
Multiset Variable Representations and Constraint
Propagation

Y.C. Law1, J.H.M. Lee1, T. Walsh2, and M.H.C. Woo1

1 Department of Computer Science and Engineering
The Chinese University of Hong Kong, Hong Kong

{yclaw,jlee,hcwoo}@cse.cuhk.edu.hk

2 NICTA & UNSW
Sydney, Australia

toby.walsh@nicta.com.au

Abstract

Multisets generalize sets by allowing elements to have repetitions. In this pa-
per, we study from a formal perspective representations of multiset variables, and
the consistency and propagation of constraints involving multiset variables. These
help us model problems more naturally and can, for example, prevent introducing
unnecessary symmetries into a model. We identify a number ofdifferent repre-
sentations for multiset variables, compare them in terms ofeffectiveness and effi-
ciency, and propose inference rules to enforce bounds consistency for the represen-
tations. In addition, we propose to exploit the variety of a multiset—the number
of distinct elements in it—to improve modeling expressiveness and further en-
hance constraint propagation. We derive a number of inference rules involving the
varieties of multiset variables. The rules interact varieties with the traditional com-
ponents of multiset variables (such as cardinalities) to obtain stronger propagation.
We also demonstrate how to apply the rules to perform varietyreasoning on some
common multiset constraints. Experimental results show that performing variety
reasoning on top of cardinality reasoning can effectively reduce more search space
and achieve better runtime in solving some multiset CSPs.

1 Introduction

Many combinatorial design problems can be modeled asconstraint satisfaction prob-
lems(CSPs) [16] usingset variables, which take collections of distinct elements as
their values. The domain of a set variable is typically represented by its set upper and
lower bounds, and propagated by enforcing set bounds consistency [8] together with
cardinality reasoning [2, 1]. Utilizing also the cardinality information of a set variable

1

during propagation allows for more prunings than using set bounds propagation alone,
and further reduces the search space.

Set variables have been incorporated into most of the major constraint solvers (see,
for example, Conjunto [7], ILOG [11], and Mozart [18].) Similar to sets, multisets are
also unordered collections of items but allow repetitions of elements. Given the success
of set variables and constraints in providing more natural and efficient models to many
problems and avoiding unnecessary symmetries in the models, it is surprising to find
little work on multiset constraint solving. Whilst multiset variables are supported in a
few solvers (for example, ILOG’s configurator supports multiset variables), there has
been little work from a more theoretical perspective on propagating such variables. The
aim of this paper is torectify this imbalance, to study formal notions of consistency and
propagation for multiset variables, and to discuss how theycan be implemented.Many
problems naturally involve multisets. Consider the template design problem (prob002
in CSPLib [6]) in which we assign designs to printing templates. As each template
contains a fixed number of slots, we can model this problem with an integer variable
for each slot, whose value is the design in this slot. However, this model introduces
unnecessary symmetries as the slots are indistinguishable. Since a design can appear
multiple times in one template, a more natural model is to usea multiset variable for
each template to avoid the symmetries. The domain of each variable is the set of all
possible multisets of designs that can be assigned to the template.

This paper combines and extends the work of Walsh [22] and Lawet al. [15]. We
first introduce three different representations, namely bounds, occurrence, and fixed
cardinality representations [22], for multiset variablesand compare the tightness of
bounds among the representations. In a CSP model, the constraints often have a mix-
ture of multiset, set, and/or integer variables. We proposevarious simple inference
rules which enforce bounds consistency for constraints involving these kinds of vari-
ables. We also consider thevariety of a multiset variable, which is the number of
distinct elements [15]. Based on the occurrence representation, we further propose a
hybrid representation [15] for multiset variables by incorporating a cardinality variable
as well as a variety variable. The cardinality of a set reveals thetotal number of ele-
ments in it. Incorporating a cardinality variable to a set variable [2, 1] enjoys success in
enhancing propagation for set constraints. We hope to benefit from incorporating car-
dinality and variety variables to multiset variables as well. Our hybrid representation
not only allows us to express certain problem constraints much more easily (i.e., better
modeling expressiveness), but also increases the opportunities to infer more domain
prunings for better solving efficiency. We derive a number ofinference rules involving
the varieties of multiset variables and show how the traditional components of multiset
variables (such as cardinalities) interact with the varieties to achieve stronger constraint
propagation. We also apply our rules to perform variety reasoning on some common
multiset constraints. Experimental results confirm that performing variety reasoning
on top of cardinality reasoning can further reduce the search space and give a better
runtime in solving CSPs involving multiset variables.

The rest of the paper is organized as follows. Section 2 describes set variables
and how set constraints can be used in modeling combinatorial problems. Section 3
presents a number of multiset representations, some commonmultiset constraints, and
the local consistency for constraint propagation. Section4 focuses on how cardinality

2

reasoning helps to improve expressivity and constraint propagation in multiset con-
straints. Section 5 introduces the variety information in multiset variables and shows
how inferences using variety, together with cardinality, can achieve stronger constraint
propagation. Section 6 presents the experimental results on some multiset problems.
Section 7 summaries the contributions of this paper and sheds light on possible direc-
tions of future research.

2 Set Variables and Constraint Propagation

In this section, we define constraint satisfaction problems(CSPs) formally. Since our
work on multiset variables is directly related to that of setvariables, it is also useful to
review the relevant definitions and concepts.

2.1 Constraint Satisfaction Problems

A constraint satisfaction problem(CSP) is a tripleP = (X ,D, C), whereX =
{x1, . . . , xn} is a finite set ofvariables,D = {Dx1

, . . . , Dxn
} is a set of finitedomains

of possible values for each variable, andC is a set ofconstraints. Each constraint in-
volves a subset of variables inX , limiting the combination of values that the variables
in the subset can take. Anassignmentxi 7→ a in P is a mapping from variablexi

to valuea ∈ Dxi
. A solutionof P is a set of assignments of all variables inP that

satisfies all the constraints inC.

2.2 Set Constraint Satisfaction

A set is an unordered collection of elementswithout repetitions. Thecardinality of a
setS is the number of elements inS, denoted as|S|. Given a universeU of integers
{1, . . . , n}, a set variableS takes its set values fromU . Sets are denoted by the letters
m, M , s, t, x, andy. A set valuem of cardinalityc is denoted by{m1,m2, . . . ,mc}
wherem1 < m2 < · · · < mc andmj denotes thej-th smallest value inm.

Gervet [8] proposed thebounds representationof the domain of a set variableS
with an interval[glb(S), lub(S)] such thatDS = {m | glb(S) ⊆ m ⊆ lub(S)}. The
greatest lower boundglb(S) contains all the elements whichmust existin the set, while
the least upper boundlub(S) contains any element whichmay existin the set.S is
said to beboundwhen its lower bound equals its upper bound (i.e.,glb(S) = lub(S)).
Figure 1 gives a lattice which represents a set domain of a setvariableS with an interval
[∅, {1, 2, 3, 4}]. Each edge in the figure represents a subset relation in whichthe set
value below is a subset of the set value above on the two ends ofthe edge.

Example 2.1. Steiner triple system(prob044 in CSPLib)
The Steiner triple problem of ordern consists of finding a set ofn(n − 1)/6 triples
of distinct integer elements in{1, . . . , n} such that any two triples have at most one
common element. To model this problem, we use two kinds of setvariables. The first
kind of variablesSi, wherei ∈ {1, . . . , n(n − 1)/6}, denotes triples in the problem.
The other kind of variablesAij , ∀i, j ∈ {1, . . . , n(n − 1)/6} andi < j, denotes the

3

∅

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3}{1, 2, 4}{1, 3, 4}{2, 3, 4}

{1, 2, 3, 4}

Figure 1: The domain of a set variableS with interval[∅, {1, 2, 3, 4}]

intersection of any two triplesSi andSj . The domains of the two kinds of variables are
bothDSi

= DAij
= [∅, {1, . . . , n}]. The constraints of this problem are as follows:

• intersection:Si ∩ Sj = Aij , and

• cardinality:|Si| = 3, |Aij | ≤ 1,

for all i, j ∈ {1, . . . , n(n− 1)/6} andi < j.
The Steiner triple problem of order7 has7 × (7 − 1)/6 = 7 triples. One possible

solution is{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}. �

2.2.1 Tree Searching

In solving a CSP with set variables, depth-first backtracking search [20] is often used.
At each search node, the algorithm first chooses an unbound set variableS. Instead
of assigning a value from the domain of the selected variable, the algorithm selects
an elementm that exists in the upper bound but not in the lower bound (i.e., m ∈
(lub(S) \ glb(S))) of the domain ofS and proceeds the search with two branches:
m ∈ S andm /∈ S. Thus, at each node, the algorithm splits the search space into two.
When we setm /∈ S, the elementm is removed fromlub(S) of the domain ofS. When
we setm ∈ S, the elementm is added toglb(S) of the domain ofS.

∅

{2} {3} {4}

{2, 3} {2, 4} {3, 4}

{2, 3, 4}

Figure 2: The modified set domain ofS.

4

Example 2.2. Consider the set variableS in Figure 1, whereDS = [∅, {1, 2, 3, 4}].
When we set1 /∈ S, the element1 is removed fromlub(S) and the domain becomes
[∅, {2, 3, 4}]. Figure 2 gives the modified domain ofS in which all the sets that contain
element1 are removed from the lattice. �

2.2.2 Set Bounds Consistency

Traditional domain reasoning, such as generalized arc consistency [17], for integer
variables is not practical for set variables, as their domains are exponential in the size
of possible sets. Gervet [8] proposed using bounds reasoning to maintain consistency
on set variables.

A set variableS with interval domain[glb(S), lub(S)] is set bounds consistent[8]
with respect to a constraintC if and only if glb(S) =

⋂
domS(C) and lub(S) =⋃

domS(C), wheredomS(C) denotes the domain values ofS that satisfyC.
Set bounds consistency can be enforced byprojection functions[8]. Each set con-

straint is associated with a set of projection functions which derive new bounds for the
set domains to maintain set bounds consistency. Table 1 shows the projection functions
of some common set constraints.

Subset lub(S1)← lub(S1) ∩ lub(S2)
(S1 ⊆ S2) glb(S2)← glb(S2) ∪ glb(S1)
Union glb(S1)← glb(S1) ∪ glb(S3) \ lub(S2)
(S1 ∪ S2 = S3) lub(S1)← lub(S1) ∩ lub(S3)

glb(S3)← glb(S3) ∪ glb(S1) ∪ glb(S2)
lub(S3)← lub(S3) ∩ lub(S1) ∪ lub(S2)

Intersection glb(S1)← glb(S1) ∪ glb(S3)
(S1 ∩ S2 = S3) lub(S1)← lub(S1) \ ((lub(S1) ∩ glb(S2)) \ lub(S3))

glb(S3)← glb(S3) ∪ glb(S1) ∩ glb(S2)
lub(S3)← lub(S3) ∩ lub(S1) ∩ lub(S2)

Table 1: Projection functions of some common set constraints.

Example 2.3. Suppose we have set variablesS1 and S2, where DS1
=

[{1, 2}, {1, 2, 3, 4}] andDS2
= [∅, {1, 2, 3}], and a constraintS1 ⊆ S2. Both variables

are not set bounds consistent because the element4 ∈ S1 does not exist inS2 and the el-
ements1 and2 are not yet included inglb(S2). After enforcing set bounds consistency,
we haveDS1

= DS2
= [glb(S1) ∪ glb(S2), lub(S1) ∩ lub(S2)] = [{1, 2}, {1, 2, 3}].

The variablesS1 andS2 become set bounds consistent with respect to the subset con-
straint. �

2.3 Cardinality Variable and Reasoning

Conjunto[8] is one of the first constraint solvers developed in which aset variable is
represented by set intervals. Other set constraint solversinclude Oz [19], Choco [13],
Mozart [18], the ROBDD-based [14, 10], and Gecode [5]. Azevedo and Barahona
[2, 1] further proposedcardinality reasoningon set constraints and developed another

5

set constraint solver,Cardinal, to handle the set cardinality more actively and improve
the performance in solving CSPs with set variables.

On the other hand, Gervet and Van Hentenryck [9] proposed representing set vari-
ables using length-lex bound. This representation totallyorders a set domain, and
incorporates the cardinality and the position in lexicographic ordering directly. Whilst
this representation increases propagation, it comes at theexpense of potentially ex-
ponential cost. Even reaching a fixed point with bounds reasoning may require an
exponential number of iterations. In this paper, by comparison, we consider represen-
tations for sets and multisets which are guaranteed to take only a polynomial number
of iterations but nevertheless increase the amount of propagation.

3 Multiset Constraint Satisfaction

A multiset is a generalization of set that allows elements to repeat. Without loss of
generality, we assume that multiset elements are positive integers from1 to n. We
shall use∅ to denote both the empty set and the empty multiset. The universe of a
multiset is a multiset itself, which defines the maximum possible occurrences of each
element. Given a universeU , we denote a multiset byS = {{m1,m2, · · · ,mc}} ⊆ U
wheremi ≤ mj for 1 ≤ i ≤ j ≤ c, and its cardinality (total number of elements) as
|S|. Multisets are denoted by letterss, t, x, andy. For example, ifS = {{1, 1, 2, 2, 3}},
then|S| = 5. Since an element in a multiset variable can occur multiple times, we let
occ(i, S) be the number of occurrences of an elementi in the multisetS.

3.1 Basic Multiset Variable Representations

A multiset variable allows an element to repeat. It is not practical to represent a multiset
variable as a finite domain variable in which the domain is a set of all possible multisets.
The number of possible multisets grows exponentially as thenumber of elements in
a multiset variable increases. Thus, we suggest two basic multiset representations:
bounds and occurrence representations.

3.1.1 Bounds Representation

The bounds representation for multiset variables is a generalization of the bounds rep-
resentation for set variables [8]. The domain of a multiset variableS is specified by
an interval[glb(S), lub(S)]. Thegreatest lower boundglb(S) is the largest multiset
containing all the values thatmust existin the multiset. Theleast upper boundlub(S)
is the smallest multiset containing all the values thatmay existin the multiset. This
representation is compact yet cannot represent all forms ofdisjunction because it may
contain unnecessary values between the upper and lower bounds.

Example 3.1. Consider a multiset variableS with two possible multiset values:{{1}}
and{{2, 2}}. Based on the bounds representation,S has a domainDS = [∅, {{1, 2, 2}}].
However, this representation also permitsS to take the values∅, {{2}}, {{1, 2}}, and
{{1, 2, 2}} which are not possible values ofS. �

6

3.1.2 Occurrence Representation [22]

In the occurrence representation, a multiset variable withn elements is represented
by a vector〈x1, . . . , xn〉 of integer variablesxi = occ(i, S). This vector is known
as theoccurrence vector. This representation is compact but, similar to the bounds
representation, cannot represent all forms of disjunction.

Example 3.2. Consider a multiset variableS with two possible multiset values:{{1}}
and {{2, 2}}. Based on the occurrence representation,S has an occurrence vector
〈x1, x2〉, whereDx1

= Docc(1,S) = {0, 1} andDx2
= Docc(2,S) = {0, 2}. How-

ever, this representation also permitsS to take the values∅ and{{1, 2, 2}}which are not
possible values ofS. �

3.1.3 Expressivity

Based on the two different representations, we compare their expressivities. GivenA
andB be two different multiset representation methods.A is said to beas expressive
asB if A andB both can represent the same set of multisets.A is said to bemore
expressivethanB if (1) A is as expressive asB, and (2) there exists a set of multisets
in whichA can represent them with tighter bounds thanB. A andB areincomparable
if neither one of them is as expressive as the other.

Note that the occurrence representation gives the same representation as the bounds
representation if we only maintain the bounds (i.e., the lower and upper bounds of the
interval domain) of the variables in the occurrence vector.

Theorem 3.1. The occurrence representation is as expressive as the bounds repre-
sentation if the occurrence representation is restricted to maintain only bounds on the
number of occurrences of an element in a multiset.

Proof. Suppose we have some bounds representation. We construct anoccurrence rep-
resentation containing all the integers between the upper and lower bounds in the bound
representation. This represents precisely the same multisets as the bounds representa-
tion.

In general, however, the occurrence representation is moreexpressive than the
bounds representation.

Theorem 3.2. The occurrence representation is more expressive than the bounds rep-
resentation.

Proof. By Theorem 3.1, the occurrence representation is as expressive as the bounds.
To show that the occurrence representation is more expressive, we give an example
where the occurrence representation is tighter. Consider amultiset variableS with
two values:∅ or {{1, 1}}. This can be represented exactly with the occurrence variable
Dx1

= occ(1, S) = {0, 2}. By comparison, a bounds representation would need
glb(S) = ∅ andlub(S) = {{1, 1}}, and this permits the additional value{{1}}.

In the rest of this paper, we mainly focus on the occurrence representation for multi-
set variables. A multiset variableS is represented by a vector〈occ(1, S), . . . , occ(n, S)〉,

7

denoting the number of occurrences of each element inS. The domain ofS is denoted
as the intervalDocc(i,S) = [occr(i, S), occp(i, S)] in which occr(i, S) andoccp(i, S)
refer to the lower and upper bound of the number of occurrences of each elementi
respectively. We also definesr andsp as the multisets whose number of occurrences
of each elementi is occr(i, S) andoccp(i, S) respectively. The multisetssr andsp
are in fact the greatest lower boundglb(S) and the least upper boundlub(S) of S
respectively (i.e.,DS = [glb(S), lub(S)] = [sr, sp] = [〈occr(1, S), . . . , occr(1, S)〉,
〈occp(1, S), . . . , occp(1, S)〉].)

A set value can also be represented using the occurrence representation in which
the number of occurrence is either0 or 1 to denote the existence of the corresponding
element.

3.2 Multiset Bounds Consistency

Gervet [8] proposed using bounds reasoning to maintain consistency on set variables
due to the exponential size of set domains. Similarly, we consider using bounds con-
sistency (BC) on the occurrence representation of multisetvariables. We propose a
new definition of local consistency that works with constraints involving multiset vari-
ables. Given a constraintC over the variablesX1, . . . , Xn and sol(Xi) represents
the values forXi which can be extended to the other variables. That is,sol(Xi) =
{DXi

| C(DX1
, . . .DXn

) ∧ ∀j . glb(Xj) ⊆ DXj
⊆ lub(Xj)}.

A constraintC(X1, . . . , Xn) is BC if and only if for each multiset variableXj

in the constraint,sol(Xj) 6= ∅, and glb(Xj) =
⋂

m∈sol(Xj)
m and lub(Xj) =

⋃
m∈sol(Xj)

m. This definition of local consistency might look rather expensive, being
defined over the set ofall solutions. However, this set merely identifiessupportfor
particular values in the set or multiset.

When using BC to filter, we will identify values which occur inno solution and
so can be pruned. Thus, we will not be finding all solutions butmerely identifying
those values that occur in no solution (i.e., lack support).We define a bound support
to be a satisfying assignmentM of a constraint in which for each multiset/set variable
X , glb(X) ⊆ M ⊆ lub(X). The following theorem justifies why BC can be called
“bounds consistency”.

Theorem 3.3. If we enforce BC on the occurrence representation of multiset and/or set
variables, then for each elementm in any multiset/set variableX , bothocc(m, glb(X)))
andocc(m, lub(X))) have bound supports.

Proof. Suppose that a constraint is BC. Consider any multiset/set variableX in the
constraint. We can construct an equivalent occurrence representation. Supposemmax =
occ(m, lub(X)) andmmin = occ(m, glb(X)). Then we let the variableXm in the oc-
currence vector have a domain[mmin,mmax]. ConsiderXm = mmax. From the
definition of BC and the generalized multiset union operator, there must be a satisfy-
ing solution to the constraint in whichocc(m,X) = mmax. If there are several, we
choose one non-deterministically. Similarly, there must be a satisfying solution to the
constraint when we considerXm = mmin. Hence, the result holds.

8

Unfortunately, the occurrence representation increases the number of variables in
the problem. For example, suppose we have a constraint likeX 6= Y whereX andY
are multiset variables. This maps into a large disjunctive constraint in the occurrence
representation over2d integer variables whered is the maximum possible cardinality of
the two multisets. It is therefore worth developing specialized propagation algorithms
that exploit the semantics of set or multiset constraints. Such algorithms can work on
either a bounds or an occurrence representation.

In the next two subsections, we show how to define such algorithms by means of
some simple inference rules. Note that a degenerate versionof this last theorem is that
BC on a constraint containing just integer variables is equivalent to bounds consistency
on these variables. Some other properties also follow immediately from this result.

3.3 Multiset Constraints

Most set constraints can be generalized to their multiset counterparts. Table 2 gives
some common multiset constraints, in whichX , Y , andZ are multiset variables and
i is an element. Note that the union multiset constraint takesthe maximum number
of occurrences of each element inX andY , while the union-plus multiset constraint
sums up the number of occurrences of each element inX andY .

Equality X = Y iff occ(i,X) = occ(i, Y), ∀i ∈ X,Y
Subset X ⊆ Y iff occ(i,X) ≤ occ(i, Y), ∀i ∈ X,Y
Union X ∪ Y = Z iff occ(i, Z) = max(occ(i,X), occ(i, Y)), ∀i ∈ X,Y, Z
Union-Plus X ⊎ Y = Z iff occ(i, Z) = occ(i,X) + occ(i, Y), ∀i ∈ X,Y, Z
Intersection X ∩ Y = Z iff occ(i, Z) = min(occ(i,X), occ(i, Y)), ∀i ∈ X,Y, Z

Table 2: Some common multiset constraints.

A multiset expression is, in turn, a ground multiset, a multiset variable, or an ex-
pression of the formX ∪ Y , X ⊎ Y , or X ∩ Y whereX andY are again multiset
expressions. To make constraint propagation easier, we decompose constraints into a
flattened normal form in which constraints are at most ternary and only of the form:
X = Y , X ⊆ Y , X ∪ Y = Z, X ⊎ Y = Z, X ∩ Y = Z, |X | = N , occ(m,X) = N
whereX , Y , andZ are multiset variables or ground multisets,N is an integer variable
or an integer constant. Thisnormalizationtakes any nested multiset expression and
replaces it by a new equality constraint. For example,(X ∪ Y) ⊆ Z is normalized to
giveXY = X ∪ Y andXY ⊆ Z whereXY is a new multiset variable. A similar
decomposition of set constraints is used in [8]. In general,such decomposition hinders
constraint propagation.

Following Debruyne and Bessière, we define the notion ofstrongerbetween two
local consistenciesA andB. A is stronger[4] thanB (A ≥ B) if in any CSP in which
A holds, thenB holds too.

Theorem 3.4. BC on a set of constraints is stronger than BC on the equivalent set of
constraints decomposed into normal form.

Proof. Clearly it is as strong since normalization merely replacesone constraint with
a set of logically equivalent constraints. For strictness,we can consider any type of

9

multiset or set constraint. For example, for the set not-equals constraint, considerX ∪
(Y ∩ Z) 6= (X ∪ Y) ∩ (X ∪ Z) with DX = DY = DZ = [∅, {0}]. BC determines
that this constraint has no solution. But in the decomposition, with Y Z = Y ∩ Z,
XY Z = X ∪ Y Z, XY = X ∪ Y , XZ = X ∪ Z, XYXZ = XY ∩ XZ and
XY Z 6= XYXZ, the domainsDX = DY = DZ = DY Z = DXY Z = DXY =
DXZ = DXYXZ = [∅, {0}] make the decomposed constraints BC. Similar arguments
hold for the other types of constraints. Note that for strictness, we do no need to give
such arguments as it is sufficient to identify just one constraint (in this case, set not-
equals) on which decomposition into the normal form hinderspruning.

Using the simple restriction that there are no repeated occurrences of variables on
the right-hand side of every constraint, decomposition does not hinder constraint prop-
agation.

Theorem 3.5. BC on a set of constraints, none of which contains a repeated occur-
rence of variables, is equivalent to BC on the equivalent setof constraints decomposed
into normal form.

Proof. (Outline) The proof uses induction on the number of auxiliary variables intro-
duced and the structure of the multiset expressions which they replace, followed by
extensive case analysis. The step cases of this proof reduceto consider each possible
ternary constraint on set or multiset variables and demonstrating that BC on normali-
sation of such a constraint does not hinder BC reasoning. Consider, for example, the
multiset constraintX ∪ Y ⊆ Z and the decomposition:XY = X ∪ Y , XY ⊆ Z.
Suppose each of the decomposed constraints is BC but the original undecomposed con-
straint is not BC. There are four cases. In the first case,glb(Z) is too small and we can
add at least one valuem to it. This is only possible ifm is in glb(X) or in glb(Y). But
thenm is in glb(XY) and thus inglb(Z), which is a contradiction. In the second case,
lub(X) is too large and we can delete at least one valuem from it andm is also not in
lub(Y). But thenm is not inlub(XY) and thus not inlub(Z), which is a contradiction.
In the third case,lub(Y) is too large and we can delete at least one valuem from it and
m is also not inlub(X). But thenm is not in lub(XY) and thus not inlub(Z), which
is a contradiction. In the fourth case,lub(X) and lub(Y) are both too large and we
can delete at least one valuem from both of them. But thenm is not in lub(XY) and
thus not inlub(Z), which is a contradiction. This covers all possible ways in which
the bounds onX , Y , andZ are pruned. For instance,lub(Z) is never pruned as the
subset constraint only constrainsglb(Z). The analysis for other constraints is similar.
Consider, for example, the multiset constraintX ∩ Y ⊆ Z and the decomposition:
XY = X ∩ Y , XY ⊆ Z. There are three cases. In the first case,glb(Z) is too small
and we can add at least one valuem to it. This is only possible ifm is in glb(X) and
in glb(Y). But thenm is in glb(XY) and thus inglb(Z), which is a contradiction. In
the second case,lub(X) is too large and we can delete at least one valuem from it
wherem is in glb(Y). But thenm is not in lub(XY) and thus not inlub(Z), which
is a contradiction. In the third case,lub(Y) is too large and we can delete at least one
valuem from it wherem is in glb(X). But thenm is not in lub(XY) and thus not

10

in lub(Z), which is a contradiction. This again covers all possible ways in which the
bounds onX , Y , andZ are pruned.

3.4 Enforcing Local Consistency

We now give some simple constraint propagation rules that enforce BC on multiset
constraints in normal form. Following Azevedo [2, 1] and Walsh [22], inference rules
will be formally described as rewriting rules as in the following schematic figure:

(trigger condition)
conditions (which can be nil)
changes in constraint store

Note thatX ,Y , andZ are multiset variables or ground multisets andN is an integer
variable or an integer constant. The changes in constraint store will be in the form
of {old constraints} 7→ {new constraints} where the original set of constraints (old
constraints) will be replaced by another equivalent set of constraints (new constraints).

Equality Constraint (X = Y)

WhenX andY are forced to be equal, bothX andY contain the same number of
occurrences of every elementi.

{X = Y } 7→ {occ(i,X) = occ(i, Y)}
(1)

Subset Constraint (X ⊆ Y)

WhenY containsX , the number of occurrences of each elementi in Y is either greater
than or equal to those inX .

{X ⊆ Y } 7→ {occ(i,X) ≤ occ(i, Y)}
(2)

Union Constraint (X ∪ Y = Z)

Union takes the maximum number of occurrences of each element betweenX and
Y . WhenZ is the union ofX andY , occ(i, Z) = max(occ(i,X), occ(i, Y)) for all
elementsi.

{X ∪ Y = Z} 7→ {occ(i, Z) = max(occ(i,X), occ(i, Y)),
occ(i,X) ≤ occ(i, Z), occ(i, Y) ≤ occ(i, Z)}

(3)

Union-Plus Constraint (X ⊎ Y = Z)

Union-plus sums up all the elements in bothX andY . WhenZ is the union-plus ofX
andY , occ(i, Z) = occ(i,X) + occ(i, Y) for all elementsi.

{X ⊎ Y = Z} 7→ {occ(i, Z) = occ(i,X) + occ(i, Y),
occ(i,X) ≤ occ(i, Z), occ(i, Y) ≤ occ(i, Z)}

(4)

11

Intersection Constraint (X ∩ Y = Z)

Intersection takes the minimum number of occurrences of each element betweenX
andY . WhenZ is the intersection ofX andY , occ(i, Z) = min(occ(i,X), occ(i, Y))
for all elementsi.

{X ∩ Y = Z} 7→ {occ(i, Z) = min(occ(i,X), occ(i, Y)),
occ(i, Z) ≤ occ(i,X), occ(i, Z) ≤ occ(i, Y)}

(5)

Cardinality Constraint (|X | = N)

Cardinality ofX refers to the total number of elements inX , which is the sum of the
number of occurrences of each elementi.

{|X | = N} 7→ {
∑

i occ(i,X) = N}
(6)

Failure Rules

A failure can be detected when the lower boundxr of X is not included in the upper
boundxp of X .

(X changed bounds)
not(xr ⊆ xp)
{} 7→ fail

(7)

Each rule tightens an upper and/or lower bound on a variable.The rules therefore
terminate either with domains at a fixed point or by flagging failure. The rules can be
applied in any order, though some orders may be quicker than others (especially when
the constraints cannot be made BC). Similar rules for set variables are given in [8].

It is easy to see that the application of these rules terminates either with domains
that are at a fixed point or with failure. Indeed, these rules terminate either with the
unique BC domains or, if the problem cannot be made BC, fail, in both cases indepen-
dent of the order of application of the rules.

Theorem 3.6. If a set of constraints in normal form can be made BC, these inference
rules reach a unique fixed point in which domains are BC. If theconstraints cannot
be made BC, the inference rules terminate with failure. Bothtake at mostO(enm2)
time wheree is the number of constraints,n is the number of variables, andm is the
maximum cardinality of the multiset variables.

Proof. Each inference rule tightens the upper and lower bounds of a variable or flags
failure. The rules must therefore reach a fixed point or fail.

Suppose that we reach some fixed points applying these rules to a set of constraints
in normal form. The proof uses case analysis on the type of constraint. Consider, for
example, a constraint of the formX = Y ∪ Z (3). We consider each of the multiset
variables in turn and show that their domains are BC. For the variableX , as the infer-
ence rule tighteningX ’s upper and lower bounds is at a fixed point, it must be the case
thatglb(Y) ∪ glb(Z) ⊆ glb(X), lub(X) ⊆ lub(Y) ∪ lub(Z), andglb(X) ⊆ lub(X).
The assignmentX = glb(X), Y = lub(Y) ∩ glb(X), andZ = lub(Z) ∩ glb(X) will

12

satisfy the constraintX = Y ∪ Z and the conditions thatglb(Y) ⊆ Y ⊆ lub(Y) and
glb(Z) ⊆ Z ⊆ lub(Z). Similarly, the assignmentX = lub(X),Y = lub(Y)∩lub(X),
andZ = lub(Z) ∩ lub(X) will satisfy the constraintX = Y ∪ Z and the conditions
thatglb(Y) ⊆ Y ⊆ lub(Y) andglb(Z) ⊆ Z ⊆ lub(Z). Hence,X ’s domain is BC.
Similar arguments hold for the domains ofY andZ, as well as for the other types of
constraints. Hence, if the rules terminate at a fixed point, the resulting domains are BC.

We now prove that, if the domains in the problem can be made BC,the rules ter-
minate at this fixed point. Consider a problem that can be madeBC, and its unique
BC domains. The proof again uses extensive case analysis on the type of constraint.
Consider, for instance, the constraintX = Y ∪ Z and the BC domains forX , Y , and
Z. To prove that the rules terminate at this fixed point, we assume that an inference rule
can still narrow a domain or flag failure. There are five cases corresponding to the five
different inference rules associated with this constraint. In the first, the inference rule
narrows the least upper bound ofY by removing one or more values. Suppose one of
these removed values ism. Let occ(m,X), occ(m,Y), andocc(m,Z) be the number
of occurrences ofm in X , Y , andZ respectively. Asm is pruned by this inference
rule, max(occ(m,Y)) > max(occ(m,X)). The original multiset variables are not
therefore BC (which is a contradiction). Hence, there can beno valuem removed and
this inference rule is at a fixed point if the domains are BC. Similar arguments hold for
the inference rules (1), (2), (3), and (4).

These rules therefore terminate at a fixed point if and only ifthe resulting domains
are BC. As the rules must terminate either at a fixed point or byflagging failure, it
follows that the rules flag failure if and only if the problem cannot be made BC. As
each rule tightens the bounds on a multiset, set, or finite domain occurrence variable,
the worst case is when the rules tighten each bound by just oneelement at a time. We
may therefore have to applyO(nm) rules. To find which rule applies, we may have to
go through each of thee constraints in turn. Associated with each type of constraints,
a fixed number of rules can be tried. The cost of applying the inference rules is thus at
mostO(enm) multiplied by the cost of applying a single inference rule. This last cost
is dominated by theO(m) cost to test (dis)equality or inclusion, and theO(m) cost to
perform one of the basic operations like union or difference. Hence, the total cost is
O(enm2) in the worst case.

4 Cardinality Constraints and Reasoning

Similar to sets, we define the cardinality of a multisetS, denoted as|S|, as the total
number of elements inS. The cardinality|S| can be modeled using the constraint
|S| =

∑
i occ(i, S) for all elementsi in S. In this section, we discuss the benefits of

incorporating cardinality information to a multiset variable and propose some refined
inference rules.

4.1 Cardinality Variable

In Section 3, we represent a multiset variableS as an occurrence vector〈occ(1, S), . . . ,
occ(n, S)〉 in whichocc(i, S) denotes the number of occurrences of elementi in S. In

13

fact, we can have another component, acardinality variableCS [2, 1], to denote the to-
tal number of elements inS, together with the occurrence vector〈occ(1, S), . . . , occ(n, S)〉.
The domain ofCS is an interval bounded by its lower boundcr and upper boundcp
(i.e.,DCS

= [cr, cp]).

Example 4.1. Supposen = 2 and consider a multiset variableS whose components
have the following domains:Docc(1,S) = [0, 2], Docc(2,S) = [0, 3] andDCS

= [0, 5].
Then, we have (1)sr = ∅, as the lower bounds of all the occurrence variables are
0; and (2)sp = {{1, 1, 2, 2, 2}}, as the upper bounds of the occurrence variables of
elements1 and2 are2 and3 respectively. The domain ofS is in fact the multiset
interval[∅, {{1, 1, 2, 2, 2}}]with cardinality bounded from0 to 5. �

Representing and reasoning about the cardinality of a multiset variable is beneficial.
This can increase the expressiveness of models by posting constraints directly on the
cardinality variables, and we can model the domain of a multiset variable in a more
precise way. For example, instead of posting a reified constraint |

∑
i occ(i, S)| < 5 on

the occurrence variables, we can post a constraintCS < 5 on the cardinality variable.
The propagation of reified constraints is usually weak in most constraint solvers.

To give a better representation of a multiset variable, we can combine the occur-
rence representation and the cardinality representation.The occurrence representation
maintains the integer variables denoting the number of occurrences for each element in
the multiset variable, while the cardinality representation maintains the integer variable
denoting the total number of elements in the multiset variable. We shall use the abbre-
viations O and C for the occurrence and cardinality representation respectively. Thus,
the combination of the occurrence and cardinality representations has the abbreviation
O/C representation.

Theorem 4.1. The occurrence/cardinality (O/C) representation is more expressive
than the occurrence representation alone.

Proof. Consider the following sets of the set variableS1: {1} and{2}. These can be
represented exactly with an O/C representation (i.e.,Docc(1,S1) = [0, 1], Docc(2,S1) =
[0, 1], DCS1

= [1, 1]) but not with the occurrence representation alone as this would
not limit the total number of elementsS1 can take and thus also include the sets∅
and{1, 2}. Similarly, consider the multiset variableS2 with multisets values{{1, 1}},
{{1, 2}}, and{{2, 2}}. These can be represented exactly with an O/C representation (i.e.,
Docc(1,S1) = [0, 2], Docc(2,S1) = [0, 2], DCS1

= [2, 2]) but not with an occurrence
representation alone as this would also include the multisets ∅, {{1}}, {{2}}, {{1, 1, 2}},
{{1, 2, 2}}, and{{1, 1, 2, 2}}. Exact cardinality constraints are required if the variables
are represented by the occurrence representation alone.

4.2 Cardinality Reasoning

When we incorporate cardinality information in multiset variables, we can relate not
only the number of occurrences of each element, but also the cardinalities of the mul-
tisets. In the O/C representation, the number of occurrences of each element is closely
related to the cardinality of a multiset variable. Thus, we also need to reason on the

14

cardinality constraints when we enforce BC on multiset constraints. In the following,
we update the inference rules stated in Section 3.4. For eachrule, we will explain the
changes in the constraint store involving cardinality variables, which are adopted from
Azevedo and Barahona [2, 1]. Note thatX , Y , andZ are multiset variables or ground
multisets.CX , CY , andCZ are the cardinality variables ofX , Y , andZ respectively.
N is an integer variable or an integer constant.

Equality Constraint (X = Y)

WhenX andY are forced to be equal, their cardinalities are also equal.

{X = Y } 7→ {occ(i,X) = occ(i, Y), CX = CY }
(8)

Subset Constraint (X ⊆ Y)

WhenY containsX , CY is also greater than or equal toCX .

{X ⊆ Y } 7→ {occ(i,X) ≤ occ(i, Y), CX ≤ CY }
(9)

Union Constraint (X ∪ Y = Z)

WhenZ is the union ofX andY , CZ is smaller than or equal toCX + CY . On the
other hand, the lower bound ofCZ can be obtained from the maximum of the following
two cases: (1) SupposeZ containsX (i.e.,X ⊆ Z), Z will have at leastCX elements.
We can safely add the elements which appear inY but not inX (i.e., yr \ xp) to Z
becauseZ is the multiset union and it takes all elements in bothX andY . Thus,
CZ ≥ CX + |yr \ xp|. (2) Similarly, we can add the elements in(xr \ yp) to Z if Z
containsY . Thus,CZ ≥ CY + |xr \ yp|.

{X ∪ Y = Z} 7→ {occ(i, Z) = max(occ(i,X), occ(i, Y)),
occ(i,X) ≤ occ(i, Z), occ(i, Y) ≤ occ(i, Z),
CZ ≤ CX + CY ,
CZ ≥ max(CX + |yr \ xp|, CY + |xr \ yp|)}

(10)

Union-Plus Constraint (X ⊎ Y = Z)

WhenZ is the union-plus ofX andY , CZ equalsCX +CY because union-plus sums
up all the elements in bothX andY .

{X ⊎ Y = Z} 7→ {occ(i, Z) = occ(i,X) + occ(i, Y),
occ(i,X) ≤ occ(i, Z), occ(i, Y) ≤ occ(i, Z),
CZ = CX + CY }

(11)

15

Intersection Constraint (X ∩ Y = Z)

If Z is the intersection ofX andY , thenCZ is smaller than or equal to bothCX and
CY . The upper bound ofCZ can be obtained from the minimum of the following two
cases: (1) For the elements existing only inxr but not inyp (i.e.,xr \yp), they must not
be part of the intersection. We can safely subtract these elements fromCX , resulting
CZ ≥ CX − |xr \ yp|. (2) Similarly, we can subtract the elements that exist inyr but
not inxp (i.e.,yr \ xp) fromCY , resultingCZ ≥ CY − |yr \ xp|.

{X ∩ Y = Z} 7→ {occ(i, Z) = min(occ(i,X), occ(i, Y)),
occ(i, Z) ≤ occ(i,X), occ(i, Z) ≤ occ(i, Y),
CZ ≤ min(CX , CY),
CZ ≥ min(CX − |xr \ yp|, CY − |yr \ xp|)}

(12)

Cardinality Constraint (CX = N)

When the cardinality ofX equalsN , the cardinality variableCX also equalsN .

{|X | = N} 7→ {CX = N}
(13)

Failure Rules

A failure can be detected (1) when the lower boundxr is not included in the upper
boundxp, or (2) when the domain of the cardinality variableDCX

becomes empty.

(X changed bounds)
not(xr ⊆ xp)
{} 7→ fail

DCX
= ∅

{} 7→ fail
(14)

Similar to the inference rules stated in Section 3.4, each ofthe above rules also
tightens an upper and/or lower bound on a variable. Thus, therules can terminate
either with domains at a fixed point or by flagging failure independent of the order of
applying the rules.

Besides giving a more expressive representation of multiset variables and multiset
constraints, cardinality reasoning can also increase the pruning affected by a bounds
consistency propagator. Following Debruyne and Bessière, we define the notion of
strongerbetween two local consistenciesA andB. A is stronger[4] thanB (A ≥ B)
if in any CSP in whichA holds, thenB holds too.

Theorem 4.2. BC on a constraint containing multiset variables using the occurrence/
cardinality (O/C) representation is strictly stronger than BC on that using the occur-
rence representation alone.

Proof. Clearly both are at least as strong. To show strictness, considerX ∩ Y = ∅,
∅ ⊆ X,Y ⊆ {{1, 2, 2}}, |X | = |Y | = 2. Enforcing BC on the intersection constraint
in whichX andY are using the O/C representation demonstrates that the problem is
unsatisfiable. BC on that using the occurrence representation alone, on the other hand,
does not detect this.

16

Example 4.2. Suppose we have three multiset variablesS1, S2, andS3, whereDS1
=

[∅, {{1, 1, 2}}],DS2
= [{{1}}, {{1, 1, 2}}], andDS3

= [{{1}}, {{1, 1, 2}}]. Each set variable
is associated with an integer variable denoting their cardinality: DCS1

= D|S1| =
[0, 3], DCS2

= D|S2| = [1, 3], andDCS3
= D|S3| = [2, 2]. In this problem, there is a

union constraint relating the three set variables:S1 = S2 ∪ S3.
After enforcing set bounds consistency, the element1 is added toglb(S) of S1

because bothS2 andS3 must contain element1. The bounds of the cardinality ofS1 is
changed from[0, 3] to [1, 3]. However, it is known thatS3 has exactly two elements. It
should be inferred that the cardinality ofS1 can never lower than two elements. Thus,
we can further update the bounds of the cardinality ofS1 to [2, 3]. �

Example 4.2 shows how cardinality reasoning can further reduce the domain of the
cardinality of a multiset variable. Such process can help toimprove the efficiency of
problem solving as the search space is reduced. Sometimes, afailure can be detected
at an earlier state than simply using bounds reasoning. However, we have to be careful
that cardinality reasoning introduces additional complexity. In particular, enforcing
bounds consistency can go from being polynomial to being NP-hard.

Theorem 4.3. Given a set or multiset variableS represented by bounds, there exists
a unary constraintC(S) such that enforcing BC onC(S) is polynomial but enforcing
BC onC(S) ∧ |S| = c is NP-hard wherec is a constant.

Proof. For a set variableS, we suppose the set contains elements which represent ei-
ther clauses or literals in these clauses. For instance, we might haveS contain numbers
and have an encoding scheme to represent each possible clause or literal by an unique
number. Given any suchS, we can computem, the number of clauses inS andn, the
number of variables that appear positively or negatively inclauses inS.

We defineC(S) to be satisfied iff|S| 6= n+m or (|S| = n+m, S contains literals
which satisfy all the clauses inS but does not contain two contradictory literals). Note
that C is polynomial to check. Enforcing BC onC(S) is also polynomial. There
are three cases. In the first case,|glb(S)| = |lub(S)| = n +m. Enforcing BC simply
needs to check if the literals inS satisfy the clauses inS. In the second case,|glb(S)| =
n+m− 1 and|lub(S)| = n+m. Enforcing BC again simply requires us to check if
the literals inlub(S) satisfy the clauses inlub(S). If so, S is already BC. Otherwise,
we reducelub(S) to equalglb(S) and the bounds now have support. In the third case,
which covers all other situations,S is already BC.

With an additional cardinality bound,|S| = c, we show that enforcing BC is NP-
hard by a reduction from 3-SAT. We set thelub(S) to be the clauses of the 3-SAT
problem that we wish to decide, andglb(S) to belub(S) plus every possible literal in
the 3-SAT clauses. We also setc = n+m. Then finding a bound support is equivalent
to deciding if the 3-SAT problem is satisfiable.

For a multiset variableS, we repeat the construction ofC as above but treat any
multiset as the set of distinct elements it contains.

17

5 Variety Constraints and Reasoning

The cardinality|S| of a multiset variableS reveals only the total number of elements,
but not the number ofdistinctelements, which we define asvarietyand is denoted by
‖S‖. Note that‖S‖ ≤ |S|. In fact, S degenerates to a set when|S| = ‖S‖ (i.e.,
the number of occurrences of all elements equals one). We canmodel the varietyVS

using the constraintsVS =
∑

i(occ(i, S) > 0) for each distinct elementi in S. The
propagation of such reified constraint is usually weak in most constraint solvers.

In this section, we discuss the benefits of incorporating variety information to a
multiset variable. Then, we formally define a multiset variable with the additional vari-
ety information. Subsequently, we propose some inference rules which further improve
over those incorporated with cardinality information. We also demonstrate how variety
can help increase propagation for multiset constraints using variety reasoning.

5.1 Variety Variable

On top of the occurrence vector [22] and the cardinality variable [2, 1], we further
incorporate the variety information by adding the third component, avariety variable
VS to model the number ofdistinct elements inS (denoted‖S‖). Similar toCS , the
domain ofVS is also denoted as the interval bounded by its lower boundvr and upper
boundvp (i.e., DVS

= [vr, vp]). In the rest of the paper, we shall use the abbrevia-
tions V for the variety representation, which maintains an integer variable representing
the number of elements of the multiset when viewed as a set. The combination of the
occurrence, cardinality, and variety representations hasthe abbreviation O/C/V repre-
sentation. The O/C/V representation is also called thehybrid representation.

Example 5.1. Supposen = 4 and consider a multiset variableS whose components
have the following domains:Docc(1,S) = [0, 1], Docc(2,S) = [0, 2], Docc(3,S) = [0, 3],
Docc(4,S) = [0, 1], DCS

= [0, 7], andDVS
= [0, 4]. Then, we have (1)sr = ∅, as the

lower bounds of all the occurrence variables are 0; and (2)sp = {{1, 2, 2, 3, 3, 3, 4}}, as
the upper bounds of the occurrence variables of elements1, 2, 3, and4 are1, 2, 3, and
1 respectively. The domain ofS is in fact the multiset interval[∅, {{1, 2, 2, 3, 3, 3, 4}}]
with CS bounded from0 to 7, andVS bounded from0 to 4. �

Similar to the cardinality variable, introducing a varietyvariable to the represen-
tation allows us to model the domain of a multiset variable ina more precise way
(although still inexact). ConsiderS in the previous example and suppose we are inter-
ested in only the domain values whose varieties are1. Without the variety variableVS ,
we can only setDCS

to [1, 3]. This domain accepts, for example, the multiset{{1, 2}},
which obviously should not be included. However, withVS , we can simply setDVS

=
[1, 1] to further remove the multisets which contain more than one kind of elements.
This essentially modelsDS = {{{1}}, {{2}}, {{2, 2}}, {{3}}, {{3, 3}}, {{3, 3, 3}}, {{4}}}, a
much more precise representation.

Another advantage of introducing variety variables is thatwe can increase the ex-
pressiveness of models by posting constraints directly on them. For example, in the
template design problem, we may want to restrict a templateT to have at most three dis-
tinct designs in its slots. Using our representation, posting a variety constraint‖T ‖ ≤ 3

18

simply means to propagate the simple unary constraintVT ≤ 3. WithoutVT , we need
to post a number of reified-constraints to model the requirement, which may hinder
propagation. The advantage becomes more obvious when the form of the variety con-
straints is more complicated, e.g.,‖T1‖+ ‖T2‖ ≤ 4.

Example 5.2. Consider two multiset variablesS1 and S2 where DS1
=

[{{1}}, {{1, 2, 3, 3}}] (i.e.,Docc(1,S1) = [1, 1], Docc(2,S1) = [0, 1], Docc(3,S1) = [0, 2]),
DCS1

= [3, 3], DVS1
= [1, 3], andDS2

= [{{1}}, {{1, 4, 5, 5}}] (i.e.,Docc(1,S2) = [1, 1],
Docc(4,S2) = [0, 1], Docc(5,S2) = [0, 2]), DCS2

= [3, 3], DVS2
= [1, 3]. Suppose we

now post a constraint in which the variety of the union-plus of S1 andS2 is not greater
than3 (i.e.,‖S1 ⊎ S2‖ ≤ 3). Reasoning on this constraint reveals thatS1 andS2 can-
not contain elements2 and4 respectively, because the cardinalities of bothS1 andS2

must be3 and their union-plus can contain at most three different elements.S1 and
S2 shouldthen be bound to{{1, 3, 3}} and{{1, 5, 5}} respectively. However, using the
reified-constraint

∑5
i=1(occ(i, S1) + occ(i, S2) > 0) ≤ 3, the domains ofS1 andS2

remain unchanged. �

Theorem 5.1. The occurrence/cardinality/variety (O/C/V) representation is more ex-
pressive than the occurrence/cardinality (O/C) representation. Similarly, the occur-
rence/variety (O/V) representation is more expressive than the occurrence representa-
tion.

Proof. Consider the following sets:{1}, {2}. These can be represented exactly with
an O/V representation but not with the occurrence representation as this would also
include the sets∅ and{1, 2}. Similarly, consider the multisets{{1, 1, 2}}, {{1, 1, 3}},
{{1, 2, 2}}, {{1, 3, 3}}, {{2, 2, 3}}, and{{2, 3, 3}} in which the elements1, 2, and3 can
appear at most twice. These can be represented exactly with an O/C/V representation
but not with an O/C representation as this would also includethe multiset{{1, 2, 3}}.

By exploiting the relationships between the three components of a multiset vari-
able, we propose a number of inference rules to strengthen propagation. In the next
subsection, we shall systematically enumerate the possible relationships.

5.2 Inferences within One Multiset Variable

Upon creation of a multiset variableS, the vector of occurrence variables
〈occ(1, S), . . . occ(n, S)〉, the cardinality variableCS , and the variety variableVS will
also be created. A number of inference rules are subsequently maintained. Inferences
occur between any two kinds of variables (i.e., betweenocc(i, S) andCS , between
occ(i, S) andVS , or betweenCS andVS), or among all three of them.

5.2.1 Inferences between occ(i, S) and CS

The cardinalityCS must always remain inside the limits given by the multiset bounds
sr andsp [2, 1]. (Recall thatsr andsp can be computed using the occurrence variables.)

(S changed bounds)
{} 7→ {CS ≥ |sr|, CS ≤ |sp|}

(15)

19

The cardinalityCS is the sum of the number of occurrences of all elements in a
multiset variable. Thus, the number of occurrences of each element is updated when
there are changes in the lower boundcr and the upper boundcp of the cardinality
variable. Here, we only concern with the elements that have not yet been included in
the lower bound (i.e.,sp \sr, which is defined asocc(i, sp \sr) = max{0, occ(i, sp)−
occ(i, sr)} for all elementsi).

(CS changed bounds)
{} 7→ {|K| − occ(i,K) ≥ cr − |sr|, occ(i,K) ≤ cp − |sr|}

whereK = sp \ sr.
(16)

Example 5.3. Consider a multiset variableS whereDS = [{{1, 1}}, {{1, 1, 1, 2, 2, 3}}]
(i.e.,Docc(1,S) = [2, 3], Docc(2,S) = [0, 2], Docc(3,S) = [0, 1]), DVS

= [1, 3], andcp is
updated from6 to 3 (i.e.,DCS

= [2, 3]). SinceS can now have at most three elements
of at most two different kinds, and there are already two 1s inglb(S), only one more
element (1, 2, or 3) may exist inS. Based on the inference rule,K = sp \ sr =
{{1, 1, 1, 2, 2, 3}} \ {{1, 1}} = {{1, 2, 2, 3}} andocc(i,K) ≤ β − |sr| = 3 − 2 = 1
for i = 1, 2, 3. Thus, one of the2s is removed, resultingDocc(2,S) = [0, 1] and
DS = [{{1, 1}}, {{1, 1, 1, 2, 3}}]. �

5.2.2 Inferences between occ(i, S) and VS

The varietyVS must always remain inside the limits given by the multiset bounds. This
is generalized from the inferences betweenocc(i, S) andCS [2, 1].

(S changed bounds)
{} 7→ {VS ≥ ‖sr‖, VS ≤ ‖sp‖}

(17)

The occurrence of each elementocc(i, S) will be updated only whenVS is bound
and equals either‖sr‖ or ‖sp‖. When the varietyVS is fixed and equals‖sr‖, any
elementi that is not insr (i.e.,occr(i, S) = 0) has to be removed (i.e.,occ(i, S) = 0 for
thosei). On the other hand, ifVS = ‖sp‖, then each element insp (i.e.,occp(i, S) > 0)
must occur at least once inS (i.e.,occ(i, S) > 0 for thosei).

(VS is bound)
VS = ‖sr‖, occr(i, S)) = 0
{} 7→ {occ(i, S) = 0}

VS = ‖sp‖, occp(i, S)) > 0
{} 7→ {occ(i, S) > 0}

(18)

Example 5.4. Consider a multiset variableS whereDS = [{{1, 1}}, {{1, 1, 2, 2, 3}}]
(i.e.,Docc(1,S) = [2, 2], Docc(2,S) = [0, 2], Docc(3,S) = [0, 1]), DCS

= [2, 5], andVS

is bound to1. SinceVS = ‖sr‖ (i.e.,1 = ‖{{1, 1}}‖) and the elements2 and3 are not
yet insr, they will not exist inS, resultingocc(2, S) = occ(3, S) = 0.

Consider the same multiset variableS butVS is now bound to3. SinceVS = ‖sp‖
(i.e., 3 = ‖{{1, 1, 2, 2, 3}}‖) and the elements2 and3 are not yet insr, at least one
occurrence of2 and3 has to be added to their lower bound, resultingoccr(2, S) =
occr(3, S) = 1. Here,occr(1, S) remains unchanged because the element1 is already
in its lower bound. �

20

5.2.3 Inferences between CS and VS

The variety of a multiset must always be smaller than or equalto its cardinality at both
limits because cardinality counts repeated elements but variety does not.

(CS changed upper bound)
{} 7→ {VS ≤ cp}

(19)

(VS changed lower bound)
{} 7→ {CS ≥ vr}

(20)

5.2.4 Inferences among occ(i, S), CS , and VS

When any two of occurrencesocc(i, S), cardinalityCS , and varietyVS change their
bounds, the remaining one has to be updated as well. This kindof inferences leads
to stronger constraint propagation than those between the pairwise ones (i.e., between
occ(i, S) andCS , betweenocc(i, S) andVS , and betweenCS andVS).

When the occurrencesocc(i, S) and the varietyVS change their bounds, the cardi-
nality CS will be adjusted accordingly to fulfill the requirements onVS based on the
elements existing insp \ sr.

(S or VS changed bounds)
{} 7→ {CS ≥ |sr|+ (vr − ‖sr‖), CS ≤ |sr|+ a}

wherea = max(|b| : b ⊆ (sp \ sr) ∧ ‖b ⊎ sr‖ = vp).
(21)

Example 5.5. Consider a multiset variableS which updates its bounds toDS =
[{{1, 1}}, {{1, 1, 1, 2, 2, 3}}] (i.e., Docc(1,S) = [2, 3], Docc(2,S) = [0, 2], Docc(3,S) =
[0, 1]), DCS

= [2, 6], andDVS
= [2, 3]. SinceS must contain at least two different

kinds of elements, besides element1, either element2 or3 has to be included inS. This
leads to an increase incr although the exact addition has not yet taken place. Based on
the inference rule,CS ≥ |sr|+ (α− ‖sr‖) = 2+ 2− 1 = 3. Thus,DCS

is updated to
[3, 6]. �

To find a, the subsetsp \ sr, which fulfills the condition‖b ⊎ sr‖ = β, is first
extracted. The possible elements are then ordered. Thus, the complexity is bounded by
the sorting procedureO(n log n), wheren is the number of distinct elements inS.

Similarly, when the occurrencesocc(i, S) and the cardinalityCS change their
bounds, the varietyVS will be adjusted accordingly to fulfill the requirements onCS

based on the elements existing insp \ sr.

(S orCS changed bounds)
{} 7→ {VS ≥ a, VS ≤ ‖sr‖+ c}

wherea = min(‖sr ⊎ b‖ : b ⊆ (sp \ sr) ∧ |b ⊎ sr| = cr), and
c = max(‖d‖ : d ⊆ (sp \ sr) ∧ ‖d ⊎ sr‖ > ‖sr‖ ∧ |d ⊎ sr| = cp).

(22)

The values ofa and c can be obtained using the same way as findinga in the
previous inference rule, but with different conditions. Thus, the complexity for this
inference rule as a whole is also bounded by the sorting procedureO(n log n), where
n is the number of distinct elements inS.

21

Example 5.6. Consider a multiset variableS whereDS = [{{1, 1}}, {{1, 1, 1, 2, 2, 3}}]
(i.e., occ(1, S) = [2, 3], occ(2, S) = [0, 2], occ(3, S) = [0, 1]), DCS

= [4, 6], and
DVS

= [1, 3]. Here,S must contain at least four elements (i.e.,cr = 4). With the
currentvr, S can only have at most three1s and one more element is needed to reach
cr. Other elements, which lead to a minimal change invr, are selected from their upper
bounds. Based on the inference rule,b refers to a subset of (sp \ sr) whereD(sp\sr) =
[∅, {{1, 2, 2, 3}}] and the cardinality ofb ⊎ sr equalscr (i.e., 4). Thus,vr equals the
minimum variety of the union ofsr and a possibleb (i.e.,‖{{1, 1}}∪ {{1, 2}}‖ = 2). VS

is updated to[2, 3]. �

When the cardinalityCS is fixed and equals either|sr| or |sp|, S can be set to the
corresponding bound (i.e., all occurrencesocc(i, S) can be fixed) andVS can also be
bound accordingly.

(CS is bound)
CS = |sr|

{} 7→ {S = sr, VS = ‖sr‖}
CS = |sp|

{} 7→ {S = sp, VS = ‖sp‖}
(23)

When both the cardinalityCS and the varietyVS are bound to the same valueα,
S degenerates to a set. Thus, the occurrence of each elementocc(i, S) will be at most
one.

(CS andVS are bound and equal)
CS = VS = α

{} 7→ {occ(i, S) ≤ 1}
(24)

Failure

A failure can be detected when any one of the conditions is true: (1) the lower bound
sr is not included in the upper boundsp; or (2) the domain of the cardinality variable
DCS

becomes empty; or (3) the domain of the variety variableDVS
becomes empty.

(S, CS , orVS changed bounds)
not(sr ⊆ sp)
{} 7→ fail

DCS
= ∅

{} 7→ fail
DVS

= ∅
{} 7→ fail

(25)

5.2.5 Discussions

The inference rules described here are incomplete in the sense that they do not prune
all possible values from the occurrence, cardinality, or variety variables.

Consider the cardinality constraintcard(〈occ(1, S), . . . occ(m,S)〉, CS) which en-
sures thatCS is the cardinality of the multisetS represented by the occurrence vector
〈occ(1, S), . . . , occ(m,S)〉 (that is,CS =

∑m
i=1 occ(i, S)). Enforcing BC on such a

constraint is polynomial since enforcing BC on such a sum is polynomial. However,
enforcing GAC on such a constraint is NP-hard.

Theorem 5.2. Enforcing GAC oncard(〈occ(1, S), . . . , occ(m,S)〉, CS) is NP-hard.

Proof. We reduce subset sum to finding a support forcard(〈occ(1, S), . . . ,
occ(m,S)〉, CS). Suppose we wish to find a subset ofS = {ai|1 ≤ i ≤ m}
with sum s. Let occ(i, S) = {0, ai} and CS = s. There exists a support for
card(〈occ(1, S), . . . , occ(m,S)〉, CS) iff there exists a subset ofS with sums.

22

On the other hand, consider the variety constraint,variety(〈occ(1, S), . . . ,
occ(m,S)〉, VS) which ensures thatVS is the variety of the multisetS represented by
the occurrence vector〈occ(1, S), . . . , occ(m,S)〉 (that is,VS =

∑m
i=1(occ(i, S) >

0)). Enforcing GAC on such a constraint is polynomial. Thus, wesee that variety
reasoning can be easy but cardinality reasoning is hard.

Theorem 5.3. Enforcing GAC onvariety(〈occ(1, S), . . . , occ(m,S)〉, VS) is polyno-
mial.

Proof. We prove that GAC onvariety(〈occ(1, S), . . . , occ(m,S)〉, VS) is equivalent
to BC on the decomposition into(occ(i, S) > 0) ↔ Bi, andVS =

∑m

i=1 Bi. The
constraint graph of this decomposition is acyclic. Hence GAC on the variety con-
straint is equivalent to GAC on the decomposition. GAC on(occ(i, S) > 0) ↔ Bi

is equivalent to BC on(occ(i, S) > 0) ↔ Bi as this constraint only prunes at the
lower bound ofocc(i, S). Finally, we prove GAC onVS =

∑m

i=1 Bi is equivalent to
BC onVS =

∑m

i=1 Bi. Clearly if VS =
∑m

i=1 Bi is GAC then it must be BC. For
the reverse, supposeVS =

∑m
i=1 Bi is BC. Consider any values in the domain of

VS between its upper and lower bounds. We can construct a support by assigning1
to the lb(VS) variables withdom(Bi) = {1} as well as to thes − lb(VS) variables
with dom(Bi) = {0, 1}, and assigning0 to the otherm − s variables. Thus, every
value between upper and lower bounds ofVS has support. Hence, ifVS =

∑m

i=1 Bi

is BC then it is GAC. Note that BC is polynomial to enforce on each constraint in the
decomposition.

In fact, we can combine the cardinality and variety constraints to form an intra-
variable constraintintra(〈occ(1, S), . . . , occ(m,S)〉, CS , VS) which ensures thatCS

andVS are the cardinality and variety of the multisetS represented by the occurrence
vector〈occ(1, S), . . . , occ(m,S)〉 respectively. Enforcing GAC on such a constraint is
thus at least NP-hard.

Theorem 5.4. Enforcing GAC onintra(〈occ(1, S), . . . , occ(m,S)〉, CS , VS) is NP-
hard.

Proof. The intra-variable constraintintra(〈occ(1, S), . . . , occ(m,S)〉, CS , VS) can be
decomposed to the cardinality constraintcard(〈occ(1, S), . . . , occ(m,S)〉, CS) and
the variety constraintvariety(〈occ(1, S), . . . , occ(m,S)〉, VS). Thus, by Theorems
5.2 and 5.3, enforcing GAC onintra(〈occ(1, S), . . . , occ(m,S)〉, CS , VS) is at least
NP-hard.

Our primary aim is not for completeness, but for inference rules that are efficiently
implementable. Nonetheless, the inference rules as a wholemaintain more than BC.

Theorem 5.5. The inference rules (1) betweenocc(i, S) andCS , (2) betweenocc(i, S)
andVS , (3) betweenCS andVS , (4) amongocc(i, S), CS , andVS , and (5) for failure
collectively enforce a consistency level strictly stronger than BC on the O/C/V repre-
sentation.

Proof. Obviously, the inference rules (14)–(24) collectively enforce a consistency level
at least as strong as BC. For strictness, Example 5.5 and 5.6 under Section 5.2.4 show

23

that given a domain which is already multiset bounds consistent, the inference rules
can further tighten the bounds ofCS or VS . Hence the result holds.

5.3 Cardinality-Variety Reasoning

The previous subsection describes the inferences within one multiset variable. Besides
giving a more expressive representation, variety reasoning can also increase the pruning
achieved by a bound consistency propagator.

Theorem 5.6. BC on a constraint containing multiset variables using the O/C/V rep-
resentation is strictly stronger than BC on that using the O/C representation. Similarly,
BC on a constraint containing multiset variables using the O/V representation is strictly
stronger than BC on that using the occurrence representation.

Proof. Clearly both are at least as strong. To show strictness, considerX ∩ Y = ∅,
∅ ⊆ X,Y ⊆ {{1, 1, 2, 2, 3, 3}}, |X | = |Y | = 2, ‖X‖ = ‖Y ‖ = 2. Enforcing BC
on the intersection constraint in whichX andY are using the O/C/V representation
demonstrates that the problem is unsatisfiable. BC on that using the O/C representation,
on the other hand, does not detect this. Similarly, enforcing BC on the intersection
constraint in whichX andY are using the O/V representation demonstrates that the
problem is unsatisfiable, but BC on that using the occurrencerepresentation does not
detect this.

In this subsection, we focus on propagation that occurs across different multiset
variables. We give some constraint propagation rules that enforce bounds consistency
on some common multiset constraints. Performing inferences on both cardinality and
variety variables are known ascardinality-variety reasoning, which is a combination
of cardinality reasoning and variety reasoning. For each multiset constraint, we use an
example to show how the propagation rules are useful in increasing constraint propa-
gation. In the rules, the changes in the constraint store involving variety variables are
more generalized than those involving cardinality variables, which are adopted from
Azevedo and Barahona [2, 1]. We will only explain the updatesfrom the rules stated
in Section 4.2. Again, the rules can terminate either with domains at a fixed point or
by flagging failure independent of the order of applying them.

5.3.1 Equality Constraint (X = Y)

If X andY are forced to be equal, then their varieties are equal.

{X = Y } 7→ {occ(i,X) = occ(i, Y), CX = CY , VX = VY }
(26)

Example 5.7. Consider an equality constraintX = Y , wheren = 3, Docc(1,X) =
[0, 2],Docc(2,X) = [0, 2],Docc(3,X) = [0, 2],DCX

= [4, 4],DVX
= [2, 2],Docc(1,Y) =

[0, 2], Docc(2,Y) = [0, 2], Docc(3,Y) = [0, 2], DCY
= [4, 4], andDVY

= [3, 3]. With-
out the variety variablesVX andVY (and thus without variety reasoning), there are no
prunings available. However, with variety reasoning, the problem fails immediately
because whenX = Y (i.e., occ(i,X) = occ(i, Y) for all elementsi), VX = VY is
obviously violated. �

24

5.3.2 Subset Constraint (X ⊆ Y)

If Y containsX , thenVY is greater than or equal toVX .

{X ⊆ Y } 7→ {occ(i,X) ≤ occ(i, Y), CX ≤ CY , VX ≤ VY }
(27)

Example 5.8. Consider a subset constraintX ⊆ Y , where DX =
[∅, {{1, 1, 2, 2, 3, 3, 3}}] with cardinality 5 and variety 3 (i.e.,Docc(1,X) = [0, 2],
Docc(2,X) = [0, 2], Docc(3,X) = [0, 3]), DCX

= [5, 5], DVX
= [3, 3], and

DY = [∅, {{1, 1, 2, 2, 3, 3, 3}}]with cardinality 5 and variety 2 (i.e.,Docc(1,Y) = [0, 2],
Docc(2,Y) = [0, 2], Docc(3,Y) = [0, 3]), DCY

= [5, 5], DVY
= [2, 2]. With variety rea-

soning, the problem fails immediately becauseVX can never be smaller than or equal
to VY (i.e.,3 6≤ 2). Again, without variety reasoning, there are no availableprunings.
�

5.3.3 Union Constraint (X ∪ Y = Z)

WhenZ is the union ofX andY , VZ is smaller than or equal toVX + VY . Similarly,
the lower bound ofVZ can be obtained from the maximum of the following two cases:
(1) VZ ≥ VX + ‖yr \ xp‖ and (2)VZ ≥ VY + ‖xr \ yp‖.

{X ∪ Y = Z} 7→ {occ(i, Z) = max(occ(i,X), occ(i, Y)),
occ(i,X) ≤ occ(i, Z), occ(i, Y) ≤ occ(i, Z),
CZ ≤ CX + CY , VZ ≤ VX + VY ,
CZ ≥ max(CX + |yr \ xp|, CY + |xr \ yp|),
VZ ≥ max(VX + ‖yr \ xp‖, VY + ‖xr \ yp‖)}

(28)

Example 5.9. Consider a union constraintX ∪ Y = Z, where DX =
[∅, {{1, 1, 2, 2, 3, 3}}] (i.e.,Docc(1,X) = [0, 2], Docc(2,X) = [0, 2], Docc(3,X) = [0, 2]),
DCX

= [1, 2], DVX
= [1, 1], DY = [∅, {{1, 1, 2, 2, 3, 3}}] (i.e., Docc(1,Y) = [0, 2],

Docc(2,Y) = [0, 2], Docc(3,Y) = [0, 2]), DCY
= [1, 2], DVY

= [1, 1], andDZ =
[{{1, 2, 3}}, {{1, 1, 2, 2, 3, 3}}] (i.e.,Docc(1,Z) = [1, 2], Docc(2,Z) = [1, 2], Docc(3,Z) =
[1, 2]), DCZ

= [3, 6], DVZ
= [3, 3]. With variety reasoning, the problem fails immedi-

ately becauseVZ can never be smaller than or equal to the sum ofVX andVY . Without
reasoning on the three variety variables, the problem will not fail even when3 6≤ 1+1.
�

5.3.4 Union-Plus Constraint (X ⊎ Y = Z)

WhenZ is the union-plus ofX andY , VZ is smaller than or equal toVX +VY because
X andY can contain the same kind of elements (i.e.,‖X‖ + ‖Y ‖ 6= ‖X ⊎ Y ‖). For
the lower bound ofVZ , it can be obtained in the same way as in the union constraint.

{X ⊎ Y = Z} 7→ {occ(i, Z) = occ(i,X) + occ(i, Y),
occ(i,X) ≤ occ(i, Z), occ(i, Y) ≤ occ(i, Z),
CZ = CX + CY , VZ ≤ VX + VY ,
VZ ≥ max(VX + ‖yr \ xp‖, VY + ‖xr \ yp‖)}

(29)

25

Example 5.10. Consider a union-plus constraintX ⊎ Y = Z, where DX =
[∅, {{1, 1, 2, 2, 3, 3}}] (i.e.,Docc(1,X) = [0, 2], Docc(2,X) = [0, 2], Docc(3,X) = [0, 2]),
DCX

= [1, 2], DVX
= [1, 1], DY = [∅, {{1, 1, 2, 2, 3, 3}}] (i.e., Docc(1,Y) = [0, 2],

Docc(2,Y) = [0, 2], Docc(3,Y) = [0, 2]), DCY
= [1, 2], DVY

= [1, 1], andDZ =
[{{1, 2, 3}}, {{1, 1, 2, 2, 3, 3}}] (i.e.,Docc(1,Z) = [1, 2], Docc(2,Z) = [1, 2], Docc(3,Z) =
[1, 2]), DCZ

= [3, 6], DVZ
= [3, 3]. Variety reasoning fails the problem immediately

becauseVZ can never be smaller than or equal to the sum ofVX andVY . Without
reasoning on the three variety variables, the problem will not fail even when3 6≤ 1+1.
�

5.3.5 Intersection Constraint (X ∩ Y = Z)

If Z is the intersection ofX andY , thenVZ is smaller than or equal to bothVX and
VY . The upper bound ofVZ can be obtained from the minimum of the following two
cases: (1)VZ ≥ VX − ‖xr \ yp‖ and (2)VZ ≥ VY − ‖yr \ xp‖.

{X ∩ Y = Z} 7→ {occ(i, Z) = min(occ(i,X), occ(i, Y)),
occ(i, Z) ≤ occ(i,X), occ(i, Z) ≤ occ(i, Y),
CZ ≤ min(CX , CY), VZ ≤ min(VX , VY),
CZ ≥ min(CX − |xr \ yp|, CY − |yr \ xp|),
VZ ≥ min(VX − ‖xr \ yp‖, VY − ‖yr \ xp‖)}

(30)

Example 5.11. Consider an intersection constraintX ∩ Y = Z, whereDX =
[∅, {{1, 1, 2, 2, 3, 3, 3}}] (i.e., Docc(1,X) = [0, 2], Docc(2,X) = [0, 2], Docc(3,X) =
[0, 3]), DCX

= [1, 3], DVZ
= [1, 1], DY = [∅, {{1, 1, 2, 2, 3, 3, 3}}] (i.e.,Docc(1,X) =

[0, 2], Docc(2,X) = [0, 2], Docc(3,X) = [0, 3]), DCY
= [1, 3], DVY

= [1, 1], andDZ =
[∅, {{1, 2, 3, 3, 3}}] (i.e., Docc(1,X) = [0, 1], Docc(2,X) = [0, 1], Docc(3,X) = [0, 3]),
DCZ

= [2, 4], DVZ
= [2, 2]. With variety reasoning, the problem fails immediately

becauseVZ can never be smaller than or equal to bothVX andVY . The problem will
not fail without variety reasoning even when2 6≤ 1. �

5.3.6 Failure Rules

Each of the above rules tightens an upper and/or lower bound on a variable. Thus, the
rules can terminate by flagging failure on any variables under any one of the conditions
stated in Section 5.2.4.

5.3.7 Discussions

Cardinality reasoning introduces additional complexity.In particular, enforcing bounds
consistency can go from being polynomial to being NP-hard. It follows that variety
reasoning on a single multiset variable can also introduce additional complexity. As
with a set variable, adding variety reasoning can make enforcing bounds consistency
on a unary constraint go from being polynomial to being NP-hard.

26

Theorem 5.7. Given a multiset variableS represented by bounds, there exists a unary
constraintC(S) such that enforcing BC onC(S) is polynomial but enforcing BC on
C(S) ∧ ‖S‖ = d is NP-hard whered is a constant.

Proof. Similar to Theorem 4.3, the result holds.

5.3.8 Decomposition of Multiset Constraints

In Section 3.3, we discuss decomposing multiset constraints into a flattened normal
form in which constraints are at most ternary and only of the form. When the constraint
is complicated and contains a lot of variables, the solver may not be able to handle
them. We can simplify the constraint by decomposing it into normal form.

In general, decomposition into such a normal form hinders constraint propagation,
whether we use just the occurrence representation or we use the O/C/V representation
(Theorem 3.4). Under the simple restriction that there are no repeated occurrences of
variables and we are using an occurrence representation forthe multisets, we proved
that decomposition does not hinder BC propagation (Theorem3.5). However, with
cardinality and variety reasoning, decomposition of complex multiset constraints does
hinder propagation even when variables are not repeated.

Theorem 5.8. With cardinality reasoning, BC on a unary constraint on a single set
variable can be strictly stronger than BC on the decomposition into normal form.

Proof. Consider the unary constraints:X ⊆ {1, 2, 3}, |X | = 2, (X∪{3}) 6= {1, 2, 3}.
With cardinality information, enforcing BC on these unary constraints will set{3} ⊆
X . Consider the decomposition into:X ⊆ {1, 2, 3}, |X | = 2, Y = (X ∪ {3}), 1 ≤
|Y | ≤ 3, Y 6= {1, 2, 3}. Enforcing BC on these unary constraints will set{3} ⊆ Y ⊆
{1, 2, 3}. However, enforcing BC on the decomposition will not set{3} ⊆ X .

It follows therefore that, with variety reasoning, BC on asinglemultiset variable
can be strictly stronger than BC on the decomposition into the normal form.

Theorem 5.9. With variety reasoning, BC on a unary constraint on a single multiset
variable can be strictly stronger than BC on the decomposition into normal form.

Proof. Consider the unary constraints:X ⊆ {{1, 1, 2, 2, 3}}, ‖X‖ = 3, X ⊎ {3} 6=
{{1, 1, 2, 2, 3}}. With variety information, enforcing BC on these unary constraints will
set{3} ⊆ X . Consider the decomposition into:X ⊆ {{1, 1, 2, 2, 3}}, ‖X‖ = 3, Y =
(X⊎{3}), 1 ≤ ‖Y ‖ ≤ 3, Y 6= {{1, 1, 2, 2, 3}}. Enforcing BC on these unary constraints
will set {3} ⊆ Y ⊆ {{1, 1, 2, 2, 3}}. However, enforcing BC on the decomposition will
not set{3} ⊆ X .

Since cardinality-variety reasoning is a combination of cardinality reasoning and
variety reasoning, decomposition of complex multiset constraints also hinders propa-
gation.

Theorem 5.10. With cardinality-variety reasoning, BC on a unary constraint on a
single multiset variable can be strictly stronger than BC onthe decomposition into
normal form.

Proof. By Theorems 5.8 and 5.9, the result follows.

27

6 Experimental Results

To verify the feasibility and efficiency of our proposal, we implemented our multi-
set variable representation, the inference rules, and the multiset constraints in ILOG
Solver 6.0 [11]. We use four benchmarks, which are introduced in later Sections, for
the experiments. The experiments are run on a Sun Blade 2500 (2× 1.6GHz US-IIIi)
workstation with 2GB memory. We report the number of fails (i.e., the number of
backtracks occurred in solving a model) and CPU time in seconds to find and prove
the optimal solution for each instance. Comparisons are made among bounds consis-
tency on the occurrence representation (BC) [22], bounds consistency with cardinality
reasoning (BC+CR) [2, 1], and bounds consistency with cardinality-variety reasoning
(BC+CR+VR) [15]. We use the reified constraintCS =

∑
i(occ(i, S)) mentioned

in Section 4 to model the cardinality variables in BC, and usethe reified constraint
VS =

∑
i(occ(i, S) > 0) mentioned in Section 5 to model the variety variables in

both BC and BC+CR. The reified-constraints are enforced by the built-in propagation
algorithms in ILOG Solver instead of the inference rules. Inthe tables, the best number
of fails and CPU time among the results for each instance are highlighted in bold. A
cell labeled with “-” denotes a timeout after 30 minutes.

6.1 Template Design Problem

In the template design problemT (t, s, d, c) (prob002 in CSPLib), we are givend de-
signs tot printing templates subject to some constraints. Each template has a fixed
number of slotss for the designs and there should be at leastc copies for each de-
sign. Each multiset variable represents a template and its domain values are the possi-
ble combinations of designs which allow repetitions. This is an optimization problem
which minimizes the total number of pressings so that the amount of extra copies is
reduced as much as possible. To future increase problem difficulty, we impose a re-
striction to constrain each multiset to have at least certain varietiesv.

Table 3 shows the experimental results of the template design problem. From the
experimental results, BC+CR+VR always achieves the fewestnumber of fails. There
is a more than 90% reduction in the number of fails when compared to BC alone.
The amount of reduction increases with the tightness of the variety constraints. When
the variety of each multiset is restricted to be at least4, enforcing BC+CR+VR can
also reduce the search space up to 40% when compared to BC+CR.For runtimes,
BC+CR+VR is also always the fastest. The amount of reductionalso increases as the
tightness of the variety constraints.

This problem does not contain multiset constraints like subset constraints and union
constraints. It only has cardinality constraints, varietyconstraints, and arithmetic con-
straints to calculate the total number of copies of each design when the templates un-
dergo certain number of pressings. Thus, the reduction in search space is mainly caused
by the inference rules maintained within one multiset variable, as described in Section
5.2.

28

BC BC+CR BC+CR+VR
(t, s, d, c) v fails runtime fails runtime fails runtime
(3,5,5,5) 1 233649 3.14 11133 0.62 11121 0.59

2 212818 2.87 10324 0.54 10140 0.52
3 123130 1.63 6753 0.34 6147 0.3
4 26432 0.33 2222 0.09 1476 0.07
5 1632 0.02 433 0.02 5 0.01

(3,5,5,10) 1 2539032 33.83 85110 4.62 85040 4.48
2 2319945 30.89 78759 4.11 77609 3.91
3 1345093 17.63 50082 2.45 46342 2.25
4 277339 3.44 16282 0.63 10920 0.49
5 15671 0.17 3291 0.09 10 0

(3,5,5,15) 1 9102083 121.67 281529 15.45 281336 14.96
2 8326588 111.16 260664 13.9 257058 13.23
3 4829837 63.7 164955 8.16 152885 7.47
4 997448 12.45 53655 2.11 35599 1.59
5 54472 0.6 10844 0.29 15 0.01

(3,5,5,20) 1 22517539 301.77 667807 36.54 667357 35.46
2 20607017 275.38 618852 33.14 610658 31.57
3 11938093 157.42 393117 19.53 364171 17.99
4 2442592 30.51 127007 5.05 84431 3.79
5 130714 1.44 25599 0.67 20 0.01

(3,5,5,25) 1 43475937 573.45 1169486 66.21 1168662 65.69
2 39835008 523.72 1089385 59.73 1073891 58.48
3 23211047 301 706443 35.87 652984 34
4 4810503 59.02 241153 9.7 159238 7.51
5 256721 2.78 49717 1.31 25 0

(3,5,5,30) 1 77975941 1027.61 2173073 120.65 2171643 120.14
2 71420872 938.78 2017818 109.4 1990416 106.69
3 41441367 537.04 1285591 64.95 1191642 61.36
4 8474261 104.29 424357 17 280259 13.12
5 445367 4.8 85790 2.24 30 0.01

(3,5,5,35) 1 122846798 1622.59 3282341 184.83 3280160 183.69
2 112579328 1483.12 3054543 167.83 3012501 163.78
3 65493473 851.02 1967637 100.41 1820206 94.45
4 13493394 165.85 661341 26.65 435978 20.57
5 708706 7.66 135749 3.56 35 0.01

(3,5,5,40) 1 - - 4965403 278.81 4962121 276.46
2 - - 4620373 253.02 4557769 247.03
3 98966039 1286.08 2973352 150.69 2751269 142.88
4 20306681 250.37 992771 40.1 654489 30.83
5 1059773 11.49 202545 5.32 40 0

(3,5,5,45) 1 - - 6933558 391.15 6929008 388.63
2 - - 6454916 354.7 6365856 346.37
3 - - 4161884 212.37 3852027 201.01
4 29002238 358.35 1404672 56.5 924778 43.65
5 1510550 16.4 288045 7.6 45 0

(3,5,5,50) 1 - - 9588716 540.07 9582430 536.34
2 - - 8926108 490.34 8804592 479.25
3 - - 5752173 292.84 5325408 277.18
4 39986053 492.2 1934077 77.82 1273470 60.13
5 2074142 22.59 395038 10.4 50 0

Table 3: Results of the template design problem.

29

BC BC+CR BC+CR+VR
(t, k, u) b fails runtime fails runtime fails runtime
(2, 3, 4) 2 307 0.01 83 0 20 0

3 2266 0.04 518 0.02 135 0
4 9530 0.2 2232 0.1 737 0.04

(2, 3, 5) 2 800 0.01 222 0.01 12 0.02
3 13812 0.23 3079 0.11 156 0.01
4 166064 3.56 33679 1.58 3539 0.21
5 1185644 31.37 244547 14.41 39930 3
6 4744639 152.77 1095106 78.97 244430 22.67

(2, 4, 4) 2 867 0.01 204 0 70 0
3 6246 0.1 1330 0.04 581 0.03
4 20425 0.42 4980 0.21 2757 0.18

(2, 4, 5) 2 2800 0.04 638 0.03 202 0
3 64458 1.12 12636 0.46 4603 0.21
4 627704 14.13 124611 5.91 57329 3.66
5 2800951 79.37 637199 38.06 356785 29.27

Table 4: Maximization results of the extended Steiner systems. The variety of each
multiset is at least2.

6.2 Extended Steiner System

While the standard Steiner system is only set-based, the extended version is an im-
portant and practical multiset problem in the area of information retrieval [12, 3, 21].
Solving the extended Steiner system can provide solutions to the problem of a multiset
batch code. The extended Steiner SystemES(t, k, u) is a collection ofb blocks. Each
block is ak-element multiset drawn from au-element set whose elements can be drawn
multiple times. For every two blocks in the collection, the cardinality of their intersec-
tion must be smaller thant. For example, one possible solution forES(2, 3, 3) in 3
blocks is{{{1, 1, 2}}, {{2, 2, 3}}, {{3, 3, 1}}}. The intersection of{{1, 1, 2}} and{{2, 2, 3}}
is {{2}}; the intersection of{{1, 1, 2}} and{{3, 3, 1}} is {{1}}; the intersection of{{2, 2, 3}}
and{{3, 3, 1}} is {{3}}. All of them have size smaller thant = 2. In our experiments,
we adapt the extended Steiner System to an optimization problem which maximizes
the sum of the varieties of the multisets in a solution. To further increase problem
difficulty, we also constrain each multiset to have at least certain varietiesv.

Tables 4 and 5 show the experimental results of the maximization and the variety of
each multiset is at least2 and3 respectively. Among the three propagation approaches,
BC+CR+VR always achieves the fewest number of fails. There is a more than 90%
reduction in number of fails when compared to BC alone, and more than 50% reduction
when compared to BC+CR. This confirms that variety (and cardinality) reasoning is
highly effective in reducing search space. The extra prunings are so significant that
they compensate for the overhead of extra computational effort spent for variety (and
cardinality) reasoning. For runtimes, BC+CR+VR is also always the fastest, although
the proportion of reduction is less than that for the number of fails. The reduction of
BC+CR+VR over BC+CR in Table 4 is moderate, but that in Table 5is significant.
There are even instances in which both BC and BC+CR cannot finish execution within

30

BC BC+CR BC+CR+VR
(t, k, u) b fails runtime fails runtime fails runtime
(2,3,6) 2 1751 0.02 480 0.01 8 0

3 14895 0.28 2992 0.12 13 0.01
4 57449 1.33 9548 0.49 17 0

(2,4,6) 2 6072 0.09 1219 0.04 204 0.02
3 184841 3.55 33165 1.34 11709 0.59
4 848172 20.62 132400 7.04 56762 3.89

(3,4,4) 2 446 0.02 160 0.02 26 0
3 2549 0.04 793 0.02 135 0.01
4 9615 0.18 2646 0.11 634 0.04

(3,4,5) 2 1475 0.02 537 0.01 67 0.01
3 35582 0.58 10913 0.4 1831 0.07
4 591668 12.07 160724 7.65 29938 1.66
5 6565175 160.67 1630805 96.76 312397 22.7
6 48187790 1370.32 11387223 812 2108410 194.99
7 - - - - 9813128 1125.01

(3,4,6) 2 4122 0.05 1537 0.05 24 0.01
3 80815 1.4 27386 1.17 63 0.01
4 3994239 87.12 1187476 66.63 4134 0.25
5 - - - - 370386 26.52
6 - - - - 17854829 1562.45

Table 5: Maximization results of the extended Steiner systems. The variety of each
multiset is at least3.

the time limit, but BC+CR+VR can. This also shows that the usefulness of variety
reasoning sometimes depends on the tightness of the varietyconstraints in a problem.

6.3 Generalized Social Golfer Problem

Similar to the extended Steiner system, the generalized social golfer problem extends
the standard social golfer problem (prob010 in CSPLib) fromset-based to multiset-
based. The original social golfer problem requires to schedulem groups ofg golfers
overw weeks so that no golfer plays in the same group as any other golfer twice. We
generalize the problem to an extended versionSG(w,m, n, g, p) in which we schedule
m teams ofn members tog groups ofp golfers overw weeks. Each group contains
golfers from different teams and they play against each other. We also constrain each
group to have golfers from at leastv teams. To maximize the socialisation, the number
of times two teams meet with each other again is minimized.

Table 6 shows the experimental results of the generalized social golfer problem
and the variety of each multiset is at least2. Again, BC+CR+VR always has the fewest
number of fails and runtime. In this problem, the group size is fixed top and this favours
cardinality reasoning. Thus, the reduction in the number offails of BC+CR+VR over
BC alone is more significant than the reduction of BC+CR+VR over CR+VR. How-
ever, with the help of variety reasoning, BC+CR+VR can achieve zero backtrack in
some instances. This shows that the extra prunings are so significant and effective in
removing inconsistent domain values in the search tree.

31

BC BC+CR BC+CR+VR
(w,m, n, g, p) fails runtime fails runtime fails runtime

(3,2,2,2,2) 2162 0.07 32 0.01 0 0
(3,2,3,2,2) 42821 1.2 247 0.02 0 0.01
(3,2,3,2,3) 26025 0.76 71 0.01 22 0
(3,2,3,3,2) 975 0.04 18 0.01 0 0
(3,2,4,2,2) 302820 8.16 273 0.01 0 0.01
(3,2,4,2,3) 335774 9.39 528 0.04 0 0
(3,2,4,2,4) 173955 5.22 97 0.02 22 0
(3,2,4,3,2) 14334 0.45 234 0.03 0 0.01
(3,2,4,4,2) 4901736 191.51 345 0.03 0 0
(3,2,5,2,2) 1343708 35.58 273 0.01 0 0
(3,2,5,2,3) 1852889 50.06 1301 0.07 0 0.01
(3,2,5,2,4) 1606845 45.54 1118 0.08 22 0
(3,2,5,2,5) 788233 23.12 146 0.01 22 0
(3,2,5,3,2) 99333 3.39 260 0.03 0 0
(3,2,5,3,3) 227055 8.28 1263 0.1 0 0.01
(3,2,5,4,2) - - 3179 0.23 0 0.01
(3,2,5,5,2) 957799 45.03 286 0.04 0 0
(3,3,2,2,2) 1955941 62.01 8818 0.52 2254 0.19
(3,3,2,2,3) 943173 33.78 369 0.04 336 0.05
(3,3,2,3,2) 141126 6.6 938 0.12 444 0.09
(3,3,3,2,2) 43253055 1377.83 25260 1.49 2422 0.21
(3,3,3,2,3) - - 88624 6.98 45054 4.63
(3,3,3,2,4) 49633275 1754.52 16498 1.7 14934 1.7
(3,3,3,3,2) 23546963 1060.89 176765 17.58 33467 5.08
(3,3,3,3,3) 23927286 1136.83 36249 5.11 22423 4.19
(3,3,3,4,2) - - 1090365 111.35 112519 23.56
(3,3,4,2,2) - - 25723 1.53 2461 0.19
(3,3,4,2,3) - - 256222 19.99 94420 10.04

Table 6: Results of the generalized social golfer problem. The variety of each multiset
is at least2.

6.4 Generalized Warehouse Location Problem

Our last experiment is the generalized warehouse location problemWH(l, w, s). In
this problem, we are given a set of locationsl where a maximum ofw warehouses
can be built to supplys stores. Different stores sell different kinds of goods, which
are supplied by different warehouses. A warehouse only produces one kind of goods.
There is a supply cost for delivering goods to the stores and this cost depends on the
warehouses. Also, there is a cost of 5000 for building a warehouse. This problem is an
optimization problem which minimizes the total cost in building the warehouses and
the supply costs to the stores.

To model this problem, we use a multiset variable to represent where the ware-
houses are going to be built ands other multiset variables to represent the stores. The
domain values of all the multiset variables are the locations of the warehouses. Union
and equality multiset constraints are used to ensure that all stores obtain goods from
the warehouses. To better utilize the resource and prevent under production, no two
stores can obtain goods from more thanv same location. Such a requirement can be

32

BC BC+CR BC+CR+VR
(l, w, s) fails runtime fails runtime fails runtime
(5, 3, 7) 4749133 237.54 770204 128.27 244732 75.22
(5, 3, 8) 4855804 277.95 829065 181.75 274109 109.82
(5, 3, 9) 4880436 316.58 843311 220.99 281261 133.48
(5, 3, 10) 4889762 354.38 848793 249.4 284026 152.17
(5, 5, 7) 154002 10.2 9307 2.64 5554 1.7
(5, 5, 8) 154605 11.6 9315 3.1 5558 2.01
(5, 5, 9) 155743 11.77 9334 3.48 5567 2.26
(5, 5, 10) 155993 12.33 9340 3.75 5572 2.43
(6, 3, 7) 25291006 1403.5 3412505 701.29 1021670 402.47
(6, 3, 8) 25363951 1608.32 3502747 945.69 1085141 568.89
(6, 3, 9) 25369950 1789.62 3510070 1151.32 1090041 693.51
(6, 3, 10) - - 3522116 1302.76 1098070 786.23
(6, 5, 7) 395677 55 24718 8.73 14509 5.33
(6, 5, 8) 451461 43.7 25028 10.91 14714 6.45
(6, 5, 9) 451773 52.92 25035 12.26 14720 7.27
(6, 5, 10) 453102 60.95 25040 13.18 14726 7.85
(7, 5, 7) 1041329 167.81 56228 25.63 32493 14.36
(7, 5, 8) 1152650 124.22 56692 31.48 32796 17.18
(7, 5, 9) 1153222 151.48 56700 35.63 32803 19.55
(7, 5, 10) 1155232 171.46 56707 38.5 32810 21.01
(8, 5, 7) 2358226 402.11 113084 65.54 64483 34.1
(8, 5, 8) 2539984 300.75 113740 79.6 64908 40.72
(8, 5, 9) 2544059 358.25 113750 90.57 64915 46.33
(8, 5, 10) 2548600 405.1 113761 98.22 64923 49.9

Table 7: Results of the generalized warehouse location problem. The variety of the
intersection of any two stores is at most1.

modeled by the variety constraints on the intersection of any two stores.
Tables 7 and 8 show the experimental results of the generalized warehouse location

problem in which no two stores can obtain goods from more thanone and two same
locations respectively. Similar to the previous three benchmark problems, BC+CR+VR
achieves the fewest number of fails and the fastest runtime among the three propagation
approaches. The reduction is more significant for the comparison between BC alone
and BC+CR+VR than that between BC+CR and BC+CR+VR. When the variety of
the intersection of any two stores is limited to at most2, the problem becomes less
constrained even the problem size increases. Thus, the reduction of BC+CR+VR over
BC+CR is moderate, but BC+CR+VR still achieves about 25% faster in runtime.

6.5 Discussions

In the template design problem, extended Steiner problem, and the generalized social
golfer problem, the reduction in the number of fails of BC+CR+VR over BC+CR is
more significant than that in the runtime. In general, enforcing stronger consistency
will discover and remove more inconsistent nodes to give a smaller search tree. How-
ever, more computational effort will be spent for constraint propagation at each search

33

BC BC+CR BC+CR+VR
(l, w, s) fails runtime fails runtime fails runtime
(7, 3, 7) 2286055 385.65 103268 41.95 97543 36.59
(7, 3, 8) 4611458 845.88 126920 69.31 118194 53.19
(7, 3, 9) 4736060 1102.1 127875 79.27 119016 60.69
(7, 3, 10) 5144234 1387.8 130728 89.03 121439 66.57
(7, 5, 7) 2100474 494.41 95519 38.46 90678 34.47
(7, 5, 8) 4865139 1368.3 126818 69.13 118180 53.74
(7, 5, 9) - - 127859 79.23 119076 61.32
(7, 5, 10) - - 130814 89.06 121586 67.43
(8, 3, 7) 6310893 1183.41 220560 113.24 207944 92.45
(8, 3, 8) - - 261425 180.15 243434 130.05
(8, 3, 9) - - 263236 206.26 244956 147.59
(8, 3, 10) - - 267926 231.33 248926 161.56
(8, 5, 7) 5584477 1583.95 204447 102.16 193779 86.2
(8, 5, 8) - - 260460 177.85 242826 130.35
(8, 5, 9) - - 262379 204.38 244441 148.26
(8, 5, 10) - - 267399 230.23 248658 162.69

Table 8: Results of the generalized warehouse location problem. The variety of the
intersection of any two stores is at most2.

node. So, a large number of nodes has to be removed so as to compensate for the
increased computational effort for a stronger consistencyenforcement and to improve
the runtime.

From the experimental results of the generalized warehouselocation problem, we
observe that the reduction in runtime of BC+CR+VR over BC+VRis greater than that
in number of fails. It behaves differently from the previousthree benchmarks. So, we
did further experiments to investigate the results. We find that the interaction among
the multiset equality, union, and intersection constraints in the generalized warehouse
location problem provides tighter bounds in BC+CR+VR. The pruning is so significant
that they not only compensate for the overhead of the extra computational effort spent
for cardinality-variety reasoning, but also reduce the number of iterations for constraint
propagation at each search node. Thus, improvement in runtime is even better than that
in number of nodes.

Take the generalized warehouse location problem instanceWH(8, 5, 9) and the
variety of the intersection of any two stores is at most 1 as anexample. BC+CR and
BC+CR+VR have 113,752 and 64,917 number of choice points (i.e., the number of
nodes in the search tree) respectively and the average numbers of iterations for con-
straint propagation at each search node are 286 and 254 respectively. BC+CR+VR
reduces not only the number of choice points, but also the number of iterations it takes
to converge at each search node. This results in fewer numberof nodes in the search
tree and also less work at each node. In contrast, in the extended Steiner system, al-
though BC+CR+VR has fewer number of choice points, there aremore iterations at
each search node when compared to BC+CR. Take the extended Steiner System in-
stanceES(2, 4, 5) whereb = 5 and variety of each multiset is at least2 as an example.

34

BC+CR and BC+CR+VR have 637,200 and 356,786 number of choicepoints respec-
tively and the average number of iterations for constraint propagation at each search
node are 29 and 37 respectively. Thus, improvement in numberof nodes is better than
that in runtime for the extended Steiner system. As we can see, the multiset constraints
can interact with each other and give tighter bounds.

7 Concluding Remarks

In this section, we summarize our contributions in this paper and give some possible
directions for future research.

7.1 Contributions

Besides integer, Boolean, and set variables and constraints, multiset variables and con-
straints are also useful in providing more natural and efficient models to many prob-
lems. However, we can only find little work on multiset constraint solving. Thus, this
paper mainly studies multiset variables and constraints. The contribution of our work
can be summarized as follows.

Unlike set variables, multiset variables allow repeated elements. We first propose
three different ways to represent a multiset variable: bounds, occurrence, and fixed
cardinality representations. The occurrence representation is more expressive than the
bounds representation in general, and is as expressive as the bounds representation if
we only maintain the bounds on the number of occurrences of anelement in a multiset.
The fixed cardinality representation is incomparable to theother two representations.
Thus, in this paper, we focus on using the occurrence representation.

Second, we have described various inference rules to maintain bounds consistency
that work with constraints involving multiset, set, and/orinteger variables. This bounds
consistency is equivalent to integer bounds consistency applied to the occurrence rep-
resentation for multiset variables. Those inference rulescan tighten the upper and/or
lower bound on the multiset variables to give a smaller search space.

Third, we have introduced the cardinality and variety variables to multiset variables
based on the occurrence representation. While the introduction of cardinality variable
is a straightforward generalization to the set variable counterpart, the idea of variety
variable is a new concept.

Fourth, we have exploited the cardinality and variety properties to introduce new
inference rules to increase pruning opportunities. We havealso improved the propaga-
tion of some common multiset constraints through cardinality and variety reasoning.
Experimental results on several benchmark problems confirmthat enforcing bounds
consistency with cardinality-variety reasoning can always achieve tighter bounds on
multiset variables, resulting in an even smaller search space.

CSPs are typically solved by incorporating constraint propagation algorithms in
backtracking tree search. Cardinality and variety reasoning is a form of extra con-
straint propagation. On one hand, it aims at bringing out more domain prunings so
that the size of the search tree becomes smaller. On the otherhand, it comes at an

35

additional computational cost at each node in the search tree. Striking a balance be-
tween the computational overhead and the extra prunings is always problem specific.
We can never guarantee that a stronger pruning power can always compensate for the
additional computational cost. In our work, the overall effectiveness depends heavily
on the existence of cardinality and variety information. From our experimental results,
we envisage that if the problem has more constraints on the cardinality and variety of
the variables, we can probably benefit to a greater extend.

7.2 Future Work

Our work introduces the variety information to multiset variables and constraints. There
can be plenty of scope for future research for multiset CSPs.

First, cardinality-variety reasoning is currently applied on some common multi-
set constraints in their normal forms. It is interesting to study how cardinality-variety
reasoning can be incorporated into other multiset global constraints. Since global con-
straints can be decomposed into their normal form, we can check if the cardinality-
variety reasoning on multiset global constraints can achieve even better constraint prop-
agation.

Second, our current implementation of the hybrid representation and the rules is
only prototypical. There is still room for improvement. Forexample, it is known that
adjusting the triggering order of the rules (depending on the computational cost of the
rules) can affect the performance [2, 1]. We expect that our implementation can be
optimized in the future.

Third, we have proposed to use a hybrid representation for multiset variables in this
paper. It is worthwhile to study if there are other ways to represent a multiset variable
and compare them with the hybrid representation. Besides bounds representation, we
can also represent set variables by ordering the set values lexicographically. This is
called the length-lex representation [9]. We can investigate how length-lex ordering
can be applied to the values in the domain of a multiset variable.

8 Acknowledgements

We would like to thank the anonymous referees for their constructive comments. The
work described in this paper was substantially supported bygrants (CUHK413207,
CUHK413808, and CUHK413710) from the Research Grants Council of Hong Kong
SAR. Toby Walsh is supported by the Australian Government’sDepartment of Broad-
band, Communications and the Digital Economy, the Australian Research Council, and
the Asian Office of Aerospace Research and Development through grants AOARD-
104123 and 124056.

References

[1] F. Azevedo. Cardinal: A finite sets constraint solver.Constraints, 12(1):93–129,
2007.

36

[2] F. Azevedo and P. Barahona. Modelling digital circuits problems with set con-
straints. InProceedings of the 1st International Conference on Computational
Logic, pages 414–428, 2000.

[3] F.E. Bennett and E. Mendelsohn. Extended (2, 4)-designs. Journal of Combina-
torial Theory, Series A, 29(1):74–86, 1980.

[4] R. Debruyne and C. Bessière. Some practicable filteringtechniques for the con-
straint satisfaction problem. InProceedings of the 15th International Joint Con-
ference on Artificial Intelligence, pages 412–417, 1997.

[5] Gecode Team. Gecode: Generic constraint development environment, 2006.
Available fromhttp://www.gecode.org.

[6] I.P. Gent and T. Walsh. CSPLib: a benchmark library for constraints. Techni-
cal report, Technical report APES-09-1999, 1999. A shorterversion appears in
Proceedings of the 5th International Conference on Principles and Practices of
Constraint Programming.

[7] C. Gervet. Conjunto: Constraint logic programming withfinite set domains.
In Proceedings of the 1994 Symposium on Logic Programming, pages 339–358,
1994.

[8] C. Gervet. Interval propagation to reason about sets: Definition and implementa-
tion of a practical language.Constraints, 1(3):191–244, 1997.

[9] C. Gervet and P. Van Hentenryck. Length-lex ordering forset csps. InProceed-
ings of the 21st national conference on Artificial intelligence, pages 48–53, 2006.

[10] P. Hawkins, V. Lagoon, and P.J. Stuckey. Solving set constraint satisfaction prob-
lems using ROBDDs.Journal of Artificial Intelligence Research, 24:109–156,
2005.

[11] ILOG. ILOG Solver 6.0 Reference Manual, 2003.

[12] D.M. Johnson and N.S. Mendelsohn. Extended triple systems.Aequationes Math-
ematicae, 8(3):291–298, 1972.

[13] F. Laburthe. Choco: Implementing a CP kernel. InIn: CP00 post confer-
ence workshop on techniques for implementing constraint programming systems
(TRICS), pages 71–85, 2000.

[14] V. Lagoon and P.J. Stuckey. Set domain propagation using ROBDDs. InPro-
ceedings of the 10th International Conference on Principles and Practice of Con-
straint Programming, pages 347–361, 2004.

[15] Y.C. Law, J.H.M. Lee, and M.H.C. Woo. Variety reasoningfor multiset con-
straint propagation. InProceedings of the 21st International Joint Conference on
Artificial Intelligence, pages 552–558, 2009.

37

[16] A.K. Mackworth. Consistency in networks of relations.Artificial Intelligence,
8(1):99–118, 1977.

[17] R. Mohr and G. Masini. Good old discrete relaxation. InProceedings of the 8th
European Conference on Artificial Intelligence, pages 651–656, 1988.

[18] T. Müller. Constraint Propagation in Mozart. Doctoral dissertation, Universität
des Saarlandes, Germany, 2001.

[19] T. Müller and M. Müller. Finite set constraints in Oz.In 13. Workshop Logische
Programmierung, pages 104–115, 1997.

[20] B.A. Nadel. Constraint satisfaction algorithms.Computational Intelligence,
5:188–224, 1989.

[21] E.Y. Park and I. Blake. Construction of extended steiner systems for information
retrieval.Revista Mateḿatica Complutense, 21(1):179–190, 2008.

[22] T. Walsh. Consistency and propagation with multiset constraints: A formal view-
point. InProceedings of the 9th International Conference on Principles and Prac-
tice of Constraint Programming, pages 724–738, 2003.

38

