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Abstract

Multisets generalize sets by allowing elements to havetitgpes. In this pa-
per, we study from a formal perspective representationsutfiget variables, and
the consistency and propagation of constraints involvindfiset variables. These
help us model problems more naturally and can, for exampéept introducing
unnecessary symmetries into a model. We identify a numbelifigfrent repre-
sentations for multiset variables, compare them in terneffettiveness and effi-
ciency, and propose inference rules to enforce boundsstensy for the represen-
tations. In addition, we propose to exploit the variety of altieet—the number
of distinct elements in it—to improve modeling expressass and further en-
hance constraint propagation. We derive a number of inéeremes involving the
varieties of multiset variables. The rules interact véggewith the traditional com-
ponents of multiset variables (such as cardinalities) taiatstronger propagation.
We also demonstrate how to apply the rules to perform varesggoning on some
common multiset constraints. Experimental results shat plerforming variety
reasoning on top of cardinality reasoning can effectiveljuce more search space
and achieve better runtime in solving some multiset CSPs.

1 Introduction

Many combinatorial design problems can be modeledoastraint satisfaction prob-
lems(CSPs) [16] usingset variableswhich take collections of distinct elements as
their values. The domain of a set variable is typically repreed by its set upper and
lower bounds, and propagated by enforcing set bounds ¢enejs[8] together with
cardinality reasoning [2, 1]. Utilizing also the cardimglinformation of a set variable



during propagation allows for more prunings than using seilds propagation alone,
and further reduces the search space.

Set variables have been incorporated into most of the majwstraint solvers (see,
for example, Conjunto [7], ILOG [11], and Mozart [18].) Silani to sets, multisets are
also unordered collections of items but allow repetitiohslements. Given the success
of set variables and constraints in providing more naturdlefficient models to many
problems and avoiding unnecessary symmetries in the matelssurprising to find
little work on multiset constraint solving. Whilst multiseariables are supported in a
few solvers (for example, ILOG’s configurator supports fiselt variables), there has
been little work from a more theoretical perspective on pggiing such variables. The
aim of this paper is teectify this imbalance, to study formal notions of consisieand
propagation for multiset variables, and to discuss how tteaybe implementedilany
problems naturally involve multisets. Consider the tertgptiesign problem (prob002
in CSPLib [6]) in which we assign designs to printing teme#at As each template
contains a fixed number of slots, we can model this probler wiit integer variable
for each slot, whose value is the design in this slot. Howethés model introduces
unnecessary symmetries as the slots are indistinguish8iiee a design can appear
multiple times in one template, a more natural model is toausaultiset variable for
each template to avoid the symmetries. The domain of eadablars the set of all
possible multisets of designs that can be assigned to thadé&m

This paper combines and extends the work of Walsh [22] and éteal. [15]. We
first introduce three different representations, namelyrios, occurrence, and fixed
cardinality representations [22], for multiset variabssl compare the tightness of
bounds among the representations. In a CSP model, the aimtstoften have a mix-
ture of multiset, set, and/or integer variables. We prop@s®us simple inference
rules which enforce bounds consistency for constraintslvivg these kinds of vari-
ables. We also consider thariety of a multiset variable, which is the number of
distinctelements [15]. Based on the occurrence representationyrtreef propose a
hybrid representation [15] for multiset variables by inmorating a cardinality variable
as well as a variety variable. The cardinality of a set revé&adtotal number of ele-
ments in it. Incorporating a cardinality variable to a setafale [2, 1] enjoys success in
enhancing propagation for set constraints. We hope to lidraefi incorporating car-
dinality and variety variables to multiset variables aslw@ur hybrid representation
not only allows us to express certain problem constraintsmmaore easily (i.e., better
modeling expressiveness), but also increases the opjittetuto infer more domain
prunings for better solving efficiency. We derive a numbednégrence rules involving
the varieties of multiset variables and show how the tradél components of multiset
variables (such as cardinalities) interact with the vaggetio achieve stronger constraint
propagation. We also apply our rules to perform variety saasy on some common
multiset constraints. Experimental results confirm thatqrening variety reasoning
on top of cardinality reasoning can further reduce the $espace and give a better
runtime in solving CSPs involving multiset variables.

The rest of the paper is organized as follows. Section 2 desciset variables
and how set constraints can be used in modeling combinbpydalems. Section 3
presents a number of multiset representations, some commuliset constraints, and
the local consistency for constraint propagation. Sectibocuses on how cardinality



reasoning helps to improve expressivity and constrainpggation in multiset con-
straints. Section 5 introduces the variety information iltieet variables and shows
how inferences using variety, together with cardinalign @chieve stronger constraint
propagation. Section 6 presents the experimental resulsme multiset problems.
Section 7 summaries the contributions of this paper andssligitt on possible direc-
tions of future research.

2 Set Variables and Constraint Propagation

In this section, we define constraint satisfaction probl€@&Ps) formally. Since our
work on multiset variables is directly related to that of watiables, it is also useful to
review the relevant definitions and concepts.

2.1 Constraint Satisfaction Problems

A constraint satisfaction probler(CSP) is a tripleP = (X,D,C), whereX =
{z1,...,z,}is afinite setokariables D = {D,,, ..., D,, } is a set of finitelomains

of possible values for each variable, ahis a set ofconstraints Each constraint in-
volves a subset of variables i, limiting the combination of values that the variables
in the subset can take. Aassignment:; — « in P is a mapping from variable;

to valuea € D,,. A solutionof P is a set of assignments of all variablesfmthat
satisfies all the constraints ¢h

2.2 Set Constraint Satisfaction

A setis an unordered collection of elementghout repetitions The cardinality of a
setS is the number of elements ifl, denoted a$S|. Given a universé/ of integers
{1,...,n}, asetvariablé& takes its set values froli. Sets are denoted by the letters
m, M, s, t, x, andy. A set valuem of cardinalityc is denoted by{my, ma,...,m.}
wherem; < mo < --- < m. andm; denotes thg-th smallest value imn.

Gervet [8] proposed thbounds representatioof the domain of a set variablg
with an interval[gib(S), lub(S)] such thatDg = {m | glb(S) C m C lub(S)}. The
greatest lower boungib(.S) contains all the elements whichust existn the set, while
the least upper boundub(S) contains any element whiahay existin the set. S is
said to beboundwhen its lower bound equals its upper bound (& (.S) = lub(S)).
Figure 1 gives a lattice which represents a set domain ofiasietbleS with an interval
[0,{1,2,3,4}]. Each edge in the figure represents a subset relation in viécket
value below is a subset of the set value above on the two erttie efdge.

Example 2.1. Steiner triple systerfprob044 in CSPLib)

The Steiner triple problem of order consists of finding a set of(n — 1)/6 triples

of distinct integer elements ifil, ..., n} such that any two triples have at most one
common element. To model this problem, we use two kinds ofaegdbles. The first
kind of variablesS;, wherei € {1,...,n(n — 1)/6}, denotes triples in the problem.
The other kind of variabled;;, Vi,j € {1,...,n(n — 1)/6} andi < j, denotes the



{1,2,3,4}
{1,2,3}{1,2,4}{1,3,4}{2, 3,4}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

Figure 1: The domain of a set variatffewith interval [0, {1, 2, 3, 4}]

intersection of any two tripleS; and.S;. The domains of the two kinds of variables are
bothDgs, = Da,; = [0,{1,...,n}]. The constraints of this problem are as follows:

e intersection:S; N S; = A;;, and
e cardinality:|S;| = 3, |4;;] < 1,

foralli,j € {1,...,n(n —1)/6} andi < j.
The Steiner triple problem of ord&rhas7? x (7 — 1)/6 = 7 triples. One possible
solution is{1,2,3}, {1,4,5}, {1,6,7},{2,4,6},{2,5,7}, {3,4,7}, {3,5,6}. g

2.2.1 Tree Searching

In solving a CSP with set variables, depth-first backtraglsearch [20] is often used.
At each search node, the algorithm first chooses an unboun@sableS. Instead

of assigning a value from the domain of the selected varjahke algorithm selects
an elementn that exists in the upper bound but not in the lower bound, (ire.c
(lub(S) \ glb(S))) of the domain ofS and proceeds the search with two branches:
m € Sandm ¢ S. Thus, at each node, the algorithm splits the search spazeno.
When we setn ¢ S, the elementn is removed froniub(.S) of the domain ofS. When

we setm € S, the elementn is added tgyib(.S) of the domain ofS.

{2,3,4}

{2,3} {2,4} {3,4}

Figure 2: The modified set domain 8f



Example 2.2. Consider the set variablg in Figure 1, whereDg = [0, {1,2,3,4}].
When we setl ¢ S, the element is removed fromub(.S) and the domain becomes
[0,{2,3,4}]. Figure 2 gives the modified domain &fin which all the sets that contain
elementl are removed from the lattice. O

2.2.2 Set Bounds Consistency

Traditional domain reasoning, such as generalized arcistensy [17], for integer
variables is not practical for set variables, as their domare exponential in the size
of possible sets. Gervet [8] proposed using bounds reagdaimaintain consistency
on set variables.

A set variableS with interval domainglb(.S), lub(S)] is set bounds consistef8]
with respect to a constraird if and only if glb(S) = (doms(C) andlub(S) =
Jdomgs(C), wheredomgs(C') denotes the domain values $fthat satisfyC'

Set bounds consistency can be enforcegtoyection functiong8]. Each set con-
straint is associated with a set of projection functionsohtderive new bounds for the
set domains to maintain set bounds consistency. Table 1ssthaprojection functions
of some common set constraints.

Subset lub(Sl) — lub(Sl) n Zub(Sg)
Union glb(Sl) — glb(Sl) U glb(53 \Zub(Sg)
(51 US; = 53) lub(Sl) — lub(Sl) n Zub(S3)
glb(53) — glb(Szg) U glb(51 ) U glb(SQ)
lub(Ss) « lub(S3) N lub(S1) U lub(Ss)
Intersection glb(S1) + glb(S1) U glb(Ss)
(51 n SQ = 53) lub(Sl) — lub(Sl) \ ((Zub(5’1 ﬂ glb(Sg)) \ lub(53))
glb(S3)  glb(Ss) U gIb(S1) N glb(Ss)
Lub(S3) < lub(Ss3) N lub(S1) N lub(S)

Table 1: Projection functions of some common set conssaint

Example 2.3. Suppose we have set variablegs and S., where Dg, =
[{1,2},{1,2,3,4}]andDg, = [0, {1, 2,3}], and a constraint; C S,. Both variables

are not set bounds consistent because the eleteit; does not exist ith, and the el-
ementsl and2 are not yetincluded igib(S3). After enforcing set bounds consistency,
we haveDgs, = Dg, = [glb(S1) U glb(S2),lub(S1) N lub(S2)] = [{1,2},{1,2,3}].

The variabless; andS; become set bounds consistent with respect to the subset con-
straint. O

2.3 Cardinality Variable and Reasoning

Conjunto[8] is one of the first constraint solvers developed in whicdeavariable is
represented by set intervals. Other set constraint soivelisde Oz [19], Choco [13],
Mozart [18], the ROBDD-based [14, 10], and Gecode [5]. Azievand Barahona
[2, 1] further proposedardinality reasoningn set constraints and developed another



set constraint solve€ardinal, to handle the set cardinality more actively and improve
the performance in solving CSPs with set variables.

On the other hand, Gervet and Van Hentenryck [9] propose@septing set vari-
ables using length-lex bound. This representation totaltjers a set domain, and
incorporates the cardinality and the position in lexicqiria ordering directly. Whilst
this representation increases propagation, it comes atxpense of potentially ex-
ponential cost. Even reaching a fixed point with bounds neiagomay require an
exponential number of iterations. In this paper, by congmarj we consider represen-
tations for sets and multisets which are guaranteed to takeaopolynomial number
of iterations but nevertheless increase the amount of jattjzn.

3 Multiset Constraint Satisfaction

A multisetis a generalization of set that allows elements to repeathdit loss of
generality, we assume that multiset elements are posittegérs froml to n. We
shall usef) to denote both the empty set and the empty multiset. The rsgvef a
multiset is a multiset itself, which defines the maximum jdadesoccurrences of each
element. Given a univerdé, we denote a multiset by = {mq, mo, - ,m.} C U
wherem; < m; for1 < i < j < ¢, and its cardinality (total number of elements) as
|S]. Multisets are denoted by lettesst, x, andy. For example, ifS = {1,1,2,2,3},
then|S| = 5. Since an element in a multiset variable can occur multiples, we let
occ(i, S) be the number of occurrences of an elemintthe multisetsS.

3.1 Basic Multiset Variable Representations

A multiset variable allows an element to repeat. Itis notpical to represent a multiset
variable as a finite domain variable in which the domain igafall possible multisets.

The number of possible multisets grows exponentially astimaber of elements in

a multiset variable increases. Thus, we suggest two basltseturepresentations:
bounds and occurrence representations.

3.1.1 BoundsRepresentation

The bounds representation for multiset variables is a gdimation of the bounds rep-
resentation for set variables [8]. The domain of a multisetable S is specified by
an interval[glb(S), lub(S)]. Thegreatest lower boungib(S) is the largest multiset
containing all the values thatust existn the multiset. Théeast upper boundub(.S)

is the smallest multiset containing all the values tmaty existin the multiset. This
representation is compact yet cannot represent all forndgspfnction because it may
contain unnecessary values between the upper and lowedboun

Example 3.1. Consider a multiset variabl& with two possible multiset valuesf1}
and{2,2}}. Based on the bounds representatigias a domaiDs = [0, {1,2,2}].
However, this representation also pernfitdo take the value®, {2}, {1,2}, and
{1, 2,2} which are not possible values §f O



3.1.2 Occurrence Representation [22]

In the occurrence representation, a multiset variable witlements is represented
by a vector(z1,...,z,) of integer variables; = occ(i, S). This vector is known

as theoccurrence vector This representation is compact but, similar to the bounds
representation, cannot represent all forms of disjunction

Example 3.2. Consider a multiset variablg with two possible multiset valuesf1}
and {2,2}}. Based on the occurrence representati§rhas an occurrence vector
(w1, 22), WhereD,, = Dgee1,5) = {0,1} and D, = Dgee(2,5) = 10,2}. How-
ever, this representation also pernfitto take the value§ and{1, 2, 2}} which are not
possible values a$. O

3.1.3 Expressivity

Based on the two different representations, we compareéipressivities. Give
and B be two different multiset representation methodsis said to beas expressive
as B if A and B both can represent the same set of multisetds said to bemore
expressiveéhan B if (1) A is as expressive a3, and (2) there exists a set of multisets
in which A can represent them with tighter bounds tanA and B areincomparable
if neither one of them is as expressive as the other.

Note that the occurrence representation gives the sameseaation as the bounds
representation if we only maintain the bounds (i.e., theslomnd upper bounds of the
interval domain) of the variables in the occurrence vector.

Theorem 3.1. The occurrence representation is as expressive as the lsopie-
sentation if the occurrence representation is restricediaintain only bounds on the
number of occurrences of an element in a multiset.

Proof. Suppose we have some bounds representation. We constadamence rep-
resentation containing all the integers between the upploaver bounds in the bound
representation. This represents precisely the same eislas the bounds representa-
tion. O

In general, however, the occurrence representation is mxpeessive than the
bounds representation.

Theorem 3.2. The occurrence representation is more expressive thandheds rep-
resentation.

Proof. By Theorem 3.1, the occurrence representation is as exypgessthe bounds.
To show that the occurrence representation is more expegsse give an example
where the occurrence representation is tighter. Considruléiset variableS with

two values:() or {1, 1}}. This can be represented exactly with the occurrence Jariab
D,, = oce(1,8) = {0,2}. By comparison, a bounds representation would need
glb(S) = 0 andiub(S) = {1, 1}, and this permits the additional val{e }. O

In the rest of this paper, we mainly focus on the occurrengeesentation for multi-
set variables. A multiset variableis represented by a vect@rec(1, S), . . ., occ(n, S)),



denoting the number of occurrences of each elemefit ithe domain ofS is denoted
as the intervaD ,..(;,s) = [occ, (i, 5), occy(i, S)] in which oce, (i, S) andocey (i, S)
refer to the lower and upper bound of the number of occurrepteach element
respectively. We also defing ands, as the multisets whose number of occurrences
of each element is occ, (i, .5) andoce, (i, S) respectively. The multisets. and s,
are in fact the greatest lower boupth(S) and the least upper bouridb(S) of S
respectively (i.e.Ds = [glb(S), ub(S)] = [sr, sp] = [(0ce,(1,5),. .., 0ccr(1,5)),
(ocep(1,8), ..., 0ccp(1,9))].)

A set value can also be represented using the occurrenaesegpiation in which
the number of occurrence is eitheor 1 to denote the existence of the corresponding
element.

3.2 Multiset Bounds Consistency

Gervet [8] proposed using bounds reasoning to maintainisi@mey on set variables
due to the exponential size of set domains. Similarly, wesiaT using bounds con-
sistency (BC) on the occurrence representation of multisgables. We propose a
new definition of local consistency that works with consttsinvolving multiset vari-
ables. Given a constrairit over the variablesXy, ..., X,, andsol(X;) represents
the values forX; which can be extended to the other variables. Thatd&,X;) =
{Dx, | C(Dx,,...Dx,) AVj.glb(X;) C Dx, C lub(X;)}.

A constraintC(Xy, ..., X,,) is BC if and only if for each multiset variable;
in the constraint,sol(X;) # 0, and glb(X;) = (\,,eq0yx,) ™ andlub(X;) =
Unesot(x,) m- This definition of local consistency might look rather expige, being
defined over the set @l solutions. However, this set merely identifi@spportfor
particular values in the set or multiset.

When using BC to filter, we will identify values which occur o solution and
so can be pruned. Thus, we will not be finding all solutionsrhetely identifying
those values that occur in no solution (i.e., lack suppai. define a bound support
to be a satisfying assignmehf of a constraint in which for each multiset/set variable
X, glb(X) € M C lub(X). The following theorem justifies why BC can be called
“bounds consistency”.

Theorem 3.3. If we enforce BC on the occurrence representation of makisd/or set
variables, then for each elementin any multiset/set variabl& , bothoce(m, glb(X)))
andocc(m, lub(X))) have bound supports.

Proof. Suppose that a constraint is BC. Consider any multisetgahle X in the
constraint. We can construct an equivalentoccurrenceseptation. SUPPOS®,,,q.; =
oce(m, lub(X)) andm,;, = oce(m, glb(X)). Then we let the variabl&,,, in the oc-
currence vector have a domdim, i, Mmaz]. ConsiderX,, = Mmq.. From the
definition of BC and the generalized multiset union opetatwre must be a satisfy-
ing solution to the constraint in whicbre(m, X) = my,q.. If there are several, we
choose one non-deterministically. Similarly, there mustlsatisfying solution to the
constraint when we considéf,, = m,.i,. Hence, the result holds. O



Unfortunately, the occurrence representation incredseaumber of variables in
the problem. For example, suppose we have a constrainklike Y whereX andY
are multiset variables. This maps into a large disjunctestraint in the occurrence
representation ovexd integer variables wheréis the maximum possible cardinality of
the two multisets. It is therefore worth developing spezé propagation algorithms
that exploit the semantics of set or multiset constraintehSalgorithms can work on
either a bounds or an occurrence representation.

In the next two subsections, we show how to define such algositoy means of
some simple inference rules. Note that a degenerate vaybtbis last theorem is that
BC on a constraint containing just integer variables is\ejant to bounds consistency
on these variables. Some other properties also follow iniatelgt from this result.

3.3 Multiset Constraints

Most set constraints can be generalized to their multisehtawparts. Table 2 gives
some common multiset constraints, in whi&h Y, andZ are multiset variables and
i is an element. Note that the union multiset constraint tdkesmaximum number

of occurrences of each elementihandY’, while the union-plus multiset constraint
sums up the number of occurrences of each elemekitamdY”.

Equality X =Y iff occ(i, X) = occ(i,Y),Vie X, Y

Subset X CYiff oce(i, X) < oce(i,Y),Vie X,V

Union X UY = Ziff occ(i, Z) = max(oce(i, X), occ(i,Y)),Vie X, Y, Z
Union-Plus X WY = Ziff occ(i, Z) = occ(i, X) + occ(i,Y), Vi€ X, Y, Z
Intersection X NY = Z iff occ(i, Z) = min(occ(i, X),o0cc(i,Y)), Vi€ X,Y,Z

Table 2: Some common multiset constraints.

A multiset expression is, in turn, a ground multiset, a nseltivariable, or an ex-
pression of the formX UY, X WY, or X NY whereX andY are again multiset
expressions. To make constraint propagation easier, wang@ese constraints into a
flattened normal form in which constraints are at most teraad only of the form:
X=Y,XCY,XUY=ZXuWY=2XnY=2Z|X|=N,occ(m,X)=N
whereX, Y, andZ are multiset variables or ground multised§ s an integer variable
or an integer constant. Thirmalizationtakes any nested multiset expression and
replaces it by a new equality constraint. For examfle/J Y') C Z is normalized to
gve XY = X UY andXY C Z whereXY is a new multiset variable. A similar
decomposition of set constraints is used in [8]. In genstath decomposition hinders
constraint propagation.

Following Debruyne and Bessiére, we define the notiostafngerbetween two
local consistencied andB. A is stronger[4] than B (A > B) if in any CSP in which
A holds, thenB holds too.

Theorem 3.4. BC on a set of constraints is stronger than BC on the equivaenof
constraints decomposed into normal form.

Proof. Clearly it is as strong since normalization merely replamas constraint with
a set of logically equivalent constraints. For strictnegs,can consider any type of



multiset or set constraint. For example, for the set noaéxeonstraint, consideY U
(YNZ)# (XUY)N(XUZ)with Dx = Dy = Dz = [0,{0}]. BC determines
that this constraint has no solution. But in the decompasjtvithY Z = Y N Z,
XYZ =XUYZ XY = XUY,XZ=XUZ XYXZ = XYNXZand
XYZ 7& XY XZ, the domain®x = Dy = Dy = Dyy = Dxyyz = Dxy =
Dxz = Dxyxz = [0,{0}] make the decomposed constraints BC. Similar arguments
hold for the other types of constraints. Note that for shésis, we do no need to give
such arguments as it is sufficient to identify just one camstr(in this case, set not-
equals) on which decomposition into the normal form hingeusing. O

Using the simple restriction that there are no repeatedroecces of variables on
the right-hand side of every constraint, decompositiorsdwe hinder constraint prop-
agation.

Theorem 3.5. BC on a set of constraints, none of which contains a repeatedre
rence of variables, is equivalent to BC on the equivalenvsebnstraints decomposed
into normal form.

Proof. (Outline) The proof uses induction on the number of auxiligariables intro-
duced and the structure of the multiset expressions whief téplace, followed by
extensive case analysis. The step cases of this proof redwomsider each possible
ternary constraint on set or multiset variables and dematisg that BC on normali-
sation of such a constraint does not hinder BC reasoningsi@en for example, the
multiset constrainfX U Y C Z and the decompositionXyY = X UY, XY C Z.
Suppose each of the decomposed constraints is BC but theadtugiddecomposed con-
straint is not BC. There are four cases. In the first cgd€ /) is too small and we can
add at least one value to it. This is only possible ifn is in glb(X) or in glb(Y"). But
thenm isin glb(XY') and thus inylb(Z), which is a contradiction. In the second case,
lub(X) is too large and we can delete at least one valifeom it andm is also notin
lub(Y'). Butthenm is notinlub(XY") and thus not idub(Z), which is a contradiction.
In the third caselub(Y") is too large and we can delete at least one valifeom it and

m is also not inub(X). But thenm is not inlub(XY") and thus not idub(Z), which

is a contradiction. In the fourth caskyb(X) andlub(Y') are both too large and we
can delete at least one valuefrom both of them. But them is not inlub(XY") and
thus not inlub(Z), which is a contradiction. This covers all possible ways tmicl
the bounds onX, Y, andZ are pruned. For instanc&b(Z) is never pruned as the
subset constraint only constraigk(Z). The analysis for other constraints is similar.
Consider, for example, the multiset constralitn Y C 7 and the decomposition:
XY =XNY,XY C Z. There are three cases. In the first cgég(7) is too small
and we can add at least one vatueo it. This is only possible ifn is in glb(X) and

in glb(Y). But thenm is in glb(XY") and thus inglb(Z), which is a contradiction. In
the second caséub(X) is too large and we can delete at least one valurom it
wherem is in glb(Y). But thenm is not inlub(XY") and thus not inub(Z), which

is a contradiction. In the third caskb(Y) is too large and we can delete at least one
valuem from it wherem is in glb(X). But thenm is not inlub(XY') and thus not

10



in lub(Z), which is a contradiction. This again covers all possiblgsva which the
bounds onX, Y, andZ are pruned. O

3.4 Enforcing Local Consistency

We now give some simple constraint propagation rules thiirem BC on multiset
constraints in normal form. Following Azevedo [2, 1] and ¥¥a[22], inference rules
will be formally described as rewriting rules as in the faliag schematic figure:
conditions (which can be nil)

changes in constraint store

(trigger condition)

Note thatX, Y, andZ are multiset variables or ground multisets ands an integer
variable or an integer constant. The changes in constrairg svill be in the form
of {old constraints — {new constraints where the original set of constraints (old
constraints) will be replaced by another equivalent seboktraints (new constraints).

Equality Constraint (X =Y)

When X andY are forced to be equal, botki andY contain the same number of
occurrences of every element

{X =Y} = {oce(i, X) = occ(i, Y)} 1)

Subset Constraint (X C Y)

WhenY containsX, the number of occurrences of each elemiénty” is either greater
than or equal to those IX .

{X CY}— {oce(i, X) < oce(i,Y)} ()

Union Constraint (X UY = %)

Union takes the maximum number of occurrences of each elebaweenX and
Y. WhenZ is the union ofX andY’, occ(i, Z) = max(oce(i, X ), occ(i,Y)) for all
elements.

{XUY =2} — {occli, Z) = max(occ(i, X ), occ(i,Y)), 3)
occ(i, X) < oce(i, Z),0cc(i,Y) < oce(i, Z)}
Union-PlusConstraint (X WY = %)

Union-plus sums up all the elements in bdfhandY . WhenZ is the union-plus ofX’
andY’, occ(i, Z) = occ(i, X ) + occe(i,Y') for all elements.

{(XWY =2} — {occ(i, Z) = occ(i, X) + occ(i,Y)

; (4)
occ(i, X) < oce(i, Z),0cc(i,Y) < oce(i, Z)}
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Intersection Constraint (X NY = 2)

Intersection takes the minimum number of occurrences adf e@ment betweeX
andY. WhenZ is the intersection oK andY’, occ(i, Z) = min(oce(i, X), occ(i, Y))
for all elements.

{XNY =27} — {occ(i, Z) = min(oce(i, X ), occ(i,Y)), (5)
oce(i, Z) < oce(i, X), oce(i, Z) < oce(i,Y)}
Cardinality Constraint (| X| = N)

Cardinality of X refers to the total number of elementsin which is the sum of the
number of occurrences of each element

{IX| =N} {3, 0cc(i, X) = N} (6)

Failure Rules

A failure can be detected when the lower boundof X is not included in the upper
boundz,, of X.
not(x, C x,)
{} ~ fail ()

Each rule tightens an upper and/or lower bound on a varidiiie.rules therefore
terminate either with domains at a fixed point or by flaggintufa. The rules can be
applied in any order, though some orders may be quicker ttr@r®(especially when
the constraints cannot be made BC). Similar rules for séabkas are given in [8].

It is easy to see that the application of these rules terméneither with domains
that are at a fixed point or with failure. Indeed, these rudgminate either with the
unique BC domains or, if the problem cannot be made BC, fabath cases indepen-
dent of the order of application of the rules.

(X changed bounds)

Theorem 3.6. If a set of constraints in normal form can be made BC, thesgéntce
rules reach a unique fixed point in which domains are BC. Ifdbestraints cannot
be made BC, the inference rules terminate with failure. Bake at most(enm?)
time wheree is the number of constraints, is the number of variables, and is the
maximum cardinality of the multiset variables.

Proof. Each inference rule tightens the upper and lower bounds afiable or flags
failure. The rules must therefore reach a fixed point or fail.

Suppose that we reach some fixed points applying these ouesdt of constraints
in normal form. The proof uses case analysis on the type ddtcaint. Consider, for
example, a constraint of the fordi = Y U Z (3). We consider each of the multiset
variables in turn and show that their domains are BC. For #hi@ble X, as the infer-
ence rule tightening(’s upper and lower bounds is at a fixed point, it must be the case
thatglb(Y) U glb(Z) C glb(X), lub(X) C lub(Y) U lub(Z), andglb(X) C lub(X).
The assignmenk = gib(X), Y = lub(Y) N glb(X), andZ = lub(Z) N glb(X) will
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satisfy the constraink’ = Y U Z and the conditions thatb(Y) C Y C lub(Y) and
glb(Z) C Z C lub(Z). Similarly, the assignme = [ub(X),Y = lub(Y)Nlub(X),
andZ = lub(Z) N lub(X) will satisfy the constrainX = Y U Z and the conditions
thatglb(Y) C Y C lub(Y) andglb(Z) C Z C lub(Z). Hence,X's domain is BC.
Similar arguments hold for the domainsfand Z, as well as for the other types of
constraints. Hence, if the rules terminate at a fixed pdietyésulting domains are BC.

We now prove that, if the domains in the problem can be madetBules ter-
minate at this fixed point. Consider a problem that can be nBatleand its unique
BC domains. The proof again uses extensive case analysisedye of constraint.
Consider, for instance, the constraXit= Y U Z and the BC domains fak, Y, and
Z. To prove that the rules terminate at this fixed point, we eesthat an inference rule
can still narrow a domain or flag failure. There are five casesesponding to the five
different inference rules associated with this constrdimthe first, the inference rule
narrows the least upper bound¥fby removing one or more values. Suppose one of
these removed valuesis. Let occ(m, X), occ(m,Y), andocc(m, Z) be the number
of occurrences ofn in X, Y, andZ respectively. Asn is pruned by this inference
rule, max(oce(m,Y)) > max(occ(m, X)). The original multiset variables are not
therefore BC (which is a contradiction). Hence, there candealuem removed and
this inference rule is at a fixed point if the domains are B@ifir arguments hold for
the inference rules (1), (2), (3), and (4).

These rules therefore terminate at a fixed point if and ortlyefresulting domains
are BC. As the rules must terminate either at a fixed point ofldnging failure, it
follows that the rules flag failure if and only if the problerarmot be made BC. As
each rule tightens the bounds on a multiset, set, or finiteaglowccurrence variable,
the worst case is when the rules tighten each bound by justiengent at a time. We
may therefore have to apply(nm) rules. To find which rule applies, we may have to
go through each of the constraints in turn. Associated with each type of constsain
a fixed number of rules can be tried. The cost of applying therémce rules is thus at
mostO(enm) multiplied by the cost of applying a single inference rul&isTlast cost
is dominated by thé(m) cost to test (dis)equality or inclusion, and thém) cost to
perform one of the basic operations like union or differendence, the total cost is
O(enm?) in the worst case. O

4 Cardinality Constraints and Reasoning

Similar to sets, we define the cardinality of a multiSetdenoted a$S|, as the total
number of elements it¥. The cardinality|S| can be modeled using the constraint
|S| = >, occ(i, S) for all elements in S. In this section, we discuss the benefits of
incorporating cardinality information to a multiset vadria and propose some refined
inference rules.

4.1 Cardinality Variable

In Section 3, we represent a multiset variafilas an occurrence vectrec(1, S), . . .,
oce(n, S)) in whichoce(i, S) denotes the number of occurrences of elemiémtS. In
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fact, we can have another componertaadinality variableCs [2, 1], to denote the to-
tal number of elements ifi, together with the occurrence vectorc(1, S), . . ., occ(n, S)).
The domain ofCg is an interval bounded by its lower boungd and upper bound,
(i.e., Doy = [cr, ¢p))-

Example 4.1. Suppose: = 2 and consider a multiset variabttwhose components
have the following domainsD .1,y = [0, 2], Docc(2,5) = [0,3] and D¢y = [0, 5].
Then, we have (1}, = 0, as the lower bounds of all the occurrence variables are
0; and (2)s, = {1,1,2,2,2}, as the upper bounds of the occurrence variables of
elementsl and2 are2 and3 respectively. The domain df is in fact the multiset
interval [0, {1, 1, 2,2, 2}}] with cardinality bounded fror to 5. O

Representing and reasoning about the cardinality of a setilfariable is beneficial.
This can increase the expressiveness of models by postirggramts directly on the
cardinality variables, and we can model the domain of a sefltvariable in a more
precise way. For example, instead of posting a reified camstr) ", occ(i, S)| < 5on
the occurrence variables, we can post a constt@ink 5 on the cardinality variable.
The propagation of reified constraints is usually weak introosstraint solvers.

To give a better representation of a multiset variable, weaambine the occur-
rence representation and the cardinality representafioa.occurrence representation
maintains the integer variables denoting the number ofrvenaes for each elementin
the multiset variable, while the cardinality represemtatinaintains the integer variable
denoting the total number of elements in the multiset vdeia¥e shall use the abbre-
viations O and C for the occurrence and cardinality repradiem respectively. Thus,
the combination of the occurrence and cardinality repriag®ms has the abbreviation
O/C representation.

Theorem 4.1. The occurrence/cardinality (O/C) representation is morpressive
than the occurrence representation alone.

Proof. Consider the following sets of the set variaSle {1} and{2}. These can be
represented exactly with an O/C representation (I6..(1,s,) = [0, 1], Docc(2,5,) =
[0,1], Dcg, = [1,1]) but not with the occurrence representation alone as thigdvo
not limit the total number of element$; can take and thus also include the skts
and{1,2}. Similarly, consider the multiset variabl with multisets valueg1, 1},
{1,2},and{2, 2}}. These can be represented exactly with an O/C represantatq
Docer,51) = [0,2], Doce2,s,) = 10,2], Do, = [2,2]) but not with an occurrence
representation alone as this would also include the mtstise{ 1}, {2}, {1,1,2},
{1,2,2}, and{1, 1,2,2}}. Exact cardinality constraints are required if the vaeabl
are represented by the occurrence representation alone. O

4.2 Cardinality Reasoning

When we incorporate cardinality information in multisetiadles, we can relate not
only the number of occurrences of each element, but alsoaftéralities of the mul-

tisets. In the O/C representation, the number of occurieateach element is closely
related to the cardinality of a multiset variable. Thus, us®aeed to reason on the
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cardinality constraints when we enforce BC on multiset t@aists. In the following,
we update the inference rules stated in Section 3.4. Forregehwe will explain the
changes in the constraint store involving cardinality &akés, which are adopted from
Azevedo and Barahona [2, 1]. Note that Y, andZ are multiset variables or ground
multisets.C'x, Cy, andC'; are the cardinality variables of, Y, andZ respectively.
N is an integer variable or an integer constant.

Equality Constraint (X =Y)

When X andY are forced to be equal, their cardinalities are also equal.

{X =Y} {oce(i, X) = oce(i,Y),Cx = Cy} ®)

Subset Constraint (X C Y)

WhenY containsX, Cy is also greater than or equal €ty .

(X C YT = {occi, X) < 0cc(i,Y),Cx < Oy ©)

Union Constraint (X UY = 2)

When Z is the union ofX andY’, Cz is smaller than or equal t6'x + Cy. On the
other hand, the lower bound 6f; can be obtained from the maximum of the following
two cases: (1) SupposecontainsX (i.e., X C Z), Z will have at least'x elements.
We can safely add the elements which appedy ibut not inX (i.e.,y, \ z,) to Z
becauseZ is the multiset union and it takes all elements in bathandY. Thus,
Cz > Cx + |yr \ zp|. (2) Similarly, we can add the elements(in. \ y,) to Z if Z
containsY’. Thus,Cz > Cy + |z, \ ypl-

{XUY =Z}w— {occ(i, Z) = max(occ(i, X ), occ(i,Y)),
occ(i, X) < occ(i, Z),0cc(i,Y) < oce(i, Z), (10)
Cz < Cx +Cy,
Cz > max(Cx + |y, \ @y, Cy + |z \ yp])}

Union-PlusConstraint (X WY = %)

WhenZ is the union-plus ofX andY’, C'z equalsCy + Cy because union-plus sums
up all the elements in botK andY'.

{(XwWwY =27} — {occe(i, Z) = oce(i, X) + oce(i,Y),
oce(i, X) < oce(i, Z), 0cc(i,Y) < oce(i, Z),
Cz =Cx+Cy}

(11)
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Intersection Constraint (X NY = 2)

If Z is the intersection ok andY’, thenCy is smaller than or equal to botfiy and
Cy. The upper bound af'; can be obtained from the minimum of the following two
cases: (1) For the elements existing only:jrbut not iny, (i.e.,z, \ y,), they must not
be part of the intersection. We can safely subtract theseezits fromC'x, resulting
Cz > Cx — |z \ yp|- (2) Similarly, we can subtract the elements that exigf.ifout
notinz, (i.e.,y, \ z,) from Cy, resultingCz > Cy — |y, \ xp]|.

{XNY =2} — {occ(i, Z) = min(occ(i, X ), occ(i,Y)),
oce(i, Z) < oce(i, X), oce(i, Z) < oce(i,Y), (12)
Cy < min(Cx,Cy),
Cz > min(Cx — [, \ yp|, Cy — [yr \ zp[)}

Cardinality Constraint (Cx = N)
When the cardinality oX equalsV, the cardinality variabl€'x also equalsV.

IX[=N] = {Cx =] (13)

Failure Rules

A failure can be detected (1) when the lower boundis not included in the upper
boundz,, or (2) when the domain of the cardinality variatile:, becomes empty.

not@r, C x,) Doy =10

(X changed bounds) 0 - fai {1 — fail

(14)

Similar to the inference rules stated in Section 3.4, eacth®fabove rules also
tightens an upper and/or lower bound on a variable. Thusrules can terminate
either with domains at a fixed point or by flagging failure ipdadent of the order of
applying the rules.

Besides giving a more expressive representation of multeséables and multiset
constraints, cardinality reasoning can also increase ithieiqpy affected by a bounds
consistency propagator. Following Debruyne and Bessigesdefine the notion of
strongerbetween two local consistencidsand B. A is stronger[4] than B (A > B)
if in any CSP in which4 holds, thenB holds too.

Theorem 4.2. BC on a constraint containing multiset variables using toelwarence/
cardinality (O/C) representation is strictly stronger thdC on that using the occur-
rence representation alone.

Proof. Clearly both are at least as strong. To show strictnessjden® N Y = (),
0 C X,Y C {1,2,2}, |X| = |Y| = 2. Enforcing BC on the intersection constraint
in which X andY are using the O/C representation demonstrates that théeprad
unsatisfiable. BC on that using the occurrence representalibne, on the other hand,
does not detect this. O
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Example4.2. Suppose we have three multiset variatfigsS,, andSs, whereDg, =
0,41,1,2}], Ds, = [{1},{1,1,2}],andDgs, = [{1}, {1,1,2}]. Each set variable
is associated with an integer variable denoting their caldy: Doy, = Dis,| =
[0,3], Dcg, = Dys,| = [1,3], andD¢g, = D)s,| = [2,2]. In this problem, there is a
union constraint relating the three set variablgs= S, U S3.

After enforcing set bounds consistency, the elemeig added toglb(S) of Sy
because botly; and.S; must contain element The bounds of the cardinality ¢f; is
changed fronj0, 3] to [1, 3]. However, it is known thas; has exactly two elements. It
should be inferred that the cardinality 8f can never lower than two elements. Thus,
we can further update the bounds of the cardinalitygpfo [2, 3]. O

Example 4.2 shows how cardinality reasoning can furthascedhe domain of the
cardinality of a multiset variable. Such process can helinorove the efficiency of
problem solving as the search space is reduced. Sometirfeahjra can be detected
at an earlier state than simply using bounds reasoning. enwee have to be careful
that cardinality reasoning introduces additional comityexin particular, enforcing
bounds consistency can go from being polynomial to beindhislfek

Theorem 4.3. Given a set or multiset variabl& represented by bounds, there exists
a unary constraintC'(S) such that enforcing BC 06'(.S) is polynomial but enforcing
BC onC(S) A |S| = cis NP-hard where: is a constant.

Proof. For a set variabl&, we suppose the set contains elements which represent ei-
ther clauses or literals in these clauses. For instance,ight imaveS contain numbers
and have an encoding scheme to represent each possible olditeral by an unique
number. Given any such, we can compute:, the number of clauses it andn, the
number of variables that appear positively or negativelglauses ins.

We defineC'(S) to be satisfied iffS| # n+m or (|S| = n+m, S contains literals
which satisfy all the clauses it but does not contain two contradictory literals). Note
that C' is polynomial to check. Enforcing BC o@'(S) is also polynomial. There
are three cases. In the first caggb(S)| = |lub(S)| = n + m. Enforcing BC simply
needs to check if the literals i satisfy the clauses ifi. In the second casgib(S)| =
n 4+ m — 1 and|lub(S)| = n + m. Enforcing BC again simply requires us to check if
the literals inlub(S) satisfy the clauses ihub(S). If so, S is already BC. Otherwise,
we reducéub(.S) to equalglb(S) and the bounds now have support. In the third case,
which covers all other situations,is already BC.

With an additional cardinality boundlS| = ¢, we show that enforcing BC is NP-
hard by a reduction from 3-SAT. We set theb(S) to be the clauses of the 3-SAT
problem that we wish to decide, apth(.S) to belub(S) plus every possible literal in
the 3-SAT clauses. We also set n + m. Then finding a bound support is equivalent
to deciding if the 3-SAT problem is satisfiable.

For a multiset variable, we repeat the construction 6f as above but treat any
multiset as the set of distinct elements it contains. O
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5 Variety Constraints and Reasoning

The cardinality|S| of a multiset variables reveals only the total number of elements,
but not the number distinctelements, which we define aarietyand is denoted by
IIS]l. Note that||S|| < |S]. In fact, S degenerates to a set whes| = ||.S]| (i.e.,
the number of occurrences of all elements equals one). Wencalel the varietys
using the constraint8s = ). (occ(i,.S) > 0) for each distinct elemeritin S. The
propagation of such reified constraint is usually weak intnoastraint solvers.

In this section, we discuss the benefits of incorporatingetainformation to a
multiset variable. Then, we formally define a multiset vlaléawith the additional vari-
ety information. Subsequently, we propose some inferaries which further improve
over those incorporated with cardinality information. WWeoedemonstrate how variety
can help increase propagation for multiset constraintsgugriety reasoning.

5.1 Variety Variable

On top of the occurrence vector [22] and the cardinalityalale [2, 1], we further
incorporate the variety information by adding the third gament, avariety variable

Vs to model the number dlistinctelements inS (denoted|.S||). Similar toCg, the
domain ofVs is also denoted as the interval bounded by its lower bayrahd upper
boundv, (i.e., Dy, = [v,,v,]). In the rest of the paper, we shall use the abbrevia-
tions V for the variety representation, which maintainsraeger variable representing
the number of elements of the multiset when viewed as a se&t.c@imbination of the
occurrence, cardinality, and variety representationglimasbbreviation O/C/V repre-
sentation. The O/C/V representation is also calledytzid representation

Example 5.1. Supposer = 4 and consider a multiset variabttwhose components
have the following domainsb,..(1,s) = [0,1], Docc2,5) = [0,2], Doce(s,s) = [0, 3],
Doees,8y = [0,1], Dog = [0,7], andDy, = [0,4]. Then, we have (13, = 0, as the
lower bounds of all the occurrence variables are 0; andf2) {1,2,2,3,3,3,4},as
the upper bounds of the occurrence variables of elenieis3, and4 arel, 2, 3, and

1 respectively. The domain & is in fact the multiset intervdl, {1,2,2,3,3,3,4}]
with Cs bounded fron® to 7, andVs bounded fron? to 4. O

Similar to the cardinality variable, introducing a varietgriable to the represen-
tation allows us to model the domain of a multiset variabl@imore precise way
(although still inexact). Considéf in the previous example and suppose we are inter-
ested in only the domain values whose varietieslaiithout the variety variabl&’g,
we can only seD¢, to [1, 3]. This domain accepts, for example, the multi§et2},
which obviously should not be included. However, with, we can simply seDy, =
[1,1] to further remove the multisets which contain more than dnd kf elements.
This essentially model®s = {{1}, {2}, {2,2}, {3}, {3.3}. {3.3,3}, {4}}}. a
much more precise representation.

Another advantage of introducing variety variables is thatcan increase the ex-
pressiveness of models by posting constraints directhhemt For example, in the
template design problem, we may want to restrict a temfldtehave at most three dis-
tinct designs in its slots. Using our representation, postivariety constraintZ’|| < 3
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simply means to propagate the simple unary constigint 3. Without Vi, we need
to post a number of reified-constraints to model the requergmwhich may hinder
propagation. The advantage becomes more obvious whenrtheofahe variety con-
straints is more complicated, e.§7} || + || 72| < 4.

Example 5.2. Consider two multiset variabless; and S; where Dg, =
[{{1H'a {17 2,3, 3}] (ie., Docc(l,Sl) = []-a 1]! Docc(Q,Sl) = [Oa 1]! Docc(3,Sl) = [Oa 2])!
Dcg, = [3,3], Dvs, = [1,3],andDs, = [{1}, {1,4,5,5}] (i.e., Doce(1,5,) = [1,1],
Docc(4752) = [0,1], Docc(5,S2) = [0,2]), DC32 = [3,3], DV32 = [1,3]. Suppose we
now post a constraint in which the variety of the union-plispand.S; is not greater
than3 (i.e., ||S1 W S3|| < 3). Reasoning on this constraint reveals tiaand.S; can-
not contain element® and4 respectively, because the cardinalities of b&thand S,
must be3 and their union-plus can contain at most three differennelgs. S; and
Sy shouldthen be bound td1, 3,3} and {1, 5, 5} respectively. However, using the
reified—constraingle(occ(z‘, S1) + oce(i, S2) > 0) < 3, the domains of; and S,
remain unchanged. O

Theorem 5.1. The occurrence/cardinality/variety (O/C/V) represergatis more ex-
pressive than the occurrence/cardinality (O/C) repreadnoh. Similarly, the occur-
rence/variety (O/V) representation is more expressiva tha occurrence representa-
tion.

Proof. Consider the following sets{1}, {2}. These can be represented exactly with
an O/V representation but not with the occurrence reprasientas this would also
include the set$ and {1,2}. Similarly, consider the multiset§1, 1,2}, {1,1,3}},
{1,2,2}, {1,3,3}, {2,2,3}, and{2, 3,3} in which the elements, 2, and3 can
appear at most twice. These can be represented exactly mifH@/V representation
but not with an O/C representation as this would also inclirgemultiset{{1, 2, 3}.

O

By exploiting the relationships between the three comptmeha multiset vari-
able, we propose a number of inference rules to strengthmwapgation. In the next
subsection, we shall systematically enumerate the pessldtionships.

5.2 Inferenceswithin One Multiset Variable

Upon creation of a multiset variable, the vector of occurrence variables
(oce(1,.5), ... occ(n, S)), the cardinality variabl€'s, and the variety variabl&s will
also be created. A number of inference rules are subsegurathtained. Inferences
occur between any two kinds of variables (i.e., betweet{i, S) and Cs, between
oce(i, S) andVg, or betweerC's andVg), or among all three of them.

5.2.1 Inferencesbetween occ(i, S) and Cs

The cardinalityC's must always remain inside the limits given by the multisairis
sr ands, [2, 1]. (Recall thak, ands, can be computed using the occurrence variables.)

(S changed bounds) T (15)

{Cs = |sr|,Cs <|[sp[}
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The cardinalityC's is the sum of the number of occurrences of all elements in a
multiset variable. Thus, the number of occurrences of e&hent is updated when
there are changes in the lower boundand the upper bound, of the cardinality
variable. Here, we only concern with the elements that hateg/et been included in
the lower bound (i.es,, \ s, which is defined ascc(i, sp, \ 5,) = max{0, occ(i, sp) —
occ(i, sy)} for all elements).

<)
(Cs changed bounds) e R S & T T occ(t. K) < ¢ — [}

whereK = s, \ s;.
(16)

Example 5.3. Consider a multiset variablg whereDgs = [{1,1}, {1,1,1,2,2,3}]
(i-e-!Docc(l,S) - [2a 3]! Docc(Q,S) - [Oa 2]! Docc(3,S) - [07 1])! Dy, = [1a 3]' andcp is
updated fron® to 3 (i.e., D¢y = [2, 3]). SinceS can now have at most three elements
of at most two different kinds, and there are already two 1g#4S), only one more
element {, 2, or 3) may exist inS. Based on the inference rul& = s, \ s, =
£1,1,1,2,2,33\ 1,1} = {1,2,2,3} andocc(i, K) < B —|s,] =3 -2 =1
fori = 1,2,3. Thus, one of thes is removed, resultind,..2,sy = [0,1] and
Ds = [{1,1},{1,1,1,2,3}]. O

5.2.2 Inferencesbetween occ(i, S) and Vs

The varietyVs must always remain inside the limits given by the multisetis. This
is generalized from the inferences betweea(i, S) andCys [2, 1].

17)

S changed bounds
(5 chang o s 151 Vs <50

The occurrence of each element:(i, S) will be updated only whei¥s is bound
and equals eitheffs, || or ||s,||. When the variety/s is fixed and equalgs, ||, any
element thatis notins, (i.e.,occ, (i, S) = 0) has to be removed (i.exc(i, S) = 0 for
thosei). On the other hand, ifs = ||s,|, then each element i, (i.e.,occ, (i, S) > 0)
must occur at least once Bi(i.e., occ(i, S) > 0 for thosei).

Vs = |Isrll,0ccr (i, 8)) =0 Vs = [|spll, 0ccp(i, 5)) >0
{} — {occ(i, S) = 0} {} — {occ(i, S) > 0}

(Vs is bound)
(18)

Example 5.4. Consider a multiset variablé whereDs = [{1,1}, {1,1,2,2,3}]
(i-e-!Docc(l,S) = [2,2], Docc(Q,S) = [0,2], Docc(S,S) =[0,1]), D¢ = [2,5], andVs
is bound tol. SinceVs = ||s,|| (i.e.,1 = ||{1,1}|) and the element&and3 are not
yetin s,., they will not exist inS, resultingoce(2, S) = oce(3,.5) = 0.

Consider the same multiset varialSidut Vs is now bound t@3. SinceVs = ||s,||
(.e.,,3 = |I{1,1,2,2,3}]) and the element8 and 3 are not yet ins,., at least one
occurrence oR and3 has to be added to their lower bound, resulting, (2, S) =
ocer(3,5) = 1. Here,oce, (1, .5) remains unchanged because the eleméstlready
in its lower bound. U
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5.2.3 Inferencesbetween Cs and Vg

The variety of a multiset must always be smaller than or etquigd cardinality at both
limits because cardinality counts repeated elements bigtyaloes not.

(Cs changed upper bound) 0= (29)

{Vs < C;v}

Vs changed lower bound 20

{CS Z vr}

5.24 Inferencesamong occ(i, S), Cs, and Vg

When any two of occurrencesgc(i, S), cardinalityCs, and varietyVs change their
bounds, the remaining one has to be updated as well. Thisdindferences leads
to stronger constraint propagation than those betweendineipe ones (i.e., between
oce(i, S) andCyg, betweervec(i, S) andVg, and betweel@'s andVs).

When the occurrencesc(i, .S) and the variety/s change their bounds, the cardi-
nality Cs will be adjusted accordingly to fulfill the requirements &g based on the
elements existing in, \ s,.

S or Vs changed bounds)
(S orVs chang T (Cs = [so + (@ — 5.1, Cs <[] + a}

wherea = max(|b] : b C (sp \ s7) A bW s, || = vp).
(21)

Example 5.5. Consider a multiset variabl§ which updates its bounds tBg =

[{{L 1}}7 {{L 1,1,2,2, 3}] (ie., Docc(l,S) - [27 3]! Docc(Q,S) - [Oa 2]! Docc(S,S) =
[0,1]), Dcy = [2,6], and Dy, = [2,3]. SinceS must contain at least two different
kinds of elements, besides eleméngither elemert or 3 has to be included if. This
leads to an increase i although the exact addition has not yet taken place. Based on
the inference rule’s > |s,| 4+ (o —||sr]|) =2+ 2 — 1 = 3. Thus,D¢, is updated to
(3,6]. O

To find a, the subses, \ s,, which fulfills the condition||b W s,.|| = 8, is first
extracted. The possible elements are then ordered. Thauspthplexity is bounded by
the sorting procedur@(n log n), wheren is the number of distinct elements th

Similarly, when the occurrences:(i,S) and the cardinalityC's change their
bounds, the variety’s will be adjusted accordingly to fulfill the requirements 63
based on the elements existingsin\ s,.

(S or Cs changed bounds)

= {Vs > a,Vs <|ls/| + ¢}
wherea = min(||s, Wb|| : b C (sp \ s7) A bW s,| = ¢;), and
¢ =max(|[d]| : d C (sp \ sr) AldW 50| > [|s,[| A ld W s, | = ¢p).

(22)

The values ofu and ¢ can be obtained using the same way as finding the
previous inference rule, but with different conditions. ushthe complexity for this
inference rule as a whole is also bounded by the sorting proe® (n log n), where
n is the number of distinct elements.$h
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Example 5.6. Consider a multiset variablg whereDgs = [{1,1}, {1,1,1,2,2,3}]
(i.e., 0cc(1,S) = [2,3], oce(2,S) = [0,2], occ(3,S) = [0,1]), Dy = [4,6], and
Dy, = [1,3]. Here,S must contain at least four elements (i.€.,= 4). With the
currentv,., S can only have at most thrdes and one more element is needed to reach
¢. Other elements, which lead to a minimal change.irare selected from their upper
bounds. Based on the inference rilegfers to a subset of{ \ s,.) whereD; \,) =
[0,{1,2,2,3}] and the cardinality ob & s, equalsc, (i.e., 4). Thus,v, equals the
minimum variety of the union of, and a possiblé (i.e., || {1, 1} U {1,2}|| = 2). Vs

is updated td2, 3]. O

When the cardinality’s is fixed and equals eithes,.| or |s,|, S can be set to the
corresponding bound (i.e., all occurrenees(i, S) can be fixed) and’s can also be
bound accordingly.

CS — |57| CS = |Sp|

(Cs I8 bound) oy e Vs = Tsr ). (o (8 =5y Vo = [

When both the cardinalit¢’s and the varietys are bound to the same valug
S degenerates to a set. Thus, the occurrence of each elenaéntS) will be at most
one.

(Cs andVy are bound and equal) Cs=Vs=a

Y05 {occli, 5) < 13 (24)

Failure

A failure can be detected when any one of the conditions & tL) the lower bound
s, is not included in the upper boung; or (2) the domain of the cardinality variable
D¢, becomes empty; or (3) the domain of the variety varidble becomes empty.

not(s, C s,) De, =10 Dy, =0

(S, Cs, or Vs changed bounds) o i Ot [} fai

(25)

5.2.5 Discussions

The inference rules described here are incomplete in theesbiat they do not prune
all possible values from the occurrence, cardinality, oetg variables.

Consider the cardinality constraiatrd({occ(1, S), . . . occ(m, S)), Css) which en-
sures that’'s is the cardinality of the multise§ represented by the occurrence vector
(oce(1,8), ..., 0cc(m, S)) (thatis,Cs = Y i" | occ(i, S)). Enforcing BC on such a
constraint is polynomial since enforcing BC on such a sunoigromial. However,
enforcing GAC on such a constraint is NP-hard.

Theorem 5.2. Enforcing GAC orcard({occ(1,S),. .., occ(m, S)), Cs) is NP-hard.

Proof. We reduce subset sum to finding a support faerrd({(occ(1,5),...,
oce(m, S)),Cs). Suppose we wish to find a subset 8f = {a;|]1 < ¢ < m}
with sums. Let occ(i,S) = {0,a;} andCs = s. There exists a support for
card({occ(1,5),...,o0cc(m, S)), Cg) iff there exists a subset ¢f with sums. O
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On the other hand, consider the variety constraimtjety({occ(1, S), ...,
oce(m, S)), V) which ensures thdts is the variety of the multise$ represented by
the occurrence vectdoce(1, S), ..., occ(m, S)) (thatis, Vg = > (oce(i, S) >
0)). Enforcing GAC on such a constraint is polynomial. Thus, see that variety
reasoning can be easy but cardinality reasoning is hard.

Theorem 5.3. Enforcing GAC orvariety({occ(1,S), ..., occ(m,S)), Vg) is polyno-
mial.

Proof. We prove that GAC omwariety({occ(1,S),...,occ(m,S)), Vs) is equivalent
to BC on the decomposition int@cc(i, S) > 0) <> B;, andVsg = »." | B;. The
constraint graph of this decomposition is acyclic. HenceGG#n the variety con-
straint is equivalent to GAC on the decomposition. GAC(otr(i, S) > 0) <> B;
is equivalent to BC orfocc(i, S) > 0) < B; as this constraint only prunes at the
lower bound ofocc(i, S). Finally, we prove GAC or/s = Y " | B; is equivalent to
BConVs = > 7" B;. Clearly if Vs = > | B; is GAC then it must be BC. For
the reverse, suppodé; = > " B, is BC. Consider any value in the domain of
Vs between its upper and lower bounds. We can construct a stipp@ssigningl
to thelb(Vs) variables withdom(B;) = {1} as well as to thes — [b(Vs) variables
with dom(B;) = {0, 1}, and assigning@ to the othern — s variables. Thus, every
value between upper and lower bounds/gfhas support. Hence, ifs = > | B;
is BC then it is GAC. Note that BC is polynomial to enforce orleaonstraint in the
decomposition. O

In fact, we can combine the cardinality and variety constsato form an intra-
variable constraintntra({occ(1, S),...,occ(m, S)), Cs, Vs) which ensures thaf's
andVs are the cardinality and variety of the multisetrepresented by the occurrence
vector{occ(1,5),. .., occ(m, S)) respectively. Enforcing GAC on such a constraint is
thus at least NP-hard.

Theorem 5.4. Enforcing GAC onintra({occ(1,S),...,occ(m,S)),Cs, Vs) is NP-
hard.

Proof. The intra-variable constrainttra({occ(1, S), ..., occ(m, S)), Cs, Vs) can be
decomposed to the cardinality constraiatd((occ(1,5),...,occ(m,S)),Cs) and
the variety constraintariety({occ(1,5),...,occ(m, S)),Vs). Thus, by Theorems
5.2 and 5.3, enforcing GAC oimtra({(occ(1,S5),...,occ(m,S)),Cs, Vs) is at least
NP-hard. O

Our primary aim is not for completeness, but for inferendegsthat are efficiently
implementable. Nonetheless, the inference rules as a wahailetain more than BC.

Theorem 5.5. The inference rules (1) betweerr(i, S) andCy, (2) betweemcc(i, S)
and Vg, (3) betweerC's and Vs, (4) amongcc(i, S), Cs, andVg, and (5) for failure
collectively enforce a consistency level strictly strantpan BC on the O/C/V repre-
sentation.

Proof. Obviously, the inference rules (14)—(24) collectivelyanck a consistency level
at least as strong as BC. For strictness, Example 5.5 anch8d Section 5.2.4 show
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that given a domain which is already multiset bounds comsisthe inference rules
can further tighten the bounds 6% or Vs. Hence the result holds. O

5.3 Cardinality-Variety Reasoning

The previous subsection describes the inferences wittémauitiset variable. Besides
giving a more expressive representation, variety reagarén also increase the pruning
achieved by a bound consistency propagator.

Theorem 5.6. BC on a constraint containing multiset variables using tHE€A rep-
resentation is strictly stronger than BC on that using th€ @presentation. Similarly,
BC on a constraint containing multiset variables using th¥ @presentation is strictly
stronger than BC on that using the occurrence representatio

Proof. Clearly both are at least as strong. To show strictnessjden¥ N'Y = (),

0 C X, Y C {1,1,2,2,3,3}, | X| = |Y| = 2, | X]| = ||Y]|| = 2. Enforcing BC

on the intersection constraint in whicti andY are using the O/C/V representation
demonstrates that the problem is unsatisfiable. BC on tivag tlee O/C representation,

on the other hand, does not detect this. Similarly, enfgr&& on the intersection
constraint in whichX andY are using the O/V representation demonstrates that the
problem is unsatisfiable, but BC on that using the occurreepeesentation does not
detect this. O

In this subsection, we focus on propagation that occurssaaddferent multiset
variables. We give some constraint propagation rules thfaree bounds consistency
on some common multiset constraints. Performing infereioceboth cardinality and
variety variables are known asrdinality-variety reasoningwhich is a combination
of cardinality reasoning and variety reasoning. For eachiigeti constraint, we use an
example to show how the propagation rules are useful in @#sing constraint propa-
gation. In the rules, the changes in the constraint stor@ving variety variables are
more generalized than those involving cardinality vaesblwhich are adopted from
Azevedo and Barahona [2, 1]. We will only explain the updditesh the rules stated
in Section 4.2. Again, the rules can terminate either witmdims at a fixed point or
by flagging failure independent of the order of applying them

5.3.1 Equality Constraint (X =Y)

If X andY are forced to be equal, then their varieties are equal.

(X =V] 5 {00c(, X) = occi, 7). Cx = Cy Vi = T4 7 (26)
Example 5.7. Consider an equality constraiasf = Y, wheren = 3, D,.(1,x) =

[Oa 2]' DOCC(27X) = [07 2]’ Docc(3,X) = [Oa 2]' DCX = [4a 4]' DVX = [2a 2]! Docc(l,Y? =

[0, 2], Docc(Q,Y) = [0,2], Docc(B,Y) = [0,2], DCY = [4,4], andDVY = [3,3] With-

out the variety variableBy andVy (and thus without variety reasoning), there are no
prunings available. However, with variety reasoning, thebpem fails immediately
because wheX = Y (i.e., occ(i, X) = occ(i,Y) for all elements)), Vx = Vy is
obviously violated. O
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5.3.2 Subset Congtraint (X C Y)
If Y containsX, thenVy is greater than or equal #dx.

{X CY}+— {oce(i, X) < oce(i,Y),Cx < Cy,Vx < Vy} @7
Example 5.8. Consider a subset constraink C Y, where Dx =
0,{1,1,2,2,3,3,3}] with cardinality 5 and variety 3 (i.e.Doec1,x) = [0,2],
Docc(Q,X) = [072]1 Docc(3,X) = [073])1 DCX = [575]1 DVX = [3;3]1 and
Dy =[0,{1,1,2,2,3,3,3}] with cardinality 5 and variety 2 (i.e),..1,y) = [0, 2],
Doce2,yy = [0,2], Doces,yy = [0,3]), Doy = [5,5], Dy, = [2,2]. With variety rea-
soning, the problem fails immediately becadise can never be smaller than or equal
to Vy (i.e.,3 £ 2). Again, without variety reasoning, there are no availgdsleings.
]

5.3.3 Union Congtraint (X UY = 7)

WhenZ is the union ofX andY’, V is smaller than or equal tBx + V3. Similarly,
the lower bound 0¥/, can be obtained from the maximum of the following two cases:
D)Vz =2 Vx +[lyr \ 3| and (V2 = Vi + [z \ yp |-

{XUY =2} {occ(i, Z) = max(occ(i, X ), occ(i,Y)),
oce(i, X) < oce(i, Z), occ(,Y) < occ(i, Z),
Cz <Cx +Cy,Vz < Vx + Vy,
Cz 2 max(Cx + [y, \ zp|, Cy + [z \ yp),
Vz = max(Vx + [lyr \ zpl, Vv + [lz \ wpl1)}

Example 5.9. Consider a union constraink U Y = Z, where Dx =
[(Z)’ {{17 1,2,2,3, 3}}] (i'e'v Docc(l,X) = [0’ 2]1 Docc(Q,X) = [07 2]1 DOCC(S,X) = [Oa 2])1
Dcy = [1,2], Dy, = [1,1], Dy = [0,{1,1,2,2,3,3}] (i.e., Docc1,y) = [0,2],
Docc(Q,Y) = [0,2], Docc(3,Y) = [0,2]), Dey, = [1,2], Dy, = [1,1], andDz =
[{{15 2, 3}}5 {{17 1,2,2,3, 3}] (ie., Docc(l,Z) = [17 2]1 Docc(2,Z) = [L 2]1 Docc(B,Z) =
[1,2]), D¢, = [3,6], Dy, = [3,3]. With variety reasoning, the problem fails immedi-
ately becaus&; can never be smaller than or equal to the suiipfandVy . Without
reasoning on the three variety variables, the problem wiifail even wherg £ 1+ 1.

O

(28)

5.34 Union-PlusConstraint (X WY = Z)

WhenZ is the union-plus o andY’, V; is smaller than or equal fgx + V3 because
X andY can contain the same kind of elements (illgX,|| + ||Y|| # || X wY). For
the lower bound of/z, it can be obtained in the same way as in the union constraint.

{(XwWwY =27} — {occ(i, Z) = oce(i, X) + occ(i,Y),
oce(i, X) < oce(i, Z), occ(i,Y) < oce(i, Z), (29)
Cz=Cx +Cy,Vz <Vx +Vy,
Vz 2 max(Vx + [[yr \ @pll, Vv + [lor \ yp[)}
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Example 5.10. Consider a union-plus constraitk W Y = Z, where Dx =
[(Z)a {{17 1,2,2,3, 3}}] (ie., Docc(l,X) = [Oa 2]1 Docc(Q,X) = [07 2]1 Docc(S,X) = [0; 2
Dcy = [1,2], Dy, = [1,1], Dy = [0,{1,1,2,2,3,3}] (i.e., Docc1,y) = [0,
Docc(Q,Y) = [0,2], Docc(3,Y) = [0,2]), Dey, = [1,2], Dy, = [1,1], andDz =
[{{L 2, 3}; {17 1,2,2,3, 3}] (ie., Docc(l,Z) = [17 2]! Docc(Q,Z) = []-a 2]! Docc(3,Z) =
[1,2]), D¢, = [3.6], Dy, = [3,3]. Variety reasoning fails the problem immediately
becauséd’, can never be smaller than or equal to the sun¥gfand V3. Without
reasoning on the three variety variables, the problem wiifail even wherg £ 1+ 1.

O

DO

5.3.5 Intersection Constraint (X NY = 2)

If Z is the intersection o andY’, thenV; is smaller than or equal to botiy and
Vy. The upper bound of; can be obtained from the minimum of the following two
cases: (17 > Vx — ||z \ ypll @and (2)Vz > V3 — ||yr \ zp]l.

{XNY =2} {occ(i, Z) = min(occ(i, X ), occ(i,Y)),
oce(i, Z) < oce(i, X)), oce(i, Z) < oce(i,Y),
Cy < min(CX, Cy), V, < min(VX, Vy),
Cz 2 min(Cx — [z, \ yp|, Cy = |y \ zp)),
Vz 2 min(Vx — [z \ ypll, Vi = [lyr \ 2p[)}

(30)

Example 5.11. Consider an intersection constrailt N Y = Z, where Dx =
[ma {17 1,2,2,3,3, 3}}] (ie., Docc(l,X) = [07 2]! Docc(Q,X) = [Oa 2]! Docc(S,X) =
0,3]), Doy = [1,3], Dv, = [1,1], Dy = [@, {1,1,2,2,3,3,3}] (i.e, Docc(l,X) =
[Oa 2]! Docc(Q,X) = [Oa 2]! Docc(3,X) = [0; 3])1 DCY = [1; 3]1 DVy = [17 1]1 andDz =
[(Z)a {{172537353}}] (i.e., Docc(l,X) = [07 1]1 Docc(Q,X) = [07 1]1 Docc(S,X) = [0,3]),
D¢, = [2,4], Dy, = [2,2]. With variety reasoning, the problem fails immediately
becauséd’; can never be smaller than or equal to bbth andVy-. The problem will
not fail without variety reasoning even wher¥ 1. O

5.3.6 FailureRules

Each of the above rules tightens an upper and/or lower bonradvariable. Thus, the
rules can terminate by flagging failure on any variables uadg one of the conditions
stated in Section 5.2.4.

5.3.7 Discussions

Cardinality reasoning introduces additional compleXityparticular, enforcing bounds
consistency can go from being polynomial to being NP-hatdollows that variety
reasoning on a single multiset variable can also introducktianal complexity. As
with a set variable, adding variety reasoning can make eimfgbounds consistency
on a unary constraint go from being polynomial to being NRiha
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Theorem 5.7. Given a multiset variablé represented by bounds, there exists a unary
constraintC'(S) such that enforcing BC o6'(S) is polynomial but enforcing BC on
C(S) A ||S|| = d is NP-hard wherel is a constant.

Proof. Similar to Theorem 4.3, the result holds. O

5.3.8 Decomposition of Multiset Constraints

In Section 3.3, we discuss decomposing multiset conssraimo a flattened normal
form in which constraints are at most ternary and only of trexf When the constraint
is complicated and contains a lot of variables, the solvey mat be able to handle
them. We can simplify the constraint by decomposing it irdonmal form.

In general, decomposition into such a normal form hindenstaint propagation,
whether we use just the occurrence representation or wenase/C/V representation
(Theorem 3.4). Under the simple restriction that there arespeated occurrences of
variables and we are using an occurrence representatidgheonultisets, we proved
that decomposition does not hinder BC propagation (The®&n However, with
cardinality and variety reasoning, decomposition of carphultiset constraints does
hinder propagation even when variables are not repeated.

Theorem 5.8. With cardinality reasoning, BC on a unary constraint on agénset
variable can be strictly stronger than BC on the decompasitnto normal form.

Proof. Consider the unary constraints: C {1,2,3},|X| = 2, (XU{3}) # {1, 2, 3}.
With cardinality information, enforcing BC on these unaonstraints will se{3} C
X. Consider the decomposition int& C {1,2,3}, |X|=2,Y = (X U{3}),1 <
Y| <3,Y # {1,2,3}. Enforcing BC on these unary constraints will $8% C Y C
{1, 2, 3}. However, enforcing BC on the decomposition will not &} C X. O

It follows therefore that, with variety reasoning, BC osiagle multiset variable
can be strictly stronger than BC on the decomposition intortbrmal form.

Theorem 5.9. With variety reasoning, BC on a unary constraint on a singldtiset
variable can be strictly stronger than BC on the decompassitnto normal form.

Proof. Consider the unary constraint& C {{1,1,2,2,3}, || X|| = 3, X & {3} #
{1,1,2,2,3}. With variety information, enforcing BC on these unary doaisits will
set{3} C X. Consider the decomposition int& C {1,1,2,2,3}, || X|| =3,Y =
(Xw{3}),1 < ||Y| <3,Y # {1,1,2,2,3}. Enforcing BC on these unary constraints
will set {3} CY C {1,1,2,2,3}. However, enforcing BC on the decomposition will
notset{3} C X. O

Since cardinality-variety reasoning is a combination aflgzality reasoning and
variety reasoning, decomposition of complex multiset t@iists also hinders propa-
gation.

Theorem 5.10. With cardinality-variety reasoning, BC on a unary constiaon a
single multiset variable can be strictly stronger than BCthe decomposition into
normal form.

Proof. By Theorems 5.8 and 5.9, the result follows. O

27



6 Experimental Results

To verify the feasibility and efficiency of our proposal, waplemented our multi-
set variable representation, the inference rules, and thiéset constraints in ILOG
Solver 6.0 [11]. We use four benchmarks, which are introdundater Sections, for
the experiments. The experiments are run on a Sun Blade 250A.(6GHz US-IIli)
workstation with 2GB memory. We report the number of faile.(ithe number of
backtracks occurred in solving a model) and CPU time in sgsda find and prove
the optimal solution for each instance. Comparisons areemaatbng bounds consis-
tency on the occurrence representation (BC) [22], boundsistency with cardinality
reasoning (BC+CR) [2, 1], and bounds consistency with catdy-variety reasoning
(BC+CR+VR) [15]. We use the reified constraifit = >, (occ(i, S)) mentioned
in Section 4 to model the cardinality variables in BC, and tisereified constraint
Vs = >,(occ(i, ) > 0) mentioned in Section 5 to model the variety variables in
both BC and BC+CR. The reified-constraints are enforced bybthlt-in propagation
algorithms in ILOG Solver instead of the inference rulesthiatables, the best number
of fails and CPU time among the results for each instanceigtdighted in bold. A
cell labeled with “-” denotes a timeout after 30 minutes.

6.1 Template Design Problem

In the template design problef\(¢, s, d, ¢) (prob002 in CSPLib), we are givehde-
signs tot printing templates subject to some constraints. Each w@maplas a fixed
number of slotss for the designs and there should be at leasbpies for each de-
sign. Each multiset variable represents a template anaitsdh values are the possi-
ble combinations of designs which allow repetitions. Tkigm optimization problem
which minimizes the total number of pressings so that theuwarhof extra copies is
reduced as much as possible. To future increase probleroutliffi we impose a re-
striction to constrain each multiset to have at least aesarietiesy.

Table 3 shows the experimental results of the template desigblem. From the
experimental results, BC+CR+VR always achieves the fewmestber of fails. There
is a more than 90% reduction in the number of fails when coeghéo BC alone.
The amount of reduction increases with the tightness of #iniety constraints. When
the variety of each multiset is restricted to be at leastnforcing BC+CR+VR can
also reduce the search space up to 40% when compared to BGHaCRuntimes,
BC+CR+VR is also always the fastest. The amount of reductisa increases as the
tightness of the variety constraints.

This problem does not contain multiset constraints likesetibonstraints and union
constraints. It only has cardinality constraints, varieystraints, and arithmetic con-
straints to calculate the total number of copies of eachgdeshen the templates un-
dergo certain number of pressings. Thus, the reductiorairtkespace is mainly caused
by the inference rules maintained within one multiset J@leaas described in Section
5.2.

28



BC BC+CR BC+CR+VR
(t,s,d,c) | v fails  runtime fails  runtime fails  runtime
(35,55 |1 233649 3.14 11133 0.62 11121 0.59
2 212818 2.87 10324 0.54 10140 0.52
3 123130 1.63 6753 0.34 6147 0.3
4 26432 0.33 2222 0.09 1476 0.07
5 1632 0.02 433 0.02 5 0.01
(3,5,5,10)| 1 2539032 33.83 85110 4.62 85040 4.48
2 2319945 30.89 78759 4.11 77609 3.91
3 1345093 17.63 50082 2.45 46342 2.25
4 277339 3.44) 16282 0.63| 10920 0.49
5 15671 0.17 3291 0.09 10 0
(3,5,5,15)| 1 9102083 121.67 281529 15.45 281336 14.96
2 8326588 111.16 260664 13.9] 257058 13.23
3 4829837 63.7] 164955 8.16| 152885 747
4 997448 12.45 53655 2.11| 35599 159
5 54472 0.6 10844 0.29 15 0.01
(3,5,5,20)| 1| 22517539 301.71 667807 36.54 667357 35.46
2 20607017 275.38 618852 33.14] 610658 31.57
3 11938093 157.42 393117 19.53 364171 17.99
4 2442592 30.514 127007 5.05 84431 3.79
5 130714 1.44] 25599 0.67 20 0.01
(3,5,5,25)| 1 | 43475937 573.45 1169486 66.21 1168662 65.69
2| 39835008 523.72 1089385 59.73 1073891 58.48
3 23211047 301 706443 35.87] 652984 34
4 4810503 59.02 241153 9.7 159238 7.51
5 256721 2.78 49717 1.31 25 0
(3,5,5,30)| 1 77975941 1027.61 2173073 120.65 2171643 120.14
2 71420872 938.78 2017818 109.4 1990416 106.69
3| 41441367 537.04 1285591 64.95 1191642 61.36
4 8474261 104.29 424357 17| 280259 13.12
5 445367 4.8 85790 2.24 30 0.01
(3,5,5,35)| 1 | 122846798 1622.59 3282341 184.83 3280160 183.69
2 | 112579328 1483.12 3054543 167.83 3012501 163.78
3 65493473 851.02 1967637  100.41 1820206 94.45
4 13493394 165.85 661341 26.65 435978 20.57
5 708706 7.66| 135749 3.56 35 0.01
(3,5,5,40)| 1 - - | 4965403 278.81 4962121  276.46
2 - - | 4620373 253.07 4557769  247.03
3| 98966039 1286.08 2973352 150.69 2751269 142.88
4 20306681 250.37 992771 40.1) 654489 30.83
5 1059773 11.49 202545 5.32 40 0
(3,5,5,45)| 1 - - | 6933558 391.15 6929008 388.63
2 - - | 6454916 354.7 6365856  346.37
3 - - | 4161884 212.37 3852027 201.01
4| 29002238  358.33 1404672 56.5 924778 43.65
5 1510550 16.4 288045 7.6 45 0
(3,5,5,50)| 1 - - | 9588716 540.07 9582430 536.34
2 - - |1 8926108 490.34 8804592 479.25
3 - - | 5752173 292.84 5325408 277.18
4 39986053 492.2 1934077 77.82 1273470 60.13
5 2074142 22.59 395038 10.4 50 0

Table 3: Results of the template design problem.
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BC BC+CR BC+CR+VR
(t,k,u) | b fails  runtime fails  runtime fails  runtime
2,3,4)| 2 307 0.01 83 0 20 0
3 2266 0.04 518 0.02 135 0
4 9530 0.2 2232 0.1 737 0.04
(2,3,5) 2 800 0.01 222 0.01 12 0.02
3 13812 0.23 3079 0.11 156 0.01
4| 166064 3.56| 33679 1.58| 3539 0.21
5| 1185644 31.37 244547 14.41) 39930 3
6 | 4744639 152.77 1095106 78.97| 244430 22.67
(2,4,4)| 2 867 0.01 204 0 70 0
3 6246 0.1 1330 0.04 581 0.03
4 20425 0.42 4980 0.21| 2757 0.18
(2,4,5)| 2 2800 0.04 638 0.03 202 0
3 64458 1.12| 12636 0.46] 4603 0.21
4| 627704 14.13 124611 5.91 57329 3.66
5| 2800951 79.37 637199 38.06/ 356785  29.27

Table 4: Maximization results of the extended Steiner systeThe variety of each
multiset is at leas?.

6.2 Extended Steiner System

While the standard Steiner system is only set-based, tlenéet version is an im-
portant and practical multiset problem in the area of infation retrieval [12, 3, 21].
Solving the extended Steiner system can provide solutitigetproblem of a multiset
batch code. The extended Steiner Sysfef(¢, k, u) is a collection ob blocks. Each
block is ak-element multiset drawn frommaelement set whose elements can be drawn
multiple times. For every two blocks in the collection, tledinality of their intersec-
tion must be smaller thah For example, one possible solution B15(2, 3,3) in 3
blocksis{{1,1,2},{2,2,3}, {3,3,1}}. Theintersection of 1,1,2} and{2, 2,3}
is {2}; the intersection of 1, 1, 2}} and{(3, 3, 1} is { 1 }}; the intersection of 2, 2, 3}}
and{(3,3,1} is {3}}. All of them have size smaller than= 2. In our experiments,
we adapt the extended Steiner System to an optimizationgrotvhich maximizes
the sum of the varieties of the multisets in a solution. TdHer increase problem
difficulty, we also constrain each multiset to have at leastain varieties.

Tables 4 and 5 show the experimental results of the maxirmoizahd the variety of
each multiset is at lea8tand3 respectively. Among the three propagation approaches,
BC+CR+VR always achieves the fewest number of fails. Them more than 90%
reduction in number of fails when compared to BC alone, ancertian 50% reduction
when compared to BC+CR. This confirms that variety (and catiy) reasoning is
highly effective in reducing search space. The extra pgmere so significant that
they compensate for the overhead of extra computationaitespent for variety (and
cardinality) reasoning. For runtimes, BC+CR+VR is alsoale/the fastest, although
the proportion of reduction is less than that for the numliéaits. The reduction of
BC+CR+VR over BC+CR in Table 4 is moderate, but that in Tabie Significant.
There are even instances in which both BC and BC+CR cannshfexecution within
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BC BC+CR BC+CR+VR
(t,kyu) | b fails  runtime fails  runtime fails  runtime
(2,3,6) | 2 1751 0.02 480 0.01 8 0
3 14895 0.28 2992 0.12 13 0.01
4 57449 1.33 9548 0.49 17 0
(2,4,6) | 2 6072 0.09 1219 0.04 204 0.02
3 184841 3.55 33165 1.34 11709 0.59
4 848172 20.62 132400 7.04 56762 3.89
(3.4,4) |2 446 0.02 160 0.02 26 0
3 2549 0.04 793 0.02 135 0.01
4 9615 0.18 2646 0.11 634 0.04
(3,45) | 2 1475 0.02 537 0.01 67 0.01
3 35582 0.58 10913 0.4 1831 0.07
4 591668 12.07] 160724 7.65 29938 1.66
5| 6565175 160.67 1630805 96.7q 312397 227
6 | 48187790 1370.32 11387223 8120 2108410  194.99
7 - - - - | 9813128 1125.01
(3,46) | 2 4122 0.05 1537 0.05 24 0.01
3 80815 1.4 27386 1.17 63 0.01
4| 3994239 87.12 1187476 66.63 4134 0.25
5 - - - - 370386 26.52
6 - - - - | 17854829 1562.45

Table 5: Maximization results of the extended Steiner systeThe variety of each
multiset is at leass.

the time limit, but BC+CR+VR can. This also shows that thefulsess of variety
reasoning sometimes depends on the tightness of the vadegjraints in a problem.

6.3 Generalized Social Golfer Problem

Similar to the extended Steiner system, the generalizeidIspalfer problem extends
the standard social golfer problem (prob010 in CSPLib) feettbased to multiset-
based. The original social golfer problem requires to saleeah groups ofg golfers
overw weeks so that no golfer plays in the same group as any othiardaice. We
generalize the problem to an extended vers§i6t{w, m, n, g, p) in which we schedule
m teams ofn. members tgy groups ofp golfers overw weeks. Each group contains
golfers from different teams and they play against eachrotiVe also constrain each
group to have golfers from at leasteams. To maximize the socialisation, the number
of times two teams meet with each other again is minimized.

Table 6 shows the experimental results of the generalizeilsgolfer problem
and the variety of each multiset is at leasfAgain, BC+CR+VR always has the fewest
number of fails and runtime. In this problem, the group séfixied top and this favours
cardinality reasoning. Thus, the reduction in the numbdaité of BC+CR+VR over
BC alone is more significant than the reduction of BC+CR+VRIoa@R+VR. How-
ever, with the help of variety reasoning, BC+CR+VR can aghizero backtrack in
some instances. This shows that the extra prunings are sificigt and effective in
removing inconsistent domain values in the search tree.
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BC BC+CR BC+CR+VR
(w,m,n,g,p) fails  runtime fails  runtime fails runtime
(3,2,2,2,2) 2162 0.07 32 0.01 0 0
(3,2,3,2,2) 42821 1.2 247 0.02 0 0.01
(3,2,3,2,3) 26025 0.76 71 0.01 22 0
(3,2,3,3,2) 975 0.04 18 0.01 0 0
(3,2,4,2,2) 302820 8.16 273 0.01 0 0.01
(3,2,4,2,3) 335774 9.39 528 0.04 0 0
(3,2,4,2,4) 173955 5.22 97 0.02 22 0
(3,2,4,3,2) 14334 0.45 234 0.03 0 0.01
(3,2,4,4,2) 4901736  191.51 345 0.03 0 0
(3,2,5,2,2) 1343708 35.58 273 0.01 0 0
(3,2,5,2,3) 1852889 50.06 1301 0.07 0 0.01
(3,2,5,2,4) 1606845 45.54 1118 0.08 22 0
(3,2,5,2,5) 788233 23.12 146 0.01 22 0
(3,2,5,3,2) 99333 3.39 260 0.03 0 0
(3,2,5,3,3) 227055 8.28 1263 0.1 0 0.01
(3,2,5,4,2) - - 3179 0.23 0 0.01
(3,2,5,5,2) 957799 45.03 286 0.04 0 0
(3,3,2,2,2) 1955941 62.01 8818 0.52| 2254 0.19
(3,3,2,2,3) 943173 33.78 369 0.04 336 0.05
(3,3,2,3,2) 141126 6.6 938 0.12 444 0.09
(3,3,3,2,2) | 43253055 1377.83 25260 1.49] 2422 0.21
(3,3,3,2,3) - - 88624 6.98| 45054 4.63
(3,3,3,2,4) | 49633275 1754.52 16498 17 14934 1.7
(3,3,3,3,2) | 23546963 1060.89 176765 17.58 33467 5.08
(3,3,3,3,3) | 23927286 1136.83 36249 5.11| 22423 4.19
(3,3,3,4,2) - - | 1090365 111.3§ 112519 23.56
(3,3,4,2,2) - - 25723 1.53| 2461 0.19
(3,3,4,2,3) - - | 256222 19.99 94420 10.04

Table 6: Results of the generalized social golfer problehe Variety of each multiset
is at leas®.

6.4 Generalized Warehouse L ocation Problem

Our last experiment is the generalized warehouse locatioblegmW H (I, w, s). In
this problem, we are given a set of locatidnehere a maximum ofv warehouses
can be built to supply stores. Different stores sell different kinds of goods, atahi
are supplied by different warehouses. A warehouse onlyymesione kind of goods.
There is a supply cost for delivering goods to the stores hisdcbst depends on the
warehouses. Also, there is a cost of 5000 for building a wawsé. This problem is an
optimization problem which minimizes the total cost in linlg the warehouses and
the supply costs to the stores.

To model this problem, we use a multiset variable to represtere the ware-
houses are going to be built asadther multiset variables to represent the stores. The
domain values of all the multiset variables are the locatiofithe warehouses. Union
and equality multiset constraints are used to ensure thataskes obtain goods from
the warehouses. To better utilize the resource and preveldrproduction, no two
stores can obtain goods from more thasame location. Such a requirement can be
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BC BC+CR BC+CR+VR

(l,w,s) fails  runtime fails  runtime fails runtime
(5,3,7) 4749133 237.54 770204 128.27 244732 75.22
(5,3,8) 4855804 277.95 829065 181.75 274109 109.82
(5,3,9) 4880436 316.58 843311 220.99 281261 133.48
(5,3,10)| 4889762 354.3§ 848793 249.4f 284026 152.17
(5,5,7) 154002 10.2 9307 2.64 5554 17
(5,5, 8) 154605 11.6 9315 3.1 5558 2.01
(5,5,9) 155743 11.77 9334 3.48 5567 2.26
(5, 5, 10) 155993 12.33 9340 3.75 5572 2.43
(6,3,7) | 25291006 1403.5 3412505 701.29 1021670 402.47
(6,3,8) | 25363951 1608.32 3502747 945.69 1085141 568.89
(6,3,9) | 25369950 1789.62 3510070 1151.32 1090041 693.51
(6, 3, 10) - - | 3522116 1302.76 1098070 786.23
(6,5,7) 395677 55 24718 8.73 14509 5.33
(6,5, 8) 451461 43.7 25028 10.91 14714 6.45
(6,5,9) 451773 52.92 25035 12.26 14720 7.27
(6,5, 10) 453102 60.95 25040 13.18 14726 7.85
(7,5,7) 1041329 167.81 56228 25.63 32493 14.36
(7,5, 8) 1152650 124.22 56692 31.48 32796 17.18
(7,5,9) 1153222 151.48 56700 35.63 32803 19.55
(7,5,10)| 1155232 171.44 56707 38.5 32810 21.01
(8,5,7) 2358226 402.11 113084 65.54) 64483 34.1
(8,5,8) 2539984 300.79 113740 79.6 64908 40.72
(8,5,9) 2544059 358.25 113750 90.57] 64915 46.33
(8,5,10)| 2548600 405.1] 113761 98.220 64923 49.9

Table 7: Results of the generalized warehouse locationl@mbThe variety of the
intersection of any two stores is at mast

modeled by the variety constraints on the intersection gfta stores.

Tables 7 and 8 show the experimental results of the genedalvarehouse location
problem in which no two stores can obtain goods from more tiremand two same
locations respectively. Similar to the previous three iemark problems, BC+CR+VR
achieves the fewest number of fails and the fastest runtmung the three propagation
approaches. The reduction is more significant for the coispabetween BC alone
and BC+CR+VR than that between BC+CR and BC+CR+VR. When #nty of
the intersection of any two stores is limited to at m®sthe problem becomes less
constrained even the problem size increases. Thus, thetiedwf BC+CR+VR over
BC+CR is moderate, but BC+CR+VR still achieves about 25%efda runtime.

6.5 Discussions

In the template design problem, extended Steiner problanhifze generalized social
golfer problem, the reduction in the number of fails of BCHSMAR over BC+CR is
more significant than that in the runtime. In general, enfystronger consistency
will discover and remove more inconsistent nodes to give allemsearch tree. How-
ever, more computational effort will be spent for constraiopagation at each search
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BC BC+CR BC+CR+VR

(l,w,s) fails  runtime fails  runtime fails  runtime
(7,3,7) | 2286055  385.65 103268 41.95 97543 36.59
(7,3,8) | 4611458  845.88 126920 69.31) 118194 53.19
(7,3,9) | 4736060 1102.1 127875 79.27 119016 60.69
(7,3,10) | 5144234  1387.8 130728 89.03 121439 66.57
(7,5,7) | 2100474  494.41 95519 38.46| 90678 34.47
(7,5,8) | 4865139  1368.3 126818 69.13 118180 53.74
(7,5,9) - - | 127859 79.23 119076 61.32

(7,5, 10) - - | 130814 89.06 121586 67.43
(8,3,7) | 6310893 1183.41 220560 113.24 207944 92.45
(8,3,8) - - | 261425 180.15 243434  130.05
(8,3,9) - - | 263236  206.29 244956  147.59
(8, 3,10) - - | 267926  231.33 248926  161.56
(8,5,7) | 5584477 1583.95 204447 102.1§ 193779 86.2
(8,5,8) - - | 260460 177.89 242826  130.35
(8,5,9) - - | 262379  204.38 244441 148.26
(8,5, 10) - - | 267399  230.23 248658 162.69

Table 8: Results of the generalized warehouse locationlgmobThe variety of the
intersection of any two stores is at mast

node. So, a large number of nodes has to be removed so as tecsatg for the
increased computational effort for a stronger consistemégrcement and to improve
the runtime.

From the experimental results of the generalized warehlmas¢ion problem, we
observe that the reduction in runtime of BC+CR+VR over BCH¥Rreater than that
in number of fails. It behaves differently from the previghsee benchmarks. So, we
did further experiments to investigate the results. We fivat the interaction among
the multiset equality, union, and intersection consteintthe generalized warehouse
location problem provides tighter bounds in BC+CR+VR. Thening is so significant
that they not only compensate for the overhead of the extrgatational effort spent
for cardinality-variety reasoning, but also reduce the hanof iterations for constraint
propagation at each search node. Thus, improvement immarsieven better than that
in number of nodes.

Take the generalized warehouse location problem instéié&(8, 5,9) and the
variety of the intersection of any two stores is at most 1 asxample. BC+CR and
BC+CR+VR have 113,752 and 64,917 number of choice poirgs he number of
nodes in the search tree) respectively and the average msimbierations for con-
straint propagation at each search node are 286 and 254&tigspe BC+CR+VR
reduces not only the number of choice points, but also thebeuof iterations it takes
to converge at each search node. This results in fewer nuofilberdes in the search
tree and also less work at each node. In contrast, in the @xteBteiner system, al-
though BC+CR+VR has fewer number of choice points, therenaee iterations at
each search node when compared to BC+CR. Take the exteneie@rSsystem in-
stancel2S(2,4, 5) whereb = 5 and variety of each multiset is at le@shs an example.
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BC+CR and BC+CR+VR have 637,200 and 356,786 number of clpmit#s respec-
tively and the average number of iterations for constrainppgation at each search
node are 29 and 37 respectively. Thus, improvement in nuoferdes is better than
that in runtime for the extended Steiner system. As we cartlseenultiset constraints
can interact with each other and give tighter bounds.

7 Concluding Remarks

In this section, we summarize our contributions in this papel give some possible
directions for future research.

7.1 Contributions

Besides integer, Boolean, and set variables and constraindtiset variables and con-
straints are also useful in providing more natural and effitmodels to many prob-
lems. However, we can only find little work on multiset coasit solving. Thus, this
paper mainly studies multiset variables and constraini& dontribution of our work
can be summarized as follows.

Unlike set variables, multiset variables allow repeatesants. We first propose
three different ways to represent a multiset variable: lisuoccurrence, and fixed
cardinality representations. The occurrence representstmore expressive than the
bounds representation in general, and is as expressive dmtinds representation if
we only maintain the bounds on the number of occurrences efement in a multiset.
The fixed cardinality representation is incomparable todtier two representations.
Thus, in this paper, we focus on using the occurrence rejpiatsen.

Second, we have described various inference rules to nralmbands consistency
that work with constraints involving multiset, set, andfdgeger variables. This bounds
consistency is equivalent to integer bounds consistengljegbto the occurrence rep-
resentation for multiset variables. Those inference rodestighten the upper and/or
lower bound on the multiset variables to give a smaller sespace.

Third, we have introduced the cardinality and variety Valga to multiset variables
based on the occurrence representation. While the inttimsiuaf cardinality variable
is a straightforward generalization to the set variablentepart, the idea of variety
variable is a new concept.

Fourth, we have exploited the cardinality and variety praps to introduce new
inference rules to increase pruning opportunities. We laga@improved the propaga-
tion of some common multiset constraints through cardiyalnd variety reasoning.
Experimental results on several benchmark problems corfiemenforcing bounds
consistency with cardinality-variety reasoning can alsvaghieve tighter bounds on
multiset variables, resulting in an even smaller searchespa

CSPs are typically solved by incorporating constraint pggiion algorithms in
backtracking tree search. Cardinality and variety reagpis a form of extra con-
straint propagation. On one hand, it aims at bringing outermain prunings so
that the size of the search tree becomes smaller. On the lodimet, it comes at an
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additional computational cost at each node in the seareh ®¢riking a balance be-
tween the computational overhead and the extra prunind&/&ys problem specific.
We can never guarantee that a stronger pruning power caysaeenpensate for the
additional computational cost. In our work, the overaleetiveness depends heavily
on the existence of cardinality and variety informatioroarour experimental results,
we envisage that if the problem has more constraints on titénzdity and variety of
the variables, we can probably benefit to a greater extend.

7.2 Future Work

Our work introduces the variety information to multisetigates and constraints. There
can be plenty of scope for future research for multiset CSPs.

First, cardinality-variety reasoning is currently apgdlien some common multi-
set constraints in their normal forms. It is interestingtiedy how cardinality-variety
reasoning can be incorporated into other multiset globastaints. Since global con-
straints can be decomposed into their normal form, we cankclighe cardinality-
variety reasoning on multiset global constraints can aghégen better constraint prop-
agation.

Second, our current implementation of the hybrid represent and the rules is
only prototypical. There is still room for improvement. Fetample, it is known that
adjusting the triggering order of the rules (depending endbmputational cost of the
rules) can affect the performance [2, 1]. We expect that oynlémentation can be
optimized in the future.

Third, we have proposed to use a hybrid representation fitigativariables in this
paper. It is worthwhile to study if there are other ways tarespnt a multiset variable
and compare them with the hybrid representation. Besideadsrepresentation, we
can also represent set variables by ordering the set vaseographically. This is
called the length-lex representation [9]. We can investideow length-lex ordering
can be applied to the values in the domain of a multiset vegiab
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