A General Privacy Loss Aggregation Framework for
Distributed Constraint Reasoning”

Jimmy H.M. Lee
Dept of Computer Science & Engineering
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong
jlee@cse.cuhk.edu.hk

Abstract—Distributed constraint solving are useful in tackling
constrained problems when agents are not allowed to share
his/her private information to others and/or gathering all neces-
sary information to solve the problem in a centralized manner is
infeasible. With these two limitations, distributed algorithms solve
the problem by coordinating agents to negotiate with each other.
However, once information is exchanged during negotiation, the
private information may be leaked from one agent to another. We
propose and design a framework based on Valuation of Possible
States (VPS) to evaluate how well a distributed algorithm pre-
serves the totality of all private information on the entire system
when solving distributed constraint optimization problems, by
allowing the uses of different aggregators aggregating agents’
individual privacy loss. Two classes of aggregators: idempotent
aggregators and risk based aggregators are proposed. We further
proposed generalized inference rules to infer privacy loss of
individual agents. We implement our work on four distributed
constraint solving algorithms: Synchronous Branch and Bound
(SynchBB), Asynchronous Distributed Constraint Optimization
(ADOPT), Branch and Bound ADOPT (BnB-ADOPT), and
Distributed Pseudo-tree Optimization Procedure (DPOP). Prelim-
inary experimental evaluations on two benchmarks, Distributed
Multi-Event Scheduling Problem (DiMES) and Random Dis-
tributed COP, comparing the four algorithms are performed.

Keywords—Distributed reasoning, privacy loss, aggregation
axiom

I. INTRODUCTION

The task at hand is that of a Distributed Multi-Event
Scheduling Problem (DiMES) [10] where there are a set of
events, a group of attendees, and a set of free timeslots for
each of the attendees. Each attendee is required to attend a
list of events, and there are preferences (modeled by penalty
costs) for each of his/her free timeslots. The goal of the
problem is to assign free timeslots to events for each of the
attendees such that all attendees can attend the events he/she
is required to attend and the total penalty cost is minimized.
For each attendee, the information on which events he/she
needs to participate, the available timeslots for him/her, and
the preference for each timeslot should not be revealed or
known by the others. For this type of problems, gathering

*We are grateful to the anonymous referees for their constructive comments.
The work was generously supported by grants CUHK413808, CUHK413710
and CUHK413713 from the Research Grants Council of Hong Kong SAR.
The work of Mak was performed while he was at CUHK.

Terrence W.K. Mak
NICTA Victoria Lab &
University of Melbourne

VIC 3010, Australia

Terrence.Mak @nicta.com.au

Yuxiang Shi
Dept of Computer Science & Engineering
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong
yshi@cse.cuhk.edu.hk

all information and tackling the problem in a centralized
manner is not an ideal way since the agent solving the
problem can gather all the attendees’ (private) information. For
security-sensitive applications, there may also be geographical
restrictions disallowing information to be dispersed to third
parties. To overcome these limitations, we usually tackle the
problem via message exchanges in a distributed manner but
aim at minimising privacy loss.

Distributed Constraint Optimization Problem (DCOP) is
a framework for modeling these problems, and various al-
gorithms, e.g. Asynchronous Distributed Constraint Opti-
mization (ADOPT) [11], Branch and Bound ADOPT (BnB-
ADOPT) [16], and Distributed Pseudo-tree Optimization Pro-
cedure (DPOP) [13], have been proposed for solving DCOP.
Many of these algorithms utilize message exchange methods
(i.e. negotiations in DIMES) to communicate with other agents
(i.e. attendees in DIMES). However, once an agent exchanges
messages with other parties/agents, there are chances to leak
information. In real life situations, some of these information
may be confidential, and we hope to minimize leakage of
such information as much as we can. How well a distributed
algorithm keeps the privacy of agents is always one of the
major concerns in distributed reasoning. In this paper, our
primary focus is to study and design a framework to evaluate
and compare distributed algorithms on how well they protect
agents’ private information.

Much work [4H6l 9 [14] has been proposed to compute
and measure the privacy loss of individual agents. However,
for comparing system privacy loss with different algorithms,
many just utilize simple aggregation techniques (e.g. max and
average) to aggregate the privacy loss of individual agents
and use the aggregated results to indicate how well the
algorithm performs. Note that different aggregation techniques
may give different results. It is worthwhile to understand and
further study what kinds of aggregators we should use in an
application. Aggregation and fusion of information are basic
concerns [2] for all kinds of knowledge based systems. In
general, we can view aggregation as simultaneously utilizing
different pieces of information in order to come up with a
decision. Restricting our attention to only simple aggregators
may not be adequate to compare the quality of algorithms.
Sometimes, it may even be worthwhile to use more complex

aggregators or even hybrid aggregators.

Our primary goal is to propose a principled system level
aggregation framework allowing us to devise aggregators for
combing individual agents’ privacy loss, by classifying and
characterizing the properties of different types of aggregators.
We then give an outline on how to compute and derive the
amount of privacy of an agent deduced by others via a set
of basic inference rules in general DisCOPs. These rules are
generalized from previous work on Distributed Multi-Event
Scheduling. We then implement our framework and infer-
ence rules on four distributed constraint solving algorithms:
Synchronous Branch and Bound (SynchBB), Asynchronous
Distributed Constraint Optimization (ADOPT), Branch and
Bound ADOPT (BnB-ADOPT), and Distributed Pseudo-tree
Optimization Procedure (DPOP). Preliminary experimental
evaluations on two benchmarks comparing the four algorithms
are performed.

II. BACKGROUND

In this section, we first give the definition of DCOP,
followed by showing the description for the Distributed Multi-
Event Scheduling Problem. We then describe the VPS frame-
work by Maheswaran et al.

A. Definition of DCOP

A distributed constraint optimization problem (DCOP) P
is a tuple (X,D,C, A, ¢) where X = {x1,...,2,} is a set
of variables, D = {Dy,...,D,} is a set of finite domains
for each of the variables in X, C is a set of constraints
(also called cost functions), and A = {ay,...,ar} is a set
of (distributed) agents. ¢ is a mapping: X — A which maps
each variable in X to an agent in A. We denote x; = v; an
assignment assigning value v; € D, to variable z;, and the
set of assignments | = {1 = v1,20 = va,..., Ty, = U}
is a complete assignment on variables in X, where v; is the
value assigned to x;. A partial assignment [[S] is a projection
of | onto variables in S C X. Each constraint Cg € C is a
constraint over a set S = {zg,,%s,,...,%s,} of variables,
defining real-valued costs for all possible joint assignments
{l‘sl = VG, TSy = VSy,-.-,LG, = USk|1)Sl S Dsl,U52 S
Dg,,...,vs, € Dg,}. The cost of a complete assignment [
in X is defined as: cost(l) = > cc Cs(I[S]). The objective
is to find a complete assignment with minimum costs.

For simplicity, we write C; for the unary constraint on
variable x; and C;(v) for the cost of constraint C; with the
value assignment {z; = v}. Note that in DCOP, variables and
constraints are distributed among agents. An agent a; holds a
variable x; iff ¢(z;) = a;, and a; holds a constraint Cy iff
Jx; € Ss.t.¢(x;) = a;. If ¢ is surjective, then all agents must
hold at least one variable. If ¢ is injective, then no two (or
more) variables are being held by the same agent. For DCOPs,
we follow previous work [4} |6 [9] by considering an agent’s
private information to be the unary costs of his/her variables.
In other words, an agent does not want to disclose his/her
variables’ unary costs to other agents.

B. Distributed Multi-Event Scheduling

The Distributed Multi-Event Scheduling [10] framework
(DIMES) includes a set of N people R = {Ri,...,Rn},
a set of K events (also called event set) £ = {F1,...,Fx},
and a set of T rimeslots T = {1,...,T} where t € T refers
to the t" timeslot. We have a set F' = {F1,Fs,...,Fn} of
cost functions. Cost functions F; are known by R;. For each
F; € F, F;(t) gives the costs for person R; keeping timeslot ¢
free. Each event £; is a tuple (A;, L;; W;), where A; C R is
the subset of people that are required to attend for event F,
L; € T is the timeslot the event £; will be going to be held.
Wj is a set {WJ (R1)7 Wj (Rg), ey Wj (RN)}, where W](RIL)
denotes the reward of person R; for attending event Ej.
Overall, the reward that a person R; obtains from scheduling
event £ in timeslot ¢ is A(R;, E;,t) = W;(R;) — F;(t). Our
goal is to find a set of timeslots {L1,..., Lk} for the set of
events £ = {E1,...,Ex} st

Z [Z A(R;, Ej;, L;)] is maximized.
E;=(A;,Lj;W;)€E Ri€A;

To model DIiMES as a DCOP, we use the model called
Private Events as Variables (PEAV) [10]. Each person R; € R
will be modeled as an agent a; € A in the DCOP. For each
agent a; (i.e. person R;), he/she will own a set of variables
{zi,|Ri € Aj NE; = (Aj,L;;W;) € &}, where each
x;; corresponds to the event Ej; he/she needs to attend and
¢(xi;) = a;. We set the domain of each variable z;; to be
the set of timeslots 7 = {1,...,7}. We have (inter-agent)
constraints between agents to restrict that different agents
choose the same time for the same event, and also have (intra-
agent) constraints to restrict no timeslot for an agent has been
assigned to two events. These two types of constraints will
return either a cost of 0 (i.e. satisfiable) or a cost of co (i.e. un-
satisfiable). Unary constraints C’ij on variables z;; will be used
to return costs for A, where Vt € T,C;, (1) = A(R;, Ej,).
Note that for DIMES, sometimes we can assume the reward
W;(R;) of a particular person R; attending an event E; is
known by all agents [9]]. In this case, we may further assume
the private information of a person R; is the costs F;(t) for
R; keeping a timeslot ¢ free.

C. Valuation of Possible States

Valuation of Possible States (VPS) [9] is a privacy loss
metric framework. The framework views an agent’s privacy
loss as the amount of privacy leaked by him/her to other
agents. We call this type of privacy loss individual privacy
loss. By combining and fusioning different agent’s individual
privacy loss, we obtain the privacy loss of an algorithm/system,
namely called system privacy loss. VPS computes the privacy
loss of an agent from the viewpoint of other agents. To
calculate the privacy loss V; of an agent a;, the framework
first calculates the amount of a;’s private information V;/
revealed by others (i.e. all agents a; except a; himself). The
framework allows us to use different metrics, e.g. entropy-
based metrics [3| 14, [7], proportional metrics [9]], and state-
guessing metrics [3}14] to measure and compute V;”. Then, the

framework computes V; by Zaje At sz In other words, V;
is the privacy loss deduced by other agents. Before execution
of a distributed algorithm, we assume V; of each agent a; is the
amount of common knowledge, and V; will only be increased
when message exchanges occur (executed by the distributed
algorithm). The privacy loss p; of an agent a; during the
solving procedure will then be the difference on V; before
and after executing the procedure. Finally, VPS combines the
privacy loss of all agents by taking average to represent the
loss of an algorithm/system.

III. AGGREGATION FRAMEWORK FOR PRIVACY LOSS

VPS is a coherent framework in measuring the privacy
loss of individual agents during message exchanges. To in-
dicate the privacy loss of an algorithm/system, they choose
to take average on agents’ individual privacy losses. In fact,
comparing and checking which system/algorithm is better
is a kind of decision making process. In many cases, the
decision making process needs to consider multiple criteria or
attributes [8]. In such decision making process, the decision
making person/agent is faced with a set of decision alternatives
and the ratings per alternative per criterion which then have
to be fused together in order to produce an overall rating, and
the fusion process is carried out by some form of aggregation
operation [1]]. In many cases, this operation is in some form of
weighted arithmetic mean [[1], and this works well in situations
in which any differences are viewed as being in conflict
because the operator reflects a form of compromise behaviour
among the various criteria [8]. However, when these conditions
do not hold, arithmetic mean is a poor choice [§]. Thus, in gen-
eral, we should also provide aggregation operations/functions
reflecting the user’s individual choice of behaviour among
these different criteria. For aggregating privacy losses, sim-
ilarly, we observe there are many more ways to aggregate
individual privacy loss other than taking average. We propose a
principled framework to study and investigate the possibilities
to incorporate other useful aggregators. Case studies on several
popular aggregation functions will be investigated. We then
propose to incorporate and utilize risk based aggregations [8]]
to aggregate privacy losses.

A. Fundamental Axioms

Without loss of generality, we normalize privacy losses p;
of an agent a; to be real values from the domain of [0, 1],
where p; = 0 means there are no privacy loss for the agent
a; and p; = 1 means the agent a; loses all privacy to all
the others, i.e., all the other agents know all the privacy of
agent a;. We write OV and 1V to be an ordered N-tuple
containing all zeroes and an ordered N-tuple containing all
ones respectively. We now define the aggregation function
for aggregating individual privacy losses based on several
fundamental axioms [1].

Definition 1. Given a DCOP P = (X,D,C, A, ¢). An
aggregation function Agg for aggregating N > 1 privacy
losses pi,p2,...,pN for agents ay,as,...,any in A is a
function: [0,1)N + [0,1]. The input is a vector (or tuple)

whose elements are the privacy loss of each agent and the
output is the system privacy loss. We require the function to
satisfy the following axioms:

If N =1: Vp; €[0,1], Agg([p1]) =1 (D
VN >1: Agg(0V) =0A Agg(1V) =1 (2)
VN >1: p1 <pj,p2 <Py ,py <Py =

NI E)

Axiom (1) requires any aggregation function aggregating the
privacy loss of a single agent must not alter the privacy loss.
Axiom (2) gives the boundary conditions of the aggregated
privacy loss. If there are no privacy losses for all of the
agents, the aggregated privacy loss must also be 0. Similarly,
if all agents lose all privacy, then the aggregated privacy loss
must be 1. Axiom (3) restricts all aggregation functions must
be monotonic, i.e. a non-decreasing function. The aggregated
privacy loss must increases if the list of individual privacy loss
is increasing.

Finding arbitrary functions satisfying the definition of ag-
gregation functions is not hard. However when analysing
algorithms, we usually have goals, and these goals may vary
for different users. It is useful if we can clearly identify which
classes/types of aggregation functions allow the user to achieve
his/her goal. In this paper, we identify and discuss two classes
of aggregation functions: idempotent aggregation and risk-
based aggregation.

B. Idempotent Aggregation

Many common used functions, e.g. minimization, maxi-
mization, and average, are idempotent aggregation functions.
We first introduce this class of aggregation functions as many
functions from this class is popular or common to users.

Definition 2. Given a DCOP P = (X,D,C, A,). An
idempotent aggregation function Agg for aggregating N > 1
privacy losses p1,ps,...,pN for agent ai,as,...,ayn in Ais
an aggregation function with the idempotent condition:

pL=p2=...=pN =c = Agg([p1,p2,....PN]) = ¢,

where c is a constant in [0, 1].

Idempotence means if all the agents’ privacy loss is the
same, the aggregated (system) privacy loss should be equal to
the agents’ privacy loss.

Lemma 1 (Upper and Lower Bound). Given an idempo-
tent aggregation function Agg with N > 1 privacy losses
P1,P2,--., PN for agents ai,aq,...,an in a DCOP P.

N

3 N

We skip the proof as it is easy to derive by using the
idempotent condition and the monotonicity condition. Similar
proof can be found and derived from the work of Yager
et al. [15]. A useful corollary for this lemma is that given
privacy losses of a set of agents, the aggregated privacy loss
generated by an idempotent aggregation must be bounded by

the minimum and maximum losses. All functions from the
class of idempotent aggregation functions must not return
values beyond the range of the input values, i.e. return values
larger (smaller) than the largest (smallest) input. We can
also view this class of aggregation functions as a kind of
compromised aggregation [8].

Lemma 2. Given a DCOP P = (X,D,C, A, ¢) and N > 1
privacy losses where each p; corresponds to an agent a; € A.
Function k'™ max which chooses the kth largest privacy loss
from these agents’ privacy loss and function weighted average
Yo (w; x p;), where Y. w; = 1 are both idempotent
aggregation functions.

We skip the proof as it can be easily constructed according
to the basic definition of idempotence and the three axioms
for aggregation functions. Note that maximization and mini-
mization are special cases of k" max and arithmetic mean is
a special case of weighted average. An immediate corollary is
that these functions are all idempotent aggregation functions.

In real-life applications, we may encounter complex/large
problems involving different groups of agents, where each
group may have different privacy requirements. For each of
these groups, we may need to use different aggregation func-
tions in measuring their privacy losses. To further obtain the
system privacy loss, we need an aggregation function which
aggregates the privacy losses of each group to indicate the loss
for the whole problem/system. These combined aggregation
functions are called hybrid aggregations.

Example 1. Suppose we have a set of nine agents
{a1,...,a9} and the privacy losses corresponding to these
agents, ai,...,aq, are represented as a vector [p1,...,pol.
We want to create an aggregation function which first: 1)
takes the maximum on the privacy losses of agent a1 and
as, 2) takes the median on the privacy losses of agent
as,aq,as, and ag, and 3) takes the arithmetic mean on
the privacy losses of agent az, ag and ag, followed by:
returning the maximum of the three aggregated answers as
outputs. The hybrid function Agg(p1,pa, ..., po) will then be:

max(max{pi, p2 }, median{ps, p4, ps, s }, [(P7+ps+p9)/3]).

It is easy to observe the aggregation function above, Agg, is
an idempotent aggregation. According to the basic definition of
idempotence and the three axioms of privacy loss aggregator,
we can easily obtain the following lemma.

Lemma 3. A function combining idempotent aggregation
functions using an idempotent aggregator is idempotent.

Note that all these aggregation functions we mentioned
above, in general, do not need any user guidance during
computations and there are no required external user inputs
other than privacy losses. These functions may not be an ideal
choice when we need to consider human’s behaviour.

C. Risk Based Aggregation

Evaluating and computing risks is an important factor to
consider when people are making decisions. Privacy losses

are also risks. The more privacy the agent loses, the more
risky the agent is perceived to be. However for aggregating
privacy losses, the choice of aggregators is likely to vary from
user (algorithm designer) to user because their own view on
how to do the aggregation can be different from each other.
For example, when aggregating two privacy losses, some users
might be optimistic and believe the result should not be higher
than either of the two; some might be pessimistic and believe
the result should not be lower than either of the two; and some
might be more neutral and believe the result should be in-
between [8]]. For different situations or risk levels, the attitude
of a user to consider the privacy loss can be also quite different.
One classic approach is to set up a threshold so that privacy
losses higher/lower than the threshold are regarded as being
positive/negative. We then handle these two sets of privacy
losses separately by using different types of aggregations. This
makes the situation more complex. Whenever we want to
compare algorithms, we should also consider the individual
preferences and attitudes towards risk for each of the users [8].
Our goal is to introduce such notions to allow users devising
aggregation function flexible enough to handle such criteria.

In this paper, we employ the standard assumption from
the economic game theory community [} [12]] that users can
exhibit three broad types of attitude toward risk: risk-seeking
(optimistic), risk-averse (pessimistic) or risk neutral (neutral),
and propose aggregation functions corresponding to each of
these attitudes. When a user wants an aggregation to be risk-
seeking (risk-averse resp.), the user is optimistic (pessimistic
resp.), i.e. thinking the system is less (more resp.) privacy-
sensitive. We also add the risk-neutral aggregation for users
with neutral attitude, i.e. not risk-seeking and also not risk-
averse. We define the privacy-loss threshold 7 to be a real
value € [0,1]. The threshold is used to represent the user’s
expected privacy loss of the system which varies from person
to person. If a privacy loss p; is larger (smaller resp.) than 7
for an agent a;, it means the loss is worse (better resp.) than
the user’s expectations. For such losses, we add an extra label
T sign (~ sign resp.) to p;. Hence, a loss p; can be either
pj or p; . By adding the two signs, we can then seperate all
losses into two sets.

By following and extending the work of (Luo and Jennings,
2008), we now give risk-based aggregation functions for
aggregating individual privacy losses of agents.

Definition 3 (Risk-based aggregation functions). Given a
DCOP P = (X,D,C, A, ¢) and a user defined 7 € [0,1].
Suppose we have N > 1 privacy losses vector G =
[p1,D2,-..,PN]| for agent ay,as, ..., ayn in A. We partition G
into two vectors: G and é‘, where G+ (G- resp.) contains
all privacy losses p; € G sit. pi > T (p; < T resp.).

For all pt,....pF € G, an aggregation function Agg is:

o T-high-pessimistic if Agg(py,...,pd) > max(py,...,pd)

o T-high-optimistic if T < Agg(py,...,pd) < min(py,...,pd)

o T-high-neutral if min(p’,...,pT) < Agg(pf,...,pd) <
max(py,...,pd)

Forall py,...,p; € G-, an aggregation function Agg is:

o T-low-pessimistic if T > Agg(prs---,py) >
max(py ..., Py)

o T-low-optimistic if Agg(py, ... ,p;) < min(p;,... 7pJZ)

o 7-low-neutral if min(py,...,p;) < Agg(py,...,p;) <
max(py ,...,p;)

For all p7 p; € G~ and for all pt +e Gt oan

19+ f pla"'?pe ’
aggregation function Agg is:

o T-combined-pessimistic if
Agg(pf,...,p&,7) < Age(pr, ..., 05,07, D)

o T-combined-optimistic if
Agg(py ... ,py,7) > Agg(py, .- p7 P s, DE)

o T-combined-neutral if
Agg(py,--\p5,7) < Agg(pr,...,p5,pi s, 08) <
Agg(py ;.- pe,7)

In the above definition, 7-high-pessimistic, 7-high-
optimistic and 7-high-neutral means that the aggregation for
the positive privacy losses is aggregated in a risk-adverse,
risk-seeking, and risk-neutral way respectively. Similarly, we
define 7-low-pessimistic, 7-low-optimistic, and 7-low-neutral
to aggregate the negative privacy losses p; in a risk-adverse,
risk-seeking, and risk-neutral way. To combine both types
of privacy losses (i.e. p; and p;), functions 7-combined-
pessimistic, 7-combined-optimistic, and 7-combined-neutral
are defined to aggregate both types of privacy losses in a
risk-adverse, risk-seeking, and risk-neutral way. Based on the
above definitions, we can then construct appropriate risk-based
aggregation functions for different users’ behaviour towards
risks, by: 1) setting 7 to represent the user’s expectation on
the privacy loss of the system/algorithm, and 2) choosing the
user’s attitudes for 7-high, 7-low and 7-combined.

Example 2. Suppose we have a set of agents {a1,as,...,a5}
and the vector of privacy loss for each agent is [py = 0.2, py =
0.4,p3 = 0.6,p4 = 0.5,p5 = 0.7]. Assume now agent a;
expects the system privacy loss (1) to be 0.5, and we have
Gt =1[p3=0.6,ps =0.7] and G~ = [p; = 0.2, po = 0.4]. If
we choose maximization function as our aggregation function,
then according to the definition, it will be classified as T-high-
pessimistic, T-low-pessimistic, and T-combined-pessimistic. It
is easy to observe choosing the maximum losses as a represen-
tative for the system privacy loss is a risk-adverse approach.
Similarly, if we choose geometric mean as our aggregation
function (Agg), we can observe the following.

min(0.6,0.7) = 0.6 < Agg(0.6,0.7) ~ 0.648
< max(0.6,0.7) = 0.7
min(0.2,0.4) = 0.2 < Agg(0.2,0.4) ~ 0.283
< max(0.2,0.4) = 0.4
Agg(0.2,0.4,0.5) ~ 0.342 < Agg(0.2,0.4,0.6,0.7) ~ 0.428
< Agg(0.5,0.6,0.7) ~ 0.594

Note that the above calculations for geometric mean are
rounded to three significant figures. We can observe geo-
metric mean is classified as T-high-neutral, T-low-neutral,
and T-combined-neutral. In fact, the three commonly found
aggregators: maximization, minimization and average (arith-
metic/geometric mean) are typical risk-adverse, risk-seeking,

and risk-neutral aggregation functions. It is worth to note that
one could ask for aggregation function which only considers
the positive (or negative) losses. Suppose one wants to define
a function Agg which takes arithmetic mean only on the
positive (or negative) losses, Agg([0.2,0.4,0.6,0.5,0.7]) =
(0.6 +0.7)/2 = 0.65 (or = (0.2 4 0.4)/2 = 0.3). This is
particularly useful if one wants to create functions ignoring
all losses below (or above) the threshold. Note that for the
function to be an aggregation function, the function must not
be undefined on the negative (or positive) losses. Assume the
number of agents is greater than one. One possible amendment
is to return constant value on cases where all of the privacy
losses falls below (or above) the threshold.

IV. INDIVIDUAL PRIVACY LOSSES

Before we use our introduced classes of aggregation func-
tions to compare and analyse systems/algorithms, we have to
compute the privacy losses for each of the individual agents.
We follow the approach of VPS. Recall VPS [9] is a privacy
loss metric framework which views an agent’s privacy loss as
the amount of privacy leaked by himself to others. To compute
the loss of an agent, we alternatively compute the private
information deduced by other agents. VPS has introduced
methods called inference rules to deduce and compute an
individual agent’s private information (deduced by all the
other agents). However, their work are focused on the DiMES
problem and the inference rules are crafted for that specific
problem on three algorithms: a) a centralized algorithm, b)
a partial centralized algorithm OptAPO, and c) a distributed
algorithm: SynchBB only.

Our work further extends VPS in the following ways. First,
we further generalize their inference rules to compute indi-
vidual privacy loss not only applicable to DIMES, but also on
general/random DCOPs. Second, we extend and implement the
rules on deducing and computing privacy losses for individual
agents (for both DIMES and general/random DCOP) on three
widely known distributed algorithms: ADOPT, BnB-ADOPT,
and also DPOP. We also implement and cover our generalized
rules on SynchBB. In addition, some of their methods have
the assumption that the constraint graph of a DCOP is totally
or partially known to all agents. This limit the applicability of
their work as it breaks total topology privacy [3]. Our work
do not require this assumption.

We will first introduce the principle of the inference rules
in VPS, i.e. how an agent can infer information from the other
agents. Then, we introduce how we generalize their rules for
random DCOPs. Due to space limitations, we skip the detailed
algorithms and implementation details on incorporating these
(general) inference rules for the four algorithms.

A. Inference Rules Principle

Distributed algorithms usually solve DCOPs via sending
messages, and privacy may be leaked with message passing.
We follow previous work by assuming the private information
of an agent is the unary costs of its variables. The inference
rules from Maheswaran et al. have three main characteristics.

(a) The inference rules only collect information from mes-
sages during message exchanges. In particular, many of
these rules are interested on costs information only.

(b) The inference rules have the knowledge on how each agent
computes costs.

(c) The inference rules can take account on the properties of
a specific problem.

Point (a) is to limit the agent’s ability to collect information
from the others, by restricting them to collect information
during message exchanges only. Messages with cost infor-
mation is common in DCOP algorithms, e.g. cost messages
in ADOPT/BnB-ADOPT, down and up messages in SynchBB
and UTIL messages in DPOP. These kinds of messages usually
carry information related to the costs generated from a particu-
lar groups of agents, e.g. a group of agents in a (pseudo-)sub-
tree in ADOPT/BnB-ADOPT. By reverse engineering these
costs, an agent can infer the range of unary costs of the vari-
ables. The more messages an agent collects, the more precise
the range of costs the agent can infer. In other words, the
more private information is being lost. However, for an agent
to deduce costs information from messages he/she received,
it is essential for him/her to know how others generate such
cost messages. Point (b) is the required assumption, and its
validity depends on the DCOP algorithm we use. In most
DCOP algorithms, however, the reasoning logic is the same for
every agents and all of the agents should know the algorithm
they are going to execute beforehand. It is reasonable for us
to assume all agents should know the exact procedure and
behaviour of other agents and the assumption is automatically
satisfied. Point (c) is mainly use to allow the rules becoming
more accurate, by further utilizing the properties of a specific
problem. For example in DIMES, all agents attending the same
meeting must meet at the same time. The variable used to
model that particular event across different agents must choose
the same timeslot. By using such property, we can further
devise rules specific to the problem to allow agents making
better guesses on other’s unary costs. Example [3|shows how to
obtain privacy loss after an agent receives new cost messages.

Example 3. Given a DIMES with three agents a1, as and
a3 having the same set of free timeslots T = {t1,ta,t3}. We
assume the set of possible unary costs for these three agents
Sor each timeslot is {1,2,3,4}. Initially, a; only knows that as
and ag can choose one of the four costs in {1,2,3,4} for all
of the timeslots, and he/she believes there are equal chances
for the four costs. In the viewpoint of agent as, the probability
Jor ay to guess correctly his/her costs is 1/4. We denote the
valuation, e.g. entropy, of agent a; on as before applying the
solving algorithm to be V2b71. Note that we obtain the valuation
from common knowledge only. Suppose agent a1 and as are
required to attend an event FE,,. In ADOPT, when a; receives
a COST message with a value 2 from as (assume no conflict
penalty occurs), he/she can reveal that the total cost for the
subtree rooted at as is 2. Note that a1 and ao both have a
common event E,,, and hence, the timeslot t chosen by aq
for E,, must also be the same timeslot t chosen by as for

FE,,. Agent ai can then infer that the unary costs of as for
timeslot t is less than or equal to 2, i.e. Co(t) € {1,2}. In the
viewpoint of agent a, the probability to guess correctly Ca(t)
is 1/2, which raises from 1/4 to 1/2. The reason behind is
that agent ay reveals a tighter range of possible unary costs
for agent as. During the solving procedure, agent ay receives
more messages from as and as, and the chances for a; to
guess other agents’ unary costs correctly is higher. If all the
messages being received are stored, we can easily calculate
the valuation of agent ay on a, denoted by V3, according
to the simple inference rules described above after the solving
procedure. The privacy loss of as revealed by a, will then be
the difference between Vi, and ng1 The total privacy loss of
agent a; will then be the summation of all the privacy loss of
a; revealed by all the other agents.

Readers may ask what happens if agent a; in Example [3|
do not have the prior knowledge that as can choose costs
from {1,2,3,4}. A naive way to handle is to set the initial
cost range to infinity. However, this prior knowledge relates
to the initial beliefs (in game theory) of agent a; on the other
two agents, and usually in real-life, an agent can predict a
reasonable cost range.

B. Generalized Inference Rules

The DiMES problem (with the PEAV representation) is a
specific problem. In this problem, agents attending the same
event will choose the same timeslot and these agents will
have more information to infer a tighter cost range of the
chosen timeslot for the other agents. In general, when solving
DCOPs, an agent will not be able to determine which value the
other chooses if an algorithm does not leak the information.
Therefore, even though an agent receives a message containing
cost information, he/she cannot infer which timeslot the cost
information is referring to. As a result, it seems we are more
secure as agents will not be able to get the mapping between
value assignments and cost messages in a precise manner.

However, we observe that there are still risks for neigh-
bouring agents to gain costs information from the messages.
Suppose an agent a; receives messages from a;, a; can make
a weaker inference: Jv; € D, s.t. Cj(v;) € S, where S is
the newer cost range. In other words, an agent can still realize
that there exists a value v; in which the cost information is
referring to. We demonstrate how we utilize such information
to compute privacy losses in Example []

Example 4. Given a general DCOP with three agents: aq,
as and as, each of these agents a; holds a variable x;
with a domain of {a,b,c,d}, and there are only 4 possible
choices of unary costs: 1, 2, 3, and 4 for all of the unary
constraints. We use ADOPT to solve the problem and use
entropy to measure the deduced agent privacy of an agent.
Suppose agent asy receives three cost messages from as (during
the execution of an algorithm) with a cost of 2, 1, and 3
respectively for each of the messages, and he/she deduces
the following inference inequalities: Jv; € D3 s.t. C3(v;) <
2;3’0]' € Ds s.t. Cg('l)j) < 1;3dv € D3 s.t. Cg(’l)k) < 3
Since each of the value: v;, v; and vy, can either be a, b,

¢, or d. There are 4% possible combinations of choices for
V3, v; and vy. In Figure E] we divide these combinations into
5 situations. We denote P; to be the probability and pj to be
the privacy loss for each combination of situation 1. Situation
1 shows the case when all of the three values are not equal
to each other. This gives a total of (411) X (?) X (?) possible
combinations. We assume the agents have no extra information
other than the three inequalities and the different combinations
of choices are independent to each other. The best choice
an agent can play is to guess in a uniform random manner
with probability of 1/43 for each combination. This gives the
probability Py of the first situation to be (‘11) X @) X @)/(43)
To calculate privacy loss p3, the first step is to build the
mapping between the inequalities and values in Ds. Then,
we can calculate the privacy loss by using similar method
in Example 3| After obtaining the privacy loss for each of
the (‘11) X (‘;’) X @) combinations, we then sum up all these
losses and store the average result over all the combinations.
Note that it is possible to reduce redundant computations by
exploiting the fact that individual deduced agent privacy for
different possible combinations in one situation are the same
according to entropy metric. The computation of privacy losses
for the other situations is similar. The only difference is that
we can further obtain tighter inferencing by using the fact that
some of the values are equal. For example in situation 2, we
can combine the first two inference inequalities and obtain the
inference: Jv; € D3, Cs(v;) < 1. The final privacy loss of as
to ag according to these three messages is: Zle(Pi X pb).

Lo v; # vj # Vg, then 2. 3.
If v; = vj # vy, then If v; # vj = vy, then
v €V C3(vy) =2
eV Ca(vj) =1 3 eV C(v) =1) I €V C(v) =2 3
v €V Ca(vy) =3 Qg EV Ca(v) =3 Pi apevg(vy) <1 Ps
_cixcixc cixct cixc

1= 23 P, = Ve 3T T 43

5.
If v; = vj = vy, then

If v; = vy # vj, then
Jv; €V C3(vy) =2 4 v €V CGv) =1 »3
I €V C3(v) = 1 Ps
cixct _cl
P, = VE Py = =
Fig. 1. Generalized Inference Rules for Example

By utilizing the computations in Example 4, we can then
infer privacy loss for general DCOPs.

V. EXPERIMENTAL EVALUATIONS

In this section, we show some preliminary experimental
results. We compare the system privacy loss of SynchBB,
ADOPT, BnB-ADOPT, and DPOP on two benchmarks: ran-
domly generated DCOPs and DiMES using three different ag-
gregations: arithmetic mean (Average), maximization (Max),
and a risk-based aggregation function (Risk) where it is: a) 7-
high-pessimistic when all the privacy loss of agents is higher
than 7, b) 7-low-optimistic for all the agents’ privacy loss
is lower than 7, and c) 7-combined-pessimistic for all the
other cases. We use maximization and minimization for model-
ing 7-high-pessimistic and 7-low-optimistic. For 7-combined-
pessimistic, we use average for only the positive privacy
losses. We follow the idea of VPS and use the entropy-based

metric in measuring the private information leaked from one
agent to another. Note that privacy loss equals to 0 means
no privacy loss. If the privacy loss is 1, it means the agent
losses all its private information to all the other agents. We
generate 10 instances for each parameter setting on the two
benchmarks and run each instance 5 times. Results are taken
average. The main focus of this paper is to compare and study
the system privacy loss on different algorithms. At current
stage, we assume agents have sufficient computation power
to compute these losses and we have not incorporate timing
requirements in our study.

Randomly generated DCOPs We randomly generate DCOPs
with parameter (b,u,d,p,s), where b gives the set {1,...,b} of
binary costs, u gives the set {1,...,u} of unary costs, d is
the maximum domain size, p is the constraint density, and s
indicates the shape of the constraint graphs: balance binary tree
(T), clique (Q), star (S), and chain (C). All instances in this
benchmark have seven agents and each agent owns a variable
(i.e. a total of 7 variables). Unary costs and binary costs are
generated in uniform random according to the specified range.
We set 7 = 0.01 for the risk-based aggregation function.
Table [[] shows the result.

When applying the average aggregation function, we ob-

serve the privacy loss for the four algorithms decreases when
the binary cost range increases. A possible reason is that when
there are large (random) binary costs, the costs inferred by the
inference rules is mixed with binary costs apart from unary
costs. This could prevent the inference rules from inferring
the unary cost precisely. Similar trend can also be observed
on the maximization aggregation function. Comparing DPOP
to the other three algorithms, we observe DPOP has far less
privacy loss than the others in all three types of aggregation
functions. Note that the risk-based aggregation function will
return O if no privacy loss is greater than 7.
Distributed Multi-Event Scheduling (DiMES) We randomly
generate DIMES with parameter (u,d, s), where u gives the
set {1,...,u} of unary costs (i.e. range for the timeslot
preferences of each attendee), d gives the number of timeslots
for each attendee, s is the shape of the constraint graphs:
balance binary tree (T), clique (Q), star (S), and chain (C).
All instances in this benchmark have seven agents aiming
to schedule an event. We set 7 = 0.083 for the risk-based
aggregation function. Table [lI| shows the result.

We observe the privacy loss of ADOPT, BnB-ADOPT,
and DPOP are the same on the star graph across the three
aggregations. One possible explanation is that for the pseudo-
tree of the star graph, the nodes are all leaves (except the
root node) and these three algorithms have similar routines
for computing costs being sent from leaves to root. It is
worth noting DPOP on clique graphs leaks the least amount
of privacy among the four algorithms, and in general, the
amount of privacy loss for DPOP is better than the others.
One possible reason is that the UTIL phase of DPOP works
in a synchronous manner on different sub-trees of the pseudo-
tree. This fuses the unary costs of different values together,
and inferring a precise cost range for individual value is hard.

TABLE I
RANDOMLY GENERATED DCOPs

Average Max Risk
(b,u,d,p,s) | ADOPT SynchBB DPOP BnB-ADOPT | ADOPT SynchBB DPOP BnB-ADOPT | ADOPT SynchBB DPOP BnB-ADOPT
(2,6,3,05,C) | 0.0478389 0.004768 0.000809 0.030785 0.084570 0.024859 0.006319 0.094631 0.059380 0.016874 0.0 0.053167
(3,6, 3,05,C) | 0.038064 0.003776 0.000219 0.024525 0.072015 0.022540 0.001751 0.066727 0.055382 0.015918 0.0 0.042376
4, 6,3,05,C) | 0036724 0.002149 0.000130 0.014416 0.080133 0.012034 0.001042 0.042132 0.059428 0.008903 0.0 0.030026
(5,6,3,0.5,C) | 0031234 0.002074 0.000113 0.013703 0.064639 0.011125 0.000903 0.054023 0.050493 0.007281 0.0 0.038958
TABLE II
DISTRIBUTED MULTI-EVENT SCHEDULING (DIMES)
Average Max Risk
(u,d,s) | ADOPT SynchBB DPOP BnB-ADOPT | ADOPT SynchBB DPOP BnB-ADOPT | ADOPT SynchBB DPOP BnB-ADOPT
(2,4,S) | 0.070833 0.064286 0.070833 0.070833 0.129167 0.175000 0.129167 0.129167 0.101736 0.126667 0.101736 0.101736
(2,4, T) | 0.047619 0.062500 0.046428 0.069643 0.125 0.191667 0.125 0.133333 0.103125 0.137500 0.103819 0.103542
(2,4, C) | 0.052381 0.093452 0.026786 0.073214 0.137500 0.195833 0.120833 0.141667 0.110902 0.162778 0.110416 0.110000
(2,4,Q) | 0.065476 0.044643 0.002976 0.065476 0.125 0.125 0.020834 0.129167 0.099792 0.082361 0.0 0.101805

On the other hand, ADOPT/BnB-ADOPT are asynchronous.
Agent do not necessarily need to wait for (cost) messages
from children before sending cost messages. This give chances
for us to deduce a tighter cost range. Comparing SynchBB
and DPOP which are both synchronous, we observe DPOP
performs better than SynchBB in general (except in DiMES
on star graph). In SynchBB, cost messages can be sent from
higher agents to lower agents (down messages) and also from
lower agents to higher agents (up messages). However, DPOP
only sends cost messages from lower agents to higher agents.
This gives more chances to higher agents in preserving privacy.

VI. CONCLUSION

In this paper, we propose a framework based on VPS to
evaluate how well a distributed algorithm preserves the totality
of agents’ private information by allowing the uses of different
aggregators aggregating agents’ individual privacy loss. We
propose two classes of aggregators: idempotent aggregators
and risk based aggregators. Risk based aggregators consider
user’s attitude towards the privacy loss and allow us to define
a wider class of aggregators other than classical approach. We
outline the concept of inference rules from VPS which focus
on deducing the amount of privacy loss by an agent in DiMES.
We further generalize and extend these rules so that they are
not only applicable to DIMES, but also capable of deducing
privacy loss in general DCOPs. We implement our work on
SynchBB, ADOPT, BnB-ADOPT, and DPOP to demonstrate
the feasibility of our approach. Preliminary experiments on
two benchmarks comparing the four algorithms are performed.
In depth investigations on more types of benchmarks and
algorithms will be left as future works. Other future directions
includes incorporating complex aggregators for real life ap-
plications, improving existing algorithms to minimize privacy
loss, and giving theoretical comparison between algorithms.

REFERENCES

[1] Tomasa Calvo, Anna Kolesdrovd, Magda Komornikova,
and Radko Mesiar, Aggregation operators: properties,
classes and construction methods, Aggregation operators,
Physica-Verlag GmbH, 2002, pp. 3-104.

[2] M. Detyniecki, Fundamentals on aggregation operators,
AGOP’01, 2001.

[3] B. Faltings, T. Léauté, and A. Petcu, Privacy guarantees
through distributed constraint satisfaction, WI-IAT 08,
2008, pp. 350-358.

[4] M.S. Franzin, E.C. Freuder, F. Rossi, and R. Wallace,
Multi-agent constraint systems with preferences: Effi-
ciency, solution quality, and privacy loss, Computational
intelligence 20 (2004), no. 2, 264-286.

E.C. Freuder, M. Minca, and R.J. Wallace, Pri-
vacy/efficiency tradeoffs in distributed meeting schedul-
ing by constraint-based agents, IICAI DCR Workshop,
2001, pp. 63-72.

R. Greenstadt, J.P. Pearce, and M. Tambe, Analysis
of privacy loss in distributed constraint optimization,
AAAT 06, 2006, pp. 647-653.

T. Léauté and B. Faltings, Privacy-preserving multi-agent
constraint satisfaction, CSE, vol. 3, 2009, pp. 17-25.
X. Luo and N.R. Jennings, A spectrum of compromise
aggregation operators for multi-attribute decision mak-
ing, Al 171 (2007), no. 2, 161-184.

R.T. Maheswaran, J.P. Pearce, E. Bowring, P. Varakan-
tham, and M. Tambe, Privacy loss in distributed con-
straint reasoning: A quantitative framework for analysis
and its applications, AAMAS 13 (2006), no. 1, 27-60.
R.T. Maheswaran, M. Tambe, E. Bowring, J.P. Pearce,
and P. Varakantham, Taking DCOP to the real world:
Efficient complete solutions for distributed multi-event
scheduling, AAMAS’04, 2004, pp. 310-317.

P.J. Modi, W.M. Shen, M. Tambe, and M. Yokoo, Adopt:
Asynchronous distributed constraint optimization with
quality guarantees, Al 161 (2005), no. 1-2, 149-180.
John Von Neumann and Oskar Morgenstern, Theory
of games and economic behavior, Princeton University
Press, 1944.

A. Petcu and B. Faltings, A scalable method for multi-
agent constraint optimization, IJJCAT’05, 2005, pp. 266—
271.

M.C. Silaghi and B. Faltings, A comparison of distributed
constraint satisfaction techniques with respect to privacy,
AAMAS DCR Workshop, 2002.

R.R. Yager, On prioritized multiple-criteria aggregation,
IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 42 (2012), no. 5, 1297-1305.

W. Yeoh, A. Felner, and S. Koenig, BnB-ADOPT: An
asynchronous branch-and-bound DCOP alorithm, JAIR
38 (2010), 85-133.

(5]

(6]

(7]
(8]

(9]

(10]

(11]

[12]

(13]

[14]

(15]

[16]

	Introduction
	Background
	Definition of DCOP
	Distributed Multi-Event Scheduling
	Valuation of Possible States

	Aggregation Framework for Privacy Loss
	Fundamental Axioms
	Idempotent Aggregation
	Risk Based Aggregation

	Individual Privacy Losses
	Inference Rules Principle
	Generalized Inference Rules

	Experimental Evaluations
	Conclusion

