant

conflict value assignments from nogoods generated by Rslv nogood

learning using properties of a special kind of nogoods, unique no-

goods, in our Unique nogood First Resolvent-based (UFRslv) no-

good learning. Continuing to remove all redundant conflict value

assignments using generate-and-test, we get Redundant conflict

value assignment Free Resolvent-based (RFRslv) nogood learn-

ing. We implement these two techniques in AFCng [8] and ABT-

DOng [13] on the DisChoco platform [2], and show formally that

both UFRslv and RFRslv generate shorter nogood than Rslv does,

and have less computational complexity than MCS. We compare

our two techniques against Rslv and MCS nogood learning on uni-

form random distributed constraint satisfaction problems and dis-

tributed Langford’s problems using #msg (number of messages)

and NCCCSOs (Non-concurrent constraint checks and Set Oper-

ations) as metrics. Experiments demonstrate that the two new tech-

niques can save substantial number of messages and NCCCSOs

comparing to Rslv nogood learning. And in most cases, they can



also beat MCS nogood learning in terms of number of messages

and save tremendous NCCCSOs.

2. PRELIMINARIES
In this section, we introduce the definition of distributed con-

straint satisfaction problems, the idea of nogoods and two nogood

learning techniques (MCS and Rslv nogood learning).

2.1 Basic Definitions
A distributed constraint satisfaction problem (DisCSP) P is a

tuple (X ,D, C,A, φ) where X = {x1, . . . , xn} is a set of vari-

ables, D = {D1, . . . , Dn} is a set of finite domains for each of the

variables in X , C is a set of constraints and A = {a1, . . . , ak} is

a set of (distributed) agents and φ is a mapping: X 7→ A which

maps each variable in X to an agent in A. Usually, the searching

algorithm needs to define a variable order, such as lexicographic

order, among X . We use priority (prio(xi)) to indicate one vari-

able’s (xi’s) order. If variable xi has higher (lower) priority than

xj in the variable order, i.e., xi is assigned before (after) xj , then

we have prio(xi) > prio(xj) (prio(xi) < prio(xj)). We denote

xi = vi a value assignment assigning value vi ∈ Di to variable xi,

and the value assignments l ≡ x1 = v1∧x2 = v2∧· · ·∧xn = vn
is a complete assignment on variables in X . Partial assignments

l(S) is a projection of l onto variables in S ⊆ X . Each constraint

CS ∈ C is a constraint over a set S = {xs1 , xs2 , . . . , xsk} of vari-

ables. It is specified by a set of tuples (partial value assignments

l(S)) allowed to be assigned to S or an expression which states the

condition whether a tuple is allowed.

Note that in DisCSPs, variables and constraints are distributed

among agents. An agent aj holds a variable xi iff φ(xi) = aj , and

aj holds a constraint CS iff ∃xi ∈ S and φ(xi) = aj . In this pa-

per, we suppose each agent controls one variable and each variable

belongs to one agent without losing any generality. In most dis-

tributed constraint satisfaction algorithms, each agent maintains a

store to hold the partial assignments it gets to know. And in nogood

based distributed constraint satisfaction algorithms, each agent ai

also has a nogoodstore Ni to hold the nogoods found during search.

2.2 Nogood Learning
Chronological backtrack tree search is a basic systematic search

for solving distributed constraint satisfaction problems. It traverses

the search tree of possible assignments in a depth-first left-to-right

manner. In general, the search space is exponential. So, we usu-

ally use some techniques to prune the search space to speed up the

search procedure. Nogood learning is a kind of technique to create

explicit disallowed partial assignments and prune search space.

2.2.1 Nogood

A nogood is the negation of a conjunction of value assignments

which are disallowed by the problem constraints. The length of a

nogood is the number of value assignments contained in this no-

good. We also call each value assignment contained in a nogood

a conflict value assignment. For example, the nogood, ¬[xi =
vi ∧ xj = vj ∧ · · · ∧ xk = vk], means that the assignments it con-

tains are not simultaneously allowed since they cause unsatisfiabil-

ity. This is the most direct and intuitive representation of nogood.

Suppose we have a nogood ng ≡ ¬[l(S)] and a value assignment

xi = vi, if xi = vi is in l(S), then we say value assignment

xi = vi is contained in nogood ng. A higher nogood [4] of xi is

the nogood ¬[l(S)] where ∀xk ∈ S−{xi}, prio(xk) > prio(xi).
We can also represent nogoods with equivalent implication rep-

resentation [10]. A directed nogood ng ruling out value vk from the

initial domain of variable xk is an implication of the form xs1 =

vs1 ∧ · · · ∧ xsm = vsm → xk 6= vk, meaning that the assignment

xk = vk is inconsistent with xs1 = vs1 ∧· · ·∧xsm = vsm . When

a nogood, ng, is represented as an implication, the left hand side

(lhs(ng) ≡ xs1 = vs1 ∧· · ·∧xsm = vsm ) and the right hand side

(rhs(ng) ≡ xk 6= vk) are defined with respect to the position of

→. Many look-back distributed constraint satisfaction algorithms,

such as AFCng [8], store directed nogoods in each agent ai’s no-

goodstore Ni as justifications of value removals.

Suppose we have two directed nogoods ng1 ≡ xs1 = vs1∧· · ·∧
xsm = vsm → xk 6= vk and ng2 ≡ xt1 = vt1 ∧ · · · ∧ xtm =
vtn → xk 6= vk, ng1 is higher than ng2, if ∃w such that ∀i <
w, prio(xsi) = prio(xti) and prio(xsw ) > prio(xtw), with the

assumption that prio(xs1) > prio(xs2) > . . . > prio(xsm) and

prio(xt1) > prio(xt2) > . . . > prio(xtn). Suppose an agent has

got partial assignments l(S), a directed nogood ngi is consistent,

if ∀xt = vt ∈ lhs(ngi) is contained in l(S) or l(S) does not con-

tain value assignment of xt. And we say a nogood ng ≡ ¬[l(S)]
involves a directed nogood ngi, if lhs(ngi) ⊆ l(S). When an

agent generates or resolves stored nogoods to generate combined

nogoods, these stored nogoods should be consistent.

2.2.2 Nogood Learning Techniques

Nogood learning techniques can help agents to generate no-

goods to eliminate inconsistent values. When an agent detects a

deadend which means a variable’s domain is wiped out by cur-

rent value assignments, it will generate a combined nogood using

a nogood learning technique by resolving all or a subset of con-

sistent nogoods (with directed representation) which represent the

removals of values in nogoodstore together. We resolve a set of

directed nogoods, {ng1, ng2, . . . , ngk}, to get a new implication

lhs(ng1)∧ · · · ∧ lhs(ngk)→ rhs(ng1)∧ · · · ∧ rhs(ngk). When

we generate combined nogoods, we must guarantee that the com-

bined nogood can represent the deadend. If we have a combined

nogood, ng ≡ ¬[l(S)], and ∀vt ∈ Di (Di is the domain of xi),

xi = vt conflicts with the value assignments l(S), then we call ng

a complete nogood for Di’s wiping out.

Suppose variable xi has met a deadend with all domain ele-

ments pruned, and the nogoodstore Ni contains at least |Di| di-

rected nogoods to explain the removal of values in Di. The most

intuitive way to generate a complete nogood is to pick an arbitrary

directed nogood ngk for each vk ∈ Di and resolve these nogoods

{ngk|vk ∈ Di} together. Then, the agent can get an implication

lhs(ng1)∧. . .∧lhs(ng|Di|)→ rhs(ng1)∧. . .∧rhs(ng|Di|). The

right hand side of this implication is always false, because the do-

main is wiped out. We get lhs(ng1)∧ . . .∧ lhs(ng|Di|)→ false,

which is equivalent to ¬[lhs(ng1) ∧ . . . ∧ lhs(ng|Di|) ∧ true] ≡
¬[lhs(ng1) ∧ . . . ∧ lhs(ng|Di|)]. The new combined nogood is

thus ¬[lhs(ng1) ∧ . . . ∧ lhs(ng|Di|)]. Theorem 1 guarantees that

the combined nogood generated in this way is complete.

THEOREM 1. Suppose variable xi has met a deadend with all

domain elements pruned, and the nogoodstore Ni contains at least

|Di| directed nogoods explaining the removal of values in Di. Sup-

pose we pick an arbitrary directed nogood ngk for each vk ∈ Di.

Then ng ≡ ¬[lhs(ng1) ∧ . . . ∧ lhs(ng|Di|)] is a complete com-

bined nogood for xi’s deadend.

PROOF. When we resolve all the arbitrarily chosen directed

nogoods, {ngk|vk ∈ Di}, together, we can get an implication

lhs(ng1) ∧ . . . ∧ lhs(ng|Di|) → rhs(ng1) ∧ . . . ∧ rhs(ng|Di|).
We can see that the left hand side of this implication implies the

removal of all the values in Di. So, ng ≡ ¬[lhs(ng1) ∧ . . . ∧
lhs(ng|Di|)] is a complete combined nogood for xi’s deadend.

Although resolving arbitrarily chosen nogoods for each value



can make a complete combined nogood, the quality of this com-

bined nogood varies. A method to guide us in choosing proper

nogoods is needed. We focus on Rslv and MCS nogood learning.

Rslv Nogood Learning.
Rslv Nogood Learning is also called the Highest Possible Low-

est Variable (HPLV) heuristic [1], which is widely used in many

DisCSP algorithms. Rslv nogood learning can be considered as a

heuristic to guide us choosing an appropriate nogood to represent

the removal of a particular value, if this value is pruned by more

than one nogood. The nogoods made with this technique is equiv-

alent to a resolvent in propositional logic [4]. Suppose an agent

ai has a variable xi with a domain Di, and every possible value in

Di violates some higher nogoods consistent with the current partial

assignments. Algorithm 1 describes the procedure of Rslv nogood

learning. The inputs of function HPLV are variable xi’s domain Di

and the nogoodstore Ni in agent ai. The agent selects one nogood

for each value v ∈ Di (HPLV line 5) following the rules below [4]:

1. Select the smallest nogood among the higher nogoods of xi

pruning each v.

2. Ties are broken by selecting the one which is the highest.

After choosing a nogood for each v ∈ Di, the agent puts the left

side of this nogood into the combined nogood (HPLV line 6).

Algorithm 1 HPLV Heuristic

1: procedure HPLV(Di, Ni)

2: combinedNogood← ∅
3: for all vj ∈ Di do

4: nogoods← nogoods of vj in Ni;

5: ng ← shortest and highest nogood in nogoods

6: combinedNogood← combinedNogood∪ lhs(ng)
7: end for

8: return combinedNogood

9: end procedure

An agent selects the smallest nogood since it wants to prune

more search space. Agent chooses the highest nogood if there are

ties for the smallest nogood because higher nogood includes vari-

ables with higher priority according to the variable order. Upon

backtracking, with this shorter and higher nogood, the agent may

prune more search space and backtrack to higher place.

This is a greedy algorithm to generate nogoods. With this tech-

nique, we cannot guarantee the nogoods to be the shortest, i.e., the

nogoods are not made of minimum subsets of the inconsistent value

assignments which can lead to the deadend. Rslv nogood learning

cannot guarantee the nogoods to be the highest.

In fact, if we use this nogood learning technique in a nogood

based distributed constraint satisfaction algorithm, we only need to

store one nogood for each removed value. When an agent gets a

new nogood for one removed value, it will choose the more appro-

priate nogood between the newly received nogood and the nogoods

already stored in the agent according to the HPLV heuristic. This

can be an online algorithm with linear time complexity according

to the number of nogoods generated during search. The space com-

plexity is also linear according to the domain size. When an agent

detects a deadend, it just needs to resolve the nogoods held in no-

goodstore to generate a combined nogood. This procedure will take

linear time according to the size of variable’s domain.

EXAMPLE 1. In a DisCSP P = (X ,D, C,A, φ), there

are eight variables, {x1, x2, . . . , x8}. The variable order is

prio(x1) > prio(x2) > · · · > prio(x8). Agent a8 controls

variable x8. And there are 6 values in the variable’s domain,

{1, 2, 3, 4, 5, 6}. When agent a8 meets a deadend, i.e., all the val-

ues in the domain are pruned by the current partial value assign-

ments. Suppose the nogoods in the nogoodstore is as: ng1 ≡ x2 =
v2 → x8 6= 1, ng2 ≡ x3 = v3 → x8 6= 2, ng3 ≡ x1 =
v1 ∧ x2 = v2 → x8 6= 3, ng4 ≡ x2 = v2 ∧ x3 = v3 → x8 6= 3,

ng5 ≡ x4 = v4 → x8 6= 4, ng6 ≡ x2 = v2∧x5 = v5 → x8 6= 4,

ng7 ≡ x3 = v3 ∧ x7 = v7 → x8 6= 4, ng8 ≡ x2 = v2 ∧ x5 =
v5 → x8 6= 5, ng9 ≡ x2 = v2 ∧ x3 = v3 ∧ x7 = v7 → x8 6= 5,

ng10 ≡ x6 = v6 → x8 6= 6, ng11 ≡ x3 = v3 ∧ x7 = v7 →
x8 6= 6. When an agent generates new combined nogood using

Rslv nogood learning, it will choose ng1 (ng2) for removed value

1 (2), because there is no other nogood to prune value 1 (2). And it

chooses ng3 for removed value 3, because ng3 is higher than ng4.

This agent uses ng5 (ng8, ng10) to represent the removal of value

4 (5, 6), because ng5 (ng8, ng10) is shorter than ng6, ng7 (ng9,

ng11). Then, we can combine the left hands of ng1, ng2, ng3, ng5,

ng8, and ng10 together to get new combined nogood ng ≡ ¬[x1 =
v1 ∧ x2 = v2 ∧ x3 = v3 ∧ x4 = v4 ∧ x5 = v5 ∧ x6 = v6].

MCS Nogood Learning.
MCS nogood learning is proposed by Mammen et al. [6]. An

agent identifies the minimum conflict set from its stored current

partial assignments and makes a nogood with it. The minimum

conflict set is the smallest subset of the stored current partial assign-

ments that causes a deadend. Mammen et al. claim this nogood can

be the most effective one because it can prune the largest portion of

the search space. The idea of Hirayama et al. [4] is to generate a big

nogood first and then test whether a subset of the nogood is enough

to generate deadend or not from larger subsets to smaller subsets.

It will explore all the combinations of each removed value’s no-

goods and find the minimum conflict set. However, the complexity

of generating the minimum conflict set is exponential. The benefit

we can get from stronger pruning may not cover the cost we spend

in finding the minimum conflict set. There is a trade-off between

the computation effort and the quality of nogood. The smaller the

nogoods, the more computation effort they cost, but the more pow-

erful they are in problem solving.

3. UFRSLV NOGOOD LEARNING
Before we introduce our algorithm, some concepts and terms

should be defined. When we solve a DisCSP (X ,D, C,A, φ) using

a nogood-based algorithm and there is a nogood ng ≡ ¬[xs1 =
vs1 ∧ · · · ∧ xsi−1

= vsi−1
∧ xsi = vsi ∧ xsi+1

= vsi+1
∧ · · · ∧

xsm = vsm ]. The value assignment xsi = vsi is a redundant con-

flict value assignment in nogood ng, if xs1 = vs1 ∧ · · · ∧ xsi−1
=

vsi−1
∧ xsi+1

= vsi+1
∧ · · · ∧ xsm = vsm is inconsistent. That is

to say ¬[xs1 = vs1 ∧· · ·∧xsi−1
= vsi−1

∧xsi+1
= vsi+1

∧· · ·∧
xsm = vsm ], obtained by just removing xsi = vsi from ng, is still

a nogood. From the definition, we can easily get the following two

theorems.

THEOREM 2. The nogoods generated by MCS nogood learning

technique contains no redundant conflict value assignments.

PROOF. Suppose there is a redundant conflict value assignment

xi = vi in a nogood ng which is generated by MCS nogood learn-

ing. Since this value assignment is redundant, we can remove it

from ng and the result is also a nogood. Obviously this nogood is

also complete to represent the deadend, but has a smaller number

of conflict value assignments than ng has. We have a contradiction

and ng is the shortest nogood.



THEOREM 3. The length of a nogood containing no redundant

conflict value assignments is not necessarily minimum.

PROOF. We can continue with Example 1. Nogood ¬[x2 =
v2 ∧ x3 = v3 ∧ x5 = v5 ∧ x6 = v6] contains no redundant

conflict value assignments. However, the minimum conflict set is

x2 = v2 ∧ x3 = v3 ∧ x7 = v7. Result follows.

An important observation is that some nogoods must be involved

in combined nogoods to represent the deadend met by some vari-

able, if we want the combined nogoods to be complete. We can put

this kind of nogoods into the combined nogoods early and directly.

We suppose an agent ai detects a deadend π. Directed nogood ngi
in ai’s nogoodstore is a necessary nogood, if all complete nogoods

which can represent the deadend π must involve ngi. And a unique

nogood of a removed value v is the only nogood which can justify

the removal of v, i.e., value v can be only removed by the unique

nogood. We continue with Example 1. We can see that ng1, ng2
and ng4 are necessary nogoods. Since ng1 and ng2 are unique

nogoods, i.e., they are the only nogoods to prune values 1 and 2
respectively. If we remove ng1 (ng2) from any complete nogood

ng, value 1 (value 2) cannot be pruned, i.e., the resultant combined

nogood is not complete. So, ng1 and ng2 are necessary nogoods.

Since ng4’s left hand side is just made of the left hand side of nec-

essary nogoods ng1 and ng2, ng4 should also be involved in every

complete combined nogood implicitly.

In Theorem 4, we give the relation between necessary nogoods

and unique nogoods. We can get Theorems 4 easily from the defi-

nitions of necessary nogoods and unique nogoods.

THEOREM 4. A unique nogood must be a necessary nogood.

Necessary nogoods have such a good property that they should

be involved in any complete combined nogoods. From Theorem 4,

we can easily obtain the fact that unique nogoods must be involved

in any complete combined nogood. And these unique nogoods are

easy to find, i.e., an agent just needs to scan the removed values and

find the only nogood of a particular value.

From Example 1, we can find that the combined nogood gener-

ated by Rslv nogood learning may contain some redundant conflict

value assignments. For example, we will choose ng3 rather than

ng4, because ng3 is higher than ng4. However, because ng1 and

ng2 are unique nogoods, they must be in the combined nogood.

When the combined nogood involves ng1 and ng2, the combined

nogood involves ng4 implicitly, i.e., we do not need to involve

ng3 in the combined nogood any more. Thus, with Rslv nogood

learning, we may involve redundant conflict value assignments in a

combined nogood. If we can spend some effort to remove some of

these redundant value assignments, the new combined nogood will

be shorter and pruning power can become stronger. Based on this

idea, we propose a new nogood learning technique, called Unique

First Resolvent Based (UFRslv) nogood learning, which removes

some redundant conflict value assignments with little effort.

Algorithm 2 gives UFRslv nogood learning. The inputs are the

original domain Di of variable xi, and the nogoodstore Ni in agent

ai. Initially empty, the combinedNG is the new combined nogood

we want to generate (UFRslv line 2). And V alues contains the

removed values which we need to consider, initially the original

domain (UFRslv line 3).

In the first step, agent finds all unique nogoods and puts the left

hand side of these unique nogoods into an intermediate combined

nogood (UFRslv line 4 to 7). We will not consider these unique

nogoods and their pruning values in remaining steps. Here, we just

remove these pruned values from V alues. Continuing to explain

Algorithm 2 UFRslv Nogood Learning

1: procedure UFRSLV(Di , Ni)

2: combinedNG← ∅;
3: V alues← Di;

4: for all vi ∈ V alues has unique nogood ng do

5: combinedNG← combinedNG ∪ lhs(ng);
6: V alues← V alues− vi;

7: end for

8: for all vi ∈ V alues do

9: if vi is pruned by l(T ) in combinedNG then

10: V alues← V alues− vi;

11: end if

12: end for

13: combinedNG← combinedNG ∪ HPLV(V alues, Ni);

14: return combinedNG;

15: end procedure

with Example 1, when we find the unique nogood ng1 and ng2, we

will combine the left hand side of ng1 and ng2 to get an intermedi-

ate combined nogood ¬[x3 = v3 ∧ x4 = v4]
In the second step, we try to prune values contained in V alues

using the value assignments l(T ) in the intermediate combined no-

good just generated. If a value is pruned by l(T ), the value and

the nogoods corresponding to this value will not be considered in

remaining steps (UFRslv line 8 to 12). For example, we can use

x3 = v3∧x4 = v4 to prune value 3 of x8. Then, we remove value 3

from V alues and do not consider ng3 and ng4 in remaining steps.

After these two steps, we have already constructed some parts

of the combined nogood. Then, the agent will use Rslv nogood

learning to choose nogoods for the remaining values in V alues

(UFRslv line 13) and combine them into combinedNG. In Ex-

ample 1, with UFRslv nogood learning, we can get the combined

nogood as ¬[x2 = v2 ∧x3 = v3 ∧x4 = v4 ∧x5 = v5 ∧x6 = v6].
We can see that this nogood is shorter than the nogood generated

by Rslv nogood learning, i.e., it does not contain x1 = v1.

From the procedure of UFRslv nogood learning, we can obtain

Theorem 5.

THEOREM 5. The length of combined nogoods generated by

UFRslv nogood learning is shorter than or equal to the length of

the combined nogoods generated by Rslv nogood learning.

PROOF. The difference between the UFRslv and Rslv nogood

learning techniques is that we do two additional steps before we do

Rslv nogood learning in UFRslv nogood learning. In the first step

of UFRslv nogood learning, it will involve all unique nogoods in

the intermediate combined nogood. From Theorem 4 and the def-

inition of necessary nogoods, these unique nogoods should be in-

volved in the combined nogood generated by Rslv nogood learning

as well. In addition, when we do the second step in UFRslv nogood

learning, we will try to ignore some removed values, which can be

already pruned by the value assignments in the intermediate com-

bined nogood, in following Rslv nogood learning. Thus, we have

removed some unnecessary nogoods in the second step, and the no-

goods generated by UFRslv nogood learning should be shorter than

or equal to those generated by Rslv nogood learning.

Unlike Rslv nogood learning, UFRslv nogood learning needs to

store all consistent nogoods of each removed value in the nogood-

store since we do not know which nogoods we will choose to rep-

resent the removal of values in UFRslv nogood learning.



From the procedure of UFRslv nogood learning, we can obtain

Theorems 6 and 7. Completeness is easy to check since UFRslv

removes only redundant conflict value assignments.

THEOREM 6. The nogood generated by UFRslv nogood learn-

ing is complete.

THEOREM 7. Suppose variable xi has met a deadend with its

domain Di being wiped out, and there are N consistent directed

nogoods stored in nogoodstore. The time complexity of UFRslv

nogood learning is O(|Di|+N).

PROOF. In the first step of UFRslv nogood learning, we need to

scan the original domain to find unique nogoods and put the left

hand side of these unique nogood into an intermediate combined

nogood. This takes linear time according to the size of domain.

Then, we try to use the value assignments in the implication to

prune domain values. In order to prune one value, we just need to

test whether there exists a nogood pruning the value involved in the

implication. This step takes linear time according to the number

of consistent nogoods in nogoodstore. And in the following step,

our method just do Rslv nogood learning. We need to scan the

nogoodstore to choose one nogood to represent the removal of each

value. This takes linear time according to the number of nogoods

in nogoodstore. Finally, we will resolve these nogoods to get the

final combined nogood. This also costs linear time according to

domain size. So, the time complexity of UFRslv nogood learning

is O(|Di|+N).

Compared with MCS nogood learning which has exponential

complexity on the number of consistent nogoods in nogoodstore,

our technique is expected to save a lot of computation effort. Com-

pared with Rslv nogood learning, UFRslv is more attractive espe-

cially in slow communication since the additional computation is

only internal reasoning and the resultant large search space prun-

ing can cut down communication cost substantially.

4. RFRSLV NOGOOD LEARNING
Although nogoods from UFRslv nogood learning contain less

redundant conflict value assignments than those generated by Rslv

nogood learning, the resultant nogoods can still contain redundant

conflict value assignments. We propose Redundant Conflict Value

Assignment Free Resolvent Based (RFRslv) nogood learning. The

combined nogood generated by this technique is guaranteed not to

contain any redundant conflict value assignments. Then, RFRslv

nogood learning may get shorter combined nogoods than UFRslv

nogood learning by spending some more effort to remove redun-

dant conflict value assignments. We expect this technique can gain

more benefits from the shorter nogoods.

The idea of RFRslv nogood learning consists of two steps: (a)

generate a combined nogood using UFRslv nogood learning and

(b) check whether each conflict value assignment in the combined

nogood is redundant, and if so, we will remove this value assign-

ment from the combined nogood.

The RFRslv nogood learning procedure is given in Algorithm 3.

The inputs are the original domain Di of variable xi, and the no-

goodstore Ni in agent ai.

In the first step, we generate a combined nogood using UFRslv

nogood learning (RFRslv line 2). And then, we need to remove all

the redundant conflict value assignments. The most intuitive way

is to remove each conflict value assignment temporally from the

combined nogood and check whether the resultant nogood is still

complete. If it is the case, the removed conflict value assignment is

redundant and we can leave it out.

Algorithm 3 RFRslv Nogood Learning

1: procedure RFRSLV(Di , Ni)

2: combinedNG← UFRslv(V alues, Ni);

3: V alues← D(xi);
4: shouldIn← ∅;
5: for all vi ∈ V alues has unique nogood ng do

6: shouldIn← shouldIn ∪ lhs(ng)
7: V alues← V alues− vi;

8: end for

9: for all xm = vm in combinedNG do

10: if (xm = vm) ∈ shouldIn then

11: continue

12: end if

13: tempNG← combinedNG − (xm = vm)
14: if tempNG can wipe out xi’s domain then

15: combinedNG← tempNG;

16: end if

17: end for

18: return combinedNG;

19: end procedure

We speed up the procedure with the idea of necessary and unique

nogoods. We can see that unique nogoods should be involved in the

combined nogood, and the value assignments contained in unique

nogoods must be contained in the combined nogood. Thus, we do

not need to check these conflict value assignments. At the same

time, when we check whether the resultant nogood is complete,

there is no need to check whether the values with unique nogoods

can be pruned by the value assignments in the intermediate com-

bined nogood. The reason is that the unique nogoods must be in-

volved in the combined nogood.

In our algorithm, we check each remaining conflict value assign-

ment starting with the value assignment of the variable with the

lowest priority, because we want to get as high a nogood as possi-

ble. With higher nogood, an agent can backtrack to a higher vari-

able and the search procedure can be more efficient.

In the second step, we first remove the values with unique no-

goods from the copy of original domain V alues and put the left

hand side of these unique nogoods into shouldIn (RFRslv line 5

to 8). Then, we continue to check whether a conflict value as-

signment (xm = vm) is redundant or not from lower variables to

higher variables (RFRslv line 9 to 17). If xm = vm is involved

in shouldIn, it means this value assignment should be in the com-

bined nogood. Then, we continue to check other conflict value as-

signments (UFRslv line 10). Otherwise, we will remove (denoted

by “−”) this value assignment from the combined nogood tenta-

tively and test whether the remaining conflict value assignments

can prune all the values in V alues or not (UFRslv line 14). If

they can prune all the values in V alues, it means the conflict value

assignment (xm = vm) is redundant. We will remove this value

assignment and continue to check other value assignments. Other-

wise, this value assignment is not redundant. We will restore this

value assignment back into the combined nogood.

Continuing with Example 1, we get combined nogood ng ≡
¬[x2 = v2∧x3 = v3∧x4 = v4∧x5 = v5∧x6 = v6] using UFRslv

nogood learning. Then, we continue to test whether a conflict value

assignment in ng is redundant. We start to check from right to left

(the variables are lexicographically ordered). When we check value

assignment x4 = v4, we can find the remaining value assignments

can also represent the deadend. Thus, x4 = v4 is redundant and can



be removed from ng. After we check all the value assignments, we

can get the final combined nogood ¬[x2 = v2 ∧ x3 = v3 ∧ x5 =
v5 ∧ x6 = v6].

From the procedure of RFRslv nogood learning, we can obtain

the following theorems. Completeness and nogood length compar-

ison are straightforward to check.

THEOREM 8. The nogoods generated by RFRslv nogood learn-

ing is complete.

THEOREM 9. The nogoods generated by RFRslv nogood learn-

ing is shorter than or equal to those generated by UFRslv nogood

learning.

THEOREM 10. Suppose there are n variables, variable xi has

met a deadend with its domain Di being wiped out, and N consis-

tent directed nogoods stored in nogoodstore. The time complexity

of RFRslv nogood learning is O(|Di|+ nN).

PROOF. In the first step of RFRslv nogood learning, we will

generate a combined nogood using UFRslv nogood learning with

O(|Di| + N) time complexity. And in the worst case, all value

assignments of variables except xi are contained in the combined

nogood. We need to check whether each value assignment in this

nogood is redundant. And in each check, we need to test whether

there exists a nogood involved in the intermediate nogood pruning

each value. So, this will take O(nN) time complexity. Thus, the

complexity of RFRslv nogood learning is O(|Di|+ nN).

This new technique is expected to save much computation effort

as compared with MCS nogood learning and generate more power-

ful nogoods than Rslv nogood learning.

5. EXPERIMENT
We have implemented UFRslv and RFRslv nogood learning in

AFCng [8] and ABT-DOng [13] and compared these two new tech-

niques with Rslv and MCS nogood learning based on uniform ran-

dom constraint satisfaction problems and distributed Langford’s

problems. We evaluate the performance of the algorithms by com-

munication load and runtime. Communication load is measured

by the total number of messages (#msg) exchanged among agents

during algorithm execution. We use modified version of non-

concurrent constraint checks [7], non-concurrent constraint checks

and set operations (NCCCSOs), as the runtime metric, since our

nogood learning techniques consist of many set operations, such as

combining two sets (nogoods) together and checking whether one

set (nogood) is a subset of another (nogood). When we compare

different algorithms in real distributed multi-agent systems, these

operations may take considerable time. To be fair in our compar-

ison of various techniques in the simulator, we consider also the

number of set operations in the runtime metric.

We assume each set operation taking similar time as a con-

straint check. We verified our assumption by testing set opera-

tions and constraint checks (only considering table constraint) in

Java. DisChoco 2.0 deals with table constraints using the Java Bit-

Set class. When checking whether two value assignments satisfy a

constraint, we need to calculate the offset from these assignments

and get the corresponding truth value from the BitSet. In our test-

ing implementation, we also use the BitSet class to represent sets

and do set operations with builtin methods. We tested three set

operations: combining two sets, subtracting one set from another,

and checking whether one set is a subset of another. We performed

each kind of operations 100000 times. On average, 100000 set op-

erations and 100000 constraint checks took about 23 ms and 20 ms

respectively.

We consider two kinds of communication: fast and slow. For fast

communication, we suppose the communication cost of sending

one message takes the same time as doing one constraint check.

For slow communication, we assume the communication cost is

1000 times of that doing one constraint check.

All experiments are performed using DisChoco 2.0 [2]. Each

problem instance is solved by each algorithm 10 times. Computa-

tion timeouts if the algorithm consumes more than 108 NCCCSOs

with fast communication (since NCCCSOs are higher in slow com-

munication). We report average of all measures in separate graphs.

Since we cannot report all results due to space limitation, we pro-

vide all data in the following link:

http://www.cse.cuhk.edu.hk/∼jlee/rand.pdf

http://www.cse.cuhk.edu.hk/∼jlee/lang.pdf

5.1 Uniform Binary Random DisCSPs
Uniform binary random DisCSPs [10] are characterized by

〈n, d, p1, p2〉, where n is the number of agents and variables (each

agent holds one and only one variable), d is the number of values

in each domain, p1 is the density defined as the ratio of existing

binary constraints and p2 is the constraint tightness defined as the

ratio of forbidden value pairs. In the experiment, we fix the number

of agents to 15 and the size of each variable’s domain to 20. We

vary the tightness from 0.1 to 0.9 by steps of 0.1. Density is varied

from 0.2 to 0.8 by steps of 0.1. For each pair of fixed density and

tightness (p1, p2), we generate 25 instances.

Because of the lack of space, we only give some results which

are the most representative. Figure 2(a) - 2(c) and Figure 2(d) - 2(f)

give results of AFCng and ABT-DOng respectively. We present

results for constraint tightness of 0.6 and vary density from 0.2 to

0.8. In the figures, we use Rslv, MCS, UFRslv and RFRslv to rep-

resent corresponding nogood learning techniques. NCCCSO-1 and

NCCCSO-1k denote the NCCCSOs taken by the algorithm in fast

and slow communication respectively. The analysis we give in the

following is based on all tightness used in the experiments.

Overall speaking, UFRslv and RFRslv exhibit similar patterns,

outperforming Rslv in most cases, especially when the problem is

difficult. And these two techniques can beat MCS in terms of num-

ber of messages sometimes and always save substantial NCCCSOs.

With AFCng, UFRslv and RFRslv can save up to 60% and 61%
of number of messages and up to 55% and 44% of NCCCSOs in

fast network when compared with Rslv. With slow communica-

tion, UFRslv and RFRslv can save up to 59% and 60% of NCCC-

SOs against Rslv. Since our new nogood learning takes more local

reasoning, it can get shorter and more efficient nogoods, thus re-

sulting in less messages. In a slow network, sending a message is

expensive, making our methods useful and significant.

Compared with MCS, UFRslv and RFRslv are competitive in

terms of number of messages, but we cannot draw a solid conclu-

sion on which is better. Although our nogoods are not the shortest,

we try to make higher nogoods. These higher nogoods allow search

to backtrack to a higher node. This may help us do searching in a

more efficient way. On the other hand, MCS consumes many more

NCCCSOs than our two methods. In some difficult cases, such

as tightness being 0.6 and density being 0.3, MCS can consume 7

times more NCCCSOs than UFRslv and RFRslv in a fast network.

In slow network, however, the advantages of UFRslv and RFRslv

over MCS are narrower.

With ABT-DOng, when compared with Rslv, UFRslv and RFRslv

can save up to 55% and 61% of number of messages respectively.

They both save up to 44% of NCCCSOs in fast network. In slow

network, they can save 55% and 63% of NCCCSOs respectively.

The improvements obtained by our two methods with ABT-DOng



are more stable than those obtained with AFCng. When compared

with MCS, the situation is similar to the last discussion. While

the number of messages consumed by MCS is less sometimes, our

techniques can save up to 50% of NCCCSOs over MCS in fast net-

work, but the advantage gap gets smaller or even reverse sometimes

in slow network.

5.2 Distributed Langford’s Problem
Recall the Langford’s problem (prob024 in CSPLib [3]), which

is parametrized by a pair (m,n) and aims at finding an m × n

digit sequence consisting of digits 1 to n, each occurring m times,

such that any two consecutive occurrences of digit i are separated

by i other digits. One way to model Langford’s problem is to use

m×n variables to represent each digit in the sequence. The value in

each domain represents the place in sequence. The domain of each

variable is {1, . . . ,mn}. For example, in the (2, 4)-Langford’s

problem, x1 and x2 represent the positions of the first 1 and the

second 1, and x2 − x1 = 2. x3 and x4 represent the positions of

the first 2 and the second 2, and x4 − x3 = 3; similarly for x5, x6

and x7, x8.

We bring the Langford’s problem into the distributed context. In

the Distributed (m,n)-Langford’s Problem, we assume each vari-

able is controlled by one agent so that we have m × n agents to

control the variables.

Figure 3(a) - 3(c) and Figure 3(d) - 3(f) show the results of

AFCng and ABT-DOng respectively on various (m,n) instances

of the distributed Langford’s problem using the four nogood learn-

ing techniques we have discussed. From left to right on the x-axis,

(m,n) pairs are (2, 6), (2, 7), (3, 6), (3, 7), (3, 8), (3, 9), (3, 10)
and (4, 7). In our AFCng implementations, MCS performs the best

but by only very thin margin in number of messages for small in-

stances, but RFRslv prevails in the large ones by a considerable

margin when MCS even timeouts on all these instances. Timeouts

are represented as the highest values in the graphs. In fast network,

UFRslv is the best among the four techniques across all instances

in terms of NCCCSOs, while UFRslv and RFRslv top the list in

slow network. Rslv is in general the worst in performance in all

metrics, but is relatively more robust than MCS. We also note that

the performances of UFRslv and RFRslv are actually very close to

each other in the Langford’s instances, so that their lines overlap in

our graphs, which have a wide spread in scale in the vertical axis.

In our ABT-DOng implementations, again MCS performs well

in small instances in number of messages, but RFRslv takes over in

the largest two instances. In terms of NCCCSOs, both UFRslv and

RFRslv, which have very close performance, outperform MCS and

Rslv substantially. Rslv is the worst in all metrics.

The number of messages and runtime (NCCCSOs) our meth-

ods save is dramatic. With AFCng, UFRslv and RFRslv can save

around 68% of messages over Rslv in some difficult problems, such

as (3, 8) and (3, 10)-Langford’s problem. In fast and slow commu-

nication, our methods can save NCCCSOs up to 78% and 70% re-

spectively. MCS timeouts in the largest four instances. Among the

non-timeout instances, UFRslv and RFRslv have almost identical

number of messages as MCS, but can save up to 82% of NCCC-

SOs in fast network. The savings in slow network become almost

minimal.

With ABT-DOng, UFRslv and RFRslv can save up to 87% of

number of messages over Rslv. In fast and slow communication,

our methods can save NCCCSOs up to 85% and 88% respectively

comparing with Rslv. MCS are better only in the five smaller in-

stances in number of messages. Among the three largest instances,

UFRslv and RFRslv can save up to 82% of messages over MCS. In

terms of NCCCSOs, UFRslv and RFRslv are always better and can

improve up to 88% and 93% for fast and slow network respectively.

6. CONCLUDING REMARKS
In this paper, we present UFRslv and RFRslv nogood learn-

ing. These new techniques were incorporated in AFCng and ABT-

DOng. In both proposals, each agent will do more internal reason-

ing to get shorter nogoods than Rslv nogood learning. Comput-

ing shorter nogoods costs internal computation in an agent. If we

take communication costs into the evaluation metric, however, the

stronger pruning we get from the shorter nogood can give us more

benefits by pruning larger parts of the search space. Our methods

outperform Rslv nogood learning in terms of number of messages

and NCCCSOs. In most cases, our new techniques consume around

similar or even less number of messages as MCS nogood learning

does. However, our methods use much less NCCCSOs.

Between the two new methods, RFRslv nogood learning is

slightly better than UFRslv nogood learning in general in terms

of messages. In fast network, UFRslv nogood learning consumes

less NCCCSOs. In slow network, however, RFRslv nogood learn-

ing becomes better in terms of NCCCSOs. We can choose different

nogood learning techniques for specific environments.

A possible future direction of work is to continue the develop-

ment of new nogood learning techniques. Doing that, we should

note the possible trade-off between the effort we spend on generat-

ing nogoods and the effectiveness of the nogoods in pruning search

space.

We observe that our nogood learning techniques works better

with ABT-DOng over AFCng, i.e. the ratio of improvement is

larger and more stable with ABT-DOng. Another possibility is

to investigate efficient dynamic variable and value ordering algo-

rithms to make good use of the properties of nogoods.
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Figure 1: Experiment Result on Random DisCSPs (tightness = 0.6)
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Figure 2: Experiment Result on Langford’s Problem
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