
A Stronger Consistency for Soft Global Constraints in
Weighted Constraint Satisfaction

J.H.M. Lee and K.L. Leung
Department of Computer Science and Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
{jlee,klleung}@cse.cuhk.edu.hk

Abstract

Weighted Constraint Satisfaction is made practical by pow-
erful consistency techniques, such as AC*, FDAC* and
EDAC*, which reduce search space effectively and efficiently
during search, but they are designed for only binary and
ternary constraints. To allow soft global constraints, usu-
ally of high arity, to enjoy the same benefits, Lee and Le-
ung give polynomial time algorithms to enforce generalized
AC* (GAC*) and FDAC* (FDGAC*) for projection-safe soft
non-binary constraints. Generalizing the stronger EDAC* is
less straightforward. In this paper, we first reveal the oscilla-
tion problem when enforcing EDAC* on constraints sharing
more than one variable. To avoid oscillation, we propose a
weak version of EDAC* and generalize it to weak EDGAC*
for non-binary constraints. Weak EDGAC* is stronger than
FDGAC* and GAC*, but weaker than VAC and softk-
consistency fork > 2. We also show that weak EDGAC*
can be enforced in polynomial time for projection-safe con-
straints. Extensive experimentation confirms the efficiency of
our proposal.

Introduction
Soft constraints help model preferences and over-
constrained problems. Weighted Constraint Satisfaction
Problems (WCSPs), a soft CSP framework, is made prac-
tical by powerful consistency techniques applied during
search. NC*, AC* and FDAC* (Larrosa and Schiex 2003;
2004) and EDAC* (de Givry et al. 2005) are instrumental
in solving radio link frequency problems which are binary
in nature. Generalizations of these consistencies for ternary
constraints (Sanchez, de Givry, and Schiex 2008) help
solve Mendelian error detection problems. Zytnickiet al.
(2009) introduced BAC∅ for solving RNA gene localization
problems.

On the other hand, many real-life problems are complex
to model, requiring the use of specialized global constraints
which usually have high arities. Lee and Leung (2009) gen-
eralize AC* and FDAC* to their non-binary counterparts,
GAC* and FDGAC*, and show that the new consistencies
can be enforced in polynomial time for projection-safe soft
global constraints. A natural next step is to generalize also
the stronger consistency EDAC* (de Givry et al. 2005) to

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

EDGAC*, but this turns out to be non-trivial. We identify
and analyze an inherent limitation of EDAC*: similar to the
case of Full AC* (de Givry et al. 2005), ED(G)AC* en-
forcement will go into oscillation if two constraints share
more than one variable, which is common when a problem
involves high arity (soft) constraints. Sanchezet al. (2008)
did not mention the oscillation problem but their method
for enforcing EDAC* for the special case of ternary con-
straints would avoid the oscillation problem. In this paper,
we give a weak form of EDAC*, which can be generalized
to weak EDGAC* for constraints ofany arity. Most im-
portantly, weak EDAC* is reduced to EDAC* when no two
constraints share more than one variable. Weak EDGAC* is
stronger than FDGAC* and GAC* (Lee and Leung 2009),
but weaker than VAC (Cooper et al. 2008) and softk-
consistency (Cooper 2005) fork > 2. We also give an
enforcement algorithm for weak EDGAC*, which can be
run in polynomial time for projection-safe (Lee and Leung
2009) soft global constraints. Extensive experimentation
confirms the efficiency of our proposal both in terms of prun-
ing and running time.

Background
A weighted CSP (WCSP) (Schiex, Fargier, and Verfail-
lie 1995) is a tuple(X ,D, C, k). X is a set of variables
{x1, x2, . . . , xn} ordered by their indices.D is a set of do-
mainsD(xi) for xi ∈ X . Eachxi can only be assigned
one value in its corresponding domain. An assignment
{xs1

7→ vs1
, . . . , xsn

7→ vsn
} ontoS = {xs1

, . . . , xsn
} ⊆

X can be represented by atuple ℓ. The notationℓ[xsi
] de-

notes the valuevsi
assigned toxsi

∈ S, andL(S) denotes
a set of tuples corresponding to all possible assignments
on variablesS. C is a set of soft constraints, eachCS of
which represents a function mapping a tupleℓ ∈ L(S) to
a cost in the valuation structureV (k) = ([0, . . . , k],⊕,≤).
The structureV (k) contains a set of integers[0, . . . , k] with
standard integer ordering≤. Addition ⊕ is defined by
a⊕b = min(k, a+b), and subtraction⊖ is defined only for
a ≥ b, a ⊖ b = a − b if a 6= k andk ⊖ a = k for anya. To
simplify notation, we writeC{xs1

,xs2
,...,xsn} asCs1s2···sn

if
the context is clear.

Without loss of generality, we assume the existence ofCi

for eachxi ∈ D(xi) andC∅ denoting the minimum cost of
the problem. If they are not defined, we assumeCi(v) = 0

for all v ∈ D(xi) andC∅ = 0. Thecostof a tupleℓ ∈ L(X)
is defined ascost(ℓ) = C∅ ⊕

⊕
CS∈C CS(ℓ[S]), whereℓ[S]

is the tuple formed by projectingℓ to S ⊆ X . A tuple ℓ ∈
L(X) is feasibleif cost(ℓ) < k, and is asolutionof a WCSP
if cost(ℓ) is minimum among all tuples inL(X).

WCSPs are usually solved with basic branch-and-bound
search augmented with consistency techniques which prune
infeasible values from variable domains and push costs into
C∅ while preserving the equivalence of the problems. Dif-
ferent consistency notions have been defined such as NC*
(Larrosa and Schiex 2004), GAC* (Cooper and Schiex 2004;
Lee and Leung 2009), and FDGAC* (Lee and Leung 2009).

A variable xi is node consistent(NC*) if each value
v ∈ D(xi) satisfiesCi(v) ⊕ C∅ < k and there exists a
valuev′ ∈ D(xi) such thatCi(v

′) = 0. A WCSP is NC* iff
all variables are NC*. ProcedureenforceNC*() in Algo-
rithm 1 enforces NC*, whereunaryProject() projects
unary constraints towardsC∅ andpruneVal() removes
infeasible values.

Procedure enforceNC*()
foreach xi ∈ X do unaryProject(xi);1

foreach xi ∈ X do pruneVal(xi);2

Procedure unaryProject(xi)
α := min{Ci(v)|v ∈ D(xi)};3

C∅ := C∅ ⊕ α;4

foreach v ∈ D(xi) do Ci(v) := Ci(v) ⊖ α;5

Function pruneVal(xi):Boolean
flag := false ;6

foreach v ∈ D(xi) s.t.Ci(v) ⊕ C∅ = k do7

D(xi) := D(xi) \ {v};8

flag := true ;9

return flag;10

Algorithm 1: Enforce NC*

A variablexi ∈ S is (G)AC* with respect to a non-unary
constraintCS if it is NC* and all valuesv ∈ D(xi) have a
tupleℓ ∈ L(S) with ℓ[xi] = v such thatCS(ℓ) = 0. Such a
tuple is asimple supportof v ∈ D(xi) with respect toCS .
A WCSP is (G)AC*iff all variables are (G)AC* with respect
to all non-unary constraints. The procedurefindSupport
in Algorithm 2 enforces simple supports for values inD(xi)
with respect toCS , which requires time complexity expo-
nential in |S| in general. However, if the constraints are
projection-safe, enforcing (G)AC* requires only polynomial
time (Lee and Leung 2009).

Suppose variables are ordered by their indices. Afull sup-
port of a valuev ∈ D(xi) with respect toCS with xi ∈ S
and a set of variablesU ⊆ S is a tupleℓ ∈ L(S) with
ℓ[xi] = v such thatCS(ℓ) ⊕

⊕
xj∈U Cj(vj) = 0. A vari-

ablexi ∈ S is directional (generalized) arc consistent star
(D(G)AC*) with respect to a non-unary constraintCS if it
is NC* and all valuesv ∈ D(xi) have full supports with
respect toCS and and{xj |j > i} ∩ S. A WCSP isfull di-
rectional (generalized) arc consistent star (FD(G)AC*)if all
variables are D(G)AC* and (G)AC* with respect to all non-

Function findSupport(CS, xi):Boolean
flag := false ;1

foreach v ∈ D(xi) do2

α := min{CS(ℓ)|ℓ ∈ L(S) ∧ ℓ[xi] = v};3

if Ci(v) = 0 ∧ α > 0 then flag := true ;4

Ci(v) := Ci(v) ⊕ α;5

foreach tupleℓ ∈ L(S) s.t. ℓ[xi] = v do6

CS(ℓ) := CS(ℓ) ⊖ α;7

unaryProject(xi);8

return flag;9

Function findFullSupport(CS, xi, U):Boolean
foreach xj ∈ U do10

foreach vj ∈ D(xj) do11

foreach ℓ ∈ L(S) s.t. ℓ[xj] = vj do12

CS(ℓ) := CS(ℓ) ⊕ Cj(vj);13

Cj(vj) := 0;14

flag := findSupport(CS, xi);15

foreach xj ∈ U do findSupport(CS, xj);16

unaryProject(xi);17

return flag;18

Algorithm 2: Enforcing simple supports and full supports
for values inD(xi)

unary constraints. The procedurefindFullSupport in
Algorithm 2 enforces full supports for values inD(xi) with
respect toCS andU ⊆ S, which requires time complexity
exponential in|S| in general. Again, if the constraints are
projection-safe, enforcing FD(G)AC* requires only polyno-
mial time (Lee and Leung 2009).

An Inherent Limitation of EDAC*
A variable is existential arc consistent(EAC*) if it is
NC* and there exists a valuev ∈ D(xi) with zero unary
cost such that it has full supports with respect to all con-
straintsCij and{xj}. A WCSP isexistential directional
arc consistent(EDAC*) if it is FDAC* and all variables
are EAC* (de Givry et al. 2005). Enforcing EAC* on
a variablexi requires two main operations: (1) compute
α = mina∈D(xi){Ci(a)⊕

⊕
Cij∈C minb∈D(xj){Cij(a, b)⊕

Cj(b)}}, which determines whether enforcing full supports
breaks the NC* requirement, and (2) ifα > 0, enforce full
supports by invokingfindFullSupport(xi, Cij , {xj})
for eachCij ∈ C, which NC* is no longer satisfied and
henceC∅ can be increased by enforcing NC*.

EDAC* enforcement will oscillate with constraints shar-
ing more than one variable. The situation is similar to Ex-
ample3 by de Givryet al. (2005). We demonstrate by the
example in Figure 1(a), which shows a WCSP with two soft
constraintsC1

12 andC2
12. It is FDAC* but not EDAC*. If

x2 takes the valuea, C1
12(v, a) ⊕ C1(v) ≥ 1 for all values

v ∈ D(x1); if x2 takes the valueb, C2
12(v, b) ⊕ C1(v) ≥ 1

for all valuesv ∈ D(x1). Thus, by enforcing full supports
of each value inD(x2) with respect to all constraints and

k = 4, C∅ = 0

x1 C1

a 1
b 0

x1 x2 C1
12

a a 0
a b 2
b a 1
b b 0

x2 C2

a 0
b 0

x1 x2 C2
12

a a 1
a b 0
b a 0
b b 2

(a) Original
WCSP

k = 4, C∅ = 0

x1 C1

a 0
b 0

x1 x2 C1
12

a a 1
a b 3
b a 1
b b 0

x2 C2

a 0
b 0

x1 x2 C2
12

a a 1
a b 0
b a 0
b b 2

(b) After Exten-
sion

k = 4, C∅ = 0

x1 C1

a 0
b 0

x1 x2 C1
12

a a 0
a b 3
b a 0
b b 0

x2 C2

a 1
b 0

x1 x2 C2
12

a a 1
a b 0
b a 0
b b 2

(c) After Projec-
tion

Figure 1: Oscillation in EDAC* enforcement

{x1}, NC* is broken andC∅ can be increased. To increase
C∅, we enforce full supports: the cost of1 in C1(a) is ex-
tended (lines 12 to 14 in Algorithm 2) toC1

12, resulting in
Figure 1(b). No cost inC1 can be extended toC2

12. Per-
forming projection (lines 5 to 7 in Algorithm 2) fromC1

12 to
C2 results in Figure 1(c). The WCSP is now EAC* but not
FDAC*. Enforcing FDAC* converts the problem state back
to Figure 1(a).

The problem is caused by the first step, which does not
tell how the unary costs are distributed to increaseC∅. Al-
though an increment is predicted, the unary costC1(a) has
a choice of moving the cost toC1

12 or C2
12. During compu-

tation, we obtain no information on how the unary costs are
moved. As shown, a wrong movement breaks DAC* with-
out incrementingC∅, resulting in oscillation.

This problem does not occur in existing solvers which
handle only up to ternary constraints. The solvers allow only
one binary constraint for every pair of variables. If there are
indeed two constraints for the same two variables, the con-
straints can be merged into one, where the cost of a tuple
in the merged constraint is the sum of the costs of the same
tuple in the two original constraints. However, if we allow
high arity global constraints, sharing of more than one vari-
able would be common and necessary in many scenarios.
A straightforward generalization of EDAC* for non-binary
constraints would inherit the same oscillation problem. For
example, Figure 2(a) shows a WCSP with two ternary con-
straintsC124 andC134. Each unit-cost ternary tuple is rep-
resented by three lines joined by a black dot. The WCSP
is FDGAC*. With a similar argument, a lower bound of1
should be deduced by finding full supports ofx4 with respect
to C124 and{x1, x2}, andC134 and{x1, x3}. Applying full
support enforcement would result in the state in Figure 2(b),
but enforcing FDGAC* again will convert the problem back
to the state in Figure 2(a).

In the case of ternary constraints, Sanchezet al. (2008)

1

1

x1

x2
x3

x4

a

a

a a

b

b

b b

(a)

1

1

x1

x2
x3

x4

a

a

a a

b

b

b b

(b)

1

1

x1

x2
x3

x4

a

a

a a

b

b

b b

(c)

11

x1

x2
x3

x4

a

a

a a

b

b

b b

(d)

Figure 2: Four Equivalent WCSPs

cleverly avoid the oscillation problem by re-defining full
supports to include not just unary but also binary con-
straints. During EDAC enforcement, unary costs are dis-
tributed through extension to binary constraints. However,
the method is only designed for ternary constraints. In the
following, we define a weak version of EDAC*, which is
based on the notion of cost-providing partitions.

Cost-Providing Partitions and Weak EDGAC*
A cost-providing partitionBxi

for variablexi ∈ X is a set
of sets{Bxi,CS

|xi ∈ S} such that:

• |Bxi
| is the number of constraints related toxi;

• Bxi,CS
⊆ S;

• Bxi,CSj
∩ Bxi,CSk

= ∅ for any two different constraints
CSk

, CSj
∈ C, and;

•
⋃

Bxi,CS
∈Bxi

Bxi,CS
= (

⋃
CS∈C∧xi∈S S) \ {xi}.

Essentially,Bxi
forms a partition of the set containing all

variables related toxi. If xj ∈ Bxi,CS
, the unary costs in

Cj can only be extended toCS when enforcing EAC* for
xi. This avoids the problem of determining how the unary
costs ofxj are distributed when there exists more than one
constraint on{xi, xj}.

Based on the cost-providing partitions, we defineweak
EDAC*. Given a WCSPP (X ,D, C, k) and the cost-
providing partitionsBxi

for each variablexi ∈ X . A weak
fully supported valuev ∈ D(xi) of a variablexi ∈ X is
a value with zero unary cost and for each variablexj and
a constraintCm

ij , there exists a valueb ∈ D(xj) such that
Cm

ij (v, b) = 0 if Bxi,C
m
ij

= {}, andCm
ij (v, b)⊕Cj(b) = 0 if

Bxi,C
m
ij

= {xj}. A variablexi is weak existential arc con-
sistent(weak EAC*) if it is NC* and there exists at least one

weak fully supported value in its domain.P is weak existen-
tial directional arc consistent(weak EDAC*) if it is FDAC*
and each variable is weak EAC*. Weak EDAC* collapses to
AC when WCSPs collapse to CSPs for any cost-providing
partition. Moreover, weak EDAC* is reduced to EDAC* (de
Givry et al. 2005) when the binary soft constraints share at
most one variable.

We further generalize weak EDAC* toweak EDGAC*for
n-ary soft constraints. Given a WCSPP (X ,D, C, k) and
any cost-providing partitionBxi

for each variablexi ∈ X .
A weak fully supported valuev ∈ D(xi) of a variablexi

is a value with zero unary cost and full supports with re-
spect to all constraintsCS ∈ C with xi ∈ S andBxi,CS

.
A variablexi is weak existential generalized arc consistent
(weak EGAC*) if it is NC* and there exists at least one weak
fully supported value in its domain.P is weak existential di-
rectional generalized arc consistent(weak EDGAC*) if it
is FDGAC* and each variable is weak EGAC*. For exam-
ple, in Figure 2(a), the WCSP is not weak EDGAC* with
the cost-providing partitionBx4

= {Bx4,C124
, Bx4,C134

} =
{{x2}, {x1, x3}}. If we enforce full supports onx4 with re-
spect toC124 and{x2} (Figure 2(c)), andC123 and{x1, x3}
(Figure 2(d)), enforcing NC* onx4 increasesC∅ by 1.
Given any cost-providing partition, weak EDGAC* is re-
duced to GAC when WCSPs collapse to CSPs.

To compute the cost-providing partitionBxi
of a vari-

ablexi, we apply Algorithm 3, which is a greedy approach
to partition the setY containing all variables related to
xi defined in line 1, hoping to maximizemax{|Bxi,CS

|}.
Whether such choice deduces the highest lower bound in
weak EDGAC* requires further studies.

Procedure findCostProvidingPartition(xi)
Y = (

⋃
CS∈C∧xi∈S S) \ {xi};1

SortC in decreasing order of|S|;2

foreach CS ∈ C s.t.xi ∈ S do3

Bxi,CS
= Y ∩ S;4

Y = Y \ S;5

Algorithm 3: FindingBxi

The procedureenforceWeakEDGAC*() in Algorithm
4 enforces weak EDGAC* of a WCSP. The cost-providing
partitions are first computed in lines 1 and 2. The proce-
dure makes use of four propagation queuesP , Q, R andS.
If xi ∈ P , the variablexi is potentially not weak EGAC*
due to a change in unary costs or a removal of values in
some variables. Ifxj ∈ R, the variablesxi involving in
the same constraints asxj are potentially not DGAC*. If
xj ∈ Q, all variables in the same constraints asxj are po-
tentially not GAC*. The propagation queueS helps build
P efficiently. The procedure consists of three inner-while
loops and one for-loop. The first inner-while loop from lines
6 to 10 enforces weak EGAC* on each variable by the pro-
cedurefindExistentialSupport() in line 8. If the
procedure returns true, a projection from some constraints
to Ci has been performed. The weak fully supported values
of other variables may be destroyed. Thus, the related vari-
ables are pushed back toP for revision in line 10. The sec-

Procedure enforceWeakEDGAC*()
foreach xi ∈ X do1
findCostProvidingPartition(xi);2

R := Q := S := X ;3
while S 6= ∅ ∨R 6= ∅ ∨Q 6= ∅ do4

P := S ∪
S

xi∈S,CS∈C
(S \ {xi});5

while P 6= ∅ do6
xi := pop(P);7
if findExistentialSupport(xi) then8

R := R∪ {xi};9
P := P ∪ {xj |xi, xj ∈ CS, CS ∈ C};10

S := ∅;11
while R 6= ∅ do12

xu := popMax(R);13
foreach CS s.t.xu ∈ S and |S| > 1 do14

for i = n DownTo 1 s.t.xi ∈ S \ {xu} do15
U = {xj |j > i} ∪ S;16
if findFullSupport(CS, xi, U) then17

S := S ∪ {xi};18
R := R∪ {xi};19

while Q 6= ∅ do20
xu := pop(Q);21
flag := false ;22
foreach CS s.t.xu ∈ S and |S| > 1 do23

foreach xi ∈ S \ {xu} do24
if findSupport(CS, xi) then25

S := S ∪ {xi};26
R := R∪ {xi};27

foreach xi ∈ X s.t.pruneVal(xi) do28
S := S ∪ {xi};29
Q := Q ∪ {xi};30
R := R∪ {xi};31

Function findExistentialSupport(xi):Boolean
flag := false ;32
α := mina∈D(xi){Ci(a)⊕33
L

xi∈S,CS∈C
minℓ[xi]=a{CS(ℓ) ⊕

L

xj∈Bxi,CS

Cj(ℓ[xj])}};

if α > 0 then34
flag := true ;35
foreach CS ∈ C s.t.xi ∈ S do36
findFullSupport(CS, xi, Bxi,CS

);37

return flag;38

Algorithm 4: Enforcing weak EDGAC*

ond inner-while loop from lines 12 to 19 enforces DGAC*,
while the third inner-while loop from lines 20 to 26 en-
forces GAC*. A change in unary cost requires re-examining
DGAC* and weak EGAC*, which is done by pushing the
variables into the corresponding queues in lines 9 and 10,
and lines 18 and 19. In the last step, NC* is enforced by
the for-loop from lines 28 to 31. Again, if a value inD(xi)
is removed, GAC*, DGAC* or weak EGAC* may be de-
stroyed, andxi is pushed into the corresponding queues for
re-examination.

The algorithm must terminate. We analyze the time com-
plexity by abstracting the worst-case time complexity of the
proceduresfindSupport(), findFullSupport() and
findExistentialSupport() as fGAC , fDGAC , and
fEGAC respectively. The overall time complexity is stated
as follows.

Theorem 1 The procedureenforceWeakEDGAC*() in
Algorithm 4 requiresO(max{nd, k}(fEGAC + r2efDGAC

+nd) + r2edfGAC), wheren = |X |, d = max{|D(xi)|},
e = |C|, and r = maxCS∈C{|S|} Thus,
enforceWeakEDGAC*() must terminate.

Proof: As lines 1 and 2 require onlyO(nr), we only ana-
lyze the time complexity of each inner while-loop and com-
pute the overall time complexity.

A variable is pushed intoS if a value is removed or weak
EGAC* is violated. The former happensO(nd) times, while
the latter occursO(k) times (each time weak EGAC* is vi-
olated,C∅ increases). SinceP is built onS, the number
of iterations caused byP is O(max{nd, k}). Thus, the first
inner while-loop in line 6 requiresO(max{nd, k}fEGAC).

A variable is pushed intoR if either a value is removed, or
unary costs are moved by GAC* or weak EGAC* enforce-
ment. The number of iterations due toR is O(max{nd, k}).
Consider the second inner while-loop in line 11. Once a
variable is popped out in line 13, it is not pushed back into
R again by line 19. Thus, the loop only iteratesO(n) times.
It follows that the second inner while-loop in line 12 requires
O(max{nd, k}r2efDGAC) (Lee and Leung 2009).

A variable is pushed intoQ only if a value is removed.
Thus, the number of iterations caused byQ is O(nd). Thus
the third while-loop in line 20 requiresO(r2edfGAC) (Lee
and Leung 2009).

The outer while-loop in line 4 terminates when all propa-
gation queues are empty. Thus, the main while-loop iterates
O(max{nd, k}) times. The last for-loop in line 28 requires
O(max{nd, k}nd) times in total.

By summing up all time complexity results, the global
time complexity isO(max{nd, k}(fEGAC + r2efDGAC +
nd) + r2edfGAC).

The procedureenforceWeakEDGAC*() is again expo-
nential due tofindSupport(), findFullSupport()
and findExistentialSupport(). In the following,
we focus on the last procedure. It first checks whether
the weak fully supported value exists by computingα,
which determines whether NC* still holds if we perform
findFullSupport() from lines 36 to 37. Ifα equals
0, the weak fully supported value exists and nothing should
be done; otherwise, the weak fully supported value can be
formed by the for-loop at lines 36 to 37. The time complex-
ity depends on two operations:

• Computing the value ofα in line 33;

• Finding full supports by the line 37.

These two operations are exponential in|S| in general.
However, if all constraints are projection-safe, the time com-
plexity of the above operations can be reduced to polynomial
time (Lee and Leung 2009).

In the following, we compare the strength of weak
EDGAC* against related consistencies. We say thatα-
consistency isstronger thanβ-consistency if a WCSPP is
β-consistent wheneverP is α-consistent. Ifα-consistency
is stronger thanβ-consistency butβ-consistency is not
stronger thanα-consistency, thenα-consistency isstrictly
strongerthanβ-consistency.

By definition, weak EDGAC* implies FDGAC*. We have
also shown an example in which the problem is FDGAC*
but not weak EDGAC*. Thus, weak EDGAC* is strictly
stronger than FDGAC*.

Theorem 2 Weak EDGAC* with any cost-providing par-
tition is strictly stronger than FDGAC*, which is in turn
strictly stronger than GAC* (Lee and Leung 2009)

In other words, enforcing FDGAC* on a problem which is
already weak EDGAC* cannot further improveC∅ or re-
move more values.

In addition, VAC (Cooper et al. 2008) is strictly stronger
than EDAC*. So is softk-consistency (Cooper 2005) for
k > 2. Since EDAC* is stronger than weak EDGAC*, we
have VAC and softk-consistency (k > 2) strictly stronger
than weak EDGAC*.

Theorem 3 VAC and softk-consistency (k > 2) are strictly
stronger than weak EDGAC* with any cost-providing parti-
tion.

Experimental Results
To test the efficiency of weak EDGAC*, we perform the
following experiments and compare it with FDGAC* (Lee
and Leung 2009). Weaker than FDGAC*, GAC* and strong
∅IC (Lee and Leung 2009) are omitted due to the space
limitation. VAC and softk consistency are omitted as they
have not been implemented efficiently for generaln-ary con-
straints. Weak EDGAC* enforcement is implemented in
ToulBar21. The following six benchmarks are used in our
experiments:

• The Latin square problem(CSPLIB003) of ordern is to
fill an n×n table using numbers from{0, . . . , n−1} such
that each number occurs only once in every row and every
column.

• The generalized round robin tournament problem(mod-
ified from CSPLIB026), parameterized by(N, P, W), is
to schedule a tournament ofN teams overW weeks, with
each week divided intoP periods, such that: (1) every
team plays at least once a week, (2) every team plays at
most twice in the same period over the tournament, and
(3) every team plays every other team.

• The fair scheduling problem, suggested by the Global
Constraint Catalog2, is to schedulen persons into four
shifts over five days such that each person should be as-
signed the same number of theith shift.

• The people-mission scheduling problem, extending the
doctor-nurse rostering problem described by Beldiceanu

1http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
2http://www.emn.fr/x-info/sdemasse/gccat/

et al. (2004) is to schedule three groups ofn people into
six missions such that each mission is done by a team con-
taining exactly one person in each group. In this problem,
we also place a table constraint on each team, restricting
some combinations.

• The nurse scheduling problemis to schedule a group of
n nurses into four shifts: PM shift, AM shift, Overnight,
and Day-Off, over four days such that (1) each nurse must
have at most three AM shifts, at least two PM shifts, at
least one Overnight, and at least one Day-Off, (2) each
AM shift must have two nurses, each PM shift must have
one nurse, and each Overnight must have one nurse, and
(3) AM-shifts are preferred to be packed together, and the
same preference is also posted on Day-Offs.

• Thestretch modeling problemconsists of a sequence
of variables{x1, . . . , xn} with domainsD(xi) = {a, b}.
Each subsequence{xi, . . . , xn−5+i}, where1 ≤ i ≤ 5, is
required to containa-stretches of length2 andb-stretches
of length2 or 3, restricted usingstretch constraints
(Pesant 2001) modeled byregular constraints (Pesant
2004).

The above benchmarks are originally hard in nature and
modeled using global constraints. We soften these problems
by introducing random unary costs ranging from0 to 9 on
each variable. The hard global constraintsGC are also re-
placed by their projection-safe soft variantssoft GCµ (Lee
and Leung 2009) with different violation measuresµ: var,
val, edit (van Hoeve, Pesant, and Rousseau 2006).

In the experiments, variables are assigned in lexico-
graphic order. Value assignments start with the value with
minimum unary cost. The test is conducted on a Dell Op-
tiplex 280 with an Intel P4 3.2GHz CPU and 2GB RAM.
The average runtime and number of search nodes of five ran-
domly generated instances are measured for each value ofn
with no initial upper bound. Table 1 gives the results. En-
tries marked with a “*” indicates the execution of one of the
five instances exceeds 1 hour. We also mark the best results
by the ‘†’ symbol.

Among all instances, weak EDGAC* always prune more
than FDGAC*, bettering up to one order of magnitude in
the recorded figures. FDGAC* cannot solve a few instances
within the time limit, but weak EDGAC* can. This confirms
empirically weak EDGAC*’s theoretical strength as stated
in Theorem 2. There are three types of timing results. In
Tables 1(a), 1(b), 1(c), 1(d), and 1(g), weak EDGAC* beats
FDGAC* in all instances. In particular, FDGAC* cannot
solve some of the larger and more difficult instances within
the time limit. In Tables 1(e), 1(f), and 1(h), FDGAC* al-
ways beats weak EDGAC*, but by a small margin only. In
Tables 1(i) and 1(j), FDGAC* wins in the smaller instances.
In the larger instances, the effort in doing the extra pruning
finally pays off and weak EDGAC* prevails. This suggests
that weak EDGAC* has a better scaling behavior.

In summary, although weak EDGAC* is a more expensive
consistency to enforce in general, the additional pruning can
usually compensate for the extra effort.

n
FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes
4 †0.1 22 †0.1 †17.0
5 †0.1 66.2 †0.1 †48.2
6 4.8 244.6 †1.2 †87.0
7 58.4 1431.2 †16.4 †331.8
8 * * †459.6 †4730.8

(a) Latin Square withsoft GCCvar

n
FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes
4 †0.1 20.4 †0.1 †17.0
5 †0.1 61.2 †0.1 †45.2
6 3.6 211.0 †1.0 †82.2
7 40.4 1243.6 †13.4 †318.4
8 * * †285.2 †3700.4

(b) Latin Square withsoft GCCval

(N, P, W)
FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes
(4,3,2) 0.2 142.2 †0.1 †33.4
(5,4,2) 0.6 171.6 †0.1 †44.6
(6,5,3) * * †583.4 †6508.8
(7,5,3) * * †1283.4 †7476.6

(c) Generalized Round Robin Tourna-

ment withsoft GCCvar

(N, P, W)
FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes
(4,3,2) 0.2 141.0 †0.1 †33.0
(5,4,2) 0.6 171.0 †0.1 †42.8
(6,5,3) * * †438.2 †6499.6
(7,5,3) * * †765.0 †7413.6

(d) Generalized Round Robin Tourna-

ment withsoft GCCval

n
FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes
5 †0.1 27.4 †0.1 †25.4
6 †0.4 40.4 1.0 †34.0
7 †1.0 45.0 1.2 †40.6
8 †2.0 45.4 2.2 †45.0
9 †2.6 49.0 3.2 †49.0
10 †4.0 58.0 4.6 †56.8
11 †5.8 67.2 6.4 †61.6

(e) Fair Scheduling with

soft samevar

n
FDGAC* weak EDGAC*

Time(s) Nodes Time(s) Nodes
4 †0.2 247.8 0.4 †238.8
5 †3.4 831.2 †3.4 †693.4
6 †55.6 11065.2 69.2 †10957.8
7 †1348.0 333937.6 1714.0 †296019.2

(f) People-mission Scheduling with

soft samevar

n
FDGAC* weak EDGAC*

Time(s) Nodes Time(s) Nodes
3 †0.1 28.6 †0.1 †22.8
4 †0.1 32.6 †0.1 †28.0
5 4.0 379.0 †3.6 †273.6
6 63.4 4017.6 †37.8 †1927.2
7 207.6 12242.0 †42.8 †2167.6
8 821.2 44414.0 †229.2 †10437.0

(g) Nurse Rostering with

soft regularvar ()

n
FDGAC* weak EDGAC*

Time(s) Nodes Time(s) Nodes
3 †5.6 841.4 6.2 †803.2
4 †25.4 2568.8 27.6 †2424.0
5 †535.6 47091.2 546.8 †40244.0

(h) Nurse Rostering with

soft regularedit()

n
FDGAC* weak EDGAC*

Time(s) Nodes Time(s) Nodes
30 †30.0 171.4 35.2 †162.6
35 †57.6 239.8 69.0 †233.4
40 †92.2 328.6 108.2 †316.0
45 †240.6 651.8 246.4 †570.6
50 130.2 1660.6 †118.2 †1316.0
55 208.0 2291.8 †193.8 †1856.8

(i) Modeling stretch by

soft regularvar ()

n
FDGAC* weak EDGAC*

Time(s) Nodes Time(s) Nodes
30 †34.2 123.8 39.6 †122.4
35 †60.6 164.0 70.8 †162.8
40 †90.8 208.4 101.6 †194.0
45 239.6 371.0 †207.8 †299.6
50 204.8 967.6 †185.0 †823.2
55 264.2 972.8 †234.6 †777.6

(j) Modeling stretch by

soft regularedit()

Table 1: Experimental results: time (in seconds) and number
of nodes

Conclusion
Our contributions are three-fold. First, we discover and
give an example of a limitation of EDAC*. When con-
straints share more than one variable, oscillation similarto
the one demonstrated in Full AC* (de Givry et al. 2005)
will occur. Second, we introduce cost-providing partitions,
which restrict the distribution of the cost when enforcing
EDAC*. Based on cost-providing partitions, we define
weak EDGAC*, which can be enforced in polynomial time
for projection-safe soft global constraints (Lee and Leung

2009). Third, we perform extensive experiments to compare
weak EDGAC* and FDGAC*, and confirm the pruning and
execution efficiency of our proposal.

One immediate future work is to investigate the effect of
cost-providing partitions. It is unclear how different variable
arrangement in the cost-providing partitions affect domain
pruning as well as lower bound deduction. Another possible
direction is to investigate if other even stronger consisten-
cies, such as VAC (Cooper et al. 2008), can also benefit from
projection safety to make their enforcement practical. Such
work can help enrich the applicability of soft constraints to
real-life problems.

Acknowledgement
We are grateful to the anonymous referees for their con-
structive comments. The work described in this paper
was substantially supported by grants CUHK413207 and
CUHK413808 from the Research Grants Council of Hong
Kong SAR.

References
Beldiceanu, N.; Katriel, I.; and Thiel, S. 2004. Filtering
Algorithms for the Same Constraints. InProceedings of
CPAIOR’2004, 65–79.

Cooper, M., and Schiex, T. 2004. Arc Consistency for Soft
Constraints.Artificial Intelligence154:199–227.

Cooper, M.; de Givry, S.; Sanchez, M.; Schiex, T.; and
Zytnicki, M. 2008. Virtual Arc Consistency for Weighted
CSP. Inproceedings of AAAI’2008, 253–258.

Cooper, M. 2005. High-order Consistency in Valued Con-
straint Satisfaction.Constraints10:283–305.

de Givry, S.; Heras, F.; Zytnicki, M.; and Larrosa, J. 2005.
Existential arc consistency: Getting closer to full arc con-
sistency in weighted CSPs. InProceedings of IJCAI’2005,
84–89.

Larrosa, J., and Schiex, T. 2003. In the Quest of the Best
Form of Local Consistency for Weighted CSP. InProceed-
ings of IJCAI’2003, 239–244.

Larrosa, J., and Schiex, T. 2004. Solving Weighted CSP by
Maintaining Arc Consistency.Artificial Intelligence159(1-
2):1–26.

Lee, J., and Leung, K. 2009. Towards Efficient Con-
sistency Enforcement for Global Constraints in Weighted
Constraint Satisfaction. InProceedings of IJCAI’2009,
559–565.

Pesant, G. 2001. A Filtering Algorithm for the Stretch
Constraint. InProceedings of CP’2001, 183–195.

Pesant, G. 2004. A Regular Language Membership Con-
straint for Finite Sequences of Variables. InProceedings of
CP’2004, 482–495.

Sanchez, M.; de Givry, S.; and Schiex, T. 2008.
Mendelian Error Detection in Complex Pedigrees using
Weighted Constraint Satisfaction Techniques.Constraints
13(1):130–154.

Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued
Constraint Satisfaction Problems: Hard and Easy Prob-
lems. InProceedings of IJCAI’1995, 631–637.
van Hoeve, W.; Pesant, G.; and Rousseau, L.-M. 2006. On
Global Warming: Flow-based Soft Global Constraints.J.
Heuristics12(4-5):347–373.
Zytnicki, M.; Gaspin, C.; and Schiex, T. 2009. Bounds
Arc Consistency for Weighted CSPs.Journal of Artificial
Inteliigence Research35:593–621.

