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Abstract

Powerful consistency techniques, such as AC*
and FDAC*, have been developed for Weighted
Constraint Satisfaction Problems (WCSPs) to re-
duce the space in solution search, but are re-
stricted to only unary and binary constraints. On
the other hand, van Hoeve et al. developed effi-
cient graph-based algorithms for handling soft con-
straints as classical constraint optimization prob-
lems. We prove that naively incorporating van
Hoeve’s method into the WCSP framework can
enforce a strong form of ∅-Inverse Consistency,
which can prune infeasible values and deduce
good lower bound estimates. We further show
how Van Hoeve’s method can be modified so
as to handle cost projection and extension to
maintain the stronger AC* and FDAC* general-
ized for non-binary constraints. Using the soft
allDifferent constraint as a testbed, prelim-
inary results demonstrate that our proposal gives
improvements up to an order of magnitude both in
terms of time and pruning.

1 Introduction

The task at hand is on how to relax or weaken some of the
hard constraints in an over-constrained problem so as to ob-
tain useful partial solutions. Weighted constraint satisfac-
tion [Schiex et al., 1995] is a framework for handling such
tasks. While the basic technique for solving weighted con-
straint satisfaction problems (WCSPs) relies on a form of
branch-and-bound search, various consistency notions and
techniques [Larrosa and Schiex, 2003; 2004; Sanchez et al.,
2008] for unary, binary, and ternary constraints have been de-
veloped to help prune the search space. Higher arity con-
straints have to be either first converted to their binary coun-
terparts or activated only after enough variables are instan-
tiated during search. The lack of efficient handling of non-
binary constraints in WCSP systems greatly restricts the ap-

∗We thank the anonymous referees for their constructive com-
ments. The work described in this paper was substantially sup-
ported by grants CUHK413207 and CUHK413808 from the Re-
search Grants Council of Hong Kong SAR.

plicability of WCSP techniques to complex real-life prob-
lems.

Incorporating arbitrary soft n-nary constraints into WCSP
can be difficult since the costs have to be represented ex-
tensionally and maintained in an n-dimensional table, incur-
ring time and space overheads. Soft global constraints are
non-binary constraints with semantics. In particular, the cost
structure of flow-based soft global constraints [van Hoeve
et al., 2006] can be formulated as a flow network, allow-
ing the computation of the minimum cost of the soft global
constraints using minimum cost flow algorithm. This is use-
ful in estimating the lower bound of the current search path.
We show that a naive incorporation of flow-based soft global
constraints into WCSP would result in a strong form of the
∅-inverse consistency [Zytnicki et al., 2006], which is still
relatively weak in terms of lower bound estimation and prun-
ing. The question becomes whether we can achieve stronger
consistencies, the generalized versions of AC* [Larrosa and
Schiex, 2004] and FDAC* [Larrosa and Schiex, 2003], for
non-binary constraints efficiently. Consistency algorithms for
AC* and FDAC* involve three main operations: (a) comput-
ing the minimum cost of the constraint when a variable x is
fixed with value v, (b) projecting the minimum cost of a con-
straint to the unary constraint for x at value v, and (c) extend-
ing the unary cost to the non-unary constraints. These opera-
tions allow cost movement among constraints and shifting of
cost to the C∅ constraint, resulting in higher lower bound and
also domain prunings. Part (a) is readily handled by the mini-
mum cost flow (MCF) algorithm. We show how the MCF al-
gorithm and the corresponding flow networks can be adapted
for parts (b) and (c) so as to perform projection and exten-
sion in polynomial time and space complexity. Using the soft
allDifferent constraint as a testbed, we demonstrate the
advantages of the stronger consistencies over naive incorpo-
ration.

2 WCSP

The weighted CSP (WCSP) framework extends classical con-
straint satisfaction by associating costs to the tuples of vari-
able assignments. A WCSP [Schiex et al., 1995] is a tu-
ple (X, D, C, k). X is a set of variables {x1, x2, . . . , xn}
ordered by their indices. D is a set of domains D(xi) for
xi ∈ X . Each xi can only be assigned one value in its cor-
responding domain. An assignment on a set of variables can
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be represented by a tuple �. We denote �[xi] as the value
assigned to xi, and �[S] as the tuple formed from the assign-
ment on a subset of variables S. C is a set of constraints,
each CS of which represents a function mapping tuples cor-
responding to assignments on S to a cost valuation structure
V (k) = ([0 . . . k],⊕,≤). The structure V (k) contains a set
of integers [0 . . . k] with standard integer ordering ≤. Addi-
tion ⊕ is defined by a ⊕ b = min(k, a + b), and subtraction
� is defined by a� b = a− b if a �= k and k� a = k for any
a.

Without loss of generality, CS can always be defined (ini-
tially with all tuples mapping to zero) for all S ⊆ X . The cost
of a tuple � corresponding to an assignment on X is defined
as:

cost(�) = C∅ ⊕
⊕

CS∈C CS(�[S]),

where C∅ is a null constraint that denotes the lower bound of
costs of all possible tuples. A tuple � corresponding to an as-
signment on X is feasible if cost(�) < k, and is a solution of
a WCSP if � has the minimum cost among all feasible tuples.

A soft global constraint CS on variables S has a particular
semantics and can have more than one cost measure. Where
necessary, we sometimes give also a separate cost function μ
in case CS has more than one such function. For simplicity,
we assume that when we write CS(�) or μ(�), � is always a
feasible assignment to S.

WCSPs are solved with basic branch-and-bound search
augmented with consistency techniques which prune infea-
sible values from variable domains and push lower bound
estimates into C∅. Common consistency notions and tech-
niques [Larrosa and Schiex, 2003; 2004; Sanchez et al., 2008]

include NC*, AC*, and FDAC*, but are designed for unary
to ternary constraints only.

A variable xi is NC* if (1) each value v ∈ D(xi) satisfies
Cxi

(v)⊕C∅ < k and (2) there exists a value v′ ∈ D(xi) such
that Cxi

(v′) = 0. A WCSP is NC* iff all variables are NC*.
Algorithm 1 enforces NC*. Function unaryProject()

projects costs from unary constraints to C∅ by simple arith-
metic operations, and pruneVal() removes infeasible val-
ues from domains.

3 Enforcing ∅IC and Strong ∅IC

In this section, we explain how van Hoeve’s method of using
minimum cost flow can be adapted for WCSPs to enforce a
strong form of ∅-inverse consistency [Zytnicki et al., 2006].
Given a connected flow network G(V, E, w, c, s, t), where V
are the vertices, E are the edges, and each edge e ∈ E has a
weight we and a capacity ce. A flow f from a source s to a
sink t of a value α in G is defined as a mapping from E to R

such that :

•
∑

(s,u)∈E fsu =
∑

(u,t)∈E fut = α;

•
∑

(u,v)∈E fuv =
∑

(v,u)∈E fvu ∀ v ∈ V \ {s, t};

• 0 ≤ fe ≤ ce ∀ e ∈ E.

If α is not defined, α is the maximum value of all flows in G.
The cost of a flow f is defined as

∑
e∈E wefe. A soft global

constraint CS with cost function μ is flow-based if μ allows
for a representation in a flow network G so that the flow with

Procedure enforceNC*()
foreach xi ∈ X do unaryProject(xi);1

foreach xi ∈ X do pruneVal(xi);2

Procedure unaryProject(xi)
α := k;3

foreach v ∈ D(xi) do4

if α > Cxi
(v) then α := Cxi

(v);5

C∅ := C∅ ⊕ α;6

foreach v ∈ D(xi) do Cxi
(v) := Cxi

(v) � α;7

return α > 0;8

Function pruneVal(xi):Boolean
flag := false;9

foreach v ∈ D(xi) do10

if Cxi
(v) ⊕ C∅ = k then11

D(xi) := D(xi) \ {v};12

flag := true;13

return flag;14

Algorithm 1: Enforce NC* on a WCSP

minimum cost in G corresponds to the tuple mapping to the
minimum cost in CS . Van Hoeve et al. [2006] demonstrate
his framework on the soft versions of the allDifferent,
gcc, regular, and same constraints.

We use the soft allDifferent constraint with the μdec

cost measure [Petit et al., 2001] to illustrate the concepts.
Given an assignment tuple � on variables S, μdec(�) =
|{(i, j)|i < j ∧ �[xi] = �[xj ] ∧ xi, xj ∈ S}|, which stands
for the number of pairs of variables sharing the same value.
We can construct a flow network G(V, E, w, c, s, t) as follows
[van Hoeve et al., 2006]. The network consists of |S|+|D|+2
nodes, where |D| is the size of the union of all variable do-
mains in S. Each variable and value have an associated node,
with two more nodes s and t. The network contains three sets
of edges:

• (s, xi) ∈ E for each xi ∈ X with zero weight and unit
capacity;

• (xi, v) ∈ E for each v ∈ D(xi) with zero weight and
unit capacity;

• (v, t)i ∈ E, for each i = 1, . . . , dv, where dv is the
number of variables containing v. Each edge (v, t)i has
a unit capacity and a weight of i − 1.

For example, if X = {x1, x2, x3, x4} with D(x1) =
{a, c}, D(x2) = {b, d}, D(x3) = D(x4) = {a, d} and
allDifferent(X), the network is constructed as shown
in Figure 1. Only non-zero weights are shown in the net-
work. All edges assume unit capacity. The minimum cost
of the feasible flow in G with value |X | is min{μdec(�)}.
To compute min{μdec(�)|�[x] = v}, the minimum cost flow
simply enforces fxv = 1. For example, Figure 1 shows a
flow (highlighted by thickened edges) of minimum cost when
fx1a = 1. Regin [2002] and Van Hoeve et al. [2006] proved
that such an enforcement can be derived from an existing flow
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Figure 1: A flow network for allDifferent. The thick
edges give the minimum cost flow when x1 = a.

by constructing a residual network from G and the existing
flow, and finding the minimum cost cycle containing (x, v) in
the residual network. This can be found by using the single
source shortest path algorithm.

We now define ∅IC [Zytnicki et al., 2006] and strong ∅IC
for WCSPs, the enforcement of which can benefit from van
Hoeve’s method. A constraint CS is ∅IC if there exists a
tuple � corresponding to a feasible assignment with CS(�) =
0. A WCSP is ∅IC iff all constraints are ∅IC.

For example, Figure 2(a) shows a WCSP which is not ∅IC.
No matter which values are assigned to the variables, Cx1,x2

C∅ = 0

2
2

x1 x2

a b

c

d

d2

2

1

(a) not ∅IC

C∅ = 1
x1 x2

a b
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d

d2

2
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(b) ∅IC
Figure 2: Two equivalent WCSPs with k = 4

returns a cost of at least 1. To enforce ∅IC, a cost of 1 is
projected directly from Cx1,x2

to C∅ by reducing the cost of
each tuple by 1 and increase C∅ by 1. The resultant WCSP
is shown in Figure 2(b).

Procedure enforce∅IC() in Algorithm 2 enforces ∅IC
for a WCSP by enforcing ∅IC on each constraints. Reducing
the cost of each tuple can be expensive. An implementation
trick is to use a zero-initialized variable zS to store the cost
reduced so far due to projection from CS to C∅. If a tuple �
queries its cost from CS , the result is CS(�) � zS .

In general, the algorithm is exponential even with the im-
plementation trick since exponential number of tuples have to
be examined at line 5. However, minimum cost flow compu-
tation allows for a polynomial time algorithm for flow-based
soft global constraints, such as allDifferent with μdec.

Enforcing ∅IC only increases C∅. We observe, for exam-
ple in Figure 2(b), that the value d ∈ D(x1) cannot be part
of any solution. The tuple associated with x1 = d has a cost
at least 4: 1 from C∅, 2 from Cx1

, and 1 from Cx1,x2
. Ex-

tra conditions can be added to strengthen ∅IC to allow also

Function enforce∅IC():Boolean
flag := true;1

foreach CS ∈ C do2

flag := flag ∨ enforce∅IC(CS);3

return flag;4

Function enforce∅IC(CS):Boolean
α := min{CS(�)};5

foreach tuple � do CS(�) := CS(�) � α;6

C∅ := C∅ ⊕ α;7

return α > 08

Algorithm 2: Enforcing ∅IC on a WCSP

domain reduction. A non-unary constraint CS is strong ∅IC
if:

• CS is ∅IC, and;

• for all values v ∈ D(x) with x ∈ S, C∅ ⊕ Cx(v) ⊕
min{CS(t)|t[x] = v} < k.

A WCSP is strong ∅IC iff all constraints are strong ∅IC.

For example, the WCSP in Figure 2(b) is not strong ∅IC,
but removing the value d from D(x1) makes it so. Pro-
cedure enforceStrong∅IC() in Algorithm 3 enforces
strong ∅IC , based on the W-AC*3() Algorithm [Larrosa
and Schiex, 2004]. The algorithm maintains a propagation
queue Q (implemented as a set) of variables. Constraints in-
volving variables in Q are potentially not strong ∅IC. Func-
tion pop() removes an arbitrary available variable from Q
in constant time.

Procedure enforceStrong∅IC()
Q := X ;1

while Q �= ∅ do2

xu := pop(Q);3

foreach CS s.t. {xu} ⊂ S do4

foreach xi ∈ S \ {xu} do5

flag := removeInfeasible(CS, xi);6

if flag then Q := Q ∪ {xi};7

if enforce∅IC() then8

Q := X ;9

Function removeInfeasible(CS, xi):Boolean
flag := false;10

foreach v ∈ D(xi) do11

α := min{CS(�)|�[xi] = v};12

if C∅ ⊕ Cxi
(v) ⊕ α = k then13

D(xi) := D(xi) \ {v};14

flag := true;15

return flag;16

Algorithm 3: Enforcing strong ∅IC of a WCSP
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ProcedureenforceStrong∅IC() in Algorithm 3 must
terminate, the proof of which is similar to those of Lar-
rosa and Schiex’s Theorems 12 and 21 [2004]. Sup-
pose removeInfeasible() and enforce∅IC() have
a time complexity of O(fstrong) and O(f∅) respectively, the
complexity can be stated as follows.

Theorem 1 Procedure enforceStrong∅IC() has a
time complexity of O(smaxd(smaxefstrong + f∅)), where e
is the number of non-unary constraints, smax is the maximum
arity of the constraints, n is the number of variables, and d is
the maximum domain size. Thus, enforceStrong∅IC()

must terminate.

Proof: In each iteration of the while loop, line 6 will be ex-
ecuted O(smaxe) times. Each variable is pushed into Q at
most O(d) times due to line 7 (each time D(xu) is modified);
thus the while loop will be executed O(smaxd) times. There-
fore, the complexity of procedureenforceStrong∅IC()

is O(smaxd(smaxefstrong + f∅)), and it must terminate.
Again, enforceStrong∅IC() requires exponential

complexity since line 12 is exponential in general. However,
line 12 can be computed in polynomial time for flow-based
soft global constraints. The following result is a consequence
of Regin’s Lemma 1 [2002] and van Hoeve et al.’s Theorem
1 [2006].

Theorem 2 If CS is a flow-based soft global constraint,
removeInfeasible() has a time complexity of O(K +
d · SP ), where O(K) and O(SP ) are the time complexity to
find the minimum cost flow and single source shortest path
respectively, and d is the maximum domain size.

Given a network G(V, E, w, c, s, t). A typical O(K) is
O(|V |2|E|) if the successive shortest path algorithm is used,
and a typical O(SP ) is O(|V ||E|) if a label correcting algo-
rithm, like the Bellman-Ford algorithm, is used [Ahuja et al.,
2005].

Due to space limitation, we cannot give the details of the
reasoning that the “Soft as Hard” approach [Petit et al., 2001]

is slightly weaker than enforcing strong ∅IC together with
NC*, which is still relatively weak in terms of the deduced
lower bound and pruning. Stronger consistencies for soft
global constraints are desirable.

4 Projection in GAC*

We specialize the definition of GAC in Cooper et al. [2004]

for WCSP. A variable xi ∈ S is generalized arc consistent
star (GAC*) with respect to a non-unary constraint CS if:

• xi is NC*, and;

• for each value vi ∈ D(xi), there exists values vj ∈
D(xj) for all j �= i and xj ∈ S so that they form a
tuple � with CS(�) = 0. {vj} is a simple support of vi

with respect to CS .

A WCSP is GAC* iff all variables are GAC* with respect to
all constraints. Notice that GAC* collapses to AC* for binary
constraints [Larrosa and Schiex, 2004] and AC for ternary
constraints [Sanchez et al., 2008].

Procedure enforceGAC*() in Algorithm 4 enforces
GAC* for a WCSP and is based on the W-AC*3() Algo-
rithm [Larrosa and Schiex, 2004]. Algorithm 4 must termi-

Procedure enforceGAC*()
Q := X ;1

while Q �= ∅ do2

xu := pop(Q);3

flag := false;4

foreach CS s.t. {xu} ⊂ S do5

foreach xi ∈ S \ {xu} do6

flag := flag ∨ findSupport(CS, xi);7

if pruneVal(xi) then Q := Q ∪ {xi};8

if flag then9

foreach xi ∈ X do10

if pruneVal(xi) then Q := Q ∪ {xi};11

Function findSupport(CS, xi):Boolean
flag := false;12

foreach v ∈ D(xi) do13

α := min{CS(�)|�[xi] = v};14

if Cxi
(v) = 0 ∧ α > 0 then flag := true;15

Cxi
(v) := Cxi

(v) ⊕ α;16

foreach tuple � with �[xi] = v do17

CS(�) := CS(�) � α;18

unaryProject(xi);19

return flag;20

Algorithm 4: Enforcing GAC* for a WCSP

nate, the proof of which is similar to that of Theorem 1. By re-
placing O(fstrong) and O(f∅) by O(fGAC) (the complexity
of findSupport()) and O(nd) (n times the complexity
of pruneVal()) respectively, the complexity of Algorithm
4 can be stated as follows.

Theorem 3 Procedure enforceGAC*() has a time com-
plexity of O(smaxd(esmaxfGAC + nd)), where n, d, e, and
smax are as defined in Theorem 1. Thus, enforceGAC*()
must terminate.

Again, Algorithm4 requires exponential time complexity
since function findSupport() is exponential. The time
complexity of findSupport() is determined by two oper-
ations: minimum cost computation (line 14) and cost projec-
tion (lines 16 to 18). Line 14 computes the minimum cost of
CS when xi = v. Line 16 projects the cost to the unary con-
straint Cxi

, which is a simple arithmetic operation. Lines 17
and 18 update the cost of all tuples corresponding to xi = v.
In general, this two sub-procedures require exponential time
complexity, which can be reduced for flow-based soft global
constraints. Van Hoeve’s method can be applied similarly to
line 14 as in Section 3. Lines 17 to 18 modify the cost func-
tion of the soft (global) constraint CS . Before we give our
method, we state the conditions under which our method is
applicable.

A soft global constraint CS with cost function μ is
projection-safe if

• the soft global constraint CS with cost function μ is
flow-based, and has the corresponding flow network
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G(V, E, w, c, s, t),

• there is a one-one correspondence between every flow f
of G and a complete variable assignment tuple � for CS ,
and

• there exists an injection from an assignment xi = v to
ē ∈ E such that whenever �[xi] = v for some tuple
�, fē = 1 in the flow f corresponding to �; whenever
�[xi] �= v, fē = 0.

Given a projection-safe soft global constraint CS with cost
function μ defined above. Suppose a cost of α is projected
from CS to Cxi

associated with xi = v, resulting in a
new cost function μ′. In other words, μ′(�) = μ(�) � α
if �[xi] = v; otherwise μ′(�) = μ(�). We construct the
corresponding flow network of CS with cost function μ′ as
G′(V, E, w′, c, s, t), where w′

e = we � α if e is the edge cor-
responding to xi = v; otherwise w′

e = we.
We use again the allDifferent constraint with μdec as

an example. Figure 1 shows the corresponding flow network
and the flow representing (x1, x2, x3, x4) = (a, b, a, d) with
cost 1. If a cost of 1 is projected from the constraint to Cx1

associated with x1 = a, a new network can be constructed
by decreasing the weight wx1a of the edge (x1, a) from 0 to
−1, as shown in Figure 3. The new cost of the flow in the
network is now 0, which corresponds to the cost of the tuple
(a, b, a, d) after projection.

1
1

2

2

1

x1

x2

x3

x4

a

b

c

d

s t

Figure 3: The flow network corresponding to
allDifferent after projection.

The soundness and closure of our method are guaranteed
by the following theorem.

Theorem 4 Suppose CS is a soft global constraint with cost
function μ is projection safe, a cost of α associated with xi =
v is projected from CS to Cxi

, resulting in a new cost function
μ′.

• (Soundness) If f is a minimum cost flow of
G′(V, E, w′, c, s, t), then

∑
e∈E w′

efe = min{μ′(�)}.

• (Closure) CS with cost function μ′ is projection safe.

Proof: Projection-safety implies that
∑

e∈E w′

efe =∑
e∈E wefe�αfē = min{μ(�)}�αfē = min{μ′(�)}, where

ē is the edge corresponding to xi = v. This concludes sound-
ness.

In addition, CS with μ′ is flow-based with
G′(V, E, w′, c, s, t) as the corresponding flow network.
Since the topology of G′(V, E, w′, c, s, t) is the same as that
of G(V, E, w, c, s, t), CS with μ′ is projection-safe.

We state without proof that the majority of the flow-based
global constraints [van Hoeve et al., 2006] are projection-safe
so that GAC* can be enforced on them in polynomial time.

Theorem 5 The following flow-based soft global constraints
are projection-safe.

• allDifferent with either μvar or μdec;

• gcc with either μvar or μval;

• same with μvar;

Unfortunately, the regular constraint with either μvar or
μedit [van Hoeve et al., 2006] and the soft SEQUENCE con-
straint [Maher et al., 2008] are not projection-safe since they
do not satisfy the third requirement.

Again, the complexity of enforcing GAC* for a variable
with respect to the projection-safe soft global constraints fol-
lows from van Hoeve et al.’s Theorem 1.

Theorem 6 If CS is projection safe, findSupport() has
a time complexity of O(K + d · SP ), where K and SP are
as defined in Theorem 2.

Based on FDAC* [Larrosa and Schiex, 2003], even
stronger consistency can be defined but its enforcement in-
volves an extension operator, which is the reverse of projec-
tion and the focus of the next section.

5 Extension in FDGAC*

Suppose variables are ordered by their indices. A vari-
able xi ∈ S is directional generalized arc consistent star
(DGAC*) with respect to a non-unary constraint CS if:

• xi is NC*, and;

• for each value vi ∈ D(xi), there exists values vj ∈
D(xj) for all j �= i and xj ∈ S so that they form a
tuple � with CS(�) ⊕

⊕
j>i∧xj∈S Cxj

(vj) = 0. {vj} is

a full support of vi with respect to CS .

A WCSP is full directional generalized arc consistent star
(FDGAC*) if all variables are DGAC* and GAC* with re-
spect to all non-unary constraints. When the constraints are
binary, FDGAC* collapses to FDAC* [Larrosa and Schiex,
2004]. When the constraints are binary and ternary, however,
FDGAC* differs slightly from FDAC [Sanchez et al., 2008].
FDGAC* requires full supports with only zero unary costs,
while FDAC [Sanchez et al., 2008] requires full supports with
not only zero unary but also zero binary costs.

Based on the FDAC*() Algorithm [Larrosa and Schiex,
2003], procedure enforceFDGAC*() in Algorithm 5 en-
forces FDGAC*. Q and R store variables which are po-
tentially not GAC* and not DGAC* respectively. Func-
tion popMax() always removes the variable with the
largest index from R in constant time. Proce-
dure enforceFDGAC*() in Algorithm 5 must termi-
nate, the proof of which is similar to those of Lar-
rosa et al.’s Theorems 3 and 4 [2003]. Suppose
findFullSupport() and findSupport() are of or-
der O(fDGAC) and O(fGAC) respectively, the complexity of
procedure enforceFDGAC*() can be stated as follows.

563



Procedure enforceFDGAC*()
R := Q := X;1

while R �= ∅ ∨Q �= ∅ do2

while Q �= ∅ do3

xu := pop(Q);4

flag := false;5

foreach CS s.t. {xu} ⊂ S do6

foreach xi ∈ S \ {xu} do7

if findSupport(CS , xi) then8

R := R ∪ {xi};9

flag := true;10

if flag then11

foreach xi ∈ X s.t. pruneVal(xi) do12

Q := Q ∪ {xi};13

while R �= ∅ do14

xu := popMax(R);15

if pruneVal(xu) then Q := Q ∪ {xu};16

foreach CS s.t. {xu} ⊂ S do17

for i = u− 1 DownTo 1 s.t. xi ∈ S do18

if findFullSupport(CS , xi) then19

R := R ∪ {xi};20

foreach xi ∈ X s.t. pruneVal(xi) do21

Q := Q ∪ {xi};22

Function findFullSupport(CS , xi):Boolean
foreach j > i and xj ∈ S do23

foreach v ∈ D(xj) do24

foreach tuple � with �[xj ] = v do25

CS(�) := CS(�)⊕ Cxj
(vj);26

Cxj
(vj) := 0;27

flag := findSupport(CS , xi);28

foreach j > i and xj ∈ S do findSupport(CS , xj);29

unaryProject(xi);30

return flag;31

Algorithm 5: Enforcing FDGAC* on a WCSP

Theorem 7 enforceFDGAC*() has a time complexity of
O(s2

maxed(nfDGAC + fGAC) + n2d2), where n, d, e, and
smax are defined in Theorem 1. Thus, enforceFDGAC*()
must terminate.

Again, the complexity can be exponential due to
findSupport() and findFullSupport(). In the fol-
lowing, we focus the discussion on findFullSupport().
The first part (lines 23 to 27) performs extension, a reversal
of projection, to push all the unary costs back to CS . By the
time we execute line 28, all unary costs are 0, and enforcing
GAC* for xi achieves the second requirement of DGAC*.
Line 29 re-instates GAC* for all variables xj , where j > i.
Note that the success in line 28 guarantees that Cxj

(vj) = 0
if vj appears in a tuple � which makes CS(�) = 0.

The key idea to performing extension properly is similar to
that of projection: the method is applicable to a projection-
safe soft global constraint CS with cost function μ. Suppose
now we want to extend a cost of α associated with xi = v

from Cxi
to CS resulting in a new cost function μ′′. In other

words, μ′′(�) = μ(�) ⊕ α if �[xi] = v; otherwise μ′′(�) =
μ(�). We construct the corresponding flow network of CS

with cost function μ′′ as G′′(V, E, w′′, c, s, t), where w′′

e =
we ⊕ α if e is the edge corresponding to xi = v; otherwise
w′′

e = we.
Similarly, extension is both sound and closed.

Theorem 8 Suppose CS is a projection safe soft global con-
straint with cost function μ, and a cost of α associated with
xi = v is extended from Cxi

to CS , resulting in a new cost
function μ′′.

• (Soundness) If f is a minimum cost flow of
G′′(V, E, w′′, c, s, t), then

∑
e∈E w′′

e fe = min{μ′′(�)}.

• (Closure) CS with cost function μ′′ is projection safe.

The complexity result again follows from van Hoeve et al.’s
Theorem 1 [2006].

Theorem 9 If CS is a projection-safe soft global constraint,
findFullSupport() has a time complexity of O(K +
smaxd · SP ), where K and SP are as defined in Theorem 2.

Last but not least, we state the relative strength of the con-
sistencies concerned. Given two consistencies β and γ, β is
stronger than γ (β ≥ γ) if a WCSP P is γ whenever P is β.

Theorem 10 FDGAC* ≥ GAC* ≥ strong ∅IC ≥ GAC in
“Soft as Hard” Approaches.

6 Experimental Results

To demonstrate the efficiency of our proposals, we have
implemented strong ∅IC, GAC*, and FDGAC* for the
soft allDifferent constraint with the μdec and μvar

cost functions in ToulBar21. Our benchmark instances are
based on a softened version of the all-interval series prob-
lem (CSPLib Prob007). This problem contains mainly
allDifferent constraints, unconcerning us from other
possible external factors and focusing on evaluating the ef-
ficiency of our proposed algorithms. Such a benchmark also
allows us to study the scaling behavior of our algorithms. The
original problem of order n is to find a series {x1, . . . , xn}
such that it is a permutation of {0, . . . , n − 1} and the ad-
jacent differences di = |xi − xi+1|, i = {1, . . . , n − 1}
are distinct. To model its softened version as a WCSP, we
use {xi} and {di} as variables with domains {0, . . . , n − 1}.
Two allDifferent constraints are placed on {xi} and
{di} respectively. Ternary table constraints are used to en-
force di = |xi − xi+1|. Besides, random unary constraints
are placed on {xi}, assigning random costs to each assign-
ment ranging from 0 to 9.

During the experiment, variables {xi} are first assigned
in lexicographic order, followed by {di} in the same order.
Value assignments start with the value with minimum unary
cost first. The test is conducted in a Dell Optiplex 280 with
an Intel P4 3.2GHz CPU and 2GB RAM. The average run-
time and number of backtracks of five instances are measured
for each value of n with no initial upper bound. Entries are
marked with a “*” if the average runtime exceeds the limit of
1 hour.

1http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
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n
Strong ∅IC GAC* FDGAC*

Time(s) Backtracks Time(s) Backtracks Time(s) Backtracks

14 9.44 2923.2 4.42 541.4 2.77 160.2
15 15.52 3028.2 6.24 498.4 2.77 105.8
16 71.17 12700.0 20.39 1615.0 10.96 312.8
17 63.54 8180.0 28.15 1768.0 8.21 262.6
18 481.01 57805.0 124.64 6199.6 16.74 427.4
19 * * 253.18 12186.0 94.87 1708.8
20 3480.34 161152.8 307.24 13440.6 52.69 717.2
21 * * * * 1167.64 9726.2
22 * * * * 2972.06 22942.8
23 * * * * 2321.53 23785.0
24 * * * * 2130.71 27440.5
25 * * * * 3341.50 46228.0

(a) μdec

n
Strong ∅IC GAC* FDGAC*

Time(s) Backtracks Time(s) Backtracks Time(s) Backtracks

14 6.75 2122.8 3.16 332.0 1.12 101.4
15 6.86 1465.4 4.05 289.0 0.99 65.0
16 50.06 9862.2 16.19 1213.6 3.79 197.6
17 50.41 7294.6 27.51 1739.4 5.16 277.2
18 397.86 49902.0 134.65 6340.0 11.42 496.8
19 * * 263.75 11881.8 68.51 2227.2
20 * * 316.48 12797.4 36.00 845.0
21 * * * * 470.83 8945.0

(b) μvar

Figure 4: The time in seconds and the number of backtracks
in solving softened all-interval series instances by enforc-
ing different consistencies on the soft allDifferent con-
straints with μdec (top) and μvar (bottom).

We give the results for allDifferent with μdec and
μvar in Figure 4, which agrees well with the theoretical com-
parison of the three consistencies. This demonstrates that
minimum cost flow computation is an efficient method for
enforcing the consistencies of projection-safe soft global con-
straints. Despite a higher complexity, FDGAC*, the strongest
consistency both in terms of pruning and lower bound reason-
ing, is the clear winner bettering strong ∅IC by one to two or-
ders of magnitude, while GAC* comes in a clear second. In
the best case, enforcing FDGAC* can remove 18 times more
search nodes than enforcing GAC*, and 220 times more than
enforcing strong ∅IC. Last but not least, we note that, without
strong ∅IC, Toulbar2 delays the propagation of n-ary con-
straints until only two variables restricted by the constraints
are not yet assigned. It is impractical to solve the benchmark
even with a small value of n.

7 Conclusion

Global constraints are one of the keys for modeling and solv-
ing complex real-life problems. To the best of our knowledge,
this is the first success report of global constraints in WCSP
solvers with practical efficiency. Our techniques make it pos-
sible to enforce generalized versions of existing consistencies
exploiting specifically characteristics of WCSPs.

Immediate future work includes studies of the implementa-
tion of more projection-safe soft global constraints, feasibility
of other forms of consistencies, experiments on a wider vari-
ety of benchmarks. It is also interesting to investigate if there
are other forms of projection-safety.
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