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Abstract

Classical constraint satisfaction problems (CSPs)
are commonly defined on finite domains. In real
life, constrained variables can evolve over time. A
variable can actually take an infinite sequence of
values over discrete time points. In this paper, we
propose constraint programming on infinite data
streams, which provides a natural way to model
constrained time-varying problems. In our frame-
work, variable domains are specified byω-regular
languages. We introduce special stream operators
as basis to form stream expressions and constraints.
Stream CSPs have infinite search space. We pro-
pose a search procedure that can recognize and
avoid infinite search over duplicate search space.
The solution set of a stream CSP can be represented
by a Büchi automaton allowing stream values to be
non-periodic. Consistency notions are defined to
reduce the search space early. We illustrate the fea-
sibility of the framework by examples and experi-
ments.

1 Introduction
The standard domains of classical Constraint Satisfaction
Problems (CSPs)[Dechter, 2003] are of simple types, such
as integers, reals, and sets, which are inadequate in describ-
ing problems with values that change over time. Discrete
simulation of a person juggling indefinitely is an example of
constrained time-varying problems with discrete time points.
Changing continuously, the loci of the balls are governed by
the juggler’s throws, juggling rules, and laws of physics. In
addition, an experienced juggler should be able to exhibit
non-repetitive patterns so long as all the rules and laws are
obeyed. Modeling such a problem as a CSP would require an
infinite number of variables and constraints.

We propose Constraint Programming on infinite data
streams, which are difficult to manipulate due to the lack of
finite representation, especially for non-periodic ones. The
domains of stream variables are represented compactly us-
ingω-regular languages which are recognizable by Büchi au-
tomata[Büchi, 1962]. Different from model checking, the
automata are modified during search and synthesized into dif-
ferent stream values. We define stream operators (a la Lucid

[Wadge and Ashcroft, 1985]) and constraints. The searching
approach used in classical CSP is no longer practical due to
infinite domain size. We propose a search scheme which lim-
its our attention to a window of time points. Consistency en-
forcement is integrated to the search procedure to eliminate
infeasible search space. We have implemented a prototype
solver, which is used to model and solve the simulation of
juggling and jazzy harmonization of music as proof of con-
cept.

2 Infinite Data Streams
Streams are infinite sequences of data items, called datons,
over natural number time points. Astreamα is an ordered
sequence〈α(0), α(1), α(2), . . .〉, whereα(i) is adatonof α
at time pointi ≥ 0. We useα(i, j), 0 ≤ i ≤ j, to de-
note the finite string〈α(i), α(i + 1), . . . , α(j)〉. In partic-
ular, α(i,∞) is the stream〈α(i), α(i + 1), . . .〉. We over-
load these notations to apply on a set of stream values simi-
larly. Given a set of streamsS, S(i) = {α(i) |α ∈ S} and
S(i, j) = {α(i, j) |α ∈ S}.

Without loss of generality, we assume that datons are of
the same type. In particular, we focus on integer (Z) streams
in this paper. For exampleα = 〈1, 2, 3, 2, 4, 5, . . .〉 is an in-
teger stream, in whichα(2) = 3, α(1, 3) = 〈2, 3, 2〉, and
α(3,∞) = 〈2, 4, 5, . . .〉.

An ω-regular languagegeneralizes a regular language to a
set of infinite strings (a la streams), and can be expressed as a
finite union∪n

i=0UiV
ω
i whereUi andVi are regular languages

and the empty stringǫ /∈ Vi. Theω operator inV ω
i indicates

the infinite concatenation of the regular languageVi. In this
paper, we are interested only in problems whose solution sets
areω-regular languages.

A Büchi automatonover an alphabetΣ is a 4-tupleA =
(Q, q0,△, F ) whereQ is a finite set of states,q0 ∈ Q is an
initial state,△ ⊆ Q × Σ × Q is a transition relation, and
F ⊆ Q is the set of final states. The automatonA accepts an
infinite string if and only if there exists a run of the automaton
which visits at least one of the final states infinitely often.
An ω-regular language is recognizable by a Büchi automaton.
We useL(A) to denote theω-regular language recognized by
A.

Temporal operatorsare defined over streams. The unary
first operator gives the stream formed byrepeatingthe
first daton of the stream. Formally,first α = β, where



∀i ≥ 0, β(i) = α(0). The unarynext operator gives the
stream formed byremoving the first daton of the stream.
Formally, next α = α(1,∞). The binaryfby operator
takes two streams and gives the resulting stream by con-
catenating the first daton in the first stream and the second
stream. Formally,α fby β = γ whereγ(0) = α(0) and
∀i ≥ 1, γ(i) = β(i− 1).

In addition to temporal operators,pointwise operatorsare
extensions to functions defined over integers. Given ann-ary
function f : Z

n 7→ Z, an extension off to a correspond-
ing pointwise operatorf is defined byf(α1, α2, . . . , αn) = β
where∀i ≥ 0, β(i) = f(α1(i), α2(i), . . . , αn(i)). In par-
ticular, we highlight some useful pointwise operators, which
will be used in infix notation as usual. Arithmetic operators,
including+, −, ×, and/ (integer division) on numbers are
the extension of the usual operators over integers. When the
streams are pseudo-Boolean streams, containing only datons
0 (false) and 1 (true), there are logical operatorsand , or , and
not . Relational operators determine the truth of relation on
the stream values pointwisely and return a pseudo-Boolean
stream. The operators include==, <>, <=, and>= on
numbers.

A stream expression can involve different operators as in
“α+ β − (γ fby (next α))”.

3 Stream Constraint Satisfaction
A Constraint Satisfaction Problem(CSP) P is a tuple
(X ,D, C) whereX is a finite set ofvariables, D is a finite
set of(variable) domains, andC is a finite set ofconstraints.
A variableX ∈ X can only take a value from its correspond-
ing variable domainD(X) ∈ D. Each constraintC ∈ C has
scope(C) corresponding to the list of variables involved in
C. A constraintC limits the combinations of values that can
be taken by the variables inscope(C). A solution to a CSP
is an assignment of values from the variable domains to all
variables such that all constraints inP are satisfied simulta-
neously. We denote the set of solutions to CSPP assol(P).

3.1 Stream Constraints
Stream constraintsare relations on stream expressions, which
are composed of stream variables, stream constants, and
stream operators. Stream constants have the same daton over
all the time points which are denoted with the daton in bold,
such as2 = 〈2, 2, 2, . . .〉. The relations can be=, 6=, ≥, ≤,
and→ (implication), which are all enforcedpointwisely. An
example constraint is “X + 3 = Y fby Z”. When the con-
straints involve≥ or ≤, the set of datons, such asZ in this
paper, is assumed to have some ordering.

A stream constraintC ∈ C with scope(C) =
(X1, X2, . . . , Xn) is a subset of(Zω)n, i.e.C ⊆ (Zω)n. Re-
lational operators are different from stream relations. The for-
mer are functions returning pseudo-Boolean streams, while
the latter are constraints to be enforced.

In a Stream CSP(St-CSP), variables take on stream val-
ues so that domains are possibly infinite sets of streams. Ex-
pressions and constraints involving streams are those defined
earlier. We require stream variable domains to beω-regular
languages. For simplicity, initial domains are specified inthe

form ofΣω whereΣ is the set of possible datons at each time
point.

The following shows an example St-CSP having variables
X, Y , andZ, with domainsD(X) = D(Y ) = D(Z) =
(0|1|2)ω, where “| ” denotes choice. The two constraints are:

X = next Y + 1 and Y = X fby Z
This problem has infinitely many solutions. Three such so-
lutions are: (a){X = (1)ω, Y = 1(0)ω, Z = (0)ω}, (b)
{X = 121(2)ω, Y = 1010(1)ω, Z = 010(1)ω}, and (c)
{X = 211(212)ω, Y = 2100(101)ω, Z = 100(101)ω}. For
example, solution (b) satisfies all constraints since “next Y ”
gives010(1)ω and “010(1)ω + 1” is 121(2)ω which is equal
to X ’s value. Furthermore, “X fby Z” takes the first daton
of X, i.e., 1, followed by the streamZ = 010(1)ω, which
gives1010(1)ω and is equal toY ’s value.

An St-CSP can be viewed as a classical CSP with an in-
finite number of variables and constraints. A stream vari-
ableX corresponds to an infinite sequence ofdaton variables
〈X(0), X(1), . . .〉 in which D(X(i)) = D(X)(i). Simi-
larly, a stream constraintC corresponds to an infinite se-
quence ofdaton constraintsC(0), C(1), . . .. Each daton con-
straintC(i) of C can be obtained by applying translation op-
erationTi with the rules listed in Table 1 such thatTi(C)
givesC(i). Thus, each stream constraintC is translated to
the set{Ti(C) | i ≥ 0}. For example, the stream constraint
“X = Y fby Z” at time point 0 is translated by Rule 3 from
“T0(X = Y fby Z)” to “T0(X) = T0(Y fby Z)”, and then
by Rules 6 and 1 to “X(0) = Y (0)”. For time pointi > 0,
“Ti(X) = Ti(Y fby Z)” is translated by Rule 7 to “Ti(X) =
Ti−1(Z)”, and then by Rule 1 to “X(i) = Z(i− 1)”. There-
fore, the stream constraint is equivalent to the conjunction of
daton constraints:X(0) = Y (0), X(1) = Z(0), X(2) =
Z(1), . . .. An St-CSPP = (X ,D, C) can be viewed as a
classical CSPP ′ = (X ′,D′, C′) whereX ′ = {X(i) | i ≥
0 ∧ X ∈ X}, ∀X(i) ∈ X ′, D′(X(i)) = D(X)(i), and
C′ = {Ti(C) | i ≥ 0 ∧ C ∈ C}.

3.2 Characterizing the Solution Space
We consider a variable assignment as a tuple. The
solution set of an St-CSP contains possibly infinite
number of tuples of streams. We introduce the⊗ op-
erator on streams such thatα1 ⊗ α2 ⊗ . . . ⊗ αn =
〈(α1(0), α2(0), . . . , αn(0)), (α1(1), α2(1), . . . , αn(1)), . . .〉.
The operator turns a sequence of streams into a
stream of tuples of corresponding datons. Then,
given a set of tuples of streamsS, we define
L(S) = {α1 ⊗ α2 ⊗ . . .⊗ αn | (α1, α2, . . . , αn) ∈ S}.

Lemma 1. L(sol(P)) is isomorphic tosol(P).

Lemma 2. Given a stream constraintC, L(C) is an ω-
regular language.

The solution set of an St-CSP is, mathematically, the con-
junction of constraints and the Cartesian product of variable
domains. Since stream domains and stream constraints areω-
regular languages, by the closure of operations forω-regular
languages[Thomas, 1990], we have the following theorem.

Theorem 1. Given an St-CSPP, L(sol(P)) is anω-regular
language.



Table 1: Translation rules for stream constraints and stream expressions at time pointi
Rule Expression Translation

1 Ti(α) α(i)
2 Ti(X) X(i)
3 Ti(expr1 rel expr2) Ti(expr1) rel Ti(expr2) whererel is a stream relation
4 Ti(first expr) T0(expr)
5 Ti(next expr) Ti+1(expr)
6 T0(expr1 fby expr2) T0(expr1)
7 Ti(expr1 fby expr2) Ti−1(expr2) wherei > 0
8 Ti(f(expr1, expr2, . . . , exprn)) f(Ti(expr1), Ti(expr2), . . . , Ti(exprn)) for n-ary functionf

Proof. We prove it by induction. When there is one stream
variable in the problemP, the set of solutionsL(sol(P))
is the conjunction of the initial domain and the set of con-
straints. Since domains and constraints areω-regular lan-
guages, by the closure ofω-regular languages over con-
junction, the resulting set is also anω-regular language.
Given two ω-regular languagesL1 and L2, we let S =
{(α1, α2) |α1 ∈ L1, α2 ∈ L2}. SinceS is anω-regular lan-
guage, the induction applies.

Thus we can solve an St-CSP by constructing a Büchi
automaton forL(sol(P)). In addition, by the nature ofω-
regular languages, solution streams of an St-CSP can benon-
periodic.

4 Solving Stream CSPs
An St-CSP has infinite domains. The tree search method
[Dechter, 2003] widely applied in solving traditional finite
domain CSPs is not applicable in this case as stream variable
domains can never be enumerated exhaustively. We propose
a depth-first search approach which determines the datons in
the stream variables in the order of time points. We define a
dominance relation among the search states or nodes so that
when a search state is dominated by an ancestor node in the
search tree, the search down that branch can terminate.

4.1 Search Tree
A search stateis an St-CSPP. GivenP1 = (X1,D1, C1)
andP2 = (X2,D2, C2), P1 is asub-problemof P2, denoted
P1 ⊆ P2, whenX1 = X2, D1 ⊆ D2, andC1 = C2. In a
search tree, a parent search stateP has a finite set of child
statesP ′

i such that∀i,P ′
i ⊆ P ∧ ∪isol(P

′
i) = sol(P).

Figure 1 shows the first 7 nodes of the search tree for an
St-CSPP, having variablesX andY with the initial domains
D(X) = D(Y ) = (1 | 2)ω and a constraintX = first Y .

The search procedure attempts to determine the daton as-
signment in the order of increasing time points. We define the
current time pointof a variableX ast(X) which is the maxi-
mum time point before which all the daton variables ofX can
be fixed according toD(X). Formally,t(X) = min{i | i ≥ 0
s.t. |D(X)(i)| > 1}. Thecurrent time pointof an St-CSPP,
t(P) is the minimum current time point among all the vari-
ables inP, i.e. t(P) = min{t(X) |X ∈ X}. Thus, there
exists at least one variable whose daton variable at time point
t(P) is unbound in a givenP. Whent(P) = ∞, all the daton
variables are bound. For example, inP2 of the search tree in
Figure 1, the datons in both domainsD2(X) andD2(Y ) are
fixed up to time point 0; thereforet(P2) is 1.

P = ({X,Y }, {D(X) = D(Y ) = (1 | 2)ω}, {C : X = first Y })

P0 : t(P0) = 0
D0(X) = (1 | 2)ω

D0(Y ) = (1 | 2)ω

P1 : t(P1) = 0
D1(X) = 1(1 | 2)ω

D1(Y ) = (1 | 2)ω

P2 : t(P2) = 1
D2(X) = 1(1 | 2)ω

D2(Y ) = 1(1 | 2)ω

P3 : t(P3) = 1
D3(X) = 11(1 | 2)ω

D3(Y ) = 1(1 | 2)ω

P4 : t(P4) = 2
D4(X) = 11(1 | 2)ω

D4(Y ) = 11(1 | 2)ω

P2

Y (1) = 1

P5 : t(P5) = 2
D5(X) = 11(1 | 2)ω

D5(Y ) = 12(1 | 2)ω

P2

Y (1) = 2

X(1) = 1

P6 : t(P6) = 1
D6(X) = 12(1 | 2)ω

D6(Y ) = 1(1 | 2)ω

X

X(1) = 2

Y (0) = 1 Y (0) = 2

X(0) = 1 X(0) = 2

Figure 1: A search tree for an St-CSP.

In each search stateP, a variableX with t(X) = t(P) is
selected. With eachd ∈ D(X)(t(P)), P is branched with the
assignmentX(t(P)) = d. In Figure 1, upon completion of
assignment to datons in time point 0 atP2, the search selects
a variable with current time point ast(P2) for daton assign-
ment. The search tree here first selectsX(1) and branches for
X(1) = 1 andX(1) = 2 respectively.

Note thatt(P0) = t(P1) = 0, but t(P2) = t(P1) + 1. We
say that there is anadvancementof current time point from
P1 to P2 but not fromP0 to P1. We define the set of search
states with advancement of current time point from their par-
ent search states plusP0 to beΦ = {Pi | t(parent(Pi)) <
t(Pi)}∪{P0}, whereparent(P) gives the parent search state
of P andP0 is the root node of the search tree. Each search
state inΦ corresponds to a complete assignment to all daton
variables at and before a time point. In the search tree in Fig-
ure 1,Φ includesP0, P2, P4, andP5 among the first 7 nodes.

Since the streams are defined on infinite time points, the
search procedure will advance the time point forever. To
avoid infinite search, we define the notion of dominance
of one search state over another. A search statePi =
(X ,Di, C) is dominatedby Pj = (X ,Dj , C), denoted as
Pi ≺ Pj , if and only if Pi,Pj ∈ Φ, Pj is an ancestor of



Pi, andti = t(Pi), tj = t(Pj), ∀X ∈ X , Di(X)(ti,∞) =
Dj(X)(tj ,∞)∧∀C ∈ C,

∏
X∈scope(C) Di(X)(ti,∞)∩C =

∏
X∈scope(C) Dj(X)(tj ,∞) ∩ C. The conditions for domi-

nance ensure the solution space of bothPi andPj , when only
considering the time points aftert(Pi) andt(Pj) respectively,
is the same, since the domains are the same and each con-
straint represents the same set of tuples of streams.

The search statesP4 andP5 in Figure 1 are dominated by
P2. SinceD4(X)(2,∞) = D2(X)(1,∞), D4(Y )(2,∞) =
D2(Y )(1,∞) and ((D4(X) × D4(Y )) ∩ C)(2,∞) =
((D2(X) × D2(Y )) ∩ C)(1,∞) = ((1, 1) | (1, 2))ω. This
is similar forP5.

SupposePi is dominated byPj , wherePi,Pj ∈ Φ. There
is a path fromPj to Pi in the search tree. The path cor-
responds to a sequence of daton assignments, denoted ass,
between time pointst(Pj) andt(Pi) − 1. Therefore, for all
α ∈ L(sol(Pi)), sα ∈ L(sol(Pj)), wheresα is s appended
with α. As Pi andPj share the same solution space after a
certain time point, such operation can be done infinitely many
times andsω is one of the solutions toPi andPj . For exam-
ple, in Figure 1, the path fromP2 toP4 corresponds to the as-
signment{X(1) = 1, Y (1) = 1}. SinceP4 is dominated by
P2, the solution space ofP2 is the same as that ofP4 after 1
time point. Therefore, the assignment{X(i) = 1, Y (i) = 1}
can always be satisfied and{X = (1)ω, Y = (1)ω} is one of
the solutions.

As the domains can be infinite, the computation of con-
junction of constraints and domains is infeasible. We pro-
pose simple and sufficient conditions for dominance detec-
tion. Given an St-CSPP = (X ,D, C). As all the datons
are fixed before time pointt(P), we limit our attention to
time point t(P) and onwards. We define alimited viewof
P to be P̂ = (X , D̂, Ĉ), which can be obtained fromP
by removing the time points from0 to t(P) − 1 such that
∀X ∈ X , D̂(X) = D(X)(t(P),∞) and Ĉ = {Ĉ(i) | ∀i ≥

0, C ∈ C } whereĈ(i) is C(i) with all the occurrences of
X(i), i < t(P), replaced by the assigned values toX(i)’s.

Theorem 2. GivenPi,Pj ∈ Φ. If P̂i = P̂j andPj is an
ancestor ofPi, thenPi ≺ Pj .

Proof. SupposePi = (X ,Di, C), Pj = (X ,Dj , C), ti =
t(Pi), and tj = t(Pj). Since Pi,Pj ∈ Φ and, Pj

is an ancestor ofPi, we only have to show that when
P̂i = P̂j , (1) ∀X ∈ X , Di(X)(ti,∞) = Dj(X)(tj ,∞)
and (2) ∀C ∈ C,

∏
X∈scope(C) Di(X)(ti,∞) ∩ C =

∏
X∈scope(C) Dj(X)(tj ,∞) ∩ C are true.

When P̂i = P̂j , condition (1) is satisfied by the defini-
tion of limited view, as∀X ∈ X , D̂i(X) = D̂j(X). Since
∀C ∈ C, Ĉi = Ĉj and by condition (1), condition (2) is also
satisfied.

Next, we analyze the termination and complexity of this
search approach. From Table 1, we observe that different
translation rules are applied to thefby operator depending
on the time pointi. A stream constraintC, in which the
maximum nested applications offby is n, for all time points

Part (1) (2) (3)
Time 0 1 2 3 . . .

D(X) = 1 1 (1 | 2) (1 | 2) . . .
D(Y ) = 1 (1 | 2) (1 | 2) (1 | 2) . . .

Figure 2: The division of time line into three parts for search
stateP3 in Figure 1.

i ≥ n, Ti(C) is translated with the same set of rules. There-
fore, we have the following property.

Property 1. Given a stream constraintC with n nested ap-
plications offby. ∀i > n, Ti(C) share the same structure as
Tn(C).

Two daton constraintsC(i) andC(j) share the same struc-
ture whenC(i) becomesC(j) after replacingi by j. Take
the above stream constraint “X = Y fby Z” as an example,
since there is only onefby operator, for all time pointsi ≥ 1,
the daton constraint isX(i) = Z(i− 1).

When P̂i = P̂j , Pi andPj share the same search space
after t(Pi) andt(Pj) respectively. The order of variable as-
signment in the search strategy divides the time line into three
parts: (1)all daton variables are fixed, (2)somedaton vari-
ables are fixed, and (3)no daton variables can be fixed. For
example, the search stateP3 in Figure 1, the window of part
(1) is [0, 0], that of part (2) is[1, 1], and that of part (3) is
[2,∞] which is depicted in Figure 2.

Theorem 3. The time complexity for dominance detection on
a pair of search states isO(w(d|X | + a|C|)), wherew is the
width of part (2),d is the maximum number of possible da-
ton at any time point, anda is the maximum arity of stream
constraints.

Proof. (Sketch) The starting point of part (2) for an St-CSP
P is t(P). To check domain equivalence, we can consider
only part (2) of the time line since there is no difference for
part (3). This takes timeO(wd|X |). We then check constraint
equivalence. Every constraint can involve only a finite num-
ber of fby operators. By Property 1, after a finite number of
time points, all the daton constraints share the same structure.
As the constraint may involve a finite number of daton vari-
ables before time pointt(Pj) or t(Pi), we have to check the
equivalence of the values which are assigned to those daton
variables. This checking takesO(wa|C|).

The sufficient condition (Theorem 2) depends on the num-
ber of datons, width of part (2), and the number of vari-
ables. As all are finite, there must be two search states in
each branch matching the condition for dominance detection.

Lemma 3. Each branch in a search tree is finite and must
either (a) end in failure or (b) contain search statesPi and
Pj such thatPi ≺ Pj and the branch terminates atPi.

Proof. The search procedure branches for each possible da-
ton for a selected variable at a time point. Since the daton
domain is finite, there is a finite number of branches. The
branch ends in failure once there is no consistent daton to be
assigned; otherwise, the branch continues. At every advance-
ment of time point, the search performs dominance detection.



P0start P2

P4

P5

(1, 1)

(1, 1)

(1, 2)

ǫ

ǫ

Figure 3: A B̈uchi automaton representing a subset of all so-
lutions of the St-CSP in Figure 1.

As there are finite possible datons and finite number of stream
constraints in the problems, there must be two search states
along a branch of the search tree that satisfy the dominance
relation.

Theorem 4. The search procedure terminates.

Proof. The theorem follows directly from Lemma 3.

Among the first seven search states shown in Figure 1, the
search statesP4 andP5 are dominated byP2. In search state
P6, the assignmentX(1) = 2 cannot satisfy the constraint
X = first Y and the search fails.

4.2 Construction of Solution Set
When solving solutions of St-CSPP through the search pro-
cedure, we are actually building the corresponding Büchi au-
tomatonA, which can recognize and thus also generate the
solution set. We wantL(A) = L(sol(P)).

The automatonA = (Q, q0,△, F ) is built according to the
search tree. For each search statePi ∈ Φ, Pi is associated to
a statestate(Pi) in A, thusQ = {state(Pi) | Pi ∈ Φ}. The
root node of the search tree,P0, is associated with the starting
state ofA whereq0 = state(P0). For every non-root search
statePi ∈ Φ\{P0}, there is an edge pointing fromstate(Pj)
to state(Pi) wherePj is the nearest ancestor ofPi in Φ.
The edge is labelled with the assignment tuple made from
the search statePj to Pi. For each leaf nodePi associated
with statestate(Pi), if Pi ≺ Pj , there is an edge pointing
from state(Pi) to state(Pj) labelled with an empty stringǫ.
Since the automaton is generated from the search tree, all the
possible runs correspond to solutions. The set of final states
contains all the states in the automaton, thusF = Q. The
final automaton can be simplified. When a path in search tree
leads to failure, there are some states inA cannot be included
in any accepting runs. These states can be removed. When
Pi ≺ Pj , state(Pi) can be merged withstate(Pj) such that
the edge labelled withǫ can be eliminated.

Figure 3 shows the subset of solutions corresponding to the
first seven search states in Figure 1. The associated search
states are labelled on the states in the automaton. From the
automaton, the subset of solutions is(1, 1)((1, 1) | (1, 2))ω .

The solution automatonA corresponds to the structure of
search tree, where every search statePi ∈ Φ is a state and
every complete daton assignment is an edge.

Theorem 5. The solution automaton takesO(wa|C|+ d|X |)
space, wherew is the width of part (2),a is the maximum
arity of constraint, andd is the maximum number of possible
datons at any time point.

P = ({X,Y }, {D(X) = D(Y ) = (1 | 2)ω}, {C : X = first Y })

P0 : t(P0) = 0
D0(X) = (1 | 2)ω

D0(Y ) = (1 | 2)ω

P1 : t(P1) = 1
D1(X) = 11(1 | 2)ω

D1(Y ) = 1(1 | 2)ω

P2 : t(P2) = 2
D2(X) = 111(1 | 2)ω

D2(Y ) = 11(1 | 2)ω

P1

Y (1) = 1

P3 : t(P3) = 2
D3(X) = 111(1 | 2)ω

D3(Y ) = 12(1 | 2)ω

P1

Y (1) = 2

X(0) = 1 X(0) = 2

Figure 4: A search tree for an St-CSP enforced with prefix-1
consistency.

Proof. Each advancement of current time point in the search
corresponds to a state in the automata. The number of nodes
Pi, wherePi ∈ Φ along the search path, isO(wa|C|), which
is the number of different patterns in part (2). Each state con-
tributes at mostd|X | edges for every possible daton assign-
ment.

The following theorem shows that the constructed automa-
ton recognizesall solutions andonlysolutions ofP.

Theorem 6. (Soundness and Completeness) Given a Büchi
automatonA constructed from the search procedure for an
St-CSPP, (α1, α2, . . . , αn) ∈ sol(P) ↔ α1 ⊗ α2 ⊗ . . . ⊗
αn ∈ L(A).

5 Consistency Algorithm
Enforcing consistency helps reduce search space, by identify-
ing and avoiding infeasible search branches. In St-CSP, dueto
the infinite domain size, it is expensive to enforce generalized
arc consistency (GAC)[Bessìere and Ŕegin, 1997]. Accord-
ing to the search strategy introduced in the previous section,
we define a weaker notion of consistency, namelyprefix-k
consistency, which enforces GAC on the daton variables in a
sizek window of time points.

In the search tree, the current time pointt(P) of a search
stateP contains the first unbound daton variable. We limit
our attention to the widthk window of time points starting
from t(P), which isR = [t(P), t(P)+k−1]. Among the da-
ton variables in this window of time points, we enforce GAC.

By the definition of GAC[Bessìere and Ŕegin, 1997],
a daton variableXv(i) in an St-CSPP is GAC with re-
spect to daton constraintC(j) if and only if D(Xv(i)) =
(
∏

Xu(m)∈scope(C(j)) D(Xu(m)) ∩ C(j)) ↓Xv(i) where
↓Xv(i) projects the tuples toXv(i).

A stream variableX is prefix-k consistentwith respect to
a stream constraintC if and only if ∀i ∈ R, X(i) is GAC
with respect to all the daton constraintC(j) ∈ C such that
X(i) ∈ scope(C(j)). An St-CSPP is prefix-k consistentif
and only if all the stream variables inP are prefix-k consistent
with respect to allC ∈ C.



For example, in Figure 1, the search stateP1 is not prefix-
1 consistent with respect to the constraint because there are
no datonsd ∈ D(X(0)) such thatX(0) = Y (0) when
Y (0) = 2. Figure 4 shows the search tree of the prob-
lem with prefix-1 consistency enforced. After the assignment
X(0) = 1 from search stateP0, prefix-1 consistency is en-
forced at time point 0 and removes 2 fromD(Y (0)). As both
X(0) andY (0) are bound, the search advances the current
time point and enforces prefix-1 consistency at time point 1,
which gives the search stateP1. We can see that the search
tree becomes smaller and some nodes leading to failure, such
asP6 in Figure 1, are pruned earlier.

The notion of prefix-k consistency is enforced on the daton
variables and daton constraints. The enforcement algorithm
in Algorithm 1 is based on the classical GAC enforcement,
but we are only interested in the daton variablesX(i) whose
time pointi falls inR. In the procedurePrefixK , only daton
variables with time points in the widthR will be considered.
The Revise procedure checks if each of the values in the
daton variable domain can be extended to a tuple which is
consistent to the daton constraint. When there are changes
made to the domain, all the constraints with variables inside
the range of time points will be enqueued.

1 ProcedureRevise( P, xi, c)
2 //xi andc are daton variable and daton constraint respectively.
3 change := false;
4 for dj ∈ D(xi) do
5 support := false;
6 for (d0, d1, . . . , dj , . . . , dn) ∈

D(x0)×D(x1)× . . .× {dj} × . . .×D(xn) do
7 if (d0, d1, . . . , dj , . . . , dn) ∈ c then
8 support := true;

9 if support = false then
10 D(xi) := D(xi) \ {dj};
11 change := true;

12 return change;

13 ProcedurePrefixK( P, k)
14 R := [t(P), t(P) + k − 1];
15 Q := {(Xm(i), Cn(j)) |Xm(i) ∈ scope(Cn(j)) ∧ i ∈ R };
16 while Q 6= ∅ do
17 take and remove(Xm(i), Cn(j)) fromQ;
18 if Revise (P, Xm(i), Cn(j)) then
19 for Cn′(j′) ∈ C s.t.Xm(i) ∈ scope(Cn′(j′)) do
20 for Xm′(i′) ∈ Cn′(j′) do
21 if Xm′(i′) 6= Xm(i) ∧ i′ ∈ R then
22 Q := Q ∪ (Xm′(i′), Cn′(j′));

Algorithm 1: Enforcing prefix-k consistency.

Theorem 7. (Correctness) If St-CSPP ′ is obtained fromP
by applying Algorithm 1, thenP ′ is equivalent toP andP ′ is
prefix-k consistent.

Proof. Given i ∈ R. Suppose∃d ∈ D(X(i)) such that
∃C(j), X(i) ∈ scope(C(j)), d /∈ C(j) ↓X(i) andd remains
in D(X(i)) after executing Algorithm 1. In line 18 of the
algorithm,C(j) will be selected. In procedureRevise , the

condition in line 7 will never be satisfied. Thusd is removed
from the domain ofD(X(i)) and this contradicts the assump-
tion.

Theorem 8. The algorithm to enforce prefix-k consistency
takesO(adak|C|) time, wherea is the maximum arity of daton
constraints, andd is the maximum possible datons at any time
point.

Proof. The complexity ofRevise is O(da) to check for
support for each of the possible daton in the daton do-
main. The procedurePrefixK enforces prefix-k consis-
tency. There areO(ak|C|) tuples in the queueQ, each of
them will be put into queue again for at mostO(da) time.

6 Examples and Experiments
To verify the feasibility of our framework, we have modelled
the periodic still life problem, traffic light scheduling, 15-
puzzle, simulation of juggling, and jazzy harmony generation
as St-CSPs. The periodic still life problem looks for initial
patterns that lead to oscillating patterns after a finite num-
ber of steps. The traffic light scheduling problem arranges
traffic light signals in a road junction such that the vehicles
will never crash. Though optimal solutions to a valid 15-
puzzle always involves finite number of moves, the problem
looks for all possible solutions so that the number of moves
is not known in advance. Due to space limitation, we de-
scribe only the juggling problem and harmony generation in
details. These problems have non-UP-stream solutions. We
implement a prototype St-CSP solver enforcing prefix-k con-
sistency. Comparison among differentk values is conducted.
The solution automata are constructed automatically on-the-
fly during search and translation time is included in our re-
sults. Experiments are conducted on a Sun Blade 2500 ma-
chine with 2GB memory.

6.1 Simulation of Juggling
The task is to simulate basic juggling[Apt and Brand, 2006]
involving n balls. For simplicity, the patterns ensure that
there is at most one ball in hand at any time, and every ball
is thrown for maximumm time points after which the ball is
caught. Each problem is characterized by(n,m). We aim
to find all possible sequences of juggling patterns which may
change over time.

Then variablesX1, X2, X3, . . . , Xn represent the time in-
terval after which the ball is caught. For example, ifX1 has
daton 5 at time point 3, ball 1 will be in the air for 5 time
points and be caught at time point 7. The variableA indicates
the force to throw the ball, which reflects the time interval
for the ball in the air. A ball thrown with odd (even) units of
force will be caught by different (same) hand. The domain of
the variables are:∀1 ≤ i ≤ n,D(Xi) = (1|2|3| . . . |m)ω and
D(A) = (0|1|2| . . . |m)ω. The variableA has daton0 at the
time when no ball is at hand.

A ball falls down by 1 unit at a time, unless it is being
thrown with forceA again. The constraints are:∀1 ≤ i ≤ n,
(Xi == 1) → (next Xi == A) and (Xi 6= 1) →
(next Xi = Xi − 1). Also, no two balls are being caught
simultaneously:∀1 ≤ i < j ≤ n,Xi 6= Xj .
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t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5: Space-time diagram of a juggling pattern. The three
balls are represented by a solid, dashed, and dotted lines re-
spectively.

Table 2: Run time and number of fails for simulating juggling
for instance(n,m). The ‘-’ marks 6000 seconds timeout.

No Consistency Prefix-1 Prefix-2 Prefix-3
(n,m) Time Fails Time Fails Time Fails Time Fails
(3,3) 0.15 332 0.01 18 0.00 8 0.00 3
(3,4) - - 387.65 570049 259.40 235680 741.52 141277
(4,4) 13.88 1058 0.16 28 0.05 11 0.05 5
(5,5) 2644.42 2686 23.12 40 5.19 15 5.76 6
(6,6) - - 5452.18 55 1011.82 17 1112.05 7

One solution of instance(3, 5): X1 = (3, 2, 1, 4)ω, X2 =
(2, 1, 4, 3)ω, X3 = (1, 3, 2, 1)ω, A = (3, 4, 4, 1)ω which is a
UP solution, is shown in Figure 5 by a space-time diagram.
The automaton in Figure 6 recognizes a subset of solutions to
the problem. The solution can be obtained in a run starts at
state 0 and followed by sequence of states 1, 2, 3, 4 repeat-
edly. Other solutions can also be obtained by transversing
different edges, including non-UP solutions, such as:X1 =
〈3, 2, 1, 3, 2, 1, 4, 3 . . .〉, X2 = 〈2, 1, 3, 1, 4, 3, 2 . . .〉, X3 =
〈1, 3, 2, 3, 2, 1, 1 . . .〉, A = 〈3, 3, 3, 4, 4, 1, 4 . . .〉 which is the
run of states0, 1, 5, 0, 1, 2, 3, 4, . . ..

We conduct experiments on instances of(n,m) with
prefix-k consistency wherek ∈ {1, 2, 3} and the results are
listed in Table 2. Whenn = m, there are only repetitive
juggling patterns as solutions. After enforcing consistency,
the solutions can be easily obtained and thus the number of
fails is small in those cases. Whenk is larger, the consisten-
cies become stronger and thus more infeasible search space
is pruned. As the time complexity of prefix-k consistency in-
creases withk, the overall runtime cannot be compensated by
the extra pruning whenk is large.

In the problem, all constraints relate daton variables across
only two time points, e.g.Xi(t) andXi(t + 1) in the con-
straint(Xi == 1) → (next Xi == A). We conjecture that
the optimal solving performance is obtained whenk is chosen
as the maximum difference of time points of all constraints in-
volving the “next ” and “fby ” operators. The long solving
time for instances(3, 4) and(6, 6) is due to the enumeration
of many solutions and large problem size respectively.

0start 1 2 3 4

5

(3, 2, 1, 3) (2, 1, 3, 4) (1, 4, 2, 4) (4, 3, 1, 1)

(3, 2, 1, 3)(2, 1, 3, 3)
(1, 3, 2, 3)

Figure 6: A B̈uchi automaton representing a subset of all so-
lutions for(X1, X2, X3, A) of instance(3, 5).

6.2 Towards Generating Jazzy Harmonization
This problem is to generate the harmonization of four-part
choral music. A choral music contains soprano, alto, tenor,
and bass. Given the soprano notes which are repeated indefi-
nitely, we have to determine the notes for alto, tenor, and bass
so that the music is pleasant to listen for human beings.

We use variablesX1, X2, X3, X4 to represent the se-
quences of notes for soprano, alto, tenor, and bass respec-
tively. A music note is encoded as a number. For exam-
ple, 60 is middle C (C4). We limit the range of notes to
two octaves from 48 (C3) to 72 (C5). The domains are
D(X1) = D(X2) = D(X3) = D(X4) = (48 | . . . | 72)ω.
Auxiliary variables help in modeling. For example, we have
a set of pseudo-Boolean variables indicating the notes of each
part, such asCInX1 , CsharpInX1 , andDInX1 which repre-
sent whetherX1 takes the note C, C♯, and D respectively.

In this problem, we use the first four bars
of the melody from “Twinkle Twinkle Lit-
tle Star” (CCGGAAG, FFEEDDC) as a sen-
tence and repeat it indefinitely: melody =
(60, 60, 67, 67, 69, 69, 67, 65, 65, 64, 64, 62, 62, 60)ω . The
end of the sentence is indicated by a pseudo-Boolean stream:
end = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)ω .

We implement a number of rules for harmonization[Tsang
and Aitken, 1991]. For example, the parallel fifth rule is spec-
ified as∀i < j,Xi −Xj == 7 → next (Xi −Xj) <> 7.
The rule requiring that voices should never cross each other
is expressed by∀2 ≤ i ≤ 4, Xi > Xi−1.

The auxiliary variables can be constrained byCInXi =
(Xi/12 == 0), CsharpInXi = (Xi/12 == 1), DInXi =
(Xi/12 == 2), etc. The existence of a note in a chord can
be defined in terms of these auxiliary variables:existC =
CInX1 or CInX2 or CInX3 or CInX4 . Then, each of the
seven chord types can be given by constraints, e.g.,chordI =
(existC and existE and existG) for Chord I. Now, we can
require that each chord must be one of the seven standard
types:chordI + . . .+ chordVII = 1

By changing pitch, tempo, and delay of harmony, we can
introduce jazzy feeling to the music.

When we decide to change the pitch of the song up to five
intervals, we have to change it for every note in a sentence.
Therefore,D(offset) = (−5 | . . . | 5)ω and not end →
(next offset = offset) and thusX1 = melody + offset .

The change of tempo is also applied to a sentence for up
to three times slower.D(tempo) = (1 | 2 | 3)ω which repre-
sents the multiples of tempo of the original note:not end →
(next tempo = tempo).

The last feature is delay of harmony. When this style is
applied to a chord, the harmony will be silent in the first half
of the time. However, this style cannot be applied frequently
to maintain pleasant feeling. Among any three consecutive
chords, at most one chord can apply this style. Moreover,
by the convention of music composition, the last note of each
melody should keep long, and thus the style cannot be applied
to the last note. We use a pseudo-Boolean variabledelay
to indicate the application of this style with initial domain
(0 | 1)ω. The style is implied by imposing the following con-
straints:delay + next delay + next next delay ≤ 1 and
end → not delay .



With the remaining constraints, we generate harmony for
a given soprano which contains a repeated melody. The har-
mony can vary as the soprano repeats over time based on the
solution automaton, which can serve as a basis for musical
improvisation. Sample MIDI files generated from our solver
can be downloaded online1.

7 Concluding Remarks

Streams are related to coinduction[Rutten, 2005]. Fages
and Rizk[2009] specify the problem using a formula in LTL
which is the first approach to softness and optimization by
quantifying the satisfaction degree of the formula. Praletand
Verfaillie [2008] use different techniques to solve problems
in which variables have temporal dimension. Work on clas-
sical temporal constraints are too numerous to be mentioned
[Dechter, 2003]. Our work also has some loose connections
with online constraint solving[Verfaillie and Jussien, 2005].
The work by Gavanelliet al. [2005] is related but different
from ours. It is the variable domains that are changing with
possible values coming in incrementally, but variables still
take just a scalar value from the evolving but always finite
variable domains. In our case, each variable takes an infinite
data stream as value from a possibly infinite variable domain
of streams. Planning problems have been solved by constraint
programming[van Beek and Chen, 1999]. While the number
of steps is not known prior to solving, the problem is mod-
elled for a fixed number of steps. The problem is re-modelled
with increased number of steps until there is a solution found.

We consider data streams as a new domain for constrained
variables. The constraint language allows us to use any clas-
sical constraint interpreted pointwisely and temporal opera-
tors inspired by the data-flow language Lucid[Wadge and
Ashcroft, 1985]. The modelling examples show that the
St-CSP framework makes it possible to give a declarative
statement, such as the juggling specification, of the problem,
which separates problem formulation and solution methods.
This brings us one step towards the Holy Grail of program-
ming [Freuder, 1997]: the user states the problem, the com-
puter solves it. We have implemented a prototype solver for
the framework to find all solutions. By using Büchi automata,
the solver can give solutions including non-UP ones.

Optimization in St-CSP is an important future direction.
For example, in musical generation, some rules can be more
preferable to others. The framework opens a new direction
of research. We have described the application to simulate
the juggling and generate music harmonization in this paper.
Other real life applications, such as controller synthesis, are
worth for exploration. Interaction with live data streams is
another possible venue for future work. Studying the effect
of variable and value orderings is also worthwhile. Enhance-
ment on the search strategies, such as applying more accurate
heuristics for dominance detection, and introducing new con-
sistency notions to the St-CSP, can improve the search per-
formance. Improvement to the prototype solver in terms of
implementation techniques and the use of data structures is
also imminent.

1http://www.cse.cuhk.edu.hk/ ˜ jlee/stcsp.mid

Acknowledgments
We thank the anonymous referees for constructive comments
and Jasper Lee for the advice on music harmonization. The
work described in this paper was substantially supported by
grants (CUHK413808 and CUHK413710) from the Research
Grants Council of Hong Kong SAR.

References
[Apt and Brand, 2006] K. R. Apt and S. Brand. Infinite qual-

itative simulations by means of constraint programming.
In CP’06, pages 29–43, 2006.
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