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Abstract

We provide a reformulation of the constraint hierarchies (CHs) frame-
work based on the notion of error indicators. Adapting the generalized
view of local consistency in semiring-based constraint satisfaction prob-
lems (SCSPs), we define constraint hierarchy k-consistency (CH-k-C) and
give a CH-2-C enforcement algorithm. We demonstrate how the CH-2-
C algorithm can be seamlessly integrated into the ordinary branch-and-
bound algorithm to make it a finite domain CH solver. Experimentation
confirms the efficiency and robustness of our proposed solver prototype.
Unlike other finite domain CH solvers, our proposed method works for
both local and global comparators. In addition, our solver can support
arbitrary error functions.
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1 Introduction

The Constraint Hierarchy (CH) framework [BFBW92] is a general framework for
the specification and solution of over-constrained problems. Originating from
research in interactive user-interface applications, the CH framework attracts
much effort in the design of efficient solvers in the real number domain [BBS01,
HMY96].

The CH framework is an interesting formalism and our goal is to use it also
in the finite domain FD environment. The framework put together hierarchies
of constraints, error functions and comparator (that consider the error functions
locally or globally) and is able to specify in deep detail the preference function
the user has in mind. As a motivating example consider the following (a model
of the scenario using CH will be given in the next section in Example 2).

Example 1 (A motivating scenario: the sales representative promotion). Sup-
pose a company wants to promote a sales representative to become the general
sales manager from a pool of candidates. The ideal candidate must be a degree
holder. (S)he should have at least 5 years of working experience and be able to
meet a sales quota of 1 million per annum. Being in a supervisory role, the
potential manager should also be familiar with and be able to sell at least 20
products of the company. While the education background is a firm requirement,
working experience and sales performance are, in general, considered to be more
important than versatility in product range. In considering candidates with sim-
ilar working experience and sales performance, the last criterion should also be
taken into account, although to a lesser degree, to differentiate the best candidate
from the rest.

To extend the benefit of the CH framework to also discrete domain applica-
tions, such as timetabling and resource allocation, the paper takes a step towards
a general and efficient finite domain CH solver, based on consistency techniques
and tree search. Central to the paper (that revises and extends [BCHL03a,
BCHL03b]) is the notion of constraint hierarchy k-consistency (CH-k-C), de-
fined using error indicators which are structures isomorphic to the structure
of a given CH used for storing the error information of the CH problem. We
give also an algorithm for enforcing CH-2-C of a CH problem. While classical
consistency algorithms [Mac77] aim to reduce the size of constraint problems,
our CH-2-C algorithm works by explicating error information that is originally
implicit in CH problems. We also suggest ways of utilizing such extracted infor-
mation to help prune non-fruitful computation in a branch-and-bound search-
ing algorithm, which forms the basis of our finite domain CH solver. We have
constructed a prototype of the solver, and performed experiments on a set of
randomly generated CH problems that confirm the efficiency and robustness of
our proposal.

The rest of the paper is organized as follows. Section 2 provides necessary
background definitions. In Section 3, we present an equivalent redefinition of
the CH framework using the notion of error indicators and hierarchy problem,
which are central in the definition of constraint hierarchy k-consistency and the
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associated enforcement algorithm in Section 4. In Section 5, we give a constraint
hierarchy 2-consistency enforcement algorithm and discuss its complexity. The
finite domain CH solver, which has a branch-and-bound backbone, is introduced
in Section 6, followed by experimental results in Section 7. Related works are
presented in Section 8 before summarizing the major results and shedding light
on possible future direction of research in Section 9.

2 Constraint Hierarchies

Let D be a constraint domain. A variable x is an unknown that has an associated
variable domain D(x) ⊆ D, which defines the set of possible values for x. An
n-ary constraint c is a relation over Dn. A labeled constraint cs is a constraint
c with a strength s ∈ {0, . . . , k}. The strengths are totally ordered. Constraints
with strength s = 0 are required constraints (or hard constraints) and those with
strength 1 ≤ s ≤ k are non-required constraints (or soft constraints). The larger
the strength, the weaker the constraint is. In addition, each labeled constraint
may be associated with a weight w (for use with the global comparators). A
constraint hierarchy H is a multiset of labeled constraints. The symbol Hi

denotes a set of labeled constraints with strength s = i. H0, the required level ,
denotes the set of required constraints which must be satisfied. H1, . . . , Hk,
the non-required level , denote the sets of non-required constraints which can be
violated but should be satisfied as much as possible.

V = {x, y, z} and D(x) = D(y) = D(z) = {1, 2}

H = {H0, H1, H2, H3}
H0 = ∅, H1 = {c1

1 : x > y, c1

2 : x = 2}
H2 = {c2

1 : y = 3, c2

2 : z < y}, and
H3 = {c3

1 : z = 1, c3

2 : x + y + z > 4}

Figure 1: An example of constraint hierarchy.

We use an example in Figure 1 to explain CHs in more details. There are
three levels in the constraint hierarchy H . There are no required constraints in
the required level H0. However, there are two strong constraints c1

1 and c1
2 in

H1, two medium constraints c2
1 and c2

2 in H2 and two weak constraints c3
1 and

c3
2 in H3.

A valuation θ = {v1 7→ d1, . . . , vn 7→ dn} for a set of variables {v1, . . . , vn}
assigns to each vi the value di ∈ D(vi). Let c be a constraint and θ a valuation.
The expression cθ is the boolean result of applying θ to c. We say that cθ
holds if cθ is true. An error function e(cθ) measures how well a constraint c is
satisfied by valuation θ. The error function returns non-negative real numbers
and must satisfy the property: e(cθ) = 0 ⇔ cθ holds. A trivial error function
is an error function that gives 0 if cθ holds and 1 otherwise. The value e(cθ)
returned by an error function is an error value. We use vars(c) (or vars(θ))
to denote the set of all variables in constraint c (or valuation θ). The possible
valuations for the variables {x, y, z} are {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8}. Figure 2
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gives the error values of all valuations in the complete search tree using the
trivial error function. The error values of a valuation θ are computed for each
constraint (e(c1

1θ), e(c
1
2θ), e(c

2
1θ), e(c

2
2θ), e(c

3
1θ), e(c

3
2θ)). Since, for example, θ1

satisfies c3
1 but violates c1

1, e(c3
1θ1) = 0 and e(c1

1θ1) = 1 respectively. We can
obtain the error values of other valuations similarly. In order to compare values,
a number of comparators are defined: locally-better (l-b), weighted-sum-better
(w-s-b), worst-case-better (w-c-b), and least-squares-better (l-s-b). We can use
these comparators to define solutions of CHs [BFBW92].

θ Error values for e(ci
jθ) θ Error values for e(ci

jθ)

θ1 (1, 1, 1, 1, 0, 1) θ5 (0, 0, 1, 1, 0, 1)

θ2 (1, 1, 1, 1, 1, 1) θ6 (0, 0, 1, 1, 1, 0)

θ3 (1, 1, 1, 0, 0, 1) θ7 (1, 0, 1, 0, 0, 0)

θ4 (1, 1, 1, 1, 1, 0) θ8 (1, 0, 1, 1, 1, 0)

Figure 2: The possible valuations and their error values.

Example 2 (Modeling the sales representative promotion scenario in Exam-
ple 1). Let consider the sales representative promotion scenario in Example 1.
We model the problem to its nearest approximation as follows. There are four
variables: D to denote if the candidate is a degree holder, Y to denote the candi-
date’s working experience in number of years, Q to denote the candidate’s sales
figure in thousands of dollars, and P to denote the number of products that the
candidate can sell. We get the following constraint hierarchy H.

Level Constraints

H0 (c1) D = degree

H1 (c2) Y ≥ 5, (c3) Q ≥ 1000
H2 (c4) P ≥ 20

The following error function e measures how well the constraints are satisfied:

e(c1θ) =

{

1 if Dθ = degree

0 Otherwise
e(c2θ) =

{

5− Y θ

5
if Y θ < 5

0 if Y θ ≥ 5

e(c3θ) =

{

1000−Qθ

1000
if Qθ < 1000

0 if Qθ ≥ 1000
e(c4θ) =

{

20− Pθ

20
if Pθ < 20

0 if Pθ ≥ 20
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Consider two competing candidates A and B with their corresponding qual-
ifications encoded in the valuations θA and θB respectively:

θA = {D 7→ degree, Y 7→ 2.9, Q 7→ 700, P 7→ 30}
θB = {D 7→ degree, Y 7→ 3, Q 7→ 690, P 7→ 2}

Applying the valuations to the constraints in H gives the following error se-
quences.

θ e(c1θ) e(c2θ) e(c3θ) e(c4θ)

θA 0 0.42 0.3 0
θB 0 0.4 0.31 0.9

The l-b comparator1 would find the candidates to be incomparable. Assuming
all constraint weights to be 1.0, the global comparators would conclude B to be
the better candidate.

3 A Reformulation of Constraint Hierarchies

To facilitate subsequent illustration of the CH local consistency concept, we
reformulate the CH framework [BFBW92] (in particular in the definition of
comparators and solution set) using error indicators . Notice that the reformu-
lation is equivalent to that given in [BFBW92] in the sense that the quality and
the order of the solution is the same in the two approaches.

We denote an error value by ξ, possibly with subscripts. Given a constraint
hierarchy H = {H0, . . . , Hn} where n is the number of non-required levels, and
for all i ∈ {0, . . . , n}, Hi = {ci

1, . . . , c
i
ki
} with ki being the number of constraints

in level i.

Definition 1 (Error Indicator). An error indicator for H is a tuple of error

values such that ~ξ = 〈〈ξ0
1 , . . . , ξ0

k0
〉, . . . , 〈ξn

1 , . . . , ξn
kn
〉〉 and ∀a ∈ {0, . . . , n}, ∀b ∈

{1, . . . , ka}, ξa
b is an error value.

According to the definition, error values in an error indicator provide an
estimate (perhaps provided by users in the specification of the problem) of how
much each labeled constraint in the constraint hierarchy is satisfied. In case the
error values are computed from a specific valuation, we have more specifically
error indicator for a valuation.

Definition 2 (Error Indicator for a Valuation). Given a valuation θ and a set

of variables V , an error indicator ~ξθ for θ and V is a tuple of error values
such that ~ξθ = 〈〈ξθ

0

1, . . . , ξθ
0

k0
〉, . . . , 〈ξθ

n
1 , . . . , ξθ

n
kn
〉〉 and ∀a ∈ {0, . . . , n}, ∀b ∈

{1, . . . , ka}, ξθ
a
b = e(ca

bθ) if vars(ca
b ) ⊂ V and ξθ

a
b = 0 if vars(ca

b ) 6⊂ V .

Error indicators of a valuation provide a measure of the “badness” of valua-
tions with respect to H . The two notions are similar, differing only in whether

1we would define precisely the l-b and global comparators in the next section.
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the error values were specifically computed from a valuation. Thus, an error
indicator of a valuation is also an error indicator, but not vice versa.

To explain the meaning of the error indicator of a valuation, we use the
example in Figure 1 with the trivial error function. If θ = {z 7→ 2}, then ~ξθ =

〈〈〉, 〈0, 0〉, 〈0, 0〉, 〈1, 0〉〉. If θ = {x 7→ 1, y 7→ 2}, then ~ξθ = 〈〈〉, 〈1, 1〉, 〈1, 0〉, 〈0, 0〉〉.

If θ = {x 7→ 2, y 7→ 2, z 7→ 1}, then ~ξθ = 〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 1〉〉.
The comparator predicate better in the original CH formulation is redefined

using a partial order , denoted by ≺. Let I = {~ξ1, . . . , ~ξN} be a poset (partially

ordered set), each element ~ξj of which is an error indicator. We define ≺ to
be irreflexive and transitive over I. Hence, it preserves the meaning of better .
Intuitively, ~ξ′ ≺ ~ξ′′ means ~ξ′′ is “better” than ~ξ′ in I. In general, ≺ will not
provide a total ordering. For convenience, we define � such that ∀~ξ′, ~ξ′′ ∈ I, ~ξ′ �
~ξ′′ → (~ξ′ ≺ ~ξ′′) ∨ (~ξ′ = ~ξ′′).

We can redefine l-b in the original formulation as a partial order ≺l−b as fol-
lows. Given any two valuations θ and σ, and the corresponding error indicators
~ξθ and ~ξσ, ≺l−b is defined as:

~ξθ ≺l−b
~ξσ ≡ ∃l > 0 such that ∀i ∈ {0, . . . , l − 1},

∀j ∈ {1, . . . , ki}, ξθ
i
j = ξσ

i
j

∧∃a ∈ {1, . . . , kl}, ξσ
l
a < ξθ

l
a

∧∀b ∈ {1, . . . , kl}, ξσ
l
b ≤ ξθ

l
b.

The intuitive meaning of ~ξθ ≺l−b
~ξσ is that valuation σ is locally-better than

valuation θ.
Similarly, we can define g-b (≺g−b), and its instances w-s-b (≺w−s−b), w-c-b

(≺w−c−b), and l-s-b (≺l−s−b) respectively. Given any two valuations θ and σ,

and the corresponding error indicators ~ξθ and ~ξσ:

~ξθ ≺g−b
~ξσ ≡ ∃l > 0 such that ∀i ∈ {0, . . . , l − 1},

g(〈ξθ
i
1, . . . , ξθ

i
ki
〉) = g(〈ξσ

i
1, . . . , ξσ

i
ki
〉)

∧g(〈ξσ
l
1, . . . , ξσ

l
kl
〉) < g(〈ξθ

l
1, . . . , ξθ

l
kl
〉),

where g is a combining function for error values:

~ξθ ≺w−s−b
~ξσ ≡ ~ξθ ≺g−b

~ξσ, where g(〈ξi
1, . . . , ξ

i
ki
〉) ≡

∑

j∈{1,...,ki}
ξi
j ,

~ξθ ≺w−c−b
~ξσ ≡ ~ξθ ≺g−b

~ξσ, where g(〈ξi
1, . . . , ξ

i
ki
〉) ≡ max{ξi

j | j ∈ {1, . . . , ki}},
~ξθ ≺l−s−b

~ξσ ≡ ~ξθ ≺g−b
~ξσ, where g(〈ξi

1, . . . , ξ
i
ki
〉) ≡

∑

j∈{1,...,ki}
ξi
j

2
.

Notice that, by definition, all local/global comparators ignore constraints in
hierarchy levels greater than or equal to l.

We are now ready to define the solution set S of a CH with variables V .

Definition 3 (solution set for constraint hierarchies). The solution set S of a
CH with variables V is defined as follows:

S = {θ ∈ S0 | ∀σ ∈ S0, ~ξθ 6≺ ~ξσ},

where S0 = {θ | vars(θ) = V, ξθ
0

i = 0 for all i ∈ {1, . . . , k0}}.
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The following lemmas give the monotonicity of the introduced comparators,
which are collectively denoted by ≺better and �better in the rest of the paper.

Lemma 1. Given any two error indicators ~ξ′ and ~ξ′′ for a constraint hierarchy.
If we have ξ′′

a
b ≤ ξ′

a
b for all a, b, then ~ξ′ �better

~ξ′′.

Proof. If we have ξ′′
a
b ≤ ξ′

a
b for all a, b, it means that we can find an index

l > 0 such that ∀i ∈ {0, . . . , l− 1}, and ∀j ∈ {1, . . . , ki}, we have ξ′′
i
j = ξ′

i
j , and

∃e ∈ {1, . . . , kl}, ξ′′
l
e < ξ′

l
e, and ∀f ∈ {1, . . . , kl}, ξ′′

l
f ≤ ξ′

l
f .

But this is just the definition of ~ξ′ ≺l−b
~ξ′′. Moreover, since ~ξ′ �l−b

~ξ′′ =⇒
~ξ′ �g−b

~ξ′′ [BFBW92], we have ξ′′
a
b ≤ ξ′

a
b =⇒ ~ξ′ �g−b

~ξ′′ by transitivity.

Notice that Lemma 1 allows us to compare valuations for both local and
global comparators (because the �better order implies all the orders induced
from any specific comparator) and for arbitrary error functions.

Lemma 2. Given two valuations θ1 and θ2 for a constraint hierarchy. If θ1 ⊆
θ2, then ~ξθ2

�better
~ξθ1

.

Proof. Note that, by Definition 2, the error value of a constraint is 0 if not all
variables in the constraint are completely instantiated. Therefore, result holds
directly from Lemma 1.

We also introduce the notion of a hierarchy problem which is a CH augmented
with a set of soft membership constraints .

Definition 4 (Soft Membership Constraints). Let H be a constraint hierarchy
with variables V . A soft membership constraint for variable x ∈ V and its asso-
ciated domain D(x) is in the form x ∈ D(x). Each soft membership constraint

x ∈ D(x) is a function that assigns an error indicator ~ξx=d to each domain
d ∈ D(x).

A soft membership constraint is similar to a soft constraint in the sense of
SCSP [BMR97], in which each tuple of a soft constraint is associated with a

semiring value. The error indicator ~ξx=d indicates the quality of assigning d to
x among all values in D(x).

Definition 5 (Hierarchy Problem). A hierarchy problem P = 〈H, IH〉 is a pair,
where H is a CH with variables V and IH is a set of soft membership constraints
for all variables in V . Each ~ξx=d in IH is used for keeping an estimate of the
errors of valuations involving {x 7→ d}.

Figure 3 shows a possible instance of the set IH for the Hierarchy problem
obtained from the example of Figure 1. For each assignment {x 7→ d} we

have to compute the associated error indicator ~ξx=d. So for instance for the
assignment {x 7→ 1} we compute ~ξx=1 = (0,1, 0, 0, 0, 0). The error estimate for
all the constraints except c1

2 is set to 0, because these constraints involve other
variables. The constraint c1

2 instead involves only variable x and the error value

7



valuation Error values valuation Error values

~ξx=1 (0,1, 0, 0, 0, 0) ~ξx=2 (0,0, 0, 0, 0, 0)
~ξy=1 (0, 0,1, 0, 0, 0) ~ξy=2 (0, 0,1, 0, 0, 0)
~ξz=1 (0, 0, 0, 0,0, 0) ~ξz=2 (0, 0, 0, 0,1, 0)

Figure 3: A possible instance of the error indicators IH related to the problem
in Figure 1.

can be computed. Since the assignment {x 7→ 1} does not satisfy constraint
c1
2 : x = 2, the error is set to 1. Similarly we can compute all the other error

indicators.

Definition 6 (Solution of a Hierarchy Problem). A valuation θ is a solution

of P = 〈H, IH〉 if (1) θ is a solution of H and (2) ~ξθ �better
~ξx=d for all (x 7→

d) ∈ θ.

In other words, solutions of P = 〈H, IH〉 are solutions of H which have
a “worse” error than the estimates provided in IH . By definition, the set of
solutions of H always contains those of 〈H, IH〉. Equality holds when the error
estimates provided in IH fails to “filter” out any solutions of H .

theorem 1. Consider a CH H and a hierarchy problem P = 〈H, IH〉, and
denote the solution sets of H and P by SH and SP respectively.

• SP ⊆ SH , and

• SP = SH if ~ξθ �better
~ξx=d for all (x 7→ d) ∈ θ and θ ∈ SH .

Proof. Trivially holds from Definition 6.

In particular, a hierarchy problem 〈H, IH〉 must share the same solution as

H if all ~ξx=d’s in IH contain only the error value 0 (i.e. no error information).

Corollary 1. Consider a CH H and a hierarchy problem P = 〈H, ∅H〉, in which
all error indicators in ∅H contain only zero error values. Denote the solution
sets of H and P by SH and SP respectively. We have SP = SH .

Proof. Trivially holds from Theorem 1 and Definition 6.

In other words, constraint hierarchies are just special cases of hierarchy prob-
lems, and techniques developed for solving hierarchy problems are applicable for
solving constraint hierarchies as well. This fact is useful in ensuring the cor-
rectness of our local consistency algorithm and the completeness of our branch-
and-bound solver for solving constraint hierarchies.
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4 Local Consistency in CHs

The classical notion of local consistency [Mac77] characterizes when a constraint
problem contains non-fruitful values. The main purpose of detecting local in-
consistency is thus to remove the inconsistent values from the variable domains
and constraints. Hence, the problem is “simpler” to solve when the problem is
smaller. However, we adopt a more general notion of local consistency used for
SCSP: “Applying a local consistency algorithm to a constraint problem means
explicitating some implicit constraints, thus possibly discovering inconsistency
at a local level” [BMR97].

4.1 Local Consistency in Classical CSPs

In this paper we focus just on node and arc consistency algorithms which are
common techniques to detect local inconsistency.

Let us illustrate the concepts using an example. Given a CSP P where
V = {x, y}, D(x) = {1, 2, 3, 4, 5}, D(y) = {1, 2, 3, 4, 5}, and C = 3 ≤ x ∧ x < y.
P is node inconsistent, since {x 7→ 1} and {x 7→ 2} are not solutions of the unary
constraint 3 ≤ x. It is possible to transform P into an equivalent CSP P ′ which
is node consistent if the inconsistent domain values in D(x) are removed. Hence,
the equivalent CSP P ′ is V = {x, y}, D(x) = {3, 4, 5}, D(y) = {1, 2, 3, 4, 5},
and C = 3 ≤ x ∧ x < y.

Although P ′ is node consistent, it is arc inconsistent since {x 7→ 5} cannot
find support from D(y) to satisfy the binary constraint x < y. Also, {y 7→
1}, {y 7→ 2}, and {y 7→ 3} cannot find support from D(x) to satisfy x < y.
Similarly, we can transform P ′ into an equivalent CSP P ′′ which is arc consistent
if the inconsistency domain values in D(x) and D(y) are removed. Hence,
the equivalent CSP P ′′ is V = {x, y}, D(x) = {3, 4}, D(y) = {4, 5}, and
C = 3 ≤ x ∧ x < y.

P ′ and P ′′ are equivalent to P , since the solution sets of P ′ and P ′′ are the
same as that of P . However, the domain size of P ′ and P ′′ is smaller. Hence P ′

and P ′′ have a smaller search space and are easier to solve. We can conclude that
applying consistency algorithm to a classical CSP aims to reduce the variable
domains of the CSP so that the CSP becomes node and arc consistent and
equivalent to the original CSP.

4.2 Local Consistency in SCSPs

SCSPs [BMR97, Bis04] extends classical CSPs by allowing non-crisp features.
Hence, classical CSPs are just an instance of SCSPs over the c-semiring SCSP =
〈{true, false}, ∨,∧, false, true〉. In SCSPs, a general notion of local consistency
is proposed but we just focus on semiring-based arc-consistency [BR98] in this
paper.

Given the same CSP P (considered as an SCSP) where V = {x, y}, D(x) =
{1, 2, 3, 4, 5}, D(y) = {1, 2, 3, 4, 5}, C = 3 ≤ x ∧ x < y. Note also the implicit
constraints x ∈ {1, 2, 3, 4, 5} and y ∈ {1, 2, 3, 4, 5}. Therefore, we have two
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unary constraints, namely (x ∈ {1, 2, 3, 4, 5} ∧ 3 ≤ x) and y ∈ {1, 2, 3, 4, 5},
and one binary constraint x < y. Extensionally, we consider a constraint as
a set of tuples with the associated semiring values. Initially, the extensional
representation2 of the two unary constraints is as follows:

• Constraint on x: {1(false), 2(false), 3(true), 4(true), 5(true)}.

• Constraint on y: {1(true), 2(true), 3(true), 4(true), 5(true)}.

The semiring values in the unary constraints take no notice of the constraint in-
formation in the binary constraint, and thus P is semiring-based arc-inconsistent.

However, a semiring-based arc consistency algorithm can transform the semir-
ing values in the unary constraints as follows:

• Constraint on x: {1(false), 2(false), 3(true), 4(true), 5(false)}.

• Constraint on y: {1(false), 2(false), 3(false), 4(true), 5(true)}.

to make the SCSP arc-consistent. The resultant SCSP expresses the same in-
formation as P ′′ in the last section.

Although the domain size of the resultant (S)CSP remains unchanged after
applying the semiring-based arc consistency algorithm, we still gain useful infor-
mation since we are “explicitating some implicit constraints” as semiring values
in the unary constraints. Based on this inconsistency information, a search al-
gorithm can know not to try the domain values that are marked false. Hence,
semiring-based arc consistency is a generalization of classical local consistency.

4.3 Local Consistency in CHs

We adapt the general notion of local consistency for CH, and define constraint
hierarchy k-consistency (CH-k-C).

Before defining CH-k-C, we need two operations, MAX and MIN, on er-
ror indicators. Given a CH H with n non-required levels and any two error
indicators, ~ξθ, ~ξσ ∈ I, for H . MAX(~ξθ, ~ξσ) is defined as

〈〈max (ξθ
0

1, ξσ
0

1), . . . ,max(ξθ
0

k0
, ξσ

0

k0
)〉, . . . , 〈max (ξθ

n
1 , ξσ

n
1 ), . . . ,max(ξθ

n
kn

, ξσ
n
kn

)〉〉

and MIN(~ξθ, ~ξσ) is

〈〈min(ξθ
0

1, ξσ
0

1), . . . ,min(ξθ
0

k0
, ξσ

0

k0
)〉, . . . , 〈min(ξθ

n
1 , ξσ

n
1 ), . . . ,min(ξθ

n
kn

, ξσ
n
kn

)〉〉

where ki is the number of constraints in level i of H .
Given two error indicators, MIN (or MAX) combines the two indicators

by taking the best (or the worst). Obviously MAX and MIN are commu-

tative and associative. Thus, it makes sense to write MAX{~ξ1, . . . , ~ξK} and

MIN{~ξ1, . . . , ~ξK}) for any K > 2.

2We adopt the convention of putting the associated semiring value of a tuple in parentheses.
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Given a CH H with variables V . If x ∈ V and d ∈ D(x), we define

approxk(x 7→ d) =

MAX{MIN{~ξθ | vars(θ) = {x} ∪ U, (x 7→ d) ∈ θ} | U ⊂ V, |U | = k − 1}

for any 1 ≤ k ≤ |V |. Informally, to compute approxk(x 7→ d), given a con-
straint involving variable x, we can select among all the assignment containing
x 7→ d the best one (that is the assignment with minimum error). This is
the approximation coming from a specified constraint. If more than one con-
straint involve variable x, we have to consider the approximation for all of them
and then compute the worst error (the maximum). That is the ”MAX” in the
approxk definition simply collects error values for different constraints into one
error indicator. We call it k-approximation, which provides an estimate of the
“badness” of valuations involving the assignment x 7→ d for all m1-ary con-
straints involving x with m1 ≤ k and all m2-ary constraints not involving x
with m2 < k. Since the error indicators of all valuations involving x 7→ d might
not be comparable, we can only give an approximation, and approx|V |(x 7→ d)
gives an error estimate involving all constraints in the problem. However, cal-
culating approx|V |(x 7→ d) is computationally expensive, and approxk(x 7→ d)
for some small k < |V | gives a more practical approximation.

Referring to the same example in Section 2,

approx2(y 7→ 2) = MAX{MIN{~ξ{x 7→1,y 7→2}, ~ξ{x 7→2,y 7→2}},

MIN{~ξ{y 7→2,z 7→1}, ~ξ{y 7→2,z 7→2}}}
= MAX{MIN{〈〈〉, 〈1, 1〉, 〈1, 0〉, 〈0, 0〉〉, 〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 0〉〉},

MIN{〈〈〉, 〈0, 0〉, 〈1, 0〉, 〈0, 0〉〉, 〈〈〉, 〈0, 0〉, 〈1, 1〉, 〈1, 0〉〉}}
= MAX{〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 0〉〉, 〈〈〉, 〈0, 0〉, 〈1, 0〉, 〈0, 0〉〉}
= 〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 0〉〉

The following theorem states that approxk(x 7→ d) is monotonically decreasing
in k with respect to �better .

theorem 2. If H is a CH with variables V , x ∈ V and d ∈ D(x), then
approxk2

(x 7→ d) �better approxk1
(x 7→ d), ∀1 ≤ k1 ≤ k2 ≤ |V |.

Proof. Define

L(k, U, x, d) = {~ξθ | vars(θ) = {x} ∪ U, (x 7→ d) ∈ θ}

Therefore,

approxk(x 7→ d) = MAX{MIN(L(k, U, x, d)) | U ⊂ V, |U | = k − 1}

Given H with variables V . Consider the case when k1 > 1. For all U1 ⊂ V such
that |U1| = k1− 1, there exists U2 ⊂ V such that |U2| = k2− 1 and U1 ⊂ U2. In

addition, for all ~ξθ2
∈ L(k2, U2, x, d), we can find ~ξθ1

∈ L(k1, U1, x, d) such that

θ1 ⊂ θ2. By Lemma 2, ~ξθ2
�better

~ξθ1
. Therefore,

MIN(L(k2, U2, x, d)) �better MIN(L(k1, U1, x, d))

11



The situation is similar and simpler for the case of k1 = 1.
In other words, every MIN(L(k1, U1, x, d)) for each U1 in approxk1

(x 7→ d)
has a higher-error counterpart in approxk2

(x 7→ d). Thus, the theorem holds,
since MAX is an extensive operator (returning the error indicator with the
highest error values).

By using Lemma 1 we can show that k-approximations of x 7→ d provide
upper bounds with respect to �better (the best possible scenario) for the error
indicators of complete valuations involving x 7→ d for any comparators.

theorem 3. If H is a CH with variables V , x ∈ V and d ∈ D(x), then ~ξθ �better

approx|V |(x 7→ d) �better approxk(x 7→ d) for all 1 ≤ k ≤ |V | and all θ such
that vars(θ) = V and (x 7→ d) ∈ θ, where �better represents any locally/globally
better comparator.

Proof. Theorem 2 implies that approx|V |(x 7→ d) �better approxk(x 7→ d). We

have only to prove that ~ξθ �better approx|V |(x 7→ d).

approx|V |(x 7→ d) =

MAX{MIN{~ξθ | vars(θ) = {x} ∪ U, (x 7→ d) ∈ θ} | U ⊂ V, |U | = |V | − 1} =

MAX{MIN{~ξθ | vars(θ) = {x} ∪ U, (x 7→ d) ∈ θ} | U = V − {x}} =

MAX{MIN{~ξθ | vars(θ) = V, (x 7→ d) ∈ θ}} =

MIN{~ξθ | vars(θ) = V, (x 7→ d) ∈ θ}.

Now, since approx|V |(x 7→ d) is obtained from the MIN (to get the least
error values) of error indicators of all possible θ containing x 7→ d, we easily

have ~ξθ �better approx|V |(x 7→ d).

Referring to the same example in Section 2 again, θ3, θ4, θ7, and θ8 in Fig. 2
contain (y 7→ 2). The error indicators ~ξθ3

, ~ξθ4
, ~ξθ7

, and ~ξθ8
are 〈〈〉, 〈1, 1〉, 〈1, 0〉, 〈0, 1〉〉,

〈〈〉, 〈1, 1〉, 〈1, 1〉, 〈1, 0〉〉, 〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 0〉〉, and 〈〈〉, 〈1, 0〉, 〈1, 1〉, 〈1, 0〉〉 respec-
tively. Thus, approx|V |(y 7→ 2) =

MIN{~ξθ3
, ~ξθ4

, ~ξθ7
, ~ξθ8
} = 〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 0〉〉, which is equal to approx2(y 7→

2) as computed and given (before Theorem 2). We have ~ξθi
�better approx|V |(y 7→

2) �better approx2(y 7→ 2), where i ∈ {3, 4, 7, 8}.
Theorem 3 suggests that k-approximations can be used as the basis of the

notion of local consistency in CH.
A hierarchy problem P = 〈H, IH〉 is constraint hierarchy k-consistent (CH-

k-C) if the error indicators in IH explicitly indicate the implicit inconsistency
information in all m-ary constraints in H where m ≤ k. Formally, we define
CH-k-C as follows.

Definition 7 (CH-k-Consistency (CH-k-C)). Given a hierarchy problem P =

〈H, IH〉 with variables V . Given 1 ≤ k ≤ |V |, P is CH-k-C if, for all ~ξx=d in

IH , ~ξx=d �better approxk(x 7→ d).

12



The CH-k-C condition of P = 〈H, IH〉 imposes that the estimated error
information of H placed in the error indicators in IH is at least as accurate
as that provided by k-approximations. In addition, explicating the error P =
〈H, IH〉 using k-approximations makes P CH-k-C without changing the solution
space of P .

theorem 4. Given a hierarchy problem P = 〈H, IH〉 with variables V . If each
~ξ′x=d ∈ I ′H is defined as follows:

~ξ′x=d =

{

~ξx=d if ~ξx=d �better approxk(x 7→ d)

approxk(x 7→ d) if approxk(x 7→ d) �better
~ξx=d

where ~ξx=d is in IH , then (1) the hierarchy problem P ′ = 〈H, I ′H〉 is CH-k-C and
(2) SP = SP ′ , where SP and SP ′ are the solution sets of P and P ′ respectively.

Proof. (1) holds directly from Definition 7. Let’s consider now (2).

We note that ~ξ′x=d �better
~ξx=d for all x and d. By Definition 6, SP ′ ⊆ SP .

Suppose ~ξθ ∈ SP . We have ~ξθ �better
~ξx=d for all x and d. By Theorem 3,

~ξθ �better approxk(x 7→ d). Therefore, ~ξθ ∈ SP ′ , and SP ⊆ SP ′ .

Two corollaries follow directly from Theorems 1 and 4.

Corollary 2. Given a hierarchy problem P = 〈H, IH〉 with variables V , and

P ′ = 〈H, I ′H〉 defined so that each ~ξ′x=d in I ′H is:

~ξ′x=d =

{

~ξx=d if ~ξx=d �better approxk(x 7→ d)

approxk(x 7→ d) if approxk(x 7→ d) �better
~ξx=d

where ~ξx=d is in IH . Denote the solution sets of H, P , and P ′ by SH , SP , and
SP ′ respectively.

SH = SP ⇔ SH = SP ′

Proof. Holds directly from Theorem 4 and by Definition 6.

Corollary 3. Given a hierarchy problem P = 〈H, ∅H〉 with variables V , and
all error indicators in ∅H contain only zero error values. Define P ′ = 〈H, I ′H〉

so that each ~ξ′x=d in I ′H is:

~ξ′x=d = approxk(x 7→ d)

Denote the solution sets of H, P , and P ′ by SH , SP , and SP ′ respectively.

SH = SP = SP ′

Proof. Holds directly from Theorem 4 and by Definition 6.

Corollary 3 ensures that the CH-k-consistency techniques are also applicable
to constraint hierarchies.

To perform constraint checking only on unary and binary constraints is the
most commonly used technique for detecting local inconsistency in classical
CSPs. Therefore, we discuss CH-2-C and provide a CH-2-C enforcement algo-
rithm in the next section.

13



5 A CH-2-C Enforcement Algorithm

Arc-consistency algorithm is a common and practical technique to detect local
inconsistency in classical CSPs [BFR95, GS96]. We design and implement an
algorithm to enforce CH-2-C. The purpose of the CH-2-C algorithm is to expli-
cate and place in IH the implicit error information in a CH that is otherwise not
visible. Such an algorithm is given in Figure 4. The subroutines ch1c pri and
ch2c pri, in Figures 5 and 6 respectively, are responsible for handling unary
and binary constraints respectively. The CH-2-C algorithm ensures that all
error indicator stores ~ξx=d are updated to reach approx2(x 7→ d).

Algorithm 1: The CH-2-C algorithm.

ch2c(H , V , D, IH)
begin

1 for l ← 1 to n do

2 for k ← 1 to |Hl| do

3 let c be the kth constraint in Hl;
4 IH ← ch1c pri(c, l, k, D, IH);
5 IH ← ch2c pri(c, l, k, D, IH);

6 return IH ;

end

Figure 4: The CH-2-C algorithm.

ch1c pri(c, l, k, D, IH)
begin

1 if |vars(c)| = 1 then

2 let {x} = vars(c);
3 for each d ∈ D(x) do

4 let θ = {x 7→ d};

5 let ~ξ = ~ξx=d in IH ;
6 if ξl

k < e(cθ) then ξl
k ← e(cθ);

7 return IH ;

end

Figure 5: A subroutine to check unary constraints.

Consider a general CH of nc labeled constraints with nv number of variables.
In addition, the size of the largest variable domain is of nd. The time complexity
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ch2c pri(c, l, k, D, IH)
begin

1 if |vars(c)| = 2 then

2 let {x, y} = vars(c);

# Update each ~ξx=dx
in IH

3 IH ← update(x, y, c, l, k, D, IH);

# Update each ~ξy=dy
in IH

4 IH ← update(y, x, c, l, k, D, IH);

5 return IH ;

end

Figure 6: A subroutine to check binary constraints.

of the subroutine ch1c pri is simply of O(nd), since the only repeating opera-
tions, lines 4 to 6 in Figure 5, are placed inside a single loop. These operations
are repeated until each element in a variable domain is tested. However, the
time complexity of the subroutine update (Figure 7) is of O(nd

2). Therefore, in
the worst case, the time complexity of the subroutine ch2c pri is of O(nd

2) as
shown in Figure 6. Lines 3 to 5 in the pseudocode of the CH-2-C algorithm are
the operations for checking constraints as shown in Figure 4. Since these opera-
tions should repeat until all the constraints are considered, the time complexity
should be of O(ncnd

2).
Since an error indicator is a tuple which stores error values of the corre-

sponding constraints, the space complexity for each error indicator is of O(nc).
The memory requirement of the CH-2-C algorithm depends on the number of
error indicators in IH . Therefore, we require nvnd error indicators. The space
complexity of the CH-2-C algorithm is simply of O(nvndnc) in the worst case.

6 A Branch-and-Bound Finite Domain CH Solver

The simplest way to find the solution set of a CH is to construct the complete
search tree for the problem, so that we can calculate and compare the error
values of each valuation. However, traversing the complete search tree and
comparing all the valuations are tedious and time-consuming. We propose to
combine the CH-2-C and the branch-and-bound algorithms so as to prune non-
fruitful branches of the search tree.

The input to our solver is a hierarchy problem P = 〈H, IH〉, in which IH

contains no error information. In other words, the error indicator stores in
IH contain only the error value 0. The backbone of our solver is a standard
branch-and-bound algorithm, since CH-solving is an optimization problem. A
branch-and-bound algorithm always maintains the set of potential best solutions
collected so far. The idea is to invoke the CH-2-C algorithm at each node in
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update(x, y, c, l, k, D, IH)
begin

1 let ξmin be an error value;
2 for each dx ∈ D(x) do

3 ξmin ← ∞;
4 for each dy ∈ D(y) do

5 let θ = {x 7→ dx, y 7→ dy};
6 if e(cθ) < ξmin then ξmin ← e(cθ);

7 let ~ξ = ~ξx=dx
in IH ;

8 if ξl
k < ξmin then ξl

k ← ξmin;

9 return IH ;

end

Figure 7: A subroutine to update error indicator stores.

the search tree, hoping that the overhead in the CH-2-C algorithm can be more
than compensated by the pruning that can take place. The correctness and
completeness of this step is ensured by Corollary 2, so that maintaining CH-2-C
will not change the solution space of the hierarchy problem and the associated
CH. At each CH-2-C tree node, before search proceeds down a selected branch
corresponding to a variable assignment, say x 7→ d, the solver tries to verify
if ~ξx=d in IH of that tree node is not worse than the error indicator of each
potential solution. If that is the case, search proceeds; otherwise, there is no
point to explore the selected branch any further, and search is backtracked to try
another branch. When a leaf node is reached, we compare the error indicator
~ξ of the valuation associated with the leaf node against the error indicators
of all the collected solutions. If the error indicator of any collected solution
is worse than ~ξ, then the collected solution will be replaced by the current
valuation. The details of our finite domain CH solver are shown in Figure 8,
which is a simple adaptation of a basic branch-and-bound solver with the CH-
2-C algorithm. The numbered lines give the backbone of the algorithm, while
the unnumbered lines are new additions to enable CH-2-C enforcement. The
algorithm use as parameters the constraints in H and and the stores in IH ,
the variables V and the domain D. It also needs the set of assignments S0

satisfying constraints in H0, and the corresponding set of error indicators IS0
.

The algorithm is also parametric w.r.t. the type of comparator we want to use
(≺better).

Although CH-2-C could also deal with crisp constraints, we employ classical
algorithms [Mac77] for processing the required constraints in H0 (lines 1) for two
reasons. First, the CH-2-C lacks the “propagation phase” of traditional crisp
algorithms (the algorithm update the domains and the modification is used to
reconsider the fact that other values may also change). The second reason is
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Algorithm 2: A Branch-and-bound CH Solver with Pruning

bb solv(H , IH , V , D, S0, in out IS0
, ≺better)

begin

# Any classical arc consistency algorithm
1 D ← arc consistent(H0, D);
2 if D contains an empty variable domain then

3 return S0;

4 else if D contains all singleton variable domain then

5 let θ be the valuation corresponding to D;
6 let ~ξθ be the error indicator corresponding to θ;
7

~ξθ ← cal error values(H , θ, ~ξθ);
8 for each σ ∈ S0 do

9 if ~ξσ ≺better
~ξθ then

10 S0 ← S0 − {σ}; IS0
← IS0

− {~ξσ};

11 else if ~ξθ ≺better
~ξσ then return S0;

12 S0 ← S0 ∪ {θ}; IS0
← IS0

∪ {~ξθ};
13 return S0;

for each ~ξx=d in IH do

if d 6∈ D(x) then

IH ← IH − {~ξx=d};

IH ← ch2c(H , V , D, IH);
14 choose variable x ∈ V for which |D(x)| ≥ 2;
15 W ← D(x);
16 for each d ∈ W do

if go(~ξx=d, S0, IS0
, ≺better) then

17 S0 ← bb solv({H0∧x = d, H1, . . . , Hn}, IH , V , D, S0, IS0
, ≺better);

18 return S0;

end

Figure 8: A Branch-and-bound CH Solver with Pruning
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go(~ξc, S0, IS0
, ≺better)

begin

1 for each θ ∈ S0 do

2 if ~ξc ≺better
~ξθ then return false;

3 return true;

end

Figure 9: A subroutine.

cal error value(H , θ, ~ξθ)
begin

1 for l ← 1 to n do

2 for k ← 1 to |Hl| do

3 let c be the kth constraint in Hl;
4 ξθ

l
k ← e(cθ);

5 return ~ξθ;

end

Figure 10: A subroutine to calculate error value.
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performance. Crisp propagation is faster. Lines 5 to 13 deal with the case of a
leaf node. Here there is a call to subroutine cal error value that computes the
error e(cθ) for each θ. The CH-2-C algorithm is invoked between lines 13 and 14.
Lines 14 to 17 perform the basic variable instantiation (or searching) recursively.
The call to the subroutine go determines whether the error indicator store of
the variable assignment of the selected branch in IH of the current node is not
worse than the error indicator of each of the collected solutions so far. This is
the “bounding” part of the algorithm to determine if the search should proceed
down the branches at a node.

7 Experiments

DeltaStar is only a theoretical framework [FB02], and clp(FD,S) cannot in the
current implementation deal with hierarchies. We compare the performance of
our proposed solver (Sc) with generate-and-test (Sg), basic branch-and-bound
(Sb), and the reified constraint approach (Sr) by Lua (the Lua’s solver here-
after) [Lua01].

Lua [Lua01] proposed a method to transform constraint hierarchy into or-
dinary constraint system. In this approach, an error value (a value returned by
error function) is related to a special type of constraint called reified constraint
(or error constraint) and it is used to replace the error function. A constraint
c is associated with a variable ǫc where ǫc ≥ 0. This variable represents the
degree of satisfaction of constraint c and this formulation preserves the origi-
nal meaning in the theory of CH (cθ holds ⇔ ǫc = 0). For example, given a
constraint c and a variable ǫc. It is possible to replace the trivial error func-
tion by using reified constraint such as Reified(c, ǫc) provided by many CLP
systems. A value 0 will be assigned to ǫc if the constraint c is satisfied, or else,
a value 1 will be assigned to ǫc. Since it is possible to use reified constraint
and variable ǫc to represent the error function and error value respectively, it is
possible to use an error vector EC to store all the combined error values of the
constraints. The form of error vector EC is a tuple of variables, 〈EC1

, . . . , ECn
〉

where each ECi
represents the combined error value of the constraints in Ci (or

Hi). Intuitively, ECi
represents the combined error values returned by combin-

ing function g in the original formulation in CH. For example, it is possible to
replace the combining function g of weighted-sum-better by an error combining
constraint such that ECi

=
∑

c∈Ci
wcǫc and wc is the weight of constraint c.

It is easy to transform the other combining functions (g for worst-case-better
and least-squares-better) in a similar way. By using different error combining
constraint, it is possible to define globally-better as follows.

globally-better(EC , E′
C) = b(EC , E′

C , 1), where

b(EC , E′
C , i) =

{

false if i > n
ECi

< E′
Ci
∨ (ECi

= E′
Ci
∧ b(EC , E′

C , i + 1)) otherwise

However, it is unclear how the locally-better comparator can be implemented
using this approach. We note that reified constraints are closely related to the
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meta-constraints proposed by Petit et al. [PRB00].
Since both Lua’s solver and ours are based on a branch-and-bound backbone,

we first implement a solver engine Sg (“g” stands for “Generate-and-Test”),
which searches using ILOG’s default goal definition, in ILOG Solver 4.4 in a
generate-and-test fashion. In order to provide a basic Branch-and-Bound solver
(without CH-2-C enforcement) for comparison, we define an alternative ILOG
goal Gb to obtain Sb (“b” stands for “Branch-and-Bound”). The goal Gb follows
the same searching order as the default goal, but compares the errors of the
current best valuations and the accumulated errors so far at each search node.
The search proceeds if the accumulated errors is not “worse” than the errors
of the current best valuations. Otherwise, the search is backtracked to another
branch as in the ordinary Branch-and-Bound algorithm.

Our proposed solver Sc (“c” stands for “CH-2-C”) is obtained by implement-
ing additional functions and an alternative goal definition Gc in Sg. The goal
Gc follows the same searching order as the default goal, but enforces CH-2-C at
each search node. While the input to our solvers is a CH, the input to Lua’s
solver Sr (“r” stands for “reified constraint”) is a CSP with reified constraints
for implementing a specific comparator and error function. The solver Sr also
requires an alternative goal Gr that implements the reified arithmetic compar-
ison propagators and reified logic operation propagators. In the solver Sr, the
program variables are instantiated during search. However, the value of each
variable ǫc, corresponding to a constraint c, is obtained automatically by reified
propagation. The value of each variable (or error vector) ECi

, which stores
the combined error values of the reified constraints in level i, is obtained by
normal propagation of an error combining constraint. The values stored in the
error vectors will be compared to the values stored in the current best error
vectors at each search node. Similarly, the search proceeds if the error vectors
are not “worse” than the current best error vectors. Otherwise, the search is
backtracked to another branch. Our comparison ensures fairness since all four
solvers share the same backbone.

7.1 Experimental Setup

There is a lack of benchmarks for finite domain CH in the public domain. For
simplicity, our testing CH instances are comprised of randomly generated unary
and binary arithmetic constraints, which involve the usual arithmetic operations
(+,−,×,/) and relations (<, ≤, 6=, =). Thus the generated constraints can be
both linear and non-linear. More in details, we first generate whether the
constraint is unary or binary, then we generate the coefficients of each of the
variables and a constant. In case of a binary constraint, we generate further the
operators used to combined the two terms.

Each test data suite consists of three parts to test the effect of variable
domain size, number of variables, and number of hierarchy levels on the per-
formance of the solvers. In each part, four sets of CHs, each of which contains
15 randomly generated problem instances. Thus, each test data suite has 180
problem instances. All problem instances have no hard constraints (in level 0)
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to make the problem more “difficult” to solve.
The first part consists of problem sets: P ′

1, P ′
2, P ′

3, and P ′
4, each of which

contains 15 problem instances. The number of variables and constraints are
fixed (|V | = 5, H = {H0, H1, H2}, |H0| = 0, and |H1| = |H2| = 5) across all
instances, while problems in the same set share a specific domain size: P ′

i has
variable domains of size 10i for i ∈ {1, 2, 3, 4}.

The second part consists of problem sets: P ′′
1, P ′′

2, P ′′
3, and P ′′

4. The
domain size and the number of constraints are fixed (∀x ∈ V, |D(x)| = 5,
H = {H0, H1, H2}, |H0| = 0, and |H1| = |H2| = 5) across all instances, while
problems in the same set share a specific number of variables: P ′′

i has 2(i + 1)
number of variables for i ∈ {1, 2, 3, 4}.

The third part consists of problem sets: P ′′′
1, P ′′′

2, P ′′′
3, and P ′′′

4. The
number of variables and the domain size are fixed (|V | = 5 and ∀x ∈ V, |D(x)| =
20) across all instances, while problems in the same set share a specific number
of hierarchies (or constraints): P ′′′

i has i+1 non-required levels for i ∈ {1, 2, 3, 4}
such that |H0| = 0 and ∀j ∈ {1, . . . , i + 1}, |Hj| = 5.

We benchmark the performance of our solver Sc by conducting two different
experiments. In the first experiment, we want to gain a high level view of the
time efficiency, the memory requirement, and the pruning power of the vari-
ous comparators our solver. We would also like to investigate how the CH-2-C
algorithm is compared to the other approaches in terms of the measured per-
formance. To ensure variety of test cases, we generate a different test data suite
for each comparator. In the second experiment, we want to study the perfor-
mance, in terms of execution time, of our solver among the different comparators
against the other approaches. The purpose is to identify whether the CH-2-C
algorithm is strong/weak in dealing with particular comparator(s). Therefore,
we generate one test data suite and use the same suite for all comparators. For
simplicity reason, we apply the trivial error function to test the solvers in both
experiments.

For global comparators, we benchmark the performance of our solver by
comparing Sc with Sg, Sb, and Sr accordingly. Since it is unclear how the
locally-better can be implemented using Lua’s reified constraint approach, we
only compare Sc with Sg and Sb for the local comparator.

Our experiments are conducted on Sun Ultra 5/400 workstations with 256MB
RAM. We use the default variable and value ordering in ILOG Solver (which
are essentially natural variable ordering according to the variable index and
least-to-largest for value), and search for all optimal (undominated) solutions.

We collect the following information of solvers Sg, Sb, Sr, and Sc from all
the experiments:

• The execution time Ti

• The maximum memory requirement Mi

• The number of leaf nodes visited Li in searching

• The number of choice points Ci in searching
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7.2 Efficiency, Memory Requirement and Pruning Power

This test consists of a test data suite for each comparator, totaling 720 (4×180)
problem instances. Results are reported in Table 1, which gives both the mean

Comparison between Sg and Sc

Comparator Tg/Tc Mg/Mc Lg/Lc Cg/Cc

l-b 176 (9) 0.88 (0.88) 1860 (70) 230 (13)
w-s-b 206 (9) 0.89 (0.88) 3149 (86) 249 (13)
w-c-b 54 (4) 0.89 (0.88) 517 (22) 80 (7)
l-s-b 105 (5) 0.89 (0.88) 2394 (33) 130 (9)

Comparison between Sb and Sc

Comparator Tb/Tc Mb/Mc Lb/Lc Cb/Cc

l-b 46 (7) 0.88 (0.88) 215 (31) 70 (7)
w-s-b 128 (6) 0.89 (0.88) 1263 (22) 117 (6)
w-c-b 41 (3) 0.89 (0.88) 291 (13) 53 (5)
l-s-b 18 (3) 0.89 (0.88) 152 (16) 17 (6)

Comparison between Sr and Sc

Comparator Tr/Tc Mr/Mc Lr/Lc Cr/Cc

w-s-b 87 (3) 1.22 (1.25) 1142 (18) 94 (3)
w-c-b 37 (3) 1.19 (1.23) 258 (11) 47 (3)
l-s-b 11 (2) 1.19 (1.25) 123 (11) 12 (2)

Table 1: A summary of the comparative performance of Sc.

and median (in brackets) performances. The table is divided into three sub-
tables, each reports results of the Sc solver as compared to the Sg, Sb, and Sr

solvers respectively. Each row in a sub-table corresponds to the results for a
particular comparator. Performances are measured in terms of ratios in each
column: Tx/Tc, Mx/Mc, Lx/Lc, and Cx/Cc, where x ∈ {g, b, r}. A number
greater than 1 indicates that the Sc solver is better. As a reference, the absolute
time performance of the solvers range from 0.01 to around 8000 seconds.

In terms of time, the Sc solver is in general faster than the other solvers
by 1 to 2 orders of magnitude in mean performance, and a few times faster
in median performance. The mean and median results agree in trends, but
not in magnitudes. The discrepancy suggests that we have test instances in
which the Sc solver is much more efficient. This could be due to the fact that
some benchmarks generated are significantly more difficult for the solvers. As
expected, the Sg solver performs the worst, followed by the Sb and the Sr solvers
respectively.

In terms of memory consumption, the Sc solver incurs a slightly larger over-
head over the Sg and Sb solvers, since extra memories are needed to store
the consistency information in solver Sc. On the other hand, the Sr solver
requires even more memory, mainly to handle the extra reified constraints for
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error calculations. There is little discrepancy between the mean and the median
performance.

A choice point corresponds to a branching node in a search tree. The number
of leaf nodes visited and the number of choice points are good indicators of
the pruning power of the solvers. As expected, the Sc solver is significantly
better than the Sg and Sb solvers, which support no local consistency notions
for pruning. Compared to the Sr solver, Sc still flares well, since consistency
maintained in reified constraints is relatively weak for pruning. The discrepancy
in the magnitudes of the mean and median results agrees with that in the time
comparison: some generated benchmarks are significantly more difficult and the
Sc solver is able to solve these instances much more better than the other solvers.

In summary, the Sc solver is faster than the other approaches since it is
able to prune larger part of the search tree. At the same time, the memory
requirement of Sc is basically on par with the other solvers.

7.3 Performance Among Different Comparators

This experiment evaluates the solvers under different settings: change in variable
domain size, number of variables, and number of hierarchy levels.

7.3.1 Domain Size

In this part of the experiment, P ′
1, P ′

2, P ′
3, and P ′

4 contains benchmarks of
increasing domain sizes with number of variables and number of hierarchy levels
being kept constant. Results are reported in Table 2, which give both the mean
(upper table) and the median (lower table) performances. Again, performances
are measured in terms of ratios in each sub-tables: Tg/Tc, Tb/Tc, and Tr/Tc

respectively. Each column in a sub-table corresponds to a comparator, while
each row corresponds to a problem set (of 15 instances) with the same variable
domain size.

Tg/Tc (Mean) Tb/Tc (Mean) Tr/Tc (Mean)

CHs w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b

P ′
1 8 5 7 10 6 4 6 7 5 4 5

P ′
2 36 15 37 13 18 22 19 9 9 19 9

P ′
3 267 67 261 171 121 47 123 31 113 42 115

P ′
4 385 72 342 76 37 35 39 23 17 27 18

Tg/Tc (Median) Tb/Tc (Median) Tr/Tc (Median)

CHs w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b

P ′
1 4 1.5 4 4 2 1.3 2 2 1 0.8 0.9

P ′
2 7 0.6 7 3 6 0.6 6 1.3 5 0.6 5

P ′
3 74 6 72 22 2 5 2 4 0.9 5 0.9

P ′
4 13 5 13 12 5 3 5 3 2 2 2

Table 2: A comparison by varying the domain size.

23



7.3.2 Number of Variables

In this part of the experiment, P ′′
1, P ′′

2, P ′′
3, and P ′′

4 contains benchmarks
of increasing number of variables with variable domain size and number of hi-
erarchy levels being kept constant. Results are reported in Table 3, which give
the mean and median performances respectively.

Tg/Tc (Mean) Tb/Tc (Mean) Tr/Tc (Mean)

CHs w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b

P ′′
1 1.2 0.9 1.3 1.2 1.2 1.3 1.5 1.4 1.1 1.1 1.4

P ′′
2 6 3 6 5 5 3 5 4 5 3 5

P ′′
3 7 3 7 4 5 4 5 3 4 4 4

P ′′
4 24 8 24 26 3 7 3 5 1.4 6 1.4

Tg/Tc (Median) Tb/Tc (Median) Tr/Tc) (Median)

CHs w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b

P ′′
1 0.8 0.6 1 1 1.3 1 1.2 1.3 1.2 0.8 1

P ′′
2 3 1.4 3 2 2 1.4 2 1.5 1.4 1.4 1.3

P ′′
3 3 1.5 2 2 2 1.4 2 1.4 2 1.4 1.7

P ′′
4 4 1.4 3 2 3 0.7 3 1.4 1 0.6 1

Table 3: A comparison by varying the number of variables.

7.3.3 Number of Hierarchy Levels

In this part of the experiment, P ′′′
1, P ′′′

2, P ′′′
3, and P ′′′

4 contains benchmarks
of increasing number of hierarchy levels with variable domain size and number
of variables being kept constant. Results are reported in Table 4, which give
the mean and median performances respectively.

Tg/Tc (Mean) Tb/Tc (Mean) Tr/Tc (Mean)

CHs w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b

P ′′′
1 146 108 151 122 44 44 44 32 37 39 39

P ′′′
2 209 130 212 116 51 116 50 34 38 104 39

P ′′′
3 232 168 219 50 42 121 44 21 31 113 29

P ′′′
4 122 154 124 75 58 132 60 26 51 128 52

Tg/Tc (Median) Tb/Tc (Median) Tr/Tc (Median)

CHs w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b

P ′′′
1 24 6 26 27 3 4 3 4 2 4 2

P ′′′
2 52 12 54 29 6 10 6 5 6 9 6

P ′′′
3 63 29 70 10 6 8 5 3 5 6 5

P ′′′
4 44 52 47 15 11 53 11 4 9 51 9

Table 4: A comparison by varying the number of hierarchy levels.
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7.3.4 Discussions

The CH-2-C algorithm incurs overhead in the branch-and-bound search. For the
larger problems, the extra effort paid by the CH-2-C algorithm at each search
node is demonstrated worthwhile. This result is in line with the behavior of
embedding classical consistency techniques in basic tree search in solving clas-
sical CSPs. In general, the data in Tables 2–4 also exhibit a similar increasing
trend in the Tx/Tc ratio, where x ∈ {g, b, r}. In other words, the Tc solver gives
more advantages over the other approaches as the problems grow in size and
difficulty. There are two points to note.

First, sometimes the ratios increase and then drop, for example, in the case
of the Tg/Tc ratios for the l-b comparator in Table 2. This looks like a “phase
transition” phenomenon, but we note that the results reported are performance
ratios but not absolute execution time. In fact, we can observe increase in
execution time in the raw experimental data as the problems grow in size and
difficulty, as expected. We conjecture that this increase-decrease phenomenon
is a result of the large variance in the experimental results, as observed in the
discrepancy between the mean and the median results. This is also the cause for
a few median performance ratio results being less than 1. Such large variance
and the increase-decrease phenomena are topics for future research.

Second, in general, the advantages of the Sc solver over the other approaches
are the worst for the w-c-b and l-b comparators, which are more likely to find
two error indicators being incomparable. Thus, there is less opportunities for
pruning with these comparators.

8 Related Work

Many efficient algorithms have been proposed to solve CH, such as DeltaBlue
[FBMB90], SkyBlue [San94], DETAIL [HMT+94], Indigo [BAFB96], General-
ized Local Propagation [HMY96], and Ultraviolet [BFB98], apply Local Propa-
gation [SS79]. Besides, Cassowary and QOCA algorithms [BMSX97], adapting
the Simplex algorithm [NM65], can also solve CHs efficiently. However, they are
designed for the real number domain. We focus on finite domain CHs solving
techniques; we can categorize the techniques into three different approaches.

First, the Incremental Hierarchical Constraint Solver (IHCS) [MBC93] pro-
poses to transform a given constraint hierarchy into a set of best configurations
(a set of constraints). Therefore, a given CH can be transformed into a set of
classical CSPs. However, it can only find l-b solutions using the trivial error
function. The second approach is to transform CHs into ordinary constraint
systems based on reified constraint propagation [Lua01]. This approach can
only find solutions for global comparators (w-s-b, w-c-b, and l-s-b). The last
is the refining approach used by DeltaStar [FBWB92]. It is a generic finite
domain CH solver which can find solutions for arbitrary comparators in theory.
However, it recomputes the solution in each recursive step causing significant
overhead. Hence, it is used only as a general and theoretical framework for
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solution, from which efficient algorithms, such as DeltaBlue (only equality con-
straints) and Cassowary (a very restricted finite domain subsolver), are inspired
and designed for some subset of the general problem [FB02]. In addition, to the
previous one, Henz et al. [HYF+04] used local search methods to solve constraint
hierarchies over the Finite Domains.

This paper is also related to many work in soft constraint processing. These
frameworks demonstrate how information gained through local consistency check-
ing during preprocessing can be used to enhance branch-and-bound search using
local computations as global bounds. In fact, when dealing with Constraint Hi-
erarchies, w-s-b and l-s-b can be modeled by Weighted CSPs [Lar02, LS04, LS03]
and w-c-b by fuzzy CSPs [Coo03] (However notice that WCSP cannot model
all global comparators). Both Weighted CSPs and Fuzzy CSPs are instances of
the Valued CSPs framework [Sch00, Coo03, CS04]. The same idea is used by
Larrosa and Schiex [LS99]. From the last level to the first, one must multiply
the base error at each level in such a way that the smallest strictly positive error
at one level k is larger than the largest error at level k + 1 multiplied by the
number of constraints at level k + 1.

The bounds computed by these works are better than ours when we restrict
our computations to only 2 consistency levels, and to a specific comparator.
Our framework are somewhat more general. We are able to compute bounds for
CH with varying levels of consistency (from 1 to k) and without fixing a priori
a comparator .

In addition, Valued CSPs can only model global comparators. In fact, the
locally better comparator induces a partial order structure that cannot be used
in the Valued CSP framework, which is based on total orders.

The Constraint Hierarchies framework can sometimes be more natural in
modeling applications. Examples come from the area of animation [BG95],
planning [Bar97], web documents [LMS99] and also routing [YYA02].

9 Conclusion

We formally define constraint hierarchy k-consistency (CH-k-C), based on error
indicators. Incorporating a CH-2-C enforcement algorithm in a branch-and-
bound algorithm, we obtain a general finite domain CH solver, which works for
arbitrary comparators. Search space is pruned by utilizing the error information
generated by the CH-2-C algorithm. Experiments confirm the efficiency of our
research prototype, which brings us one step towards practical finite domain
CH solving.

There is room for future research. First, our implementation and even the
CH-2-C algorithm are hardly optimized. They have much scope for improve-
ment. Second, we test our solver on random problems, and observe large vari-
ance in the performance ratio results, which is worth investigation. It will also
be interesting to study phase transition phenomena similar to that identified by
Larrosa and Meseguer for MAX-CSPs [LM96]. In addition, experiments on more
structured problems and real-life problems are needed. Third, our consistency-
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based and Lua’s reified constraint approaches do not compete. It would be
interesting to study if the two methods can be combined to produce more prun-
ing. Fourth, the efficiency of branch-and-bound algorithms can be sensitive
to variable and value orderings. It is worthwhile to investigate good ordering
heuristics specific to the CH-2-C and the branch-and-bound algorithms. Fifth,
the current proposal of our solver guarantees the correctness of local and global
comparators. In addition, it is easy to check that our solver can support the re-
gional comparator [WB93]. The existing comparators, although rigorously and
mathematically defined, might be too general for a specific real-life situation. It
would be interesting to introduce new comparators that should be of particular
relevance to real-life problems and applicable to our solver.
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