
Journal of Artificial Intelligence Research 43 (2012) 257-292 Submitted 09/11; published 02/12

Consistency Techniques for Flow-Based Projection-Safe Global Cost
Functions in Weighted Constraint Satisfaction

J.H.M. Lee JLEE@CSE.CUHK.EDU.HK

K.L. Leung KLLEUNG@CSE.CUHK.EDU.HK

Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

Abstract
Many combinatorial problems deal with preferences and violations, the goal of which is to find

solutions with the minimum cost. Weighted constraint satisfaction is a framework for modeling
such problems, which consists of a set of cost functions to measure the degree of violation or pref-
erences of different combinations of variable assignments. Typical solution methods for weighted
constraint satisfaction problems (WCSPs) are based on branch-and-bound search, which are made
practical through the use of powerful consistency techniques such as AC*, FDAC*, EDAC* to
deduce hidden cost information and value pruning during search. These techniques, however, are
designed to be efficient only on binary and ternary cost functions which are represented in table
form. In tackling many real-life problems, high arity (or global) cost functions are required. We
investigate efficient representation scheme and algorithms to bring the benefits of the consistency
techniques to also high arity cost functions, which are often derived from hard global constraints
from classical constraint satisfaction.

The literature suggests some global cost functions can be represented as flow networks, and
the minimum cost flow algorithm can be used to compute the minimum costs of such networks in
polynomial time. We show that naive adoption of this flow-based algorithmic method for global
cost functions can result in a stronger form of∅-inverse consistency. We further show how the
method can be modified to handle cost projections and extensions to maintain generalized versions
of AC* and FDAC* for cost functions with more than two variables. Similar generalization for
the stronger EDAC* is less straightforward. We reveal the oscillation problem when enforcing
EDAC* on cost functions sharing more than one variable. To avoid oscillation, we propose a weak
version of EDAC* and generalize it to weak EDGAC* for non-binary cost functions. Using various
benchmarks involving the soft variants of hard global constraintsALL DIFFERENT, GCC, SAME,
and REGULAR, empirical results demonstrate that our proposal gives improvements of up to an
order of magnitude when compared with the traditional constraint optimization approach, both in
terms of time and pruning.

1. Introduction

Constraint satisfaction problems (CSPs) occur in all walksof industrial applications and computer
science, such as scheduling, bin packing, transport routing, type checking, diagram layout, just
to name a few. Constraints in CSPs are functions returning true or false. These constraints are
hard in the sense that they must be satisfied. In over-constrained and optimization scenarios, hard
constraints have to be relaxed or softened. The weighted constraint satisfaction framework adopt
soft constraints ascost functionsreturning a non-negative integer with an upper bound⊤. Solu-
tion techniques for solving weighted constraint satisfaction problems (WCSPs) are made practi-

c©2012 AI Access Foundation. All rights reserved.

LEE & L EUNG

cal by enforcing various consistency notions during branch-and-bound search, such as NC*, AC*,
FDAC* (Larrosa & Schiex, 2004, 2003) and EDAC* (de Givry, Heras, Zytnicki, & Larrosa, 2005).
These enforcement techniques, however, are designed to be efficient only on binary and ternary cost
functions which are represented in table form. On the other hand, many real-life problems can be
modelled naturally by global cost functions of high arities. We investigate efficient representation
scheme and algorithms to bring the benefits of the existing consistency techniques for binary and
ternary cost functions to also high arity cost functions, which are often derived from hard global
constraints from classical constraint satisfaction.

In existing WCSP solvers, these high arity cost functions are delayed until they become binary
or ternary during search. The size of the tables is also a concern. The lack of efficient handling
of high arity global cost functions in WCSP systems greatly restricts the applicability of WCSP
techniques to more complex real-life problems. To overcomethe difficulty, we incorporate van Ho-
eve, Pesant, and Rousseau’s (2006) flow-based algorithmic method into WCSPs, which amounts
to representing global cost functions as flow networks and computing the minimum costs of such
networks using the minimum cost flow algorithm. We show that anaive incorporation of global cost
functions into WCSPs would result in a strong form of the∅-inverse consistency (Zytnicki, Gaspin,
& Schiex, 2009), which is still relatively weak in terms of lower bound estimation and pruning.
The question is then whether we canachieve stronger consistencies such as GAC* and FDGAC*,
the generalized versions of AC* and FDAC* respectively, fornon-binary cost functions efficiently.
Consistency algorithms for (G)AC* and FD(G)AC* involve three main operations: (a) computing
the minimum cost of the cost functions when a variablex is fixed with valuev, (b) projecting the
minimum cost of a cost function to the unary cost functions for x at valuev, and (c) extending
unary costs to the related high arity cost functions. These operations allow cost movements among
cost functions and shifting of costs to increase the global lower bound of the problem, which im-
plies more opportunities for domain value prunings. Part (a) is readily handled using the minimum
cost flow (MCF) algorithm as proposed in van Hoeve et al.’s method. However, parts (b) and (c)
modify the cost functions, which can possibly destroy the required flow-based structure of the cost
functions required by van Hoeve et al.’s method. To overcomethe difficulty, we propose and give
sufficient conditions for the flow-based projection-safetyproperty. If a global cost function is flow-
based projection-safe, the flow-based property of the cost function is guaranteed to be retained no
matter how many times parts (b) and (c) are performed. Thus, the MCF algorithm can be applied
throughout the enforcements of GAC* and FDGAC* to increase search efficiency.

A natural next step is to generalize also the stronger consistency EDAC* (de Givry et al., 2005)
to EDGAC*, but this turns out to be non-trivial. We identify and analyze an inherent limitation
of EDAC* similar to the case of Full AC* (de Givry et al., 2005). ED(G)AC* enforcement will
go into oscillation if two cost functions share more than onevariable, which is common when a
problem involves high arity cost functions. Sanchez, de Givry, and Schiex (2008) did not mention
the oscillation problem but their method for enforcing EDAC* for the special case of ternary cost
functions would avoid the oscillation problem. In this paper, we give a weak form of EDAC*,
which can be generalized to weak EDGAC* for cost functions ofanyarity. Most importantly, weak
EDAC* is reduced to EDAC* when no two cost functions share more than one variable. Weak
EDGAC* is stronger than FDGAC* and GAC*, but weaker than VAC (Cooper, de Givry, Sanchez,
Schiex, Zytnicki, & Werner, 2010). We also give an efficient algorithm to enforce weak EDGAC*.

Based on the theoretical results, we prove that some of the soft variants ofALL DIFFERENT,
GCC, SAME, andREGULAR constraints are flow-based projection-safe, and give polynomial time

258

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

algorithms to enforce GAC*, FDGAC* and also weak EDGAC* on these cost functions. Experi-
ments are carried out on different benchmarks featuring theproposed global cost functions. Em-
pirical results coincide with the theoretical prediction on the relative strengths of the various con-
sistency notions and the complexities of the enforcement algorithms. Our experimental results also
confirm that stronger consistencies such as GAC*, FDGAC* andweak EDGAC* are worthwhile
and essential in making global cost functions in WCSP practical. In addition, the reified approach
(Petit, Régin, & Bessière, 2000) and strong∅IC are too weak in estimating useful lower bounds
and pruning the search space in branch-and-bound search.

The rest of the paper is organized as follows. Section 2 givesthe necessary definitions and
background, while Section 3 gives related work. Generalized versions of existing consistency tech-
niques for global cost functions are presented and comparedin Section 4. Enforcement algorithms
for these consistencies are exponential in general. We introduce the notion of flow-based projection-
safety, and describe polynomial time consistency enforcement algorithms for global cost functions
enjoying the flow-based projection-safety property. In Section 5, we prove that the softened form of
some common hard global constraints are flow-based projection-safe and give experimental results
demonstrating the feasibility and efficiency of our proposal both in terms of runtime and search
space pruning. Section 6 summarizes our contributions and shed light on possible directions for
future research.

2. Background

We give the preliminaries on weighted constraint satisfaction problems, global cost functions and
network flows.

2.1 Weighted Constraint Satisfaction

A weighted constraint satisfaction problem (WCSP) is a special case of valued constraint satisfac-
tion (Schiex, Fargier, & Verfaillie, 1995) with a cost structure ([0, . . . ,⊤],⊕,≤). The structure
contains a set of integers from0 to⊤ ordered by the standard ordering≤. Addition⊕ is defined by
a ⊕ b = min(⊤, a + b), and subtraction⊖ is defined only fora ≥ b, a ⊖ b = a− b if a 6= ⊤ and
⊤⊖ a = ⊤ for anya. Formally,

Definition 1 (Schiex et al., 1995) AWCSPis a tuple(X ,D, C,⊤), where:

• X is a set of variables{x1, x2, . . . , xn} ordered by their indices;

• D is a set of domainsD(xi) for xi ∈ X , only one value of which can be assigned toxi;

• C is a set of cost functionsWS with different scopeS = {xs1 , . . . , xsn} ⊆ X that maps a
tupleℓ ∈ L(S), whereL(S) = D(xs1)× . . . D(xsn), to [0, . . . ,⊤].

An assignmentof a set of variablesS ⊆ X , written as{xs1 7→ vs1 , . . . , xsn 7→ vsn}, is to
assign each variablexsi ∈ S to a valuevsi ∈ D(xsi). When the context is clear and assuming
an ordering by the variable indices, we abuse notations by considering an assignment also a tuple
ℓ = (vs1 , . . . , vsn) ∈ L(S), whereL(S) = D(xs1) × D(xs2) × . . . D(xsn). The notationℓ[xsi]
denotes the valuevsi assigned toxsi ∈ S, andℓ[S′] denotes the tuple formed by projectingℓ onto
S′ ⊆ S.

Without loss of generality, we assumeC = {W∅} ∪ {Wi | xi ∈ X} ∪ C+. W∅ is a constant
nullary cost function.Wi is a unary cost function associated with eachxi ∈ X . C+ is a set of cost

259

LEE & L EUNG

functionsWS with scopeS containing two or more variables. IfW∅ and{Wi} are not defined, we
assumeWi(v) = 0 for all v ∈ D(xi) andW∅ = 0. To simplify the notation, we denoteWs1,s2,...,sn

for the cost function on variables{xs1 , xs2 , . . . , xsn} if the context is clear.

Definition 2 Given a WCSP(X ,D, C,⊤). Thecostof a tupleℓ ∈ L(X) is defined ascost(ℓ) =
W∅ ⊕

⊕

xi∈X
Wi(ℓ[xi]) ⊕

⊕

WS∈C+ WS(ℓ[S]). A tupleℓ ∈ L(X) is feasibleif cost(ℓ) < ⊤, and
is a solutionof a WCSP ifcost(ℓ) is minimum among all tuples inL(X).

WCSPs are usually solved with basic branch-and-bound search augmented with consistency
techniques which prune infeasible values from variable domains and push costs intoW∅ while
preserving the equivalence of the problems,i.e. the cost of each tupleℓ ∈ L(X) is unchanged.
Different consistency notions have been defined such as NC*,AC*, FDAC* (Larrosa & Schiex,
2004, 2003), and EDAC* (de Givry et al., 2005).

Definition 3 A variablexi is node consistent(NC*) if each valuev ∈ D(xi) satisfiesWi(v) ⊕
W∅ < ⊤ and there exists a valuev′ ∈ D(xi) such thatWi(v

′) = 0. A WCSP is NC* iff all
variables are NC*.

ProcedureenforceNC*() in Algorithm 1 enforces NC*, whereunaryProject() moves unary
costs towardsW∅ while keeping the solution unchanged, andpruneVal() removes infeasible
values. The variablesQ, R, andS are global propagation queues used for further consistency
enforcements explained in later sections. They are initially empty if not specified.

ProcedureenforceNC*()
foreachxi ∈ X do unaryProject (xi);1

pruneVal ();2

ProcedureunaryProject(xi)
α := min{Wi(v) | v ∈ D(xi)};3

W∅ :=W∅ ⊕ α;4

foreachv ∈ D(xi) do Wi(v) :=Wi(v) ⊖ α;5

ProcedurepruneVal()
foreachxi ∈ X do6

flag := false;7

foreachv ∈ D(xi) s.t.Wi(v)⊕W∅ = ⊤ do8

D(xi) := D(xi) \ {v};9

flag := true;10

if flag then11

// For further consistency enforcement. Assume initially
empty if not specified

Q := Q ∪ {xi};12

S := S ∪ {xi};13

R := R ∪ {xi};14

Algorithm 1 : Enforce NC*

260

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

Based on NC*, AC* and FDAC* have been developed for binary (Larrosa & Schiex, 2004,
2003) and ternary cost functions (Sanchez et al., 2008). Enforcing these consistency notions re-
quires two equivalence preserving transformations besides NC* enforcement, namelyprojection
and extension(Cooper & Schiex, 2004).

A projection, written asProject(WS,Wi,v,α), transforms(WS ,Wi) to (W ′
S ,W

′
i) with

respect to a valuev ∈ D(xi) and a costα, whereα ≤ min{WS(ℓ) | ℓ[xi] = v ∧ ℓ ∈ L(S)}, such
that:

• W ′
i (u) =

{

Wi(u)⊕ α if u = v,
Wi(u) otherwise.

• W ′
S(ℓ) =

{

WS(ℓ)⊖ α if ℓ[xi] = v,
WS(ℓ) otherwise.

An extension, written asExtend(WS,Wi,v,α), transforms(WS ,Wi) to (W ′′
S ,W

′′
i) with

respect to a valuev ∈ D(xi) and a costα, whereα ≤Wi(v), such that:

• W ′′
i (u) =

{

Wi(u)⊖ α if u = v,
Wi(u) otherwise.

• W ′′
S (ℓ) =

{

WS(ℓ)⊕ α if ℓ[xi] = v,
WS(ℓ) otherwise.

2.2 Global Constraints and Global Cost Functions

A global constraintis a constraint with special semantics. They are usually with high arity, and thus
cannot be propagated efficiently with standard consistencyalgorithms. With their special semantics,
special propagation algorithms can be designed to achieve efficiency.

A global cost functionis the soft variant of a hard global constraint. The cost of each tuple
indicates how much the tuple violates the corresponding global constraint. One global constraint
can give rise to different global cost functions using different violation measures. A global cost
function returns0 if the tuple satisfies the corresponding global constraint.The notationSOFT GCµ

denotes the global cost function derived from a global constraint GC using a violation measureµ.
For instance, theALL DIFFERENT constraint has two soft variants.

Definition 4 (Petit, Ŕegin, & Bessìere, 2001) The cost functionSOFT ALL DIFFERENTvar returns
the minimum number of variable assignments that needed to bechanged so that the tuple contains
only distinct values; whileSOFT ALL DIFFERENTdec returns the number of pairs of variables having
the same assigned value.

2.3 Flow Theory

Definition 5 A flow networkG = (V,E,w, c, d) is a connected directed graph(V,E), in which
each edgee ∈ E has a weightwe, a capacityce, and a demandde ≤ ce.

An (s, t)-flow f from a sources ∈ V to a sinkt ∈ V of a valueα in G is defined as a mapping
fromE to real numbers such that:

•
∑

(s,u)∈E f(s,u) =
∑

(u,t)∈E f(u,t) = α;

•
∑

(u,v)∈E f(u,v) =
∑

(v,u)∈E f(v,u) ∀ v ∈ V \ {s, t};

261

LEE & L EUNG

• de ≤ fe ≤ ce ∀ e ∈ E.

For simplicity, we call an(s, t)-flow as a flow ifs andt have been specified.

Definition 6 The cost of a flow f is defined ascost(f) =
∑

e∈E wefe. A minimum cost flow
problem of a valueα is to find the flow whose value isα and cost is minimum.

If α is not given, it is assumed to be the maximum value among all flows.
To solve minimum cost flow problems, various approaches havebeen developed. Two of those

are thesuccessive shortest pathandcycle-cancelling algorithms(Lawler, 1976). Both algorithms
focus on the computation in the residual network of the corresponding flow network.

Definition 7 Given a flowf in the networkG = (V,E,w, c, d). The residual networkGres =
(V,Eres, wres, cres, dres) is defined as:

• Eres = {(u, v) ∈ e | f(u,v) < c(u,v)} ∪ {(v, u) ∈ e | f(u,v) > d(u,v)};

• wres
(u,v) =

{

w(u,v) ,if f(u,v) < c(u,v)
−w(u,v) ,if f(v,u) > d(v,u)

• cres(u,v) =

{

c(u,v) − f(u,v) ,if f(u,v) < c(u,v)
f(u,v) − d(u,v) ,if f(v,u) > d(v,u)

• drese = 0, for all e ∈ E;

The successive shortest path algorithm successively increases flow values of the edges along the
shortest paths betweens andt in the residual network until the value of flow reachesα or no more
paths can be found. The cycle-cancelling algorithm reducesthe cost of the given flow to minimum
by removing negative cycles in the induced residual network.

In consistency enforcement with flow, we usually deal with the following problem: consider a
(s, t)-flow f in a networkG = (V,E,w, c, d) with minimum cost, and an edgēe ∈ E. The problem
is to determine whether increasing (or decreasing)fē by one unit keeps the flow value unchanged,
and compute the minimal cost of the new resultant flow if possible. Again, such a problem can
be solved using the residual networkGres (Régin, 2002; van Hoeve et al., 2006): we compute the
shortest pathP from v′ to u′ in Gres, whereē = (u′, v′) ∈ E. If P exists, the value of the flow is
unchanged iffē is increased by one unit. The new minimum cost can be computedby the following
theorem.

Theorem 1 (Régin, 2002; van Hoeve et al., 2006) Supposef ′ is the resultant flow by increasingfē
by one unit. Then the minimum value ofcost(f ′) is cost(f) + wres

ē +
∑

e∈P w
res
e .

Theorem 1 reduces the problem into finding a shortest path from v′ to u′, which can be made
incremental for consistency enforcement. If we want to reduce a unit flow from an edge, we can
apply similar methods to those used in Theorem 1.

3. Related Work

Global cost functions can be handled using constraint optimization, which focuses on efficient
computation ofmin{WS(ℓ) | ℓ ∈ L(S)} and enforcing GAC on their hard constraint forms
WS(ℓ) ≤ zS , wherezS is the variable storing costs (Petit et al., 2001). Van Hoeveet al. (2006)

262

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

develop a framework for global cost functions representable by flow networks, whose computation
is polynomial in the size of networks. Beldiceanu (2000) andBeldiceanu, Carlsson and Petit (2004)
further develop a representation scheme for global cost functions using a graph-based approach and
an automaton approach. Under their framework, the computation of all global cost functions can be
reduced to only considering a fixed set of global cost functions, e.g. theSOFT REGULAR functions.

On the other hand, to efficiently remove more search space during WCSPs solving, various
consistency notions have been developed. Examples are NC* (Larrosa & Schiex, 2004), BAC∅

(Zytnicki et al., 2009), AC* (Larrosa & Schiex, 2004), FDAC*(Larrosa & Schiex, 2003), and
EDAC* (de Givry et al., 2005). Stronger consistency notions, namely OSAC and VAC (Cooper
et al., 2010), are also defined, but enforcement requires a relaxation of the cost valuation structure
V (⊤) to rational numbers, and current implementations are efficient only on binary WCSPs. For
ternary cost functions, AC, FDAC and EDAC are introduced (Sanchez et al., 2008). Cooper (2005)
incorporates the concept ofk-consistency into WCSPs to formcompletek-consistency. However,
the time and space complexities increase exponentially as the problem size increases, making com-
pletek-consistency impractical to enforce for general WCSPs.

4. Consistency Notions for Global Cost Functions

In this section, we discuss four consistency notions for high-arity cost functions: (1) strong∅-
inverse consistency (strong∅IC), (2) generalized arc consistency (GAC*), (3) full directional gen-
eralized arc consistency(FDGAC*), and (4) generalized EDAC*. These consistency notions require
exponential time to enforce in general, but flow-based global cost functions (van Hoeve et al., 2006)
enjoy polynomial time enforcement.

4.1 Strong∅-Inverse Consistency

Strong∅-inverse consistency is based on∅-inverse consistency (∅IC) (Zytnicki et al., 2009).

Definition 8 (Zytnicki et al., 2009) Given a WCSPP = (X ,D, C,⊤). A cost functionWS ∈ C is
∅-inverse consistent(∅IC) if there exists a tupleℓ ∈ L(S) such thatWS(ℓ) = 0. A WCSP is∅IC
iff all cost functions are∅IC.

The procedureenforce∅IC() in Algorithm 2 enforces∅IC. Each cost functionWS is made
∅IC by lines 3 to 6, which move costs fromWS toW∅ by simple arithmetic operations.

Function enforce∅IC()
flag := false;1

foreachWS ∈ C do2

α := min{WS(ℓ) | ℓ ∈ L(S)};3

W∅ :=W∅ ⊕ α;4

foreachℓ ∈ L(S) doWS(ℓ) :=WS(ℓ)⊖ α;5

if α > 0 then flag := true;6

return flag;7

Algorithm 2 : Enforcing∅IC on a WCSP

The time complexity ofenforce∅IC() in Algorithm 2 depends on the time complexities
of lines 3 and 5. Line 3 computes the minimum cost and line 5 modifies the cost of each tuple

263

LEE & L EUNG

to maintain equivalence. In general, these two operations are exponential in the arity of the cost
function. However, the first operation can be reduced to polynomial time for a global cost function.
One such example isflow-based global cost functions(van Hoeve et al., 2006).

Definition 9 (van Hoeve et al., 2006) A global cost functionWS is flow-basedif WS can be repre-
sented as a flow networkG = (V,E,w, c, d) such that

min{cost(f) | f is the max.{s, t}-flow ofG} = min{WS(ℓ) | ℓ ∈ L(S)},

wheres ∈ V is the fixed source andt ∈ V is the fixed destination.

For examples, the cost functionSOFT ALL DIFFERENTdec (S) returns the number of pairs of
variables inS that share the same value, and is shown to be flow-based (van Hoeve et al., 2006). An
example of its corresponding flow network, whereS = {x1, x2, x3, x4}, is shown in Figure 1. All
edges have a capacity of1. The numbers on the edges represent the weight of the edges. If an edge
has no number, the edge has zero weight. The thick lines show the flow corresponding to the tuple
ℓ = (a, c, b, b) having a cost of1.

1

1

2

x1

x2

x3

x4

a

b

c

s t

Figure 1: An example flow network forSOFT ALL DIFFERENTdec

With flow-based cost functions, the first operation (computing the minimum cost) can be re-
duced to time polynomial to the network size for those constraints. The second operation can be
reduced to constant time using the∆S data structure suggested by Zytnicki et al. (2009). Insteadof
deducting the projected valueα from each tuple inWS , we simply store the projected value in∆S.
When we want to know the actual value ofWS , we computeWS ⊖∆S.

Enforcing∅IC only increasesW∅ but does not help reduce domain size. Consider the WCSP
in Figure 2. It is∅IC, but the valuec ∈ D(x1) cannot be a part of any feasible tuple. All tuples
associated with the assignment{x1 7→ c} must have a cost of at least4: 1 fromW∅, 2 fromW1, and
1 fromW1,2. To allow domain reduction, extra conditions are added to∅IC to form strong∅IC.

⊤ = 4,W∅ = 1

x1 W1

a 0
b 2
c 2

x2 W2

a 1
b 0

x1 x2 W1,2 x1 x2 W1,2

a a 0 a b 0
b a 0 b b 0
c a 1 c b 1

Figure 2: A WCSP which is∅IC

264

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

Definition 10 Given a WCSPP = (X ,D, C,⊤). Consider a non-unary cost functionWS ∈ C+

and a variablexi ∈ S. A tupleℓ ∈ L(S) is the∅-supportof a valuev ∈ D(xi) with respect toWS

iff ℓ[xi] = v andW∅ ⊕Wi(v)⊕WS(ℓ) < ⊤. The cost functionWS is strong∅IC iff it is ∅IC, and
each value in each variable inS has a∅-support with respect toWS. A WCSP isstrong∅IC if it is
∅IC and all non-unary cost functions are strong∅IC.

For instance, the WCSP in Figure 2 is not strong∅IC. The valuec ∈ D(x1) does not have a∅-
support, sinceW∅ ⊕W1(c)⊕min{W1,2(ℓ) | ℓ[x1] = c ∧ ℓ ∈ L({x1, x2})} = ⊤ = 4. Removal of
c ∈ D(x1) makes it so.

Strong∅IC collapses to GAC in classical CSPs when WCSPs collapse to CSPs. Although
its definition is similar to BAC∅ (Zytnicki et al., 2009), their strengths are incomparable.BAC∅

gathers cost information from all cost functions on the boundary values, while we only consider the
information from one non-unary cost function for all individual values.

The procedureenforceS∅IC() in Algorithm 3 enforces strong∅IC, based on theW-AC*3()
Algorithm (Larrosa & Schiex, 2004). The algorithm maintains a propagation queueQ of variables.
Cost functions involving variables inQ are potentially not strong∅IC. At each iteration, an arbi-
trary variablexj is removed fromQ by the functionpop() in constant time. The algorithm enforces
strong∅IC for the cost functions involvingxj from lines 4 to 6. The existence of∅-support is
enforced byfind∅Support(). If domain reduction occurs (find∅Support() returns true),
or W∅ increases (enforce∅IC() returns true), variables are pushed ontoQ at lines 6 and 7 re-
spectively, indicating that∅IC are potentially broken. If the algorithm terminates, i.e. Q = ∅, no
variables are pushed intoQ at line 6, orQ is not set toX at line 7. It implies all variables are strong
∅IC and the WCSP is∅IC. Thus the WCSP is strong∅IC after execution.

ProcedureenforceS∅IC()
Q := X ;1

while Q 6= ∅ do2

xj := pop (Q);3

foreachWS ∈ C+ s.t.xj ∈ S do4

foreachxi ∈ S \ {xj} do5

if find∅Support (WS , xi) thenQ := Q ∪ {xi};6

if enforce∅IC () then Q := X ;7

Function find∅Support(WS, xi)
flag := false;8

foreachv ∈ D(xi) do9

α := min{WS(ℓ) | ℓ[xi] = v};10

if W∅ ⊕Wi(v)⊕ α = ⊤ then11

D(xi) := D(xi) \ {v};12

flag := true;13

return flag;14

Algorithm 3 : Enforcing strong∅IC of a WCSP

The procedureenforceS∅IC() is correct and must terminate. Its complexity can be analyzed
by abstracting the worst-case time complexities offind∅Support() andenforce∅IC() as

265

LEE & L EUNG

fstrong and f∅IC respectively. Using an augment similar to the proof of Larrosa and Schiex’s
(2004) Theorems 12 and 21, the complexity can be stated as follows.

Theorem 2 The procedureenforceS∅IC() a time complexity ofO(r2edfstrong+ndf∅IC), where
r is the maximum arity of all cost functions,d is maximum domain size,e = |C+| andn = |X |.

Proof: The while loop at line 2 iterates at mostO(nd) times. In each iteration, line 6 executes at
mostO(r · |N(j)|) times, whereN(j) is the set of soft constraints restrictingxj . Since line 7 exe-
cutes at mostO(nd) times, the overall time complexity isO(rdfstrong ·

∑n
j=1 |N(j)|+ ndf∅IC) =

O(r2edfstrong+ndf∅IC). O(
∑n

j=1 |N(j)|) = O(re) holds since each cost function counts at most
r times in

∑n
j=1 |N(j)|. Thus, it must terminate. �

Corollary 1 The procedureenforceS∅IC() must terminate. The resultant WCSP is strong∅IC,
and equivalent to the original WCSP.

In general, due toenforce∅IC() andfind∅Support(), enforcing strong∅IC is exponen-
tial in r. As discussed before,enforce∅IC() can be reduced to polynomial time for flow-based
global cost functions. Similarly,find∅Support() can be executed efficiently and incrementally
for flow-based global cost functions since line 10 can be computed in polynomial time using mini-
mum cost flow.

Another property we are interested in isconfluence. A consistencyΨ is confluentif enforcingΨ
always transforms a problemP into a unique problemP ′ which isΨ. AC* is not confluent (Larrosa
& Schiex, 2004). With different variable and/or cost function orderings, AC* enforcement can lead
to different equivalent WCSPs with different values ofW∅. BAC∅ is confluent (Zytnicki et al.,
2009). Following the proofs of Propositions 3.3 and 4.3 by Zytnicki et al., it can be shown that
strong∅IC is also confluent.

Theorem 3 (Confluence) Given a WCSPP = (X ,D, C,⊤), there exists a unique WCSPP ′ =
(X ,D′, C′,⊤) which is strong∅IC and equivalent toP .

The above concludes the theoretical analysis of strong∅IC. In the following, we compare the
strength of strong∅IC with the classical consistency notions used in constraint optimization. Fol-
lowing Petit et al. (2000), we define thereified form of a WCSPas follows:

Definition 11 (Petit et al., 2000) Given a WCSPP = (X ,D, C,⊤). Thereified form,reified(P),
of P is a constraint optimization problem (COP)(X h,Dh, Ch, obj), where:

• X h = X ∪ Z, whereZ = {zS |WS ∈ C \ {W∅}} are thecost variables.

• Dh(xi) = D(xi) for xi ∈ X , andDh(zS) = {0, . . . ,⊤ −W∅ − 1} for eachzS ∈ Z. If
⊤−W∅ < 1,Dh(zS) = ∅.

• Ch contains thereified constraintsCh
S∪{zS}

, which are the hard constraints associated with

eachWS ∈ C \ {W∅} defined asWS(ℓ) ≤ zS for each tupleℓ ∈ L(S). Ch also containsCh
Z

defined asW∅ ⊕
⊕

zS∈Z
zS < ⊤.

• The objective is to minimizeobj, whereobj =W∅ ⊕
⊕

zS∈Z
zS .

266

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

Finding the optimal solution ofreified(P) is equivalent to solvingP . However, enforcing GAC
onreified(P) cannot remove more values than enforcing strong∅IC of P . It is because strong
∅IC of P implies GAC ofreified(P) but not vice versa.

In general, we define the strength comparison as follows.

Definition 12 Given a problemP representable by two modelsφ(P) andψ(P). A consistencyΦ on
φ(P) is strictly stronger thananother consistencyΨ onψ(P), written asΦ onφ(P) > Ψ onψ(P),
or Φ > Ψ if φ(P) = ψ(P), iff ψ(P) isΨ wheneverφ(P) isΦ, but not vice versa.

Zytnicki et al. (2009) also define consistency strength comparison in terms of unsatisfiability detec-
tion, which is subsumed by our new definition. IfΦ onφ(P) impliesΨ onψ(P), and enforcingΨ
onψ(P) detects unsatisfiability, enforcingΦ onφ(P) can detect unsatisfiability as well.

Given a WCSPP = (X ,D, C,⊤). We show strong∅IC on P is stronger than GAC on
reified(P) by the following theorem.

Theorem 4 Strong∅IC onP > GAC onreified(P).

Proof: Figure 2 has given an example that a WCSP whose reified COP is GAC may not be strong
∅IC. We have to show that strong∅IC onP implies GAC onreified(P).

First,Ch
Z is GAC. If |C| ≤ 1, the constraint is obviously GAC. If|C| > 1, for eachvSi

∈ D(zSi
),

to satisfy the constraint, we just let other cost variables take the value0, i.e. supports for each
vSi

∈ D(zSi
) exist.

Besides,Ch
S∪{zS}

is GAC. By the definition of∅IC, there exists a tupleℓ′ ∈ L(S) such that

WS(ℓ
′) = 0. The tupleℓ′ can form the support ofvS ∈ D(zS) with respect toCh

S∪{zS}
. Besides,

the∅-supportℓ∅ of v ∈ D(xi), together withvS =WS(ℓ∅), forms a support forv ∈ D(xi). �

For a detailed comparison between strong∅IC of WCSPs and GAC of the reified approach,
readers can refer to the work of Leung (2009).

When the cost functions are binary, strong∅IC cannot be stronger than AC*. In the next section,
we show this fact by provingGAC*, a generalized version of AC*, to be stronger than strong∅IC.

4.2 Generalized Arc Consistency

Definition 13 (Cooper & Schiex, 2004) Given a WCSPP = (X ,D, C,⊤). Consider a cost function
WS ∈ C+ and a variablexi ∈ S. A tupleℓ ∈ L(S) is asimple supportof v ∈ D(xi) with respect to
WS with xi ∈ S iff ℓ[xi] = v andWS(ℓ) = 0. A variablexi ∈ S is star generalized arc consistent
(GAC*) with respect toWS iff xi is NC*, and each valuevi ∈ D(xi) has a simple supportℓ with
respect toWS . A WCSP isGAC* iff all variables are GAC* with respect to all related non-unary
cost functions.

The definition is designed with practical considerations, and is slightly weaker than Definition 4.2
in the work of Cooper et al. (2010), which also requiresWS(ℓ) = ⊤ if W∅ ⊕

⊕

xi∈S
Wi(ℓ[xi]) ⊕

WS(ℓ) = ⊤.
GAC* collapses to AC* for binary cost functions (Larrosa & Schiex, 2004) and AC for ternary

cost functions (Sanchez et al., 2008). GAC* is stronger thanstrong∅IC, as a WCSP which is GAC*
is also strong∅IC, but not vice versa. We state without proof as follows.

Theorem 5 GAC*> strong∅IC.

267

LEE & L EUNG

The procedureenforceGAC*() in Algorithm 4 enforces GAC* for a WCSP(X ,D, C,⊤),
based on theW-AC*3() Algorithm (Larrosa & Schiex, 2004). The propagation queueQ stores a set
of variablesxj. If xj ∈ Q, all variables involved in the same cost functions asxj are potentially
not GAC*. Initially, all variables are inQ. A variablexj is pushed intoQ only after values are
removed fromD(xj). At each iteration, an arbitrary variablexj is removed from the queue by
the functionpop() at line 4. The functionfindSupport() at line 7 enforces GAC* ofxi with
respect toWS by finding the simple supports. The infeasible values are removed by the function
pruneVal() at line 10. If a value is removed fromD(xi), the simple supports of other related
variables may be destroyed. Thus,xi is pushed back toQ again by the procedurepruneVal(). If
GAC*() terminates, all values in each variable domain must have asimple support. The WCSP is
now GAC*.

ProcedureenforceGAC*()
Q := X ;1

GAC* ();2

ProcedureGAC*()
while Q 6= ∅ do3

xj := pop (Q);4

foreachWS ∈ C+ s.t.xj ∈ S do5

foreachxi ∈ S \ {xj} do6

if findSupport (WS , xi) then7

// For further consistency enforcement. Assume
initially empty if not specified

S := S ∪ {xi};8

R := R ∪ {xi};9

pruneVal ();10

Function findSupport(WS, xi)
flag := false;11

foreachv ∈ D(xi) do12

α := min{WS(ℓ) | ℓ[xi] = v};13

if Wi(v) = 0 ∧ α > 0 then flag := true;14

Wi(v) :=Wi(v)⊕ α;15

foreachℓ ∈ L(S) s.t. ℓ[xi] = a doWS(ℓ) :=WS(ℓ)⊖ α;16

unaryProject (xi);17

return flag;18

Algorithm 4 : Enforcing GAC* for a WCSP

The procedureenforceGAC*() in Algorithm 4 is correct and must terminate. The proof is
similar to that of Theorem 2. By replacingfstrong by fGAC (the worst-case time complexities
of findSupport()) and f∅IC by O(nd) (the complexity ofpruneVal()), the complexity of
Algorithm 4 can be stated as follows.

Theorem 6 The procedureenforceGAC*() has a time complexity ofO(r2edfGAC+n
2d2), where

n, d, e, andr are as defined in Theorem 2.

268

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

Corollary 2 The procedureenforceGAC*() must terminate. The resultant WCSP is GAC*, and
equivalent to the original WCSP.

In general, the procedureenforceGAC*() is exponential in the maximum arity of the cost
function due tofindSupport(). The functionfindSupport() consists of two operations: (1)
finding the minimum cost of the tuple associated with{xi 7→ v} at line 13, and (2) performing
projection at lines 15 and 16. The time complexity of the firstoperation is polynomial for a flow-
based global cost functionWS. The method introduced by van Hoeve et al. (2006) can be applied to
the first operation as discussed in Section 4.1. However, thesecond operation modifiesWS toW ′

S,
which requires changing the costs of an exponential number of tuples. Cooper and Schiex (2004)
use a similar technique as the one by Zytnicki et al. (2009) (similar to the technique described in
Section 4.1) to make the modification constant time. However, the resultingW ′

S may not be flow-
based, affecting the time complexity of the subsequent procedure calls. To resolve the issue, we
introduceflow-based projection-safety. If WS is flow-based projection-safe, the flow property can
be maintained throughout enforcement.

Definition 14 Given a propertyT . A global cost functionWS is T projection-safeiff WS satisfies
the propertyT , and for allW ′

S derived fromWS by a series of projections and extensions,W ′
S also

satisfiesT .

In other words, aT projection-safe cost functionWS still satisfiesT after any numbers of pro-
jections or extensions. This facilitates the use ofT to derive efficient consistency enforcement
algorithms. In the following, we consider a special form ofT projection-safety, whenT is the
flow-based property.

In the following, we first defineFB, and show thatFB is the sufficient condition of flow-based
projection-safety.

Definition 15 A global cost function satisfiesFB if:

1. WS is flow-based, with the corresponding networkG = (V,E,w, c, d) with a fixed source
s ∈ V and a fixed destinationt ∈ V ;

2. there exists a subjective function mapping each maximum flow f in G to each tupleℓf ∈
L(S), and;

3. there exists an injection mapping from an assignment{xi 7→ v} to a subset of edges̄E ⊆ E
such that for all maximum flowf and the corresponding tupleℓf ,

∑

e∈Ē fe = 1 whenever
ℓf [xi] = v, and

∑

e∈Ē fe = 0 wheneverℓf [xi] 6= v

Lemma 1 GivenWS satisfyingFB. SupposeW ′
S is obtained fromProject(WS,Wi,v,α) or

Extend(WS,Wi,v,α). ThenW ′
S also satisfiesFB.

Proof: We only prove the part for projection, since the proof for extension is similar. We first show
thatW ′

S is flow-based (condition 1). AssumeG = (V,E,w, c, d) is the corresponding flow network
of WS . After the projection,G can be modified toG′ = (V,E,w′, c, d), wherew′(e) = w(e) − α
if e ∈ Ē is an edge corresponding to{xi 7→ v} andw′(e) = w(e) otherwise. The resultingG′ is

269

LEE & L EUNG

the corresponding flow network ofW ′
S , since for the maximum flowf in G with minimum cost:

∑

e∈E

w′
efe =

∑

e∈E

wefe − α
∑

e∈Ē

fe

= min{WS(ℓ) | ℓ ∈ L(S)} − α
∑

e∈Ē

fe

= min{W ′
S(ℓ) | ℓ ∈ L(S)}.

Moreover, since the topology ofG′ = (V,E,w′, c, d) is the same as that ofG = (V,E,w, c, d),
W ′

S also satisfies conditions 2 and 3. �

Theorem 7 If a global cost functionWS satisfiesFB, thenWS is flow-based projection-safe.

Proof: Initially, if no projection and extension is performed, directly from Definition 15,WS is
flow-based. AssumeW ′

S is the cost function formed fromWS after a series of projections and/or
extensions. By Lemma 1,W ′

S still satisfiesFB and thus flow-based. Result follows. �

As shown by Theorem 7, if a global cost function is flow-based projection-safe, it is always
flow-based after projections and/or extensions. Besides, by checking the conditions in Definition
15, we can determine whether a global cost function is flow-based projection-safe.

Note that the computation in the proof is performed under thestandard integer set instead of
V (⊤) for practical considerations. Further investigation is required if the computation can be re-
stricted onV (⊤).

By using Theorem 7, we can apply the results by van Hoeve et al.(2006) to compute the value
min{WS(ℓ) | ℓ[xi] = v ∧ ℓ ∈ L(S)} in polynomial time throughout GAC* enforcement. Besides,
the proof gives an efficient algorithm to perform projectionin polynomial time by simply modifying
the weights of the corresponding edges.

Again, we useSOFT ALL DIFFERENTdec as an example. Van Hoeve et al. (2006) have shown
that SOFT ALL DIFFERENTdec (S) satisfies conditions 1 and 2 in Definition 15. Besides, from the
network structure shown in Figure 1, by takinḡE = {(xi, v)} for each assignment{xi 7→ v},
condition 3 can be satisfied. Thus,SOFT ALL DIFFERENTdec is flow-based projection-safe.

1

1

2

−1x1

x2

x3

x4

a

b

c

s t

Figure 3: The flow networkSOFT ALL DIFFERENTdec () after projection

Consider the flow network of theSOFT ALL DIFFERENTdec in Figure 1. Suppose we perform
Project(SOFT ALL DIFFERENTdec(S),W1,a,1). The network is modified to the one in Fig-
ure 3, the weight of the edge(x1, a) in which is decreased from0 to −1. The flow has a cost of0,
which is the cost of the tuple(a, c, b, b) after projection.

270

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

If a global cost function is flow-based projection-safe,findSupport() has a time complexity
depending on the time complexity of computing the minimum cost flow and the shortest path from
any two nodes in the network. The result is stated by the following theorem.

Theorem 8 Given the time complexities of computing the minimum cost flow and the shortest path
are K and SP respectively. IfWS is flow-based projection-safe,findSupport() has a time
complexity ofO(K+ εd · SP), whered = max{|D(xi)| | xi ∈ S} andε is the maximum size of̄E.

Proof: By Theorem 1, after finding a first flow byO(K), the minimum cost at line 13 can be found
by augmenting the existing flow, which only requiresO(SP). Line 15 can be done in constant time,
while line 16 can be done as follows: (a) decrease the weightsof all edges corresponding toxi 7→ v
by α, and (b) augment the current flow to the one with new minimum cost by changing the flow
values of the edges whose weights have been modified in the first step. The first step requiresO(ε),
while the second step requiresO(ε · SP). At mostε edges are required to change their flow values
to maintain minimality of the flow cost. SinceunaryProject() requiresO(d), the overall time
isO(K + d(SP + ε · SP) + d) = O(K + εd · SP). �

The time complexity for finding a shortest path in a graphSP varies by applying different
algorithms. In general,SP = O(|V ||E|), as negative weights are introduced in the graph. However,
it can be reduced by applying a potential value on each vertices, as in Johnson’s (1977) algorithm.
For example, in Figure 3, we can increase the potential valueof verticesa andt by 1, and the weight
of the edges(b, t) and(c, t) by 1. This increases the cost of all paths froms to t by 1, and makes
the weights of all edges non-negative. Dijkstra’s (1959) algorithm can thus be applied, reducing the
time complexity toO(|E| + |V |log(|V |)).

Although GAC* can be enforced in polynomial time for flow-based projection-safe global cost
functions, thefindSupport() function still requires runtime much higher than that forbinary or
ternary table cost functions in general. To optimize the performance of the solver, we can delay the
consistency enforcement of global cost functions until allbinary or ternary table cost functions are
processed at line 5.

FDAC* for binary cost functions (Larrosa & Schiex, 2003) suggests that a stronger consistency
can be deduced by using the extension operator. We will discuss the generalized version of FDAC*
for non-binary cost functions in the next section.

4.3 Full Directional Generalized Arc Consistency

Definition 16 Given a WCSPP = (X ,D, C,⊤). Consider a cost functionWS ∈ C+ and a variable
xi ∈ S. A tupleℓ is the full supportof the valuev ∈ D(xi) with respect toWS and a subset of
variablesU ⊆ S \ {xi} iff ℓ[xi] = v andWS(ℓ) ⊕

⊕

xj∈U
Wj(ℓ[xj]) = 0. A variablexi is

directional star generalized arc consistent(DGAC*) with respect toWS if it is NC* and each value
v ∈ D(xi) has a full support with respect to{xu | xu ∈ S ∧u > i}. A WCSP isfull directional star
generalized arc consistent(FDGAC*) if it is GAC* and each variable is DGAC* with respectto all
related non-unary cost functions.

FDGAC* collapses to GAC when WCSPs collapse to CSPs. Moreover, FDGAC* collapses to
FDAC* (Larrosa & Schiex, 2003) when the arity of the cost functions is two. However, FDGAC*
is incomparable to FDAC for ternary cost functions (Sanchezet al., 2008). FDAC requires full
supports with not only zero unary but also zero binary costs for the next variable inS only, while
we only require all variables with full supports of zero unary costs.

271

LEE & L EUNG

By definition, FDGAC* is stronger than GAC* and also strong∅IC.

Theorem 9 FDGAC*> GAC*> strong∅IC.

The procedureenforceFDGAC*() enforces FDGAC* for a WCSP, based on theFDAC*() Al-
gorithm (Larrosa & Schiex, 2003). The propagation queuesQ andR store a set of variables. If
xj ∈ Q, all variables involved in the same cost functions asxj are potentially not GAC*; ifxj ∈ R,
the variablesxi involved in the same cost functions asxj are potentially not DGAC*. When values
are removed from the domain of variablexj , xj is pushed ontoQ andR; when unary costs of the
values inD(xj) are increased,xj is pushed toR. At each iteration, GAC* is maintained by the
procedureGAC*(). DGAC* is then enforced byDGAC*(). Enforcing DGAC* follows the ordering
from the largest index to the smallest index such that the full supports of values in the domains
of variables with smaller indices are not destroyed by DGAC*-enforcement on those with larger
indices. The variable with the largest index inR is removed fromR by the functionpopMax().
By implementingR as a heap,popMax() requires only constant time. DGAC* enforcement is per-
formed at line 10 byfindFullSupport(). In the last step, NC* is re-enforced bypruneVal().
The iteration continues until all propagation queues are empty, which implies all values in each
variable domain has a simple and full support, and all variables are NC*. The resultant WCSP is
FDGAC*.

ProcedureenforceFDGAC*()
R := Q := X ;1

while R 6= ∅ ∨Q 6= ∅ do2

GAC* ();3

DGAC* ();4

pruneVal ();5

ProcedureDGAC*()
while R 6= ∅ do6

xu := popMax (R);7

foreachWS ∈ C+ s.t.xu ∈ S do8

for i = n DownTo 1 s.t.xi ∈ S \ {xu} do9

if findFullSupport (WS , xi, S ∩ {xj | j > i}) then R := R ∪ {xi};1011

S := S ∪ {xi} ; // For further consistency enforcement.12

Function findFullSupport(WS, xi, U)
foreachxj ∈ U do13

foreachvj ∈ D(xj) do14

foreachℓ ∈ L(S) s.t. ℓ[xj] = vj do WS(ℓ) :=WS(ℓ)⊕Wj(vj);15

Wj(vj) := 0;16

flag := findSupport (WS , xi);17

foreachxj ∈ U do findSupport (WS , xj);18

unaryProject (xi);19

return flag;20

Algorithm 5 : Enforcing FDGAC* on a WCSP

272

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

The procedureenforceFDGAC*() in Algorithm 5 is correct and must terminate, the proof
of which is similar to those of Theorems 3 and 4 by Larrosa and Schiex (2003). The worst-case
time complexity ofenforceFDGAC*() can be stated in terms of that offindFullSupport()
(fDGAC) andfindSupport() (fGAC) as follows.

Theorem 10 The procedureenforceFDGAC*() has a time complexity ofO(r2ed(nfDGAC +
fGAC) + n2d2), wheren, d, e, andr are as defined in Theorem 2.

Proof: First we analyze the time complexity of enforcing DGAC*. Consider the procedure
DGAC*() at line 6. The while-loop iterates at mostO(n) times. Since no value is removed in
the while-loop, oncexi is processed at line 10, wherei > j, it is not pushed back toR at line
11. Thus, line 10 executes at mostO(r

∑n
j=0 |N(j)|) = O(r2e) times, whereN(j) is the set of

cost functions restrictingxj . Therefore, the time complexity ofDGAC*() isO(r2efDGAC). Since
DGAC*() executes at mostO(nd) times throughout the global enforcement iteration. Thus the time
spent on enforcing DGAC* isO(nr2edfDGAC)

AlthoughGAC*() is calledO(nd) times, it does nothing if no values are removed from variable
domains. Thus we count the number of times callingfindSupport(). Since the variables are
pushed intoQ only when a value is removed,findSupport() only executes at mostO(nd) times
throughout the global enforcement iteration. Similar arguments apply topruneVal() at line 10
insideGAC*() defined in Algorithm 4. With the proof similar to Theorem 6,the time spent on
enforcing GAC* isO(r2edfGAC + n2d2).

ThepruneVal at line 5 executesO(nd) times, and each time it requires a time complexity of
O(nd). Therefore, the overall time complexity isO(r2ed(nfDGAC + fGAC) + n2d2). �

Corollary 3 The procedureenforceFDGAC*() must terminate. The resultant WCSP is FDGAC*
and equivalent to the original WCSP.

Again, the complexity is exponential in the maximum arity due to the functionfindSupport()
andfindFullSupport(). In the following, we focus the discussion onfindFullSupport().
The first part (lines 15 and 16) performs extensions to push all the unary costs back toWS. By
the time we execute line 17, all unary costsWj , wherexj ∈ U , are0, and enforcing GAC* forxi
achieves the second requirement of DGAC* (eachv ∈ D(xi) has a full support). Line 18 re-instates
GAC* for all variablesxj ∈ U . Note that success in line 17 guarantees thatWj(vj) = 0 for some
valuevj appearing in a tupleℓ which makesWS(ℓ) = 0.

Again, flow-based projection-safety helps reduce the time complexity offindFullSupport()
throughout the enforcement. The proof of Theorem 7 gives a polynomial time algorithm to perform
extension and maintain efficient computation ofmin{WS(ℓ) | ℓ ∈ L(S)}. Flow-based projection-
safety can be guaranteed by Theorem 7, which requires checking conditions 1, 2, and 3 in the
definition of flow-based projection-safety. The complexityresult follows from Theorems 2 and 8.

Theorem 11 If WS is a flow-based projection-safe global cost function,findFullSupport()
has a time complexity ofO(K + εrd · SP), wherer, ε, d, K andSP are as defined in Theorems 2
and 8.

Proof: Similarly to Theorem 8, lines 13 to 16 can be performed as follows: (a) for eachxj ∈ U
and each valuevj ∈ D(xj), increase the weights of all edges corresponding to{xj 7→ vj} by
Wj(vj), and then reduceWj(vj) to 0, and (b) find a flow with the new minimum cost in the new

273

LEE & L EUNG

flow network. The first step can be done inO(εrd), as the size ofU is bounded by the arity of
the cost functionr. The second step can be done inO(K), which also acts as preprocessing for
findSupport() at lines 17 and 18. By Theorem 8, lines 17 and 18 can be done inO(rεd · SP).
Thus, the overall complexity isO(r · εd+K+ rεd · SP) = O(K + εrd · SP). �

Similarly to GAC*, the DGAC* enforcement for global cost functions can be delayed until all
binary and ternary table cost functions are processed.

4.4 Generalizing Existential Directional Arc Consistency

EDAC* (de Givry et al., 2005) can be generalized to EDGAC* using the full support definition as
in FDGAC*. However, we find that naively generalizing EDAC* is not always enforceable, due to
the limitation of EDAC*. In the following, we explain and provide a solution to this limitation.

4.4.1 AN INHERENT L IMITATION OF EDAC*

Definition 17 (de Givry et al., 2005) Consider a binary WCSPP = (X ,D, C,⊤). A variable
xi ∈ X is existential arc consistent(EAC*) if it is NC* and there exists a valuev ∈ D(xi) with zero
unary cost such that it has full supports with respect to all binary cost functionsWi,j on {xi, xj}
and{xj}. P is existential directional arc consistent(EDAC*) if it is FDAC* and all variables are
EAC* .

Enforcing EAC* on a variablexi requires two main operations: (1) compute

α = min
a∈D(xi)

{Wi(a)⊕
⊕

Wi,j∈C

min
b∈D(xj)

{Wi,j(a, b)⊕Wj(b)}},

which determines whether enforcing full supports breaks the NC* requirement, and (2) ifα > 0, en-
force full supports with respect to all cost functionsWi,j ∈ C by invokingfindFullSupport (xi,
Wi,j, {xj}), implying that NC* is no longer satisfied and henceW∅ can be increased by enforcing
NC*. EDAC* enforcement will oscillate if constraints sharemore than one variable. The situation
is similar to Example3 by de Givry et al. (2005). We demonstrate by the example in Figure 4(a),
which shows a WCSP with two cost functionsW 1

1,2 andW 2
1,2. It is FDAC* but not EDAC*. If

x2 takes the valuea, W 1
1,2(v, a) ⊕W1(v) ≥ 1 for all valuesv ∈ D(x1); if x2 takes the valueb,

W 2
1,2(v, b) ⊕ C1(v) ≥ 1 for all valuesv ∈ D(x1). Thus, by enforcing full supports of each value

in D(x2) with respect to all cost functions and{x1}, NC* is broken andW∅ can be increased. To
increaseW∅, we enforce full supports: the cost of1 in W1(a) is extended toW 1

1,2, resulting in Fig-
ure 4(b). No costs inW1 can be extended toW 2

1,2. Performing projection fromW 1
1,2 toW2 results

in Figure 4(c). The WCSP is now EAC* but not FDAC*. Enforcing FDAC* converts the problem
state back to Figure 4(a).

The problem is caused by the first step, which does not tell howthe unary costs are separated
for extension to increaseW∅. Although an increment is predicted, the unary cost inW1(a) has a
choice of moving itself toW 1

1,2 or W 2
1,2. During computation, no information is obtained on how

the unary costs are moved. As shown, a wrong movement breaks DAC* without incrementingW∅,
resulting in oscillation.

This problem does not occur in existing solvers which handleonly up to ternary cost functions.
The solvers allow only one binary cost functions for every pair of variables. If there are indeed
two cost functions for the same two variables, the cost functions can be merged into one, where the

274

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

⊤ = 4,W∅ = 0

x1 W1

a 1
b 0

x1 x2 W 1
1,2

a a 0
a b 2
b a 1
b b 0

x2 W2

a 0
b 0

x1 x2 W 2
1,2

a a 1
a b 0
b a 0
b b 2

(a) Original WCSP

⊤ = 4,W∅ = 0

x1 W1

a 0
b 0

x1 x2 W 1
12

a a 1
a b 3
b a 1
b b 0

x2 W2

a 0
b 0

x1 x2 W 2
12

a a 1
a b 0
b a 0
b b 2

(b) After Extension

⊤ = 4,W∅ = 0

x1 W1

a 0
b 0

x1 x2 W 1
12

a a 0
a b 3
b a 0
b b 0

x2 W2

a 1
b 0

x1 x2 W 2
12

a a 1
a b 0
b a 0
b b 2

(c) After Projection

Figure 4: Oscillation in EDAC* enforcement

cost of a tuple in the merged function is the sum of the costs ofthe same tuple in the two original
functions. However, if we allow high arity global cost functions, sharing of more than one variable
would be common and necessary in many scenarios. A straightforward generalization of EDAC*
for non-binary cost functions would inherit the same oscillation problem. In the case of ternary cost
functions, Sanchez et al. (2008) cleverly avoid the oscillation problem by re-defining full supports
to include not just unary but also binary cost functions. During EDAC enforcement, unary costs are
distributed through extension to binary cost functions. However, the method is only designed for
ternary cost functions. In the following, we define a weak version of EDAC*, which is based on the
notion ofcost-providing partitions.

4.4.2 COST-PROVIDING PARTITIONS AND WEAK EDGAC*

Definition 18 A cost-providing partitionBxi
for variablexi ∈ X is a set of sets{Bxi,WS

| xi ∈ S}
such that:

• |Bxi
| is the number of constraints which scope includesxi;

• Bxi,WS
⊆ S;

• Bxi,WSj
∩Bxi,WSk

= ∅ for any two different constraintsWSk
,WSj

∈ C+, and;

•
⋃

Bxi,WS
∈Bxi

Bxi,WS
= (

⋃

WS∈C+∧xi∈S
S) \ {xi}.

Essentially,Bxi
forms a partition of the set containing all variables constrained byxi. If xj ∈

Bxi,WS
, the unary costs inWj can only be extended toWS when enforcing EAC* forxi. This

avoids the problem of determining how the unary costs ofxj are distributed when there exists more
than one constraint on{xi, xj}.

Based on the cost-providing partitions, we defineweak EDAC*.

Definition 19 Consider a binary WCSPP = (X ,D, C,⊤) and cost-providing partitions{Bxi
|

xi ∈ X}. A weak fully supported valuev ∈ D(xi) of a variablexi ∈ X is a value with zero unary
cost and for each variablexj and a binary cost functionWm

i,j, there exists a valueb ∈ D(xj) such
thatWm

i,j(v, b) = 0 if Bxi,W
m
i,j

= {}, andWm
i,j(v, b)⊕Wj(b) = 0 if Bxi,W

m
i,j

= {xj}. A variablexi
is weak existential arc consistent(weak EAC*) if it is NC* and there exists at least one weak fully
supported value in its domain.P is weak existential directional arc consistent(weak EDAC*) if it
is FDAC* and each variable is weak EAC*.

275

LEE & L EUNG

Weak EDAC* collapses to AC when WCSPs collapse to CSPs for anycost-providing partition.
Moreover, weak EDAC* is reduced to EDAC* (de Givry et al., 2005) when the binary cost functions
share at most one variable.

We further generalize weak EDAC* toweak EDGAC*for n-ary cost functions.

Definition 20 Given a WCSPP = (X ,D, C,⊤) and cost-providing partitions{Bxi
| xi ∈ X}.

A weak fully supported valuev ∈ D(xi) of a variablexi is a value with zero unary cost and full
supports with respect to all cost functionsWS ∈ C+ withxi ∈ S andBxi,WS

. A variablexi is weak
existential generalized arc consistent(weak EGAC*) if it is NC* and there exists at least one weak
fully supported value in its domain.P is weak existential directional generalized arc consistent
(weak EDGAC*) if it is FDGAC* and each variable is weak EGAC*.

Weak EDAC* and weak EDGAC* can be achieved using for any cost-providing partitions. Weak
EDGAC* is reduced to GAC when WCSPs collapse to CSPs.

Compared with other consistency notions, weak EDGAC* is strictly stronger than FDGAC*
and other consistency notions we have described. It can be deduced directly from the definition.

Theorem 12 For any cost-providing partitions, weak EDGAC*> FDGAC*>GAC*> strong∅IC

VAC is stronger than weak EDGAC*, as stated in the theorem below.

Theorem 13 VAC are strictly stronger than weak EDGAC* with any cost-providing partition.

Proof: A WCSP which is VAC must be weak EDGAC* for any cost-providingpartition. Oth-
erwise, there must exist a sequence of projections and extensions to increaseW∅, which violates
Theorem 7.3 by Cooper et al. (2010). On another hand, Cooper et al. (2010) give an example which
is EDAC* but not VAC. Results follow. �

However, weak EDGAC* is incomparable to completek-consistency (Cooper, 2005), wherek >
2, for any cost-providing partition. It is because EDAC* is already incomparable to completek-
consistency (Sanchez et al., 2008).

To compute the cost-providing partitionBxi
of a variablexi, we could apply Algorithm 6, which

is a greedy approach to partition the setY containing all variables related toxi defined in line 1,
hoping to gathering more costs by gathering more variables at one cost function, increasing the
chance of removing more infeasible values and raisingW∅.

ProcedurefindCostProvidingPartition(xi)
Y = (

⋃

WS∈C+∧xi∈S S) \ {xi};1

SortC+ in decreasing order of|S|;2

foreachWS ∈ C+ s.t.xi ∈ S do3

Bxi,WS
= Y ∩ S;4

Y = Y \ S;5

Algorithm 6 : FindingBxi

The procedureenforceWeakEDGAC*() in Algorithm 7 enforces weak EDGAC* of a WCSP.
The cost-providing partitions are first computed in line 1. The procedure makes use of four prop-
agation queuesP, Q, R andS. If xi ∈ P, the variablexi is potentially not weak EGAC* due to

276

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

ProcedureenforceWeakEDGAC*()
foreachxi ∈ X do findCostProvidingPartition (xi);1

R := Q := S := X ;2

while S 6= ∅ ∨R 6= ∅ ∨Q 6= ∅ do3

P := S ∪
⋃

xi∈S,WS∈C+(S \ {xi});4

weakEGAC* ();5

S := ∅;6

DGAC* ();7

GAC* ();8

pruneVal ();9

ProcedureweakEGAC*()
while P 6= ∅ do10

xi := pop(P);11

if findExistentialSupport (xi) then12

R := R ∪ {xi};13

P := P ∪ {xj | xi, xj ∈ WS ,WS ∈ C+};14

Function findExistentialSupport(xi)
flag := false;15

α := mina∈D(xi){Wi(a)⊕
⊕

xi∈S,WS∈C+ minℓ[xi]=a{WS(ℓ)⊕
⊕

xj∈Bxi,WS
Wj(ℓ[xj])}};16

if α > 0 then17

flag := true;18

foreachWS ∈ C+ s.t.xi ∈ S do findFullSupport (WS , xi, Bxi,WS
);19

return flag;20

Algorithm 7 : Enforcing weak EDGAC*

a change in unary costs or a removal of values in some variables. If xj ∈ R, the variablesxi in-
volved in the same cost functions asxj are potentially not DGAC*. Ifxj ∈ Q, all variables in
the same cost functions asxj are potentially not GAC*. The propagation queueS helps buildP
efficiently. The procedureweakEGAC*() enforces weak EGAC* on each variable by the procedure
findExistentialSupport() in line 12. If findExistentialSupport() returns true, a
projection has been performed for some cost functions. The weak fully supported values of other
variables may be destroyed. Thus, the variables constrained by xi are pushed back ontoP for re-
vision in line 14. DGAC* and GAC* are enforced by the proceduresDGAC*() andGAC*(). A
change in unary cost requires re-examining DGAC* and weak EGAC*, which is done by pushing
the variables into the corresponding queues in lines 13 and 14, and lines 11 and 12 in Algorithm 5.
In the last step, NC* is enforced bypruneVal(). Again, if a value inD(xi) is removed, GAC*,
DGAC* or weak EGAC* may be destroyed, andxi is pushed into the corresponding queues for
re-examination bypruneVal() in Algorithm 1. If all propagation queues are empty, all variables
are GAC*, DGAC*, and weak EGAC*, i.e. the WCSP is weak EDGAC*.

The algorithm is correct and must terminate. We analyze the time complexity by abstracting the
worst-case time complexities offindSupport(),findFullSupport() and

277

LEE & L EUNG

findExistentialSupport() as fGAC , fDGAC , andfEGAC respectively. The overall time
complexity is stated as follows.

Theorem 14 The procedureenforceWeakEDGAC*() requiresO((nd+⊤)(fEGAC+r
2efDGAC+

nd) + r2edfGAC), wheren, d, e, andr are defined in Theorem 2.

Proof: As line 1 requires onlyO(nr), we only analyze the overall time complexity spent by each
sub-procedure and compute the overall time complexity.

A variable is pushed intoS if a value is removed or weak EGAC* is violated. The former
happensO(nd) times, while the latter occursO(⊤) times (each time weak EGAC* is violated,W∅

will be increased). SinceP is built on S, findExistentialSupport() is executed at most
O(nd+⊤) times throughout the global enforcement. Thus, the time complexity spent on enforcing
weak EGAC* isO((nd+⊤)fEGAC).

A variable is pushed intoR if either a value is removed, or unary costs are moved by GAC*
or weak EGAC* enforcement. Thus,DGAC*() is calledO(nd + ⊤) times. Each timeDGAC*() is
called, by Theorem 10, it requiresO(r2efDGAC) for DGAC* enforcement. Thus, the time com-
plexity of enforcing DGAC* isO((nd+⊤)r2efDGAC).

A variable is pushed intoQ only if a value is removed. Thus,findSupport() inside the
procedureGAC*() is called at mostO(nd) times throughout the global enforcement. Using the
proof similar to Theorem 6, the overall time spent on enforcing GAC* isO(r2edfGAC + n2d2).

The main while-loop in line 3 terminates when all propagation queues are empty. Thus, the main
while-loop iteratesO(nd+ ⊤) times. The time complexity for re-enforcing NC* bypruneVal()
at line 9 isO((nd+⊤)nd).

By summing up all time complexity results, the overall time complexity isO((nd+⊤)(fEGAC+
r2efDGAC + nd) + r2edfGAC). �

Corollary 4 The procedureenforceWeakEDGAC*() must terminate. The resultant WCSP is
weak EDGAC*, and equivalent to the original WCSP.

The procedureenforceWeakEDGAC*() is again exponential due tofindSupport(),
findFullSupport() andfindExistentialSupport(). In the following, we focus on the
last procedure. It first checks whether a weak fully supported value exists by computingα, which
determines whether NC* still holds if we performfindFullSupport() from line 19. Ifα equals
0, a weak fully supported value exists and nothing should be done; otherwise, this value can be made
weak fully supported by the for-loop at line 19. The time complexity depends on two operations:
(1) computing the value ofα in line 16, and; (2) finding full supports by the line 19. Thesetwo
operations are exponential in|S| in general. However, if all global cost functions are flow-based
projection-safe, the time complexity of the above operations can be reduced to polynomial time.

In the next section, we put theory into practice. We demonstrate our framework with different
benchmarks and compare the results with the current approach.

5. Towards a Library of Efficient Global Cost Functions

In the previous section, we only showSOFT ALL DIFFERENTdec is flow-based projection-safe. In
the following, we further show that a range of common global cost functions are also flow-based
projection-safe. We give experimental results on various benchmarks with different consistency
notions and different global cost functions.

278

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

5.1 A List of Flow-Based Projection-Safe Global Cost Functions

In this section, we show that a number of common global cost functions are flow-based projection-
safe. They include the soft variants of ALL DIFFERENT, GCC,SAME, andREGULAR constraints.

5.1.1 THE SOFT VARIANTS OF ALL DIFFERENT

The ALL DIFFERENT() constraint restricts variables to take distinct values (Laurière, 1978). There
are two possible soft variants, namelySOFT ALL DIFFERENTdec () and ALL DIFFERENTvar (). The
former returns the number of pairs of variables that share the same value, while the latter returns
the least number of variables that must be changed so that allvariables take distinct values. The
cost functionSOFT ALL DIFFERENTdec () is shown to be flow-based projection-safe in Section 4.2.
In fact, this also implies that another cost function
SOFT ALL DIFFERENTvar () is flow-based projection-safe. TheSOFT ALL DIFFERENTvar () function
also corresponds to a flow network with structure similar to that of SOFT ALL DIFFERENTdec () but
different in weights on the edges connecting tot (van Hoeve et al., 2006). We state the results as
follows.

Theorem 15 The cost functionsSOFT ALL DIFFERENTvar (S) andSOFT ALL DIFFERENTdec (S) are
flow-based projection-safe.

5.1.2 THE SOFT VARIANTS OF GCC

Given a set of valuesΣ =
⋃

xi∈S
D(xi) and functionslb andub that maps fromΣ to non-negative

integers. Each valuev ∈ Σ is associated with a upper boundubv and a lower boundlbv. The
GCC(S, ub, lb) constraint is satisfied by a tupleℓ ∈ L(S) if the number of occurrences of a value
v ∈ Σ in ℓ (denoted by#(ℓ, v)) is at mostubv times and at leastlbv times (Régin, 1996). There
are two soft variants of GCC constraints, namelySOFT GCCvar() andSOFT GCCval() (van Hoeve
et al., 2006).

Definition 21 (van Hoeve et al., 2006) Define two functionss(ℓ, v) and e(ℓ, v): s(ℓ, v) returns
lbv −#(ℓ, v) if #(ℓ, v) ≤ lbv, and0 otherwise;e(ℓ, v) returns#(ℓ, v)−ubv if #(ℓ, v) ≥ ubv, and
0 otherwise.

The global cost functionsSOFT GCCvar(S) returnsmax{
∑

v∈Σ s(ℓ, v),
∑

v∈Σ e(ℓ, v)}, pro-
vided that

∑

v∈Σ lbv ≤ |S| ≤
∑

v∈Σ ubv; while SOFT GCCval(S) returns
∑

v∈Σ(s(ℓ, v)+ e(ℓ, v)).

Van Hoeve et al. (2006) show that bothSOFT GCCvar andSOFT GCCdec are flow-based, and the
flow networks have structures similar to theSOFT ALL DIFFERENT cost functions. With a proof
similar to Theorem 15, we can show the following theorem.

Theorem 16 The cost functionsSOFT GCCvar(S) andSOFT GCCval(S) are flow-based projection-
safe.

5.1.3 THE SOFT VARIANTS OF SAME

Given two sets of variablesS1 andS2 with |S1| = |S2| andS1 ∩ S2 = ∅. The SAME(S1,S2)
constraint is satisfied by the tupleℓ ∈ L(S1 ∪ S2) if ℓ[S1] is a permutation ofℓ[S2] (Beldiceanu,
Katriel, & Thiel, 2004). The hardSAME() constraint can be softened to the global cost function
SOFT SAMEvar () (van Hoeve et al., 2006):

279

LEE & L EUNG

Definition 22 (van Hoeve et al., 2006) Given that the union operation∪ is the multi-set union, and
ϕ1∆ϕ2 returns the symmetric difference between two multi-setsϕ1 andϕ2, i.e.ϕ1∆ϕ2 = (ϕ1 \
ϕ2) ∪ (ϕ2 \ ϕ1).

The global cost functionSOFT SAMEvar (S1,S2) returns|(
⋃

xi∈S1
{ℓ[xi]})∆(

⋃

yi∈S2
{ℓ[yi]})|/2.

Theorem 17 The cost functionSOFT SAMEvar (S1, S2) is flow-based projection-safe.

Proof: Van Hoeve et al. (2006) have shown thatSOFT SAMEvar satisfies conditions 1 and 2 in
Definition 15. For instance, considerS1 = {x1, x2, x3} andS2 = {x4, x5, x6} with D(x1) = {a},
D(x2) = {a, b}, D(x3) = {b}, D(x4) = {a, b} ,andD(x5) = D(x6) = {a}. The flow network
corresponding toSOFT SAMEvar (S1, S2) is shown in Fig. 5. Solid edges have zero weight and unit
capacity. Dotted edges have unit weight and a capacity of3. The thick edges show the(s, t)-flow
corresponding to the tupleℓ = (a, b, b, b, a, a).

a

b

x1

x2

x3

x4

x5

x6

s t

Figure 5: The flow network corresponding to theSOFT SAMEvar (S1, S2) constraint

Moreover, from the network structure, by takinḡE = {(xi, v)} for xi ∈ S1 andv ∈ D(xi),
andĒ = {(v, yi)} for yi ∈ S2 andv ∈ D(yi), the cost function satisfies condition 3. Thus, it is
flow-based projection-safe. �

5.1.4 THE SOFT VARIANTS OF REGULAR

The REGULAR constraint are defined based on regular languages. A regularlanguageL(M) can
be represented by a finite state automatonM = (Q,Σ, δ, q0, F). Q is the set of states.Σ is a set of
characters. The symbolq0 ∈ Q denotes the initial state andF ⊆ Q is the set of final states. The
transition functionδ is defined asδ : Q×Σ 7→ Q. An automaton can be represented graphically as
shown in Figure 6, where the final states are denoted by doublecircles.

GivenD(xi) ⊆ Σ for eachxi ∈ S. The REGULAR(S, M) constraint accepts the tupleℓ ∈
L(S) if the corresponding string belongs to a regular languageL(M) represented by a finite state
automatonM = (Q,Σ, δ, q0, F) (Pesant, 2004).

a

a

b

b

q0 q1

q2

Figure 6: The graphical representation of a automaton.

280

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

Two soft variants are defined for theREGULAR constraint, namelySOFT REGULARvar () and
SOFT REGULARedit() (van Hoeve et al., 2006):

Definition 23 (van Hoeve et al., 2006) Defineτℓ to be the string formed from the tupleℓ ∈ L(S).
The cost functionsSOFT REGULARvar (S) returnsmin{H(τℓ, τ) | τ ∈ L(M)}, whereH(τ1, τ2)
returns the number of positions at which two stringsτ1 andτ2 differ; while SOFT REGULARedit(S)
returnsmin{E(τℓ, τ) | τ ∈ L(M)}, whereE(τ1, τ2) returns the minimum number of insertions,
deletions and substitutions to transformτ1 to τ2 .

Theorem 18 The cost functionsSOFT REGULARvar (S) andSOFT REGULARedit(S) are flow-based
projection-safe.

Proof: Van Hoeve et al. (2006) show that conditions 1 and 2 are satisfied. For example, consider the
automatonM shown in Figure 6 andS = {x1, x2, x3} with D(x1) = {a} andD(x2) = D(x3) =
{a, b}. The flow networks corresponding to theSOFT REGULARvar (S) andSOFT REGULARedit(S)
functions are shown in Figure 7(a) and 7(b) respectively. The solid edges have zero weight and the
dotted edges have unit weight. The thick edges show the flow corresponding to the tuple(a, b, a).

The graphs are constructed as follows (van Hoeve et al., 2006): the vertices are separated into
n + 1 layers, wheren = |X |, and each layer contains|Q| nodes. The sources is connected toq0,0
at the first layer, and the sinkt is connected by{qn+1,i | qi ∈ F} at the last layer. Between theith

and(i + 1)th layers, an zero weighted edge representingv ∈ D(xi) connectsqi,h at theith layer
andqi+1,k at the(i+ 1)th layer if δ(qk, v) = qh. ForSOFT REGULARvar (S), a set of unit-weighted
edgesEsub is added to the graph, whereEsub = {(qi,k, qi+1,h)u | xi ∈ X ∧ u ∈ D(xi) ∧ ∃v 6=
u s.t. δ(qk, v) = qh}. For SOFT REGULARedit(S), a set of unit-weighted edgesEedit is added to
the graph, whereEedit = Esub ∪ {(qi,k, qi,h) | xi ∈ X ∧ ∃v s.t. δ(qk, v) = qh} ∪ {(qi,k, qi,k)u |
xi ∈ X ∧ u ∈ D(xi)}.

Moreover, each assignment{xi 7→ v} maps to a set of edges̄E labelled asv at the layerxi in the
networks. For example,{x1 7→ a} maps to the edges labeled asa at the layerx1 shown in Fig. 7(a).
Thus, theSOFT REGULAR cost functions satisfy condition 3 and are flow-based projection-safe.�

For theSOFT REGULAR cost functions, instead of the general flow computation algorithms, the
dynamic programming approach can be applied to compute the minimum cost (van Hoeve et al.,
2006; Demassey, Pesant, & Rousseau, 2006).

5.2 Experimental Results

In this section, a series of experiments with different benchmarks is conducted to demonstrate the
efficiency and practicality of different consistencies with different global cost functions. We im-
plemented the strong∅IC, GAC*, FDGAC* and weak EDGAC* enforcement algorithms forthese
global cost functions in ToulBar2 version 0.51. We compare their performance using five bench-
marks of different natures. In case of the reified COP models,the instances are solved using ILOG
Solver 6.0.

All benchmarks are crisp in nature, and are softened as follows. For each variablexi intro-
duced, a random unary cost from0 to 9 is assigned to each value inD(xi). Soft variants of global
constraints are implemented as proposed. The target of all benchmarks is to find the optimal value
within 1 hour.

1. http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro

281

LEE & L EUNG

a

a

a

aa

a

a

a a

a

a

a bb

b

bb

b
b

b

x1 x2 x3

s

t

q0q0q0q0

q1q1q1q1

q2q2q2q2

(a) SOFT REGULARvar()

a,b a,ba

a

a

a

aa

a

a

a a

a

a

a bb

b

bb

b
b

b

x1 x2 x3

s

t

q0q0q0q0

q1q1q1q1

q2q2q2q2

(b) SOFT REGULARedit()

Figure 7: The flow network corresponding to the softREGULAR constraints

In the experiments, variables are assigned in lexicographical order. Value assignment starts with
the value with minimum unary cost. The test was conducted on aSun Blade 2500 (2× 1.6GHz
USIIIi) machine with 2GB memory. The average runtime and number of nodes of five instances
are measured for each value ofn with no initial upper bound. Entries are marked with a “*” if the
average runtime exceeds the limit of 1 hour. The best resultsare marked using the ‘†’ symbol.

5.2.1 BENCHMARKS BASED ON SOFT ALL DIFFERENT

The ALL DIFFERENT() constraint has various applications. In the following, we focus on two: the
all-interval series and the Latin Square problem.

ALL INTERVAL SERIES

The all-interval series problem (prob007 in CSPLib) is modelled as a WCSP by two sets of vari-
ables{si} and{di} with domains{0, . . . n− 1} to denote the elements and the adjacent difference
respectively. Random unary costs ranging from0 to 9 is placed on each variable. We apply two
soft ALL DIFFERENT cost functions on{si} and {di} respectively, with a set of hard arithmetic
constraintsdi = |si − si+1| for eachi = 1, . . . , n− 1.

The experiment is divided into two parts. We first compare results on enforcing different con-
sistencies using global cost functions derived fromALL DIFFERENT() . Then we compare the result
on using different approaches on modellingSOFT ALL DIFFERENTdec () functions.

The result of the first experiment is shown in Table 1, which agrees with the theoretical strength
of the consistency notions as shown by the number of nodes. FDGAC* and GAC* always out-
performs strong∅IC and the reified modelling, but FDGAC* requires more time than GAC*. One
explanation for this phenomenon is the problem structure. Whenxi andxi+1 are assigned,di is

282

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

automatically assigned due to the hard constraintdi = |xi − xi+1|. Thus, enforcing FDGAC* on
the variables{di} on every search node is not worthwhile.

(a) SOFT ALL DIFFERENTvar()

n
Reified Approach Strong∅IC GAC* FDGAC* Weak EDGAC*
Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes

8 1.3 571.0 0.2 296.4 †0.1 181.0 †0.1 86.4 †0.1 †15.4
9 3.9 1445.0 1.0 542.2 0.6 300.2 1.2 197.2 †0.1 †20.2
10 52.0 15860.6 20.2 5706.6 10.8 2589.4 15.2 1612.4 †0.2 †47.4
11 59.6 13286.2 31.8 7536.4 16.4 3273.6 21.0 1715.4 †0.1 †33.6
12 180.1 31015.2 77.8 12886.4 37.6 5204.6 46.8 2259.0 †0.8 †47.6

(b) SOFT ALL DIFFERENTdec()

n
Reified Approach Strong∅IC GAC* FDGAC* Weak EDGAC*
Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes

8 1.6 777.0 0.2 396.8 0.2 219.6 †0.1 93.8 †0.1 †16.0
9 3.9 1480.4 1.0 553.2 0.6 301.8 1.2 195.0 †0.1 †28.8
10 56.8 17753.8 21.2 5999.2 11.6 2654.6 16.0 1604.2 †0.8 †70.4
11 70.1 16149.6 38.4 9113.2 18.6 3551.8 23.0 1812.6 †1.0 †68.6
12 214.9 38438.6 96.4 16355.2 46.8 6405.0 52.6 2451.6 †1.8 †71.2

Table 1: The time (in seconds) and the number of nodes in solving the all-interval series instances

The second experiment is based on the following fact. TheSOFT ALL DIFFERENTdec (S) is flow-
based projection-safe. It can be modelled as a flow network for consistency enforcement efficiently.
Another way to model the global cost functions is to apply thedecomposition directly. The cost
returned bySOFT ALL DIFFERENTdec (S) is equal to the sum of the costs returned by a set of soft
binary cost functions{Wi,j | i > j ∧ xi, xj ∈ S}, whereWi,j(a, b) returns0 if a 6= b and1
otherwise. Thus, binary consistency notions, such as AC* and FDAC* can be applied directly.

We compare the performance on solving the all interval series problem with different modelling
methods onSOFT ALL DIFFERENTdec (). The results are shown in Table 2. Under the same level of
consistency, global cost functions remove an order of magnitude10 to 100 times more nodes than
the binary decomposition. However, the time required for binary cost functions is much smaller than
global cost functions for AC* and FDAC*. This is because enforcing consistency notions on binary
cost functions is faster than global cost functions, and theremoval of nodes is not great enough to
compensate the extra time for consistency enforcement of global cost functions. The runtime of
weak EDGAC*, however, is the fastest among all (2 times over the EDAC* counterpart) since it
is able to utilize global information to prune drastically more search space than any of the binary
decomposition approaches.

LATIN SQUARES

The Latin Square problem (prob003 in CSPLib) of ordern is to fill an initially emptyn × n table
using numbers from{0, . . . , n − 1} such that each number occurs once in every row and every
column. We model and relax the problem as a WCSP by a set of variables{xij} denoting the
value placed in the cell at theith row and thejth column with random unary costs. These costs
are essentially restrictions/preferences on the value to be taken by each cell. Thus, our formulation
can model different variants of the Latin Square problem, including the Latin Square Completion
problem. OneSOFT ALL DIFFERENT() cost function is posted on the variables at each row and each

283

LEE & L EUNG

n
Binary Decomposition Global Cost Functions

AC* FDAC* EDAC* GAC* FDGAC* Weak EDGAC*
Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes

8 †0.1 317.2 †0.1 231.6 †0.1 161.8 0.2 219.6 †0.1 93.8 †0.1 †16.0
9 †0.1 596.0 †0.1 358.2 †0.1 333.0 0.6 301.8 1.2 195.0 †0.1 †28.8
10 1.4 9113.8 1.0 5957.4 1.0 5483.2 11.6 2654.6 16.0 1604.2 †0.8 †70.4
11 1.6 7672.2 1.2 4578.4 1.2 4318.6 18.6 3551.8 23.0 1812.6 †1.0 †68.6
12 4.6 15897.2 3.2 10534.8 2.6 7414.4 46.8 6405.0 52.6 2451.6 †1.8 †71.2

Table 2: The time (in seconds) and the number of nodes in solving the all-interval series instances
with different modelling

column, denoting that same elements on the same rows and columns are allowed but with violation
costs so that the resultant cost is optimal. The result is shown in Table 3, which is similar to Table
1. Besides, the runtime also agrees with the theoretical strength of the consistency notions.

(a) SOFT ALL DIFFERENTvar()

n
Reified Approach Strong∅IC GAC* FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes
4 69.0 129958.0 1.8 3511.0 †0.1 188.0 †0.1 21.8 †0.1 †16.6
5 * * 490.2 348790.4 26.0 12368.0 †0.1 66.2 †0.1 †41.2
6 * * * * * * 3.4 244.4 †1.4 †93.6
7 * * * * * * 43.2 1429.4 †16.2 †425.2
8 * * * * * * * * †148.2 †2066.5

(b) SOFT ALL DIFFERENTdec()

n
Reified Approach Strong∅IC GAC* FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes
4 62.7 121319.0 2.6 3859.8 †0.1 187.6 †0.1 21.8 †0.1 †16.6
5 * * 531.4 376526.2 25.2 12254.0 †0.1 66.2 †0.1 †41.2
6 * * * * * * 3.4 244.4 †1.4 †93.6
7 * * * * * * 43.4 1429.6 †15.8 †425.2
8 * * * * * * * * †147.2 †2066.5

Table 3: The time (in seconds) and the number of nodes in solving the Latin Square instances using
SOFT ALL DIFFERENT cost functions

The SOFT ALL DIFFERENTdec () cost functions can also be decomposed into binary disequality
cost functions. We also perform experiments to compare the binary decomposition approach and
our global cost function approach. The result is shown in Table 4. The result confirms that enforcing
stronger consistency on global cost functions is efficient in terms of the number of nodes explored
and also as the problem size grows large.

5.2.2 BENCHMARKS BASED ON SOFT GCC

The GCC() constraint has various applications. In the following, we focus on the Latin Square
problem and round robin tournament problem.

284

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

n
Binary Decomposition Global Constraint Approaches

AC* FDAC* EDAC* GAC* FDGAC* Weak EDGAC*
Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes

4 †0.1 264.0 †0.1 71.8 †0.1 39.4 †0.1 187.6 †0.1 21.8 †0.1 †16.6
5 3.0 17955.8 0.4 3059.6 †0.1 828.2 25.2 12254.0 †0.1 66.2 †0.1 †41.2
6 639.2 2188035.4 167.8 346797.6 28.2 45817.8 * * 3.4 244.4 †1.4 †93.6
7 * * * * * * * * 43.4 1429.6 †15.8 †425.2
8 * * * * * * * * * * †147.2 †2066.5

Table 4: The time (in seconds) and the number of nodes in solving the Latin Square instances with
different modelling

(a) SOFT GCCvar

n
Reified Approach Strong∅IC GAC* FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes
4 3.8 4865.6 2.8 3859.8 †0.1 220.8 †0.1 22 †0.1 †17.0
5 653.7 460989.2 621.2 376526.2 38.6 14482.8 †0.1 66.2 †0.1 †48.2
6 * * * * * * 4.8 244.6 †1.2 †87.0
7 * * * * * * 58.4 1431.2 †16.4 †331.8
8 * * * * * * * * †459.6 †4730.8

(b) SOFT GCCval

n
Reified Approach Strong∅IC GAC* FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes
4 2.2 2815.8 1.4 2326.6 †0.1 131.8 †0.1 20.4 †0.1 †17.0
5 165.2 122840.0 153.4 102493.6 10.0 4818.2 †0.1 61.2 †0.1 †45.2
6 * * * * 1407.4 357529.8 3.6 211.0 †1.0 †82.2
7 * * * * * * 40.4 1243.6 †13.4 †318.4
8 * * * * * * * * †285.2 †3700.4

Table 5: The time (in seconds) and the number of nodes in solving the Latin Square instances using
soft GCC constraints

LATIN SQUARES

We first focus on the Latin Square problem, which is describedin Section 5.2.1. We use the same
soft version but we replaceSOFT ALL DIFFERENT by eitherSOFT GCCvar() or SOFT GCCval()
cost functions which measure the violation differently. The results are shown in Table 5, which
shows a similar result as Table 3. Weak EDGAC* always performs the best in terms of time and
reduction in search space.

ROUND ROBIN TOURNAMENT

The round robin problem problem (prob026 in CSPLib) of ordern is to schedule a tournament ofn
teams overn−1 weeks. Each week is divided inton/2 periods, and each period is divided into two
slots. A tournament must satisfy the following three constraints: (1) every team plays at least once a
week, (2) every team plays at most twice in the same period over the tournament, and (3) every team
plays every other team. Van Hentenryck, Michel, Perron, andRégin (1999) give a CSP model only
based on GCC constraints: a triple of variables(sij , tij,mij) represents the match played on theith

week at thejth period. The assignment{sij 7→ a, tij 7→ b,mij 7→ ab} represents teama is played
against the teamb. Ternary constraints linksij, tij andmij together such thatsij takes the valuea

285

LEE & L EUNG

(a) SOFT GCCvar

(N,P,M)
Reified Approach Strong∅IC GAC* FDGAC* Weak EDGAC*
Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes

(4,3,2) 1.7 1119.2 0.6 827.4 0.4 470.2 0.2 142.2 †0.1 †33.4
(5,4,2) 4.5 2016.6 2.2 1242.0 1.8 836.2 0.6 171.6 †0.1 †44.6
(6,5,3) * * * * * * * * †583.4 †6508.8
(7,5,3) * * * * * * * * †1283.4 †7476.6

(b) SOFT GCCval

(N,P,M)
Reified Approach Strong∅IC GAC* FDGAC* Weak EDGAC*
Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes

(4,3,2) 1.5 1046.8 0.4 794.6 0.4 464.6 0.2 141.0 †0.1 †33.0
(5,4,2) 3.5 1821.4 0.6 171.0 1.4 824.6 0.6 171.0 †0.1 †42.8
(6,5,3) * * * * * * * * †438.2 †6499.6
(7,5,3) * * * * * * * * †765.0 †7413.6

Table 6: The time (in seconds) and the number of nodes in solving the round robin tournament
problems usingSOFT GCC cost functions

andtij takes the valueb iff mij takes the valueab or ba. The first and the second requirements are
represented by the GCC constraints on{sij , tij | i = w} for eachwth week and{sij, tij | j = p}
for eachpth period. The third requirement is represented by a GCC constraint on{mij}.

The problem can be generalized by three parameters(N,P,M): scheduling a tournament of
N teams overM weeks, with each week divided intoP periods. Besides placing random unary
costs, we also replace the GCC constraints by the soft variants. We try different combinations of
N , P , andM . The results are shown in Table 6, which agrees with the theoretical strength of each
consistency. It also shows that although enforcing stronger consistency is more expensive, it helps
to reduce search space more. Thus, stronger consistency helps to solve larger instances.

5.2.3 BENCHMARKS BASED ON SOFT SAME

The SAME() constraint can be used to model the following two problems: (1) fair scheduling, and
(2) people-mission scheduling.

FAIR SCHEDULING

The problem is suggested in the Global Constraint Catalog2. The goal is to schedulen persons
into s shifts overd days such that the schedule is fair,i.e. each person should be assigned to the
same number of theith shift. For example, the schedule in Figure 8(a) is not fair. The personp1 is
assigned to the AM shift two times butp2 is assigned to the AM shift once only. Figure 8(b) shows
a schedule that is fair to everyone: bothp1 andp2 are assigned to the AM shift and Overnight shift
once, and the PM shift twice.

We model and soften the problem by a set of variables{xij}, which denote the shift assigned
to theith person on thejth day with random unary costs. TheSOFT SAMEvar ({xp1j}, {xp2j}) cost
functions are placed between each pair of personsp1 andp2, allowing violation for the fairness of
the schedule to obtain minimum cost. We fixs = 4 andd = 5 and varyn. The results are shown
in Table 7. Similarly to Table 5, weak EDGAC* produces the smallest number of nodes. However,

2. http://www.emn.fr/x-info/sdemasse/gccat/

286

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

Day1 Day2 Day3 Day4
p1 AM PM PM AM
p2 AM PM Overnight PM

(a) Unfair Schedule

Day1 Day2 Day3 Day4
p1 AM PM PM Overnight
p2 AM PM Overnight PM

(b) Fair Schedule

Figure 8: Examples of Fair Scheduling

n
Reified Approach Strong∅IC GAC* FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes
5 1983.9 1457812.6 74.2 20610.4 16.6 3511.8 †0.1 27.4 †0.1 †25.4
6 * * 1884.0 1038613.2 78.8 11031.8 †0.4 40.4 1.0 †34.0
7 * * * * 377.0 36063.0 †1.0 45.0 1.2 †40.6
8 * * * * 1630.0 124920.8 †2.0 45.4 2.2 †45.0
9 * * * * * * †2.6 †49.0 3.2 †49.0
10 * * * * * * †4.0 58.0 4.6 †56.8
11 * * * * * * †5.8 67.2 6.4 †61.6

Table 7: The time (in seconds) and the number of nodes in solving the fair scheduling problem by
enforcing different consistency notions.

weak EDGAC* requires more time to solve than FDGAC*. We look into the execution and discover
that FDGAC* is so strong that the first lower bound computed isalready very close, if not identical,
to the objective value of the optimal solution. Therefore, enforcing weak EDGAC* gives only little
improvement on reducing the search space.

PEOPLE-M ISSION SCHEDULING

This problem extends the doctor-nurse rostering problem described by Beldiceanu, Katriel and
Thiel (2004). Given three groups ofn persons,m missions must be assigned to a team contain-
ing exactly one person in each group. We are also given a set ofconstraints restricting the com-
bination of each team in one mission. The problem is to schedule those people into teams for
missions such that no restriction is violated. We model the problem by{xij} denoting the mission
assigned to theith person in thejth group with random unary costs. The combination restriction
is softened as ternary cost functions. Two global cost functions SOFT SAMEvar ({xi1}, {xi2}) and
SOFT SAMEvar ({xi2}, {xi3}) are posted to ensure each team exactly contains one person from each
group. We fixm = 6 and varyn. The results are shown in Table 8. Similarly to Table 7, weak
EDGAC* produces the smallest number of nodes, but requires more time than FDGAC*.

5.2.4 BENCHMARKS BASED ON SOFT REGULAR

TheREGULAR() constraint has many applications. In the following, we focus on two: (1) the nurse
rostering problem, and; (2) theSTRETCH() constraint modelling.

NURSE ROSTERINGPROBLEM

The nurse rostering problem (Cheng, Lee, & Wu, 1997) is to schedule a group ofn nurses into four
shifts, PM shift, AM shift, Overnight, and Day-Off, over a period with most requirements satisfied.

287

LEE & L EUNG

n
Reified Approach Strong∅IC GAC* FDGAC* weak EDGAC*

Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes
4 17.5 16992.0 4.0 5931.6 1.6 1517.4 †0.2 247.8 0.4 †238.8
5 427.8 283950.2 45.2 51029.8 11.2 7073.8 †3.4 831.2 †3.4 †693.4
6 * * 666.6 553001.2 156.6 75481.6 †55.6 11065.2 69.2 †10957.8
7 * * * * * * †1348.0 333937.6 1714.0 †296019.2

Table 8: The time (in seconds) and the number of nodes in solving the people-mission scheduling
problem by enforcing different consistency notions.

(a) SOFT REGULARvar()

n
Reified Approach Strong∅IC GAC* FDGAC* weak EDGAC*
Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes

3 260.66 118562 152.6 91661.4 2.0 956.2 †0.1 28.6 †0.1 †22.8
4 * * * * 25.4 6983.4 †0.1 32.6 †0.1 †28.0
5 * * * * * * 4.0 379.0 †3.6 †273.6
6 * * * * * * 63.4 4017.6 †37.8 †1927.2
7 * * * * * * 207.6 12242.0 †42.8 †2167.6
8 * * * * * * 821.2 44414.0 †229.2 †10437.0

(b) SOFT REGULARedit()

n
Reified Approach Strong∅IC GAC* FDGAC* weak EDGAC*

Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes
3 286.6 122542.4 178.4 91933.8 9.2 2850.4 †5.6 841.4 6.2 †803.2
4 * * * * 126.2 27267.6 †25.4 2568.8 27.6 †2424.0
5 * * * * * * †535.6 47091.2 546.8 †40244.0

Table 9: The time (in seconds) and the number of nodes in solving the nurse scheduling problem
by enforcing different consistency notions.

In the experiment, the nurses are scheduled over four days such that (1) each nurse must have at most
three AM shifts, at least two PM shifts, at least one Overnight, and at least one day-off; (2) each AM
shift must have two nurses, each PM shift and each Overnight must have one nurse, and; (3) AM-
shifts are preferred to be packed together, and the same preference is also posted on Day-Offs. We
model this problem by a set of variables{xij} to denote the shift assigned to theith nurse on thejth

day with random unary costs. Restrictions (1) and (2) are modeled bySOFT GCCval cost functions,
and (3) is modeled by eitherSOFT REGULARvar or SOFT REGULARedit cost functions. All restric-
tions are allowed to be violated. The results are shown in Table 9. WhenSOFT REGULARedit() is
used, FDGAC* wins in term of runtime. However, ifSOFT REGULARvar () is used, weak EDGAC*
again requires the least time and the least number of nodes tosolve.

MODELLING THE STRETCH() CONSTRAINT

Another application of theREGULAR() constraint is to model constraints that describe patterns. One
example is theSTRETCH() constraint.

288

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

(a) SOFT REGULARvar()

n
Reified Approach Strong∅IC GAC* FDGAC* weak EDGAC*
Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes

30 183.5 7346.2 68.2 5203.2 36.4 573.0 †30.0 171.4 35.2 †162.6
35 419.4 13845.2 162.2 10297.8 80.6 971.6 †57.6 239.8 69.0 †233.4
40 842.4 23485.0 335.6 18067.2 148.4 1423.2 †92.2 328.6 108.2 †316.0
45 2318.2 55976.0 900.4 42007.0 378.2 3042.0 †240.6 651.8 246.4 †570.6
50 * * 1142.2 88616.8 165.8 10762.2 130.2 1660.6 †118.2 †1316.0
55 * * 2231.4 146901.6 306.0 17130.0 208.0 2291.8 †193.8 †1856.8

(b) SOFT REGULARedit()

n
Reified Approach Strong∅IC GAC* FDGAC* weak EDGAC*
Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes

30 216.2 6038.6 83.2 3861.6 40.6 447.4 †34.2 123.8 39.6 †122.4
35 561.6 12487.6 204.2 7626.0 86.8 706.0 †60.6 164.0 70.8 †162.8
40 1128.1 20585.8 413.0 12789.6 165.8 1080.0 †90.8 208.4 101.6 †194.0
45 * * 1151.8 30480.6 446.4 2346.2 239.6 371.0 †207.8 †299.6
50 * * 2122.8 62225.2 348.6 9189.0 204.8 967.6 †185.0 †823.2
55 * * * * 623.8 13496.8 264.2 972.8 †234.6 †777.6

Table 10: The time (in seconds) and the number of nodes in solving the sliding problem by enforc-
ing different consistency notions.

Definition 24 (Pesant, 2001) Given a valuev and a tupleℓ ∈ L(S). A v-stretchis the maximal
subsequence of identical valuesv in ℓ. TheSTRETCH(S, ub, lb) constraint is satisfied byℓ if the
length of thev-stretch inℓ is at mostubv and at leastlbv.

For simplicity, we omit the case when theSTRETCH() constraint is circular. However, it can be
handled by variable duplication (Pesant, 2004).

The STRETCH() constraint can be described by an automaton and thus modelled using the
REGULAR() constraint (Pesant, 2004). TheSOFT REGULARvar () and SOFT REGULARedit() cost
functions can be directly applied to define two soft variantsof the STRETCH() constraint, namely
SOFT STRETCHvar () andSOFT STRETCHedit(). They are flow-based projection-safe by inheriting
the same property fromSOFT REGULARvar () andSOFT REGULARedit() respectively.

To demonstrate the idea, we conduct experiments using the following sliding problem. The
sliding problem of ordern consists a set of variables{x1, . . . , xn} with domainsD(xi) = {a, b}
and random unary costs. Each subsequence{xi, . . . , xn−5+i}, where1 ≤ i ≤ 5, is required to
containa-stretches of length2 andb-stretches of length2 or 3. This restriction can be enforced
throughSTRETCH constraints. We allow violations by modeling the constraints using either the
SOFT REGULARvar or SOFT REGULARedit cost functions. The results are shown in Table 10. Weak
EDGAC* needs more time than FDGAC* when the instances are small, but weak EDGAC* pays
off for large instances. This experiment also shows that theSTRETCH constraint, an important
constraint for modeling patterns, can be efficiently propagated in the WCSP framework.

5.2.5 DISCUSSIONS

A control comparison should have been conducted to examine the efficiency of ToulBar2 on the
global cost functions encoded explicitly as tables as well.This cannot be done in a meaningful
manner since the tables will be prohibitively large. Consider a simple cost function on 10 variables,

289

LEE & L EUNG

each with a domain size of 10. The table already requires storage in the order of1010 integers or
tens of gigabytes.

Based on our experiments, two conclusions can be made. First, the experiments show that the
reified approach and strong∅IC are too weak both in terms of search space pruning and runtime
reduction as compared to GAC*, FDGAC*, and weak EDGAC*. Second, the stronger consistency
notions, weak EDGAC*, FDGAC* and GAC*, are worthwhile although they are more expensive
to enforce. As shown from the experiments, GAC* reduces the number of search nodes at least
3 times more than the reified approach and1.5 times more than strong∅IC. GAC* has runtime
at least4 times less than the reified approach and1.5 times less strong∅IC. Weak EDGAC* and
FDGAC* can reduce the search space by a much greater extent. Such additional pruning can usually
compensate for the extra effort. Although Table 7 and Table 8have shown cases where weak
EDGAC* results in slower runtime, FDGAC* only wins by a smallmargin. In general, weak
EDGAC* is still worthwhile to enforce. Table 10 further confirms that a stronger consistency is
more desirable as the problem becomes large.

6. Conclusion and Remarks

In this section, we summarize our contributions and shed light on possible future directions of
research.

Our contributions are five-fold. First, we introduce strong∅IC based on∅IC (Zytnicki et al.,
2009) and give an algorithm to enforce strong∅IC. Besides, we prove that strong∅IC is confluent.
We also show that enforcing strong∅IC on a WCSP is stronger than GAC in the reified approach.
Second, we give an algorithm to enforce GAC* for a WCSP, but enforcement is exponential. For ef-
ficient enforcement, we introduceflow-based projection-safety, which preserves the basic structure
of global cost functions. We give sufficient conditions for aglobal cost function to be flow-based
projection-safe. We also show as a part of the proof how projection and extension can be done
so that the flow property is preserved. Third, we generalize FDAC* (Larrosa & Schiex, 2003) to
FDGAC* and give an enforcement algorithm. Again, flow-basedprojection-safety helps FDGAC*
enforcement. Fourth, we attempt to generalize EDAC* using similar methods, but find it to be non-
trivial. We discover and give an example of a limitation of EDAC*. When cost functions share
more than one variable, oscillation similar to the one demonstrated in Full AC* (de Givry et al.,
2005) will occur. To solve this problem, we introduce cost-providing partitions, which restrict the
distribution of costs when enforcing EDAC*. Based on cost-providing partitions, we define weak
EDGAC*, which can be enforced in polynomial time for flow-based projection-safe global cost
functions. Last but not least, we show that soft versions ofALL DIFFERENT(), GCC(), SAME() and
REGULAR() are flow-based projection-safe. We also prove the practicality of our framework with
empirical results on various benchmarks involving these global cost functions. The empirical results
agree with the theoretical strength of the consistencies interms of search tree pruning. The results
also show that stronger consistency notions like weak EDGAC* and FDGAC* are more worthwhile
to enforce, especially when solving large problems.

Three directions of future work are possible. The first one isto investigate if other even stronger
consistency notions, such as VAC (Cooper et al., 2010), can also benefit from projection-safety to
make their enforcement practical for global cost functions. Second, the current sufficient conditions
for flow-based projection-safety might still be overly restrictive. For example, the global cost func-
tion SOFTSEQUENCE (Maher, Narodytska, Quimper, & Walsh, 2008) does not satisfy the three

290

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COST FUNCTIONS IN WCSPS

conditions. It is interesting to find out other possible definition of flow-based projection-safety,
which allow efficient projection and extension operations.Third, we only consider the minimum
cost flow computation for finding the minimum cost in a global cost function. It is interesting to
check if other approaches, such as mathematical programming, can be used to achieve the same
results.

Acknowledgments

Work described in this paper was generously supported by grants CUHK413808 and CUHK413710
from the Research Grants Council of Hong Kong SAR.

References

Beldiceanu, N. (2000). Global Constraints as Graph Properties on a Structured Network of Elemen-
tary Constraints of the Same Type. InProceedings of CP’00, pp. 52–67.

Beldiceanu, N., Carlsson, M., & Petit, T. (2004). Deriving Filtering Algorithms from Constraint
Checkers. InProceedings of CP’04, pp. 107–122.

Beldiceanu, N., Katriel, I., & Thiel, S. (2004). Filtering Algorithms for the Same Constraints. In
Proceedings of CPAIOR’04, pp. 65–79.

Cheng, B., Lee, J. H. M., & Wu, J. (1997). A Nurse Rostering System Using Constraint Pro-
gramming and Redundant Modeling.IEEE Transactions on Information Technology in
Biomedicine, 1, 44–54.

Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki,M., & Werner, T. (2010). Soft Arc
Consistency Revisited.Artificial Intelligence, 174, 449–478.

Cooper, M., & Schiex, T. (2004). Arc Consistency for Soft Constraints.Artifical Intelligence, 154,
199–227.

Cooper, M. C. (2005). High-Order Consistency in Valued Constraint Satisfaction. Constraints,
10(3), 283–305.

de Givry, S., Heras, F., Zytnicki, M., & Larrosa, J. (2005). Existential Arc Consistency: Getting
Closer to Full Arc Consistency in Weighted CSPs. InProceedings of IJCAI’05, pp. 84–89.

Demassey, S., Pesant, G., & Rousseau, L.-M. (2006). A Cost-Regular Based Hybrid Column Gen-
eration Approach.Constraints, 11, 315–333.

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs.Numerische Mathe-
matik, 1, 269–271.

Johnson, D. (1977). Efficient Algorithms for Shortest Pathsin Sparse Networks.Journal of the
ACM, 24(1), 1–13.

Larrosa, J., & Schiex, T. (2003). In the Quest of the Best Formof Local Consistency for Weighted
CSP. InProceedings of IJCAI’03, pp. 239–244.

Larrosa, J., & Schiex, T. (2004). Solving Weighted CSP by Maintaining Arc Consistency.Artificial
Intelligence, 159(1-2), 1–26.

Laurière, J.-L. (1978). A Language and a Program for Stating and Solving Combinatorial Problems.
Artificial Intelligence, 10, 29–127.

291

LEE & L EUNG

Lawler, E. (1976).Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Win-
ston.

Leung, K. L. (2009). Soft Global Constraints in Constraint Optimization and Weighted Constraint
Satisfaction. Master’s thesis, The Chinese University of Hong Kong.

Maher, M., Narodytska, N., Quimper, C.-G., & Walsh, T. (2008). Flow-Based Propagators for the
SEQUENCE and Related Global Constraints. InProceedings of CP’08, pp. 159–174.

Pesant, G. (2001). A Filtering Algorithm for the Stretch Constraint. InProceedings of CP’01, pp.
183–195.

Pesant, G. (2004). A Regular Language Membership Constraint for Finite Sequences of Variables.
In Proceedings of CP’04, pp. 482–495.

Petit, T., Régin, J.-C., & Bessière, C. (2000). Meta-constraints on Violations for Over Constrained
Problems. InProceedings of ICTAI’00, pp. 358–365.

Petit, T., Régin, J.-C., & Bessière, C. (2001). Specific Filtering Algorithm for Over-Constrained
Problems. InProceedings of CP’01, pp. 451–463.

Régin, J.-C. (1996). Generalized Arc Consistency for Global Cardinality Constraints. InProceed-
ings of AAAI’96, pp. 209–215.

Régin, J.-C. (2002). Cost-Based Arc Consistency for Global Cardinality Constraints.Constraints,
7, 387–405.

Sanchez, M., de Givry, S., & Schiex, T. (2008). Mendelian Error Detection in Complex Pedigrees
using Weighted Constraint Satisfaction Techniques.Constraints, 13(1), 130–154.

Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued Constraint Satisfaction Problems: Hard and
Easy Problems. InProceedings of IJCAI’95, pp. 631–637.

Van Hentenryck, P., Michel, L., Perron, L., & Régin, J.-C. (1999). Constraint Programming in OPL.
In Proceedings of the International Conference on the Principles and Practice of Declarative
Programming, pp. 98–116.

van Hoeve, W.-J., Pesant, G., & Rousseau, L.-M. (2006). On Global Warming: Flow-based Soft
Global Constraints.J. Heuristics, 12(4-5), 347–373.

Zytnicki, M., Gaspin, C., & Schiex, T. (2009). Bounds Arc Consistency for Weighted CSPs.Journal
of Artificial Intelligence Research, 35, 593–621.

292

