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Abstract. Breaking the exponential number of all symmetries of a constraint sat-
isfaction problem is too costly. In practice, we often aim at breaking a subset of
the symmetries efficiently, which we call target symmetries. In static symmetry
breaking, the goal is to post a set of constraints to break these target symmetries
in order to reduce the solution set and thus also the search space. Symmetries
of a problem are all intertwined. A symmetry breaking constraint intended for
a particular symmetry always breaks more than just the intended symmetry as
a side-effect. Different constraints for breaking the same target symmetry can
have different side-effects. Conventional wisdom suggests that we should select
a symmetry breaking constraint that has more side-effects by breaking more sym-
metries. While this wisdom is valid in many ways, we should be careful where the
side-effects take place. A symmetry is preserved by a constraint iff its symmetry
classes are either entirely removed from the solution set or retained as solutions
by the constraint. We give theorems and examples to demonstrate that it is ben-
eficial to post symmetry breaking constraints that preserve the target symmetries
and restrict the side-effects to only non-target symmetries as much as possible.
The benefits are in terms of the number of symmetries broken and the extent to
which a symmetry is broken (or eliminated), resulting in a smaller solution set
and search space. Extensive experiments are also conducted to confirm the feasi-
bility and efficiency of our proposal empirically.

1 Introduction

Symmetries are common in Constraint Satisfaction Problems. Several methods [9, 4]
are proposed to avoid the exploration of search space segments with assignments that
can be generated by representatives of symmetry classes. One common way is to add
dedicated constraints statically at the modeling stage to eliminate symmetries [22], such
as the LEXLEADER method [3]. A symmetry breaking constraint leaves only canonical
solutions with their symmetrically-equivalent solutions eliminated. It prunes the search
space in two ways: remove the symmetrically equivalent search branches, and trigger
constraint propagation with other constraints and vice versa. They affect both the size
of the solution set and the search tree of the problem.

There are some tractable classes of symmetries [7] and also methods to simplify
the constraints [21]. However, in general more symmetry breaking constraints need to
be posted in order to eliminate more symmetries. When the propagation overhead of
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symmetry breaking constraints outweighs the time saved in exploring the search space,
there is no longer better efficiency [20]. Eliminating all symmetries are too costly. Usu-
ally we only eliminate a subset of them, which we call target symmetries. Jefferson et
al. [15] has given algorithms to generate a good set of target symmetries. While post-
ing constraints for only the target symmetries, we show we can actually eliminate more
symmetries and achieve a smaller solution set by carefully choosing the constraints.

When and how the choice of symmetry breaking constraints will affect the number
of solutions are discussed systematically. We point out how the side-effects of sym-
metry breaking constraints in breaking other symmetries are common. To eliminate
the same symmetry set, we have alternative choices which cause different side-effects,
breaking or eliminating extra symmetries. We formally define the situation in which
a symmetry is not removed by a symmetry breaking constraint: preservation. A sym-
metry is preserved by a constraint iff its symmetry classes are either entirely removed
from the solution set or retained as solutions by the constraint. Although, at first sight,
constraints that break more symmetries as side-effects seem to be good choices, we
should distinguish between side-effects on target symmetries and those on non-target
symmetries.

We propose that symmetry breaking constraints aiming at some target symmetries
should be selected to preserve other target symmetries and restrict the side-effects to
non-target symmetries as much as possible. We analyze through the solution reduction
ratio to show why preserving target symmetries can actually help us to eliminate more
symmetries and thus are better choices. By carefully choosing symmetry breaking con-
straints to achieve specific side-effects, we achieve smaller solution set size and better
efficiency. We also give observations on other factors that we should pay attention to
when choosing symmetry breaking constraints.

A running example is given throughout the paper to demonstrate our ideas and re-
sults. Experimental results on four problems in the literature confirm empirically that
models constructed using symmetry preservation achieve better efficiency up to one
order of magnitude both in terms of runtime and search space.

2 Background

A constraint satisfaction problem (CSP) is a triple P = (V,D, C), consisting of a set
of variables V , each v ∈ V with a finite domain of possible values D(v) and a set of
constraints C, each defined over a subset of variables specifying the allowed combina-
tion of values. An assignment gives each variable a value from its domain. A solution
α is an assignment that satisfies all constraints. We use sol(P) to denote the set of all
solutions of P .

A symmetry for a CSP is a bijection on the set of all assignments that maps so-
lutions to solutions, and thus also non-solutions to non-solutions. Two common types
of symmetry are variable symmetry and value symmetry. A variable symmetry is a
bijective mapping σ on the indices of variables. If [X1, ..., Xn] = [d1, ..., dn] is a so-
lution then [Xσ(1), ..., Xσ(n)] = [d1, ..., dn] is also a solution. A value symmetry is
a bijective mapping θ on the values. If [X1, ..., Xn] = [d1, ..., dn] is a solution then
[X1, ..., Xn] = [θ(d1), ..., θ(dn)] is also a solution. There are also constraint symme-
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tries [2] that act on both variables and values. Our results are general and work with
every kind of symmetries.

The symmetry group GΣ of a set of symmetries Σ is formed by closing Σ under
composition. A symmetry class of GΣ is a subset S of symmetrically-equivalent as-
signments of P . If an assignment α ∈ S, then ∀σ ∈ GΣ , σ(α) ∈ S. A symmetry class
contains either all solutions or no solutions. Symmetry classes of GΣ partition sol(P),
with solutions in the same symmetry class mapped to one another under symmetries in
GΣ . Without loss of generality, by symmetry classes, we refer to the ones in sol(P).
A simple running example with variable and value symmetries will be used to illustrate
various concepts throughout the paper.

Example 1. The Diagonal Latin Square problem (DLS(n)) aims to assign numbers 1
to n to the cells of an n × n board with no numbers occurring more than once in each
row, column and the 2 diagonals. For convenience, we call the one extending from left
top diagonal 1, and that from left bottom diagonal 2. We use a matrix model [Xij ] of
n2 variables, each representing a cell and with domain {1, ..., n}. Problem constraints
consist of ALLDIFF [24] on each row, column and the 2 diagonals.

The variable symmetries of DLS include the geometric symmetry group Ggeo of
size 8: horizontal reflection σrx(Xij) = Xi(n+1−j), vertical reflection σry , diagonal
reflections σd1(Xij) = Xji and σd2, rotational symmetries σr90, σr180 and σr270, and
the identity symmetry σid. The values in DLS are interchangeable, which means the
permutation of valuesGval preserves solution. The following 4 solutions of DLS(5) are
in the same geometric symmetry class. Solution σrx(α) can be obtained by flipping α
over the vertical axis.

α
1 2 3 4 5
2 4 5 3 1
5 3 2 1 4
3 1 4 5 2
4 5 1 2 3

σrx(α)
5 4 3 2 1
1 3 5 4 2
4 1 2 3 5
2 5 4 1 3
3 2 1 5 4

σd1(α)
1 2 5 3 4
2 4 3 1 5
3 5 2 4 1
4 3 1 5 2
5 1 4 2 3

σrx ◦ σd1(α)
4 3 5 2 1
5 1 3 4 2
1 4 2 5 3
2 5 1 3 4
3 2 4 1 5

Define row([Xij ]) ≡ [X11, ..., X1n, X21, ..., X2n, ..., Xn1, ..., Xnn]. To eliminate
σrx, we can post the LEXLEADER constraint: row([Xij ]) ≤lex [X1n, ..., X11, X2n, ...,
X21, ..., Xnn, ..., Xn1]. From problem constraints we infer X11 6= X1n and simplify
the LEXLEADER constraint to:

X11 < X1n (1)

To eliminate σd1, we can post constraint row([Xij ]) ≤lex [X11, ..., Xn1, X12, ...,
Xn2, ..., X1n, ..., Xnn], which can be simplified since X11 = X11 and X1n 6= Xn1:

[X12, ..., X1n] ≤lex [X21, ..., Xn1] (2)

3 Effects of Symmetry Breaking Constraints

This section reports our observations and views based on existing results from the liter-
ature. We first introduce some definitions related to symmetry breaking constraints. We
are concerned with the actual set of symmetries out of the whole symmetry group on
which we post symmetry breaking constraints. We systematically discuss the effects of
symmetry breaking constraints on the final solution set size as split into two cases.
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3.1 Properties of Symmetry Breaking Constraints

We first introduce some useful concepts for the rest of the paper. Suppose a CSP
P = (V,D, C) contains symmetries Σ and Csb is a set of symmetry breaking con-
straints such that P ′ = (V,D, C ∪ Csb). Here and throughout, sol(P, Csb) is a short
hand for sol(P ′), which is sol((V,D, C ∪ Csb)).

We adapt the following definitions from Katsirelos and Walsh [18]. A set of sym-
metry breaking constraints Csb breaks a symmetry σ ∈ Σ iff there exist a solution
α ∈ sol(P ′) such that σ(α) /∈ sol(P ′). A set of symmetry breaking constraints Csb

eliminates a symmetry σ ∈ Σ iff for each solution α ∈ sol(P ′), σ(α) /∈ sol(P ′). We
define a stronger version of elimination. Csb fully eliminates a symmetry σ ∈ Σ iff for
each solution α ∈ sol(P ′), ∀k ∈ Z, if σk(α) 6= α then σk(α) /∈ sol(P ′). This defi-
nition is to ensure there is at most one solution left by Csb in each symmetry class of
G{σ}. Csb breaks/(fully) eliminates a symmetry set Σ iff Csb breaks/(fully) eliminates
each σ ∈ Σ. A set of symmetry breaking constraints is sound/complete to a symmetry
set Σ iff it leaves at least/exactly one solution in each symmetry class of GΣ .

In the following, we use CΣ to denote a set of symmetry breaking constraints that
eliminates Σ, and let P ′ = (V,D, C ∪ CΣ). We say that CΣ is sound/complete to mean
that CΣ is sound/complete to Σ. Symmetry breaking constraints can be derived by pre-
defining a canonical variable ordering [26] and forcing the canonical solution to be
always smaller (bigger) than its symmetrically-equivalent counterpart. The canonical
variable ordering is the row-wise ordering row([Xij ]) in the running example. Any
permutation on row([Xij ]) can serve as a possible ordering. We consider other specific
orderings by moving X1n and Xn1 forward in row([Xij ]) and their simplified symme-
try breaking constraints to eliminate σd1 are shown respectively as follows:

canonical ordering : [X11, X1n, Xn1, X12, ..., Xnn]→ Cσd1 : X1n < Xn1 (3)
canonical ordering : [X11, Xn1, X1n, X12, ..., Xnn]→ Cσd1 : Xn1 < X1n (4)

These two canonical orderings result in the same constraint to eliminate σrx as row([Xij ]).
We are interested in whether the solution set size is affected by picking other canonical
ordering or using other methods to eliminate symmetriesΣ. There are two possibilities:
a symmetry group is eliminated entirely or partially.

3.2 Eliminating a Symmetry Group Entirely

We can easily see that CΣ is complete to Σ if CΣ is sound to Σ and Σ is a symmetry
group, i.e. Σ = GΣ .

Theorem 1. Given a CSP, any sound set of symmetry breaking constraints eliminating
the same symmetry group results in exactly the same solution set size.

Proof. A sound set of symmetry breaking constraints eliminating a symmetry group
is complete. Symmetry classes formed in the solution space under a symmetry group
are fixed. By picking exactly one solution from each symmetry class of G, we gain
a solution set with the same size as the number of symmetry classes, no matter what
constraints we use to eliminate the symmetries. ut
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Many CSPs have exponentially-sized symmetry group. There exist efficient meth-
ods [6, 7] that eliminate all symmetries in some tractable classes of symmetries such as
piecewise variable and value symmetry. Also in special cases such as all different prob-
lems [21], a linear number of constraints can eliminate all symmetries. However, elim-
inating the whole symmetry group is intractable and too costly in general. We aim to
eliminate a subset [20]. We call this subset of symmetries we intend to eliminate as tar-
get symmetries. In practice, target symmetries are usually a generator set [1] for which
there exist efficient methods to eliminate and can be generated automatically [15].

3.3 Eliminating a Symmetry Group Partially
We demonstrate how the choice of symmetry breaking constraints affects the solu-
tion set size when only the target symmetries Σ are eliminated. Representatives se-
lected from each symmetry class of G{σi} (σi ∈ Σ) intersects to form the remain-
ing solutions in the symmetry classes of GΣ . The final solution set is determined
by the intersection of canonical solutions of each symmetry breaking constraints:
sol(P,∪σi∈ΣCσi) = ∩σi∈Σsol(P, Cσi). Even if each Cσi is complete, which means
the size of each sol(P, Cσi) is fixed, picking different canonical solutions of each con-
straint makes the intersection significantly different.

Example 2. We give a simple example considering again σrx and σd1 in the DLS prob-
lem. We compare the result of combining constraint (1) with either constraint (3) or
constraint (4). Picking constraint (3) we obtain {X11 < X1n, X1n < Xn1}, a total
ordering on the variable sequence [X11, X1n, Xn1]; picking constraint (4), we obtain
{X11 < X1n, Xn1 < X1n}, making X1n the biggest value out of the three. Because
X11 andXn1 are not ordered in {X11 < X1n, Xn1 < X1n}, the size of sol(P, {X11 <
X1n, Xn1 < X1n}) is twice as that of sol(P, {X11 < X1n, X1n < Xn1}) .

We want to formulate a set of symmetry breaking constraints to get a minimum
intersection, but we should avoid selecting an unsound set that misses solutions. For
example in the DLS problem, to eliminate σrx, we can post X11 < X1n; to eliminate
σr90 (90 degree rotational symmetry), we can post X11 > max {X1n, Xn1, Xnn}.
Combining the two constraints results in the empty solution set.

The number of symmetry classes of GΣ is the minimum size for the intersection,
since completeness is the best we can achieve for CΣ = ∪σi∈ΣCσi . In other words, we
can eliminate the symmetry group GΣ by eliminating each σi. This is always possible
if we can use table constraints to specify exactly which representatives to retain as solu-
tions. In practice, however, table constraints are difficult to craft and problem-specific,
and we are limited by the available symmetry breaking methods in existing constraint
programming system. Thus, eliminating each σi is not always sufficient to eliminate all
symmetries when Σ 6= GΣ . We need to find practical ways to prove soundness and
achieve as small a solution set as possible. Our proposal is based on the side-effects of
symmetry breaking constraints.

4 Side-Effects of Symmetry Breaking Constraints

We assume that every symmetry breaking constraint aims at breaking a target symmetry.
The side-effect of a symmetry breaking constraint is its effect in breaking symmetries
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other than the target symmetry. We show that side-effects are common in symmetry
breaking constraints and study how strong and widespread side-effects could be. Dif-
ferent choices of symmetry breaking constraints aiming at the same target symmetry
can have different side-effects. For symmetries that are not affected, we say they are
preserved. Then we show that selecting constraints that restrict the side-effects to non-
target symmetries and preserve other target symmetries can gain us smaller solution set.
We support our claims with theoretical analysis, examples and experimental results.

4.1 Side-Effects are Common

Our general study on side-effects are inspired by several examples in the literature.
Katsirelos et al. [18, 17] shows in examples a constraint eliminating symmetry σrx also
breaks the symmetry σr90, and the DOUBLELEX constraint eliminates also the value
interchangeability in the EFPA problem in addition to the row and column symmetries.
We are going to show that these side-effects of symmetry breaking constraints are com-
mon and in many cases inevitable. Given a CSP P with symmetry GΣ , each pair of
solutions in a symmetry class are mapped to each other under some symmetry σ ∈ GΣ .

Theorem 2. Given a CSP P with symmetries GΣ . Suppose Cσi eliminates symmetry
σi ∈ GΣ and it reduces the number of solutions in one symmetry class ofGΣ to at least
two. Then ∃σj ∈ GΣ such that σi 6= σj and σj is broken by Cσi .

Proof. Supposeα1, α2 ∈ sol(P, Cσi) and σi(α1) 6= α1. Then σi(α1) is not in sol(P, Cσi)
and there must exist a symmetry σj linking α2 and σi(α1). Since α2 ∈ sol(P, Cσi) but
σj(α2)(= σi(α1)) is not in sol(P, Cσi), σj is broken by Cσi by definition. ut

As a symmetry breaking constraint can break other symmetries in addition to its
target one, we analyze the possible number of symmetries broken or eliminated as side-
effects with the help of Figure 1. Suppose the symmetry group GΣ is of size m and a
symmetry class S is of size n, n ≤ m. We assume n = m for ease of discussion. A
symmetry class is represented as a directed graph and the following notions are used.

– circle node: solution.
– solid arrow directed edge with specific symmetry label: symmetry mapping. If an

edge from node 1 to node 2 is labeled with σj and suppose node 1 is solution α,
then node 2 is σj(α).

– dash line cut: symmetry breaking constraint. The effect of a symmetry breaking
constraint Cσi on the symmetry class is a cut on the graph that partitions the nodes
(solutions) into two parts, S1 with n1 nodes satisfying the constraint and S2 with
n2 nodes violating it , as shown in Figure 1(a).

– dot-dash edge: edge labeled with target symmetry σi and removed by the cut Cσi .

Each pair of nodes have edges in between them in both directions. Each node has
totally n − 1 out-going edges and n − 1 in-coming edges, each labeled with a distinct
symmetry σ ∈ GΣ , as shown in Figure 1(b). The cut byCσi removes 2×n1×n2 edges,
among which 2× n1 edges are labeled with σi. n2−1

n2
of the removed edges are labeled

with other symmetries. We quantify the number of symmetries broken or eliminated by
analyzing the result of the cut in the graph.
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– Symmetry σj is broken iff there exists an edge labeled with σj removed by the cut.
– Symmetry σj is eliminated iff no edges in S1 are labeled with σj .

S1: n1 
nodes

S2: n2 nodes

(a) (b) (c) (d)

cross
n1✕n2 edges

d1d1

d1
r90

r90

r90

r90

d1

d1

d1

d1

d1

d2
d2

d2
d2

d2
d2

d2

d2

r90

r90

r90

r90

Fig. 1. A Symmetry Class of Ggeo

# Broken Symmetries Whenever an edge labeled with σj is cut, symmetry σj is broken
by Cσi . If an edge labeled with σj is cut, there must exist an edge labeled with σj from
S1 to S2 is cut. This is due to the closure of symmetries, which means there must exist
a finite path from a node to itself consisting of only edges labeled with σj . All solutions
in S1 are in sol(P, Cσi) while no solution in S2 belong to sol(P, Cσi). Therefore the
symmetry σj linking a solution α ∈ S1 to σj(α) ∈ S2 is broken. For each node in
S1/S2, there must exist n2/n1 edges labeled with distinct symmetries linking it to nodes
in S2/S1. At least max {n1, n2} symmetries including the target symmetry are broken
by the symmetry breaking constraint. At least half the number of symmetries out of all
are broken by a complete symmetry breaking constraint that aims at a single symmetry.

# Eliminated Symmetries According to the definition of elimination, symmetries that
do not label any edges in S1 are eliminated. For each solution in S1, there must exist
n1 − 1 symmetries linking it to the others S1. At least n1 − 1 symmetries are not yet
eliminated. Take Figures 1(c) and (d) as examples, one to two symmetries are not yet
eliminated. A smaller n1 means smaller number of edges n1 × (n1 − 1) are left in S1.
A small size S1 usually indicates that less symmetries are left un-eliminated.

If we choose different symmetry breaking constraints to eliminate the same target
symmetry, the cut is different and respectively the side-effects are different. The side-
effects can be different in the number of symmetries broken/eliminated or the specific
symmetries broken/eliminated. We demonstrate it using a simple example. To eliminate
symmetry σr90 in the DLS example, we can use constraint X11 < min {X1n, Xn1,
Xnn} or X1n < min {X11, Xn1, Xnn}. The effect of each constraint on the symmetry
class is shown in Figures 1(c) and (d) respectively. Constraint X11 < min {X1n, Xn1,
Xnn} eliminates all but σd1 while constraint X1n < min {X11, Xn1, Xnn} eliminates
all but σd2. We say the constraint preserves symmetry σd1/σd2.

4.2 Symmetry Preservation

We formally define symmetry preservation in the following:

Definition 1. A symmetry σ is preserved by a set of symmetry breaking constraints iff
elements of each symmetry class of σ are either entirely removed from the solution set
or retained as solutions.
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In other words, the cut by symmetry breaking constraints Csb does not remove any
edges labeled with σ. For example in Figure 1(c), the edges labeled with symmetry
σd1 are not removed. When we say a symmetry σ is preserved by constraints Csb,
the intuition is that σ is not removed by Csb. That means σ is still a symmetry in the
new problem (the original problem with Csb added). Even if Csb removes all solutions
(i.e. making them non-solutions) of σ’s symmetry class, σ is not removed in the new
problem since now σ still maps all such non-solutions to non-solutions, and is still a
symmetry. A set of symmetries Σ is preserved iff each σ ∈ Σ is preserved.

There are two nice properties of preservation. First, eliminating some symmetries
can eliminate their composition under preservation.

Theorem 3. Given a CSP P with symmetry σi and σj . If symmetry breaking constraint
Cσi preserves symmetry σj , then σi ◦ σj and σj ◦ σi are eliminated by Cσi ∪ Cσj .

Proof. As shown in Figure 2, we have three disjoint sets A = sol(P, Cσi ∪ Cσj ), B =
sol(P, Cσi)− sol(P, Cσi ∪ Cσj ), E = sol(P)− sol(P, Cσi). Suppose α ∈ A. By defi-
nition, symmetry σi links solutions (a) from A to E, (b) from B to E and (c) within E.
Symmetry σj links solutions (a) within B, (b) within E and (c) from A to B. Therefore
σj(α) ∈ B and σi(α) ∈ E, σi ◦ σj(α) ∈ E and σj ◦ σi(α) ∈ E. Since A and E are
disjoint, both σi ◦ σj(α) and σj ◦ σi(α) are not in sol(P, Cσi ∪ Cσj ). ut

σiσi

σi

σj

σj

E

AB

σj

σi

α

Fig. 2. σi preserve σj

Similarly, if a set of symmetry breaking constraints CG1
preserves symmetry group

G2, then ∀σi ∈ G1, σj ∈ G2, σi ◦ σj and σj ◦ σi are eliminated by CG1
∪ CG2

. Second,
when a symmetry set is preserved, if two symmetry breaking constraints are sound with
respect to their target symmetries, their combination is also sound.

Theorem 4. Given a set of symmetries Σ = Σ1 ∪ Σ2. If CΣ1 is sound and preserves
Σ2, then CΣ2

being sound implies CΣ1
∪ CΣ2

being sound.

Proof. Based on the definition of preservation, if CΣ1
preserves Σ2 then Σ2 is still a

symmetry set of the new problemP ′ = (V,D, C ∪ CΣ1
). No matter what CΣ2

is, as long
as it is sound to P ′, it is able to regenerate all solutions of sol(P, CΣ1

) via symmetries
in Σ2. Then sol(P) can be completely regenerated from sol(P, CΣ1

) via symmetries
in Σ1 since CΣ1 is sound. ut

4.3 Solution Reduction by Symmetry Breaking Constraints

From the previous discussion, we can separate the effect of symmetry breaking con-
straints on other symmetries into three cases: eliminate, break and preserve. Our goal
is to eliminate as many symmetries as possible and thus achieve smaller solution set by
eliminating the target symmetries efficiently. What kind of effect is better?
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The side-effects are common but we can choose to let the side-effects act on dif-
ferent symmetries. In the following, we show that symmetry breaking constraints that
preserve other target symmetries and have more side-effects on non-target symmetries
are better in the sense of symmetries eliminated and solution set size. We show how dif-
ferent side-effects may affect the final solution set size through analyzing the solution
reduction by the symmetry breaking constraints.

The maximum solution reduction ratio |sol(P)|
|sol(P,Cσ1 )|

by a sound symmetry breaking
constraint is achieved when it is complete to its target symmetry. Assume constraints
are posted one by one and soundness must be ensured at each iteration. If the symmetry
classes of σ2 are left partially by Cσ1 , the solution reduction ratio by Cσ2 in the new
problem is smaller than that in the origin problem: |sol(P,Cσ1 )|

|sol(P,Cσ1∪Cσ2 )|
< |sol(P)|
|sol(P,Cσ2 )|

.
The origin solution set size of DLS(5) is 960. Posting constraint (1) X11 < X1n to
eliminate σry results in 480 solutions with reduction ratio 2. Posting it after symmetry
σrx is eliminated byX11 < Xn1 results in 320 solutions out of 480 with reduction ratio
1.5.

This analysis also gives us insight into one reason why the efficiency we gained
from eliminating more symmetries becomes weaker. When more constraints are added
and their side-effects become stronger, not only the propagation overhead of constraints
increases but also the available space that can be pruned becomes smaller. We consider
this as an important factor behind partial symmetry breaking [20]. However, we can still
achieve maximum solution reduction ratio when Cσ1 preserves σ2. Without explicitly
handling the composition symmetries, we are able to eliminate them as side-effects of
eliminating the target symmetries when preserving other target symmetries.

A significant advantage of this approach is that, instead of introducing new con-
straints, we are able to eliminate more symmetries by selecting carefully the symmetry
breaking constraints, which potentially entails better runtime.

4.4 Preservation Examples

Based on the previous theoretical analysis, we give three examples of achieving smaller
solution set size by preserving symmetries. Two are from a big family of problems that
can be modeled into matrix and contain a lot of symmetries.

Geometric Symmetries and Value Interchangeability We consider again the DLS
problem and show different side-effects on the geometric symmetry group when elim-
inating value symmetries. We compare 6 choices of distinct value symmetry breaking
constraints: fixing the value of (a) the first row, (b) the first column, (c) middle row, (d)
middle column, (e) diagonal 1 and (f) diagonal 2, as shown from left to right in Fig-
ure 3. All of the constraints result in the same solution set size according to Theorem 1.
The side-effects of each choice is: (a) eliminate Ggeo, (b) eliminate Ggeo, (c) eliminate
Ggeo \ {σry}, (d) eliminate Ggeo \ {σrx}, (e) eliminate Ggeo \ {σd1} and (f) eliminate
Ggeo \ {σd2}. After posting consistent constraints to eliminate Ggeo for each, the so-
lution set sizes of (a) and (b) are twice of those of the rest. The reason is obvious: the
preserved symmetry σry/σrx/σd1/σd2 is further eliminated in (c)/(d)/(e)/(f) respectively
and another half solution reduction is gained.



10
1 3 4 52 1

2

3

4

5

1 3 4 52

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Fig. 3. Different Side-effect of CGval
Matrix Symmetries and Value Interchangeability A common symmetry group in
CSP is the matrix symmetries [5]. Since the size of the matrix symmetry group is super-
exponential, usually only row and column symmetries are considered as target symme-
tries. Methods like DOUBLELEX [5] and SNAKELEX [11], built upon LEXLEADER [3],
are efficient in eliminating row and column symmetries, but they do not eliminate the
matrix symmetries in general. In order to preserve target symmetries, we consider the
multiset ordering constraint ≤m [8].

Enforcing lexicographical ordering in one dimension breaks the symmetries in the
other dimension, but enforcing multiset ordering in one dimension preserves the permu-
tation symmetries in the other dimension. However, multiset ordering may not force a
unique ordering, and thus eliminates fewer symmetries and is weaker than lexicograph-
ical ordering. However, combining it with lex ordering may eliminate more symmetries
than combining both lex orderings. Based on Theorem 3, if multiset ordering determine
a unique ordering in one dimension, combining it with lexicographical ordering in the
other dimension eliminates the matrix symmetries. We cannot guarantee multiset order-
ing achieve unique ordering in many problems, but we show in the following that the
solution set left by the combination can be much smaller than the one left by both≤lex.

We take the Cover Array Problem CA(t, k, g, b) from CSPLib prob045 as example
and use the integrated model [14], which channels an original model and a compound
model. The original model contains a b× k matrix X of integer variables with domain
{1..g}. The compound model contains a b×

(
k
t

)
matrix of integer variable with domain

{1..gk}. The original model contains matrix symmetries and value interchangeability in
each column. In the following, we consider tow sets of target symmetries and compare
our approach with those in the literature respectively.

– Considering row and column symmetries as target symmetries, we compare with
the popular approach DOUBLELEX, denoted as dLex. Now we explain our choice
of constraints. The number of columns k is smaller than the number of rows b
in satisfiable Cover Array instances CA(t, k, g, b). Since multiset ordering is rel-
atively weaker, we choose to post it between columns. We simulate the multi-
set ordering constraint [8] using the Global Cardinality Constraint [25]: ∀i, 0 ≤
i ≤ k, gcc([X1i, . . . , Xbi], [1, . . . , g], [O1i, . . . , Ogi]). Multiset ordering between
columns of the original model ∀1 ≤ i < j ≤ k, [X1i, . . . , Xbi] ≤m [X1j , . . . , Xbj ]
is achieved by enforcing lex ordering on the cardinality variable sequences ∀1 ≤
i < j ≤ k, [O1i, . . . , Ogi] ≤lex [O1j , . . . , Ogj ]. We denote it as mLex.

– Considering row, column and value symmetries as target symmetries, we compare
with the combination of DOUBLELEX and PRECEDENCE [19] constraints on each
column, denoted as dLex-V. PRECEDENCE [19] is a global constraint to elim-
inate value interchangeability. The value interchangeability of each column are
corresponding to variable interchangeability of the cardinality variable sequence
[O1i, . . . , Ogi] of each column i. We can simply enforce an ordering on the cardi-
nality variable sequence O1i ≤ · · · ≤ Ogi for each column i to break the value
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symmetries. The combination of these value symmetry breaking constraints and
mLex is denoted as mLex-V.
The value symmetry breaking constraints ∀i, 1 ≤ i ≤ k,O1i ≤ · · · ≤ Ogi in
mLex-V preserve both row and column permutations. For any solution obeying
the constraints, permutating the rows does not change the number of occurrences
of values [O1i, . . . , Ogi] in each column i. Moreover, each column has the same
ordering constraints on the cardinality variables and permutating the columns
still obeys the constraints. When multiset ordering and value symmetry breaking
constraint are complete respectively, the linear-size set of constraints mLex-V
eliminates all symmetries of size b!× k!× (g!)k.
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Fig. 4. Comparison of #Solutions in Cover Array Problem

Experiments are conducted on a Sun Blade 1000 (900MHz) running ILOG Solver
6.0. Variables are labeled in row-wise ordering. We conduct experiments on four in-
stances of CA(t, k, g, b) with different problem sizes. They vary in (1) the number of
columns k in the original model, (2) the number of columns

(
k
t

)
in the compound model

and (3) domain size g in the original model and gt in the compound model. We show
the growth of solution set size in log scale in base 10 in Figure 4 and runtime in Figure 5
as the number of rows b increases.

We can see that mLex/mLex-V always have fewer solutions than dLex/dLex-V,
which supports that preservation can achieve smaller solution set size. The distance
between the curve of dLex and dLex-V is relatively smaller than that between mLex
and mLex-V. The value symmetry breaking constraints in mLex-V preserve the row
and column permutations such that combining them achieves good solution reduction.
In all instances, the growth of dLex and dLex-V are similar, but the growth of mLex is
smaller than both. Although mLex has more solutions than dLex-V in small instances,
the solution set size of mLex becomes smaller at certain point. Constraints selected
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under preservation may even break or eliminate more symmetries as side-effects than
those intended for a bigger set of target symmetries.

Interestingly, mLex-V has zig-zag curves. When b is even in instances with g = 2,
the solution set size is relatively bigger. We conjecture that the occurrence of each value
in each column are equal with high probability when b has factor g and less value
symmetries are broken.
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Fig. 5. Comparison of Runtime in Cover Array Problem

Comparing the runtime of each approach in Figure 5, although the performance of
mLex/mLex-V is not as good in small instances, it is better as b grows. The runtime of
mLex is smaller than dLex-V when g = 2 but bigger when g = 3.

Piecewise variable and value symmetries Piecewise variable and value symmetries
are identified as a tractable class of symmetries in CSPs [7]. There exists a linear-size
set of constraints [6] that remove super-exponential number of symmetries. This set
of constraints [6] is inclusively a case of symmetry preservation: the value symmetry
breaking constraints preserve the variable symmetries and therefore all composition
symmetries are eliminated as side-effects.

5 Interactions with Problem Constraints

We have discussed how to achieve smaller solution set and thus better efficiency when
intending to eliminate the same target symmetries. In this section, we give observations
on ways to further reduce the search space. This results in extra advantages even when
we post symmetry breaking constraints that obtain the same solution set size.
Further Simplification Sometimes, a symmetry breaking constraint can be simplified
to an equivalent but cheaper one with the help of problem constraints, e.g. when there
is an ALLDIFF constraint on all the variables [21]. Reduction rules [10] can be applied
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to reduce the number and arity of a conjunction of symmetry breaking constraints. We
find that the degree of simplification can be different when choosing different alterna-
tives. For example, to eliminate symmetry σd1 in the DLS problem, we can post either
LEXLEADER constraint (2) [X12, . . . , X1n] <lex [X21, . . . , Xn1] or inequality con-
straints (3) X1n < Xn1 or (4) Xn1 < X1n. Each choice cuts half of the solution set.
Constraint (3) and (4) are preferred since it is cheaper and likely to entail better runtime.

To achieve simpler constraints, we can try different symmetry breaking constraints,
especially those derived from canonical variable orderings that start with variables
bounded by more problem constraints and other symmetry breaking constraints. The
choice also affects how well symmetry breaking constraint interacts with problem con-
straints in terms of pruning.
Increasing Constraint Propagation Symmetry breaking constraints are constraints
and have interactions with other constraints. A number of new global constraints [13,
16] that combines the symmetry breaking constraints with problem constraints are intro-
duced to increase constraint propagation. We give an example of increasing constraint
propagation by simply choosing another symmetry breaking constraint.

Example 3. Among various choices to eliminate the value symmetries of DLS(5), we
pick three for discussion: fix the value of the first row, the middle column or the main
diagonal. Variables in the center is constrained by four ALLDIFF constraints; variables
in the diagonal line is constrained by three ALLDIFF constraints; and the rest by two
ALLDIFF constraints. Figure 6 shows the remaining search space after the propagation.
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Fig. 6. remaining search space of DLS(5) - eliminate Gval

With the same solution set size, the remaining search space after propagation once
when fixing the main diagonal is less than one hundredth of that when fixing the first
row or middle column even in a small instance (n = 5). Even with the same number
of solutions, different symmetry breaking constraints cooperate variously with prob-
lem constraints and other symmetry breaking constraints in terms of propagation. They
may trigger different pruning power on variable domains when combined with prob-
lem constraints, some reducing dramatically more search space than others. Constraints
that share variables with more or tighter problem constraints potentially trigger more
propagation.

6 Experimental Results

This section evaluates how our choices of symmetry breaking constraints derived through
preservation and the simple tips from Section 5 can influence solution set size and effi-
ciency. In particular, we compare against the common practice reported in the literature.
All problems can be formulated as matrix models containing both variable and value
symmetries. We denote the symmetry breaking constraints derived from row-wise or-
dering as ROWWISE. The experiments are measured on a 3GHz Intel Core2 Duo PC
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with 3.2 GB RAM running Ubuntu 10.04.1 and Gecode-3.7.0. Depth first search is used
and variables are searched in row-wise ordering with value tried in increasing order. We
report the number of solutions, runtime and number of fails. Running time is expressed
in seconds. Best results are highlighted in bold.

Our choices of symmetry breaking constraints for the first two benchmarks are as
described in the first example of Section 4.4. Taking into account the interaction with
problem constraints, constraints (5) and (6) in Figure 3 trigger more propagation and
leave a smaller search tree. We choose (5) for experiments. Simplified constraint is
posted for the un-eliminated symmetry σd1. The set of symmetry breaking constraint
of Our Method is {[X11, . . . , Xnn] = [1, . . . , n], X1n < Xn1}. We compare with
ROWWISE and VAR+OCC in the literature.

Diagonal Latin Square Table 1 shows results of constraints derived from row-wise
ordering and those we selected from preservation. All solutions are searched above the
double line and one solution for the rest. Our method has half the number of solutions
as that of ROWWISE. Benefiting from both preservation and the interaction with prob-
lem constraints, we have smaller number of fails that imply smaller search tree. With
instance n = 11, the runtime of searching for one solution of our method is seven orders
of magnitude better.

NNQueen The problem is to place n colored queens on a n × n chessboard, such
that no lines contain more than one queen with the same color. We model the prob-
lem as an n2 variable matrix model and enforce an ALLDIFF constraint for each line.
It also has geometric symmetries and value interchangeability. We compare with the
symmetry breaking constraints by Puget [23]: VAR={X11 < X1n, X11 < Xn1, X11 <
Xnn, X12 < X21} to eliminate geometric symmetries and a set of OCC constraints to
eliminate value symmetries. Results presented in Table 2 show we gain better efficiency
due to eliminating more symmetries.

Table 1. Diagonal Latin Square

n
ROWWISE Our Method

#sol time #fails #sol time #fails
5 8 0.001 7 4 0.001 1
6 128 0.029 3000 64 0.004 652
7 171200 12.981 1413K 85600 1.954 163K
8 1 0.002 140 1 0.001 17
9 1 40.04 4327K 1 0.001 25
10 1 0.031 2025 1 0.002 175
11 1 12052 1204124K 1 0.005 339

Table 2. NNQueen

n
VAR+OCC Our Method

#sol time #fails #sol time #fails
5 2 0.001 7 1 0.001 0
6 0 0.002 96 0 0.001 55
7 4 0.195 6201 2 0.038 2496
8 0 65.75 1824K 0 16.47 1258K
9 0 10660 232274K 0 2349 153952K

Error Correcting Code - Lee Distance (ECCLD) The problem is from CSPLib
prob036. It requires to find the maximum number b of codes of length n drawn from 4
symbols {1, 2, 3, 4} such that the Lee distance between any pair of codes is exactly c.
The Lee distance between two symbols a and b is min {|a− b|, 4− |a− b|}. We model
it into a b × n matrix with domain {1..4}. In order to illustrate the effect on solution
set size, we transform the optimization problem to a satisfaction one by setting b in ad-
vance. Due to limited runtime, we constrain the problem size by limiting b. In general,
to which dimension multiset ordering should be applied is problem specific. Different
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from the Cover Array Problem, we find that the best performance of the combination of
multiset ordering and lexicographical ordering is achieved by≥mR,≤lexC (multiset or-
dering between rows and lexicographical ordering between columns). We compare with
DOUBLELEX [5] and SNAKELEX [11]. We can see from Table 3 that ≥m R,≤lex C is
better in both solution set size and runtime when b ≤ n but worse roughly when n < b.

Table 3. Error Correcting Code - Lee Distance

(n, c, b)
DOUBLELEX SNAKELEX ≥m R,≤lex C
#sol time #fails #sol time #fails #sol time #fails

(4,4,8) 32469 65.7 780K 29384 86.9 996K 53972 81.6 928K
(5,2,10) 87 7.98 42K 107 10.9 78K 1040 11.7 80K
(5,6,4) 710731 45.2 426K 748248 29 660K 213700 23.8 320K
(5,6,5) 1441224 148 3378K 1468811 236 5661K 379456 79.6 1779K
(5,6,6) 297476 344 7090K 299821 602 11749K 76528 204 3717K
(6,4,4) 4698842 194 4036K 5061729 225 5341K 1909044 115 2270K
(6,4,5) 29345816 3340 72477K 29668229 3480 81624K 11166072 1772 36960K
(6,8,4) 59158 22.6 1175K 55618 29.8 1822K 13163 12 588K
(8,4,4) 35626714 2172 48002K 38629753 2554 63380K 13403304 1108 73211K

7 Conclusion

There are several methods [12, 18, 15] concerning the choice of the symmetry break-
ing constraints, such as model restarts [12] and dynamic posting [18] that reduce the
conflict with search heuristic, and Jefferson et al.’s work [15] that chooses a better sub-
set of symmetries to break, and use Crawford’s [3] ordering constraints to generate the
constraints. Our approach focuses on choosing better symmetry breaking constraints
for a fixed set of target symmetries in the modeling stage so as to increase symmetry
breaking or constraint interaction. The previous approach and ours are complementary
to each other. Combining the approaches will be interesting future work.

Our goal is to find a set of symmetry breaking constraints that aims at only target
symmetries but turns out to eliminate more symmetries. After analyzing the common
side-effects of symmetry breaking constraints, we propose to select symmetry breaking
constraints that preserve other target symmetries and restrict the side-effects to non-
target symmetries. Unfortunately, our methods in the current form require the insight
of a human modeler and automating it is non-trivial with our initial experience. The ad-
vantages of preserving target symmetries are demonstrated both analytically and empir-
ically. We compare with approaches in the literature for problems in which eliminating
all symmetries is not tractable. Without introducing new overhead, our approach can
achieve smaller solution set and possibly better efficiency. To achieve symmetry preser-
vation, different choices of symmetry breaking constraint need to be considered. It is
interesting to investigate more flexible alternatives of symmetry breaking constraints
that can preserve symmetries and propagate well with other constraints.
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