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Abstract EDAC for set variables and constraints in WCSPs.
Consistency notions, including FDAC and EDAC, on
Lee and Siu made possible for the first time modeling andWCSPs for integer variables are defined for unary and
reasoning with set variables in weighted constraint satisf ~ binary constraints only. Enforcing consistencies on con-
tion problems (WCSPs). In addition to an efficient set vari- straints of higher arities are expensive. However, set isode
able representation scheme, they also defined the notion ofn WCSPs usually contain soften versions of set constraints
set bounds consistency, which is generalized from NC* andsuch as membershig (¢ A), subset 4 C B), equality
AC* for integer variables in WCSPs, and their associated (4 = B), union-equald U B = () and intersect-equal
enforcement algorithms. In this paper, we adapt ideas from (AN B = C). In particular, union-equal and intersect-equal
FDAC and EDAC for integer variables to achieve stronger constraints are common. We need to define consistency no-
consistency notions for set variables. The generalizationtions for thesepossibly ternaryset constraints. The con-
is non-trivial due to the common occurrence of ternary set straints can obviously be generalized to arbitrary arity. T
constraints. Enforcement algorithms for the new consisten balance the cost of consistency enforcement and efficiency,
cies are proposed. Empirical results confirm the feasipilit we support consistency notions up to ternary constraints
and efficiency of our proposal. only. One challenge in deriving the set variable counter-
parts is thus in dealing with ternary constraints and the re-
lated consistency notions. We give also efficient enforce-
1 Introduction ment algorithms for the new consistencies to make solving
set problem with stronger consistencies viable. Experimen
tal results confirm the benefits of maintaining these stronge
consistencies. By enforcing the stronger consistency, we
can obtain one order of magnitude in improvement on the

Set variables and constraints are ubiquitous in modeling
many (soft) constraint problems in practice. While set-vari
ables inweighted constraint satisfaction problefWgCSPs) )
[4] can be simulated using 0-1 variables, Lee and Siu [5] ProPlem solving.
showed such direct simulation is impractical. They pro-
posed a compact representation scheme for set variables i@ Background
WCSPs. Adapted fromstar node consistenofNC*) and

star arc consistenc¢AC*) [4] for integer variables in WC- A classicalconstraint satisfaction problefCSP) is a tu-
SPs, basic consistency notions, includihgment node con- ple P = (X,D,C) whereX’ is a finite set ofvariables
sistency(ENC), element arc consistendAC), andele- D is a finite set ofvariable domainsand( is a finite set
ment hyper-arc consisten€EHAC), and their associated of constraints A variablex; € X can only take a value
enforcement algorithms are defined and evaluated. from its variable domairD(z;) € D. An n-ary constraint
Stronger consistency can prune larger part of the search’;, ., € C restricts the values taken by the variables

space. Larrosa et. al. introducéd! directional arc con-  z;,,...,x;, simultaneously.

sistency(FDAC) [3] andexistential directional arc consis- A weighted constraint satisfaction probleVCSP)

tency(EDAC) [1] for integer variables, and demonstrated extends classical CSP. A WCSP is a tuple =
how reasoning overheads can be well justified by the extra(k, X', D, C) which relies on avaluation structureS (k) =
reduction in the search space leading to a faster runtime.([0,1,...,k],®,>), wherek € [1,...,00]. The operator
By enforcing stronger consistency, we can often solve the® is defined as & b = min{k,a + b}. The set is totally
problems in shorter time. In this paper, we adapt FDAC and ordered by the standard orderamong naturals. There are



minimum costl. = 0 and maximum cost = k. In addi- Figure 1(a) shows a WCSP with set variables. The costs

tion, cost subtractiom is defined as follows: of lower boundCy and upper bound is shown on top.
_ There are two set variablég and .Sy, each with two pos-

wob— { a—b fazk sible set element$1,2}. The upper left and right tables
k otherwise represent unary constraints 8f and.S; respectively. For

o example, the cost fof; to contain set elemeritis 1 and
wherea,b € [0,...,k] anda > b. & andD are the finite  the cost forS; not to contain set elemeitis 0.
set of variables and the finite set of variable domainsrespec  The binary and ternary set constraints are defined in
tively. A tuple of assignmentse;, — di,, ..., zi, — di,) a similar fashion. A binary set constraint is defined
assigns values;; < D.(:vz-j), whereD(z;;) € D, to vari- as C; ;(u,v) Dactiou; Pig)/ale € wa € ).
ablez;; € &, for1 < j < n. Cis the set otost functions A ternary set constrair;'t ié defined & ;4 (u,v,w) =
which maps a tuple of assignments to costs. There is a zero N e
b li[’ ; 'Cp gt' o alobal | bound of Zaeuiuujuk ©ijk)/al@ € u,a € v,a € w). The dashed
5;]” Y cotr)lls rainty representing the global lower bound of - rectangle in Figure 1(a) represents a binary consttaint
the problem. . ) ) A dotted line separates the table for each set element verti-
The costV(r) of a tuple of variable assignmentsis cally. The table is a binary element cost function(gfs.
obtained by combining the costs for all constraints Using  The |eft portion of the table shows the costs for set element
1 while the right portion shows the costs for set elentent

V(r)=Cyp & Z Cir i (T e vein}) From the table, the cost @f(; 2,1 (t,1) is 2.
. C]}ncec o There are cardinality constrains;; mapping assign-
Ty 0Ty, g CVAT(T

ments of set variabl§; to costs according to the cardinality

The notationwar(r) is the set of variables appearingdn ~ © Si- I this paper, we only focus on unary, binary, and
andr | , projectsr on {z, i }. When ternary set constraints which are involved in the stronger
LigyeeyLin 119y St

V(r) < T, the tupler is said to beconsistent In solving consistency notions.
WCSP, our goal is to find a complete consistent assignment

with minimum cost. 3 Basic consistency notions

A WCSP with set variables [5] contains a finite set of
set variablesS; € X. Each set variabl&; can contains The framework of WCSP with set variables defined some
elements from its own univergé¢ defined by the problem. basic consistency notions which are basedtannode con-
An existence statef a set element w.r.t. set valueu is sistencyandstar arc consistencin the integer domain [4].

defined as a boolean value @fe u. While the existence o ) _
state ofl in the set{1,3} is ¢ (true), the existence state of Definition 1 An existence state of set elemend is ele-
2is f (false). The set opossible existence statega set ~ Ment node consisteENC) w.r.t. unary constrainC; if
elements for a set variables; is denoted a€(S;, a). Ini- Co @ ¢(i)/p(a) < T. Asetelemeritis ENCif

tially, E(S;,a) = {¢t, f}. WhenSi cannot .contaim,_t is 1. Ya € E(S;,b), ais ENC W.rt.C;, and

removed fromE(S;,a). Similar case applies to existence

statef. The set constraints are cost functions mapping tu- 2. Ja € E(S;,b) such thatp; () = 0.

ples of set variable assignments to costs. Since commo
set constraints, such as subsdt C B) and union-equal
(AU B = (), consider the existence states of each set el-
ement individually, the cost of a set constraint is defined at

the element level througglement cost functions Definition 2 An existence state of set element is ele-
A unary element cost functiop;,, maps existence  ment arc consisterEAC) w.r.t. binary constraint’; ; if
states of a set element of set variableS; to costs. 33 ¢ E(S;,b) such thatp; y5(, 3) = 0. An existence
The unary constraint of5; is defined asCi(u) = states is a simple supporbf the existence state. A set
2acu; $()/a(a € u). Setdomainin classical CSP is repre- element is EAC if Vo € E(S;,b), a is EAC W.rt.Cy ;. A
sented as an interval with lower and upper bounds, namelyset variable iSEAC if every set element is EAC w.I; ;e

required set(RS) andpossible se(PS) respectively. Re- A \WCSP i€AC if every set variable is EAC and ENC.
quired set contains set elements whinhistbelong to the

set while possible set contains set elements whielybe- Definition 3 An existence state of set element is ele-
long to the set. With the unary element cost functions, we ment hyper-arc consiste(EHAC) w.r.t. ternary constraint
can deduce the required set and possible set of a setvariable”; ; ;, if 35 € E(S;,b) and 3y € E(Sk,b) such that
A set element is in required set of; if ;) /o (f) = T. A ©a,5.k) /b, B,7) = 0. Existence state$ and~y are simple
set element is in possible set of; if ;) /. (t) < T. supportof the existence state. A set element is EHAC

nl'he existence state is a support for the set elemeht A
set variableS; is ENCw.r.t. C; if every set element is ENC.
A WCSP i€ENCIf every set variables; is ENC.
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Figure 1. Equivalent WCSPs with set variables.

if Voo € E(S;,b), ais EHAC w.rt.C; ; .. A set variable is Definition 4 A set elemertit of a set variableS; is element
EHAC if every set element is EHAC w.id; ;.. A WCSP  full directional arc consistenEFDAC) w.r.t. binary con-
is EHAC if every set variable is EHAC and ENC. straint C; ;, wherei < j, if Va € E(S;,b),35 € E(S;,b)
such thaty; ;y,(a, 8) © ¢¢y(6) = 0. The existence
For example, in Figure 1(a), the WCSP is ENC but not state3 is afull supportof o. The set elemerbtis EFDAC
EAC. The existence statiec S, does not have supportin w.rt. C;;, wherej < i, if Va € E(S;,b),33 € E(S;,b)
Ci2. By transferring the minimum costs of(; 2,1 (,t) such thatp; ;)/5(c, 3) = 0. A set variable iSEFDAC if
and ¢(1,2)/1(t, f) to unary element cosp(i),1(¢), the  allits set elements are EFDAC w.r.t. binary constraiht;.

WCSP is transformed into the one in Figure 1(b), which The problem i€FDAC if every set variable is EFDAC and
is now EAC. Such operation is calledst projectiorwhich ENC.

is used to maintain consistency. The WCSP is transformed
into an equivalent WCSP by projecting the costs. The notion of EFDAC is a direct generalization of FDAC
When all the above Consistency notions are enforced,to the set domain. To extend the notion to ternary, we need
the problem is said to beveighted set bounds consistent to have the notion of full support for ternary constraints,
(WSBC), which is a generalized notion sét bounds con- ~ Which, as far as we know, is not available in the litera-
sistency(SBC) in classical set CSP defined in [2]. The ture. The notion of EFDAC is generalized to ternary set
complexity of WSBC enforcing algorithm in [5] i©(n?e) constraint with our definition of ternary full support as-fol
when there are: set variables with maximum number of lows:

elements: in the problem. Definition 5 A set elemenb of a set variableS; is ele-

. . ment full directional hyper-arc consistent (EFDHA®Y).t.
4 Stronger consistency notions ternary constrainC; j x:

1. fori < j < k, if Yoo € E(S;,b), 36 € E(S;,b)

We now propose our stronger consistency notions in
prop 9 y and 3y € E(Sk,b) such thaty j k) /m(, 3,7) ©

WCSPs with set variables. A consistentys strongerthan

aconsistency3, written A - B, if whenever a problem id #(5)/b(B) © ¢aiyp(y) = 0. The existence states

consistent, the problem B consistent. Enforcing stronger andy are thefull supportsof o

consistency can reduce the search space of a problem. 2. forj < i < k,if Vo € E(S;,b),38 € E(S;,b),7 €
In the integer domain, there are two stronger consistency E(Sk, b) such thatp(; j 1) /6 (cx, 8,7) ® ey () = 0.

notions:full directional arc consistenc{FDAC) [3] andex- The existence statg$ and  are thesimple support

istential directional arc consistendEDAC) [1]. Both of andfull supportof « respectively.

them are based odirectional arc consistencfB] and re-

quire an ordering on the variables. Without loss of gener- 3. forj < k <, if Va € E(S;,b), 36 € E(S;,b),7 €
ality, we order the variables in WCSP as < z; if i < j. E (S, b) such thaty; ; x s (a, 8,7) = 0. The exis-
In maintaining directional arc consistency, differentlof tence stateg and~ are thesimple supportsf o.

consistencies are applied 6 ; andC; ;, which are effec- A get variable iEEFDHAC if all its set elements are EFD-
tively the same constraint but with different order of vari- HAC W.rt.C; ... The problem i€FDHACIf every set vari-
ables, because it is impractical to enforce such strong con-pe is EFEDHAC and ENC.
sistency in both directions [1].

The stronger consistency notions for WCSP with set  Our definition of ternary full support is consistent with

variables are as follows. the definition of binary full support when we consider the



smallest and largest variables in the constraint: the sstall The definitions of FDWSBC and EDWSBC subsume the
variable requires full supports for all other variables sl definition of WSBC. Additionally, the definition of EED-
largest variable requires simple supports only. A variable HAC also subsumes EFDAC and EFDHAC. We immedi-
always finds simple support from the smaller variables and ately have the following theorem.

finds full support from the larger variables.

The problem in Figure 1(b) is not EFDAC becauder
element2 of set variableS; does not have full support in
Ss in 0112_ Unlike f|nd|ng Simp|e support, there is no cost Proof 1 Given a WCSP with set variablés we can trans-
for projection. To ensure a support fore S;, weextend ~ formP into equivalent WCSPB,, which is EDWSBC, and
the unary cost 0¢(2)/2 (t) to binary Cost$(l72)/2 (t7 t) and PQ, which is FDWSBC F(.)r ea?h Constra|ﬁt1 n P1 and
¢(1.2)/2(f.t) as in Figure 1(c). Then, we can project the its correspondmg constra|rr[?2 in P, C; and Cy are pf .
cost toy(1) 2 (t) which is shown in Figure 1(d). The prob- the same consistency level if they are unary or cardinality
lem is not ENC and we project the unary cost of set elementconstraints. Otherwise}’; is EEDHAC andCs is EFDAC
2 of set variableS; to Cjy. The results depicted in Figure (or EFDHACifC; is a ternary constraint). As EEDHAC is
1(e) is now EFDAC. stronger than EFDAC or EFDHAC by definition, EDWSBC

Before we introduce the stronger notionelément ex-  is also stronger than FDWSBC. By similar argument, FD-
istential directional hyper-arc consisten¢gEDHAC), we ~ WSBC is stronger than WSBC.
first give our generalization oftar existential arc consis-
tency(EAC¥) in the integer domain [1], namebBlement ex-
istential hyper-arc consisten{iZEHAC). The definition of
EEDHAC is based on the EEHAC. We immediately define

Theorem 1 EDWSBC- FDWSBC- WSBC.

5 Consistency enforcement

the notion at hyper-arc level instead of arc level sincehall t
constraints in the problem are under consideration.

Definition 6 A set elemertit of a set variables; is element
existential hyper-arc consistent (EEHAEH« € E(S;,b)

Proceduref i ndUSup( 4, a)
¢ :=mingep(s;,q) (@) /a());
Cp:=Cy &g
for o € E(S;,a) do
L eay/ala) =@ ale) S

such thatp;) (o) = 0 anda has a full support in every
binary constraintC; ; and every ternary constrair@; ; .

A set variable iEEHACIf all its set elements are EEHAC.
The problem i€EHAC s every set variable is EEHAC and
ENC.

Procedureproj Tern(i, j, k, a, 7, ¢
ky/a(Y) = @ysa(7) @ ¢
for a € E(S;,a),8 € E(Sj,a)do

| @egr)/alB,7) = 0@l 8,7) ©c
Definition 7 A problem iselement existential directional
hyper-arc consistent (EEDHA®)it is EFDAC, EFDHAC,
and EEHAC.

Figure 2(a) shows a WCSP which is EFDAC. It is not
EEDHAC since the existence statef the set element of
S3 does not have full supportift; 5 and f of the same set
element does not have full supportdh 5. The unary costs
of 91y/1(f) andg(ay,:1 () are extended t@’; 3 and Cs 3
respectively as shown in Figure 2(b). The costs in these
two constraints are then projected to the unary coét;odis The algorithms for enforcing EFDAC, EFDHAC, and
depicted in Figure 2(c). Since the problem is not ENC, the EEDHAC are based on cost extension and projection [4] to
unary cost ofC is further projected t@y. The WCSP in  find the required supports. The algorithm shown in Figure
Figure 2(d) shows the result which is now EEDHAC. 3 describes the procedure to find the unary supports. In pro-

We can incorporate EFDAC, EFDHAC, and EEDHAC ceduref i ndUSup, the minimum cost among the possible
into the weighted set bounds consistency. existence states is subtracted from the unary element costs
and projected t@y. As a result, there are at least one pos-
sible existence state which has unary cost 0 to satisfy the el
ement node consistency. The procedures for finding binary
simple and full supports are omitted here since we focus on
Definition 9 A WCSP iexistential directional weighted set  ternary case. The procedyseoj Ter n is used to project
bounds consistent (EDWSB®@)it is weighted set bounds  costc from the ternary element cost functign; ; )/, to
consistent and EEDHAC. unary element cost functiop;, ,, for the existence state

Procedureext Tern(4, j, k, a, 7 ¢
for a € E(Si,a),3 € E(S;,a)do

|_ <P(i,j,k)/a(01,ﬂ, ’Y) = Lp(i,j,k)/a(a,ﬁ, 'y) P c;
Py/a(Y) = owy/a(y) © ¢

Figure 3. Finding unary support and pro-
jection/extension of ternary costs.

Definition 8 A WCSP isfull directional weighted set
bounds consistent (FDWSB®)it is weighted set bounds
consistent, EFDAC, and EFDHAC.
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Figure 2. Transformation of WCSP from EFDAC to EEDHAC.
of ~ for set variableS;. The procedurext Ter n works jected to the unary element caiste S;. If we choose to

in another direction. It extends the unary element cost of extend the unary element cost¢ S, to the ternary ele-
for set variableSy, from ¢y, to the ternary element cost ment function, we will have the problem in Figure 5(b). As
functiony(; ; k) /q- All these three procedures are useful in the costs ofp(; 23y/1(t,t,t) and ¢ 2.3),1(t, f,t) is less
enforcing ternary supports. than three, there must be some cost required to extend to
It is more complex to enforce full supports in ternary 1 € Ss. The problem after the extension is shown in Figure
constraints. There are three possible cases as shown i®(c). All the unary element costs in the problem are ex-
Figure 4. First, it only requires to enforce simple ternary tended to the ternary element cost function. Alternatively
supports. The procedufé ndTer nSi npSup is used to ~ We can extend the unary element cosl af S3 before ex-
enforce simple supports for variabg. After getting the  tending the cost of ¢ S; which results in the problem in
minimum cost in ternary element cost functipm,0j Ter n Figure 5(d). While the cost to be projected fram » 3)/1
is called to project the minimum cost to unary element 10 ¢(1),1 is the same, there is some cost leftdp, /1 (f).
cost function ofS;,. Second, it requires to find a simple A cost in unary element function is more explicit than in
support in one variable and a full support in another vari- ternary constraint. When later in the search, a cost is pro-
able. The procedurti ndTer nSeri Ful | Sup handles  jected top(z),1(t), the unary element cost df € Sy can
this case. It first calculates the costs to be projected inbe immediately projected t6, to raise the global lower
an arrayP for each possible existence statesSof Since bound. However, deciding which costs to be extended first
some costs may need to be extended fi§mthe costs to will increase the complexity of cost extension. In our im-
be extended is stored in an arr&y After getting these  plementation, the order of cost extension is arranged lexi-
two arrays, the procedure can extend and project costs uscographically starting with the smallest variable.
ing proj Tern andext Tern. In the last case, it en- It is observed that the cost extension and projection can
forces full support on both of two variables with the use affect the availability of existing supports. Figure 6 sisow
of f i ndTer nFul | Sup. The structure of them are similar an example. In Figure 6(a) the ternary set constraint is not
tofi ndTer nSem Ful | Sup. However, thistime we may  element full directional hyper-arc consistent since thisre
need to extend the cost from unary element cost functionsno full supports inS; andSs for 1 € S;. To enforcing full
of both other variables. supports, the unary element costslof S; and1 € S3
In enforcing binary full support, when we want to find a are extended t@; 2 3),1. The result is shown in Figure
full support inS; for a value inS, and there is insufficient ~ 6(b). In the next step, the costs of the ternary element cost
cost in binary constrainf, » to project to unary constraint ~ function areprojectedto the unary cost of € 5 as shown
C,, we can first extend the unary costdh to C; ,. Then  inFigure 6(c). These two steps ensure full supportin binary
the binary cost inC; » can be project ta’;. The proce- constraint. However, it is not the case for ternary constrai
dure is straightforward as there is only one source of costsas the simple support far ¢ S is lost after the above
for extension. However, in ternary constraint, when we en- steps. We have to ensure simple supportsifer S;. To
force a full support for a variable, there are two source of circumvent the situation, the algorithm invokes procedure
costs. An example is shown in Figure 5(a). The dashedto ensure the availability of more basic supports at the end.
rectangle represents a ternary constréint ;. Inside the  For example, atthe end bf ndTer nFul | Sup, itinvokes

rectangle, the upper table represents the costs whes,; fi ndTer nSem Ful | Sup to ensure there is a support for
while the lower table represents the costs wheg S;. other variables in the same constraint.
Thus the cost ob(; 2 3),1(t, f, f) is 2. Now, a full support Figure 7 shows the algorithm for enforcing EEDHAC.

of 1 € S, is required. There are three costs can be pro- We use the procedufé ndExi st Sup to find an existence



Proceduref i ndTer nSi mpSup( 4, j, k, a)
flag := false;
for v € E(Sk,a) do
€= Milaep(s;,0),8€ B(S;.0) (P(igk) /a (X B5 7))
if ¢ > 1 then
if ©(ky/a(v) = Lthen flag := true;
proj Tern(i, j, k, a, vy, ¢);

findUSup(k,a);
return flag;

Proceduref i ndTer nSeni Ful | Sup( 4, j, k, a)
flag := false;
for 8 € E(S;,a) do

P[ﬁ] = minaEE(Si,a),'yeE(sk,a) (tp(i,j,k)/a(avﬁvfy) 2]

\; Py /a(7));
if P[3] > L Apy)a(B) =Lthen flag := true;

for v € E(Sk,a) do

En]:=
maXaEE(Si,a),BEE(Sj,a)(P[ﬁ] O ©(ijk)/ala; B 7))
for v € E(Sk,a) do
| extTern(i, j, k, a, v, E[y]);
for 8 € E(S;,a) do
| projTern(i, k, j, a, 3, P[A]);
findUSup(j,a);
flag :== flagVvfindTer nSi npSup( i, j, k, a) ;
return flag;

Proceduref i ndTer nFul | Sup( i, 7, k, a)
flag := false;
for a € E(S;,a) do
Pla] = mingep(s;,0),ve B(Sy,a0) (P(i,5,8) /a0, B, ) @
©(i)/a(B) ® eky/a());
| if Pla] > L Awua(a) == Lthen flag := true;
for 8 € E(S;,a)do
E;[B] ==
MaXac B(S;,a),v€ E(Sp,a) (Ple] © @i k) /a0 B,7));
L E5[8] = min(p)/.(6), E5[6]);
for v € E(Sk,a) do
Ex[y] == maXae m(s;,a),5eE(s;,q) (Pla] © Ej[6] ©
L @(i,j,k)/a(a7ﬁ7 7));
for 8 € E(S;,a) do

| extTern(i k, j, a, B, E;[8]);
for v € E(Sk,a) do

| extTern(i, j, k, a, v, Ex[7]) ;
for o € E(S;,a) do

| projTern(j, k&, 1, a, o, Pla]);
findUSup(i,a);
flag :== flagVvfindTernSem Ful | Sup(, j, k, a) ;
return flag;

Figure 4. Finding ternary supports.
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Figure 5. Different choices of cost extension

in ternary constraint.
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Proceduref i ndExi st Sup(i, a)
flag := false;

c:=

minaeE(si,a)(‘P(i)/a @

() /a) .
P4,k a SLi<i<k MiNge p(s;.a). 7€ E(Sk.a) (Plid.k) /a D

©(j)/a))

P(i.9)/a

biigyya S i<kes MINFEE(S; 0) veB(Ska) (P(0.5.8) /a O
P()/a D P(k)/a))i
if ¢ > L then
for (570 St.j <ido
L flag := flagVvFi ndBi nFul | Sup(i, j, a);
for v jr)/e St.j <i<kdo
flag :== flagVvfindTer nSem Ful | Sup( &,
i J, a);
for ¢ k) /e St.j <k <ido
flag := flagVvfindTernFul | Sup(i, j, k,
a);

return flag;

Procedure EEDHAC( X, D, C)
for S; € X do
for a € U; do
R:=RU (i,a);
L S:=5U(i,a);

while R # 0V S # () do
P = {(jﬂl) | (i,a) € S,j >1,Ci; €CV Cyj €
CtUS;
S = 0;
while P # 0 do
(i,a) == popM n( P);
if fi ndExi st Sup( 4, a) then
R:=RU{(4,a)};
for Ci; € CV Ciji € Cs.it.j > ido
L P:=PU{(,a)}

while R # () do
(¢,a) := popMax( R) ;
for (i jy/a St.i < jdo
if Fi ndBi nFul | Sup( i, 7, a) then
L R:=RU{(,a)};
S:=SU{(,a)};

for v k) e St.j <i < kdo
if fi ndTer nSem Ful | Sup(j, i, k, a)

then
R:= RU{(k,a)};
L S:=SU{(k,a)};

for v j k) e St.i < j < kdo
if fi ndTernFul | Sup( 4, j, k, a) then
L R:=RU{(j,a),(k,a)};
S:=SU{(j,a),(ka)};

Figure 7. Enforcing EEDHAC.

S.t. j<i MiNgeB(s;,0) (P(i)/a®

state satisfying the property of EEDHAC. If no such exis-
tence state is found, procedures are invoked to force full
supports on the constraints involving the set element.

ProcedureeEDHAC, which is integrated as the last step
of enforcing WSBC, enforces EEDHAC on the problem.
Thus, the problem is assumed to be ENC, EAC, and EHAC.
There are two priority queues holding the set elements
which may not be consistent. Since enforcing full support
in one direction can lose full support in another direction,
set element of other variables need to enqueue agdm.
can obtain an algorithm for enforcing EFDAC and EFD-
HAC by removing the first inner while-loop of the EEDHAC
algorithm. In the following, we give the complexity of only
the EEDHAC algorithm.

Theorem 2 The complexity ofEEDHAC is O(c(ne)?),
where there are constraints and: set variables with max-
imum number of possible elements

Proof 2 The procedures for finding supports, projection
and extension are of constant time as their complexity is
determined by the fixed number of possible existence states.
Now, the proceduré i ndExi st Sup requires examining
each constraints when finding or enforcing supports, so it
has complexityD(c). For EEDHAC, the while-loop with
gueueP contains all the set variable and set element pairs.
When there is a change to the cost of the pair, the pair will
re-enqueue. Therefore, it can iterate at most)? times.
Each time it calld i ndExi st Sup with O(c). The while-
loop with queueR iterates less time than the one with queue
P as only the pairs in the same constraint are re-enqueued.
Thus, the complexity &EDHAC is O(c(ne)?).

6 Experimental results

We conducted experiments with implementation of dif-
ferent consistency enforcing algorithms to compare their
performance. We modified ToolBarwhich is a generic
WCSP solver in the integer domain, to adopt WCSP with
set variables. We tested on three different levels of censis
tencies: (1) WSBC, (2) FDWSBC, and (3) EDWSBC.

We experimented on theeighted versionsf two bench-
mark problems: Steiner Triple System and Social Golfer
Problem. To eliminate the effect of search heuristics, we
solved the problems for all optimal solutions using the lex-
icographic ordering on both variable and value selections.
The experiments were conducted on Sun Blade 2500 (2
1.6GHz US-Illi) machines with 2GB memory. The aver-
age runtime in seconds and number of fails of 10 instances
are measured. The shortest runtime and smallest number
of fails are in bold. The ‘-’ indicates the instance did not
terminate in 1800 seconds.

1Available at
bin/awki.cgi/ToolBarlIntro.

http://carlit.toulouse.inra.fr/cgi-



Table 1. Runtime in seconds and number of
fails to solve Steiner Triple System

WSBC FDWSBC EDWSBC
n | Time Fails | Time Fails | Time Fails
6 0.0 2508.0 0.0 2051.0| 0.0 2037.6
7 2.6 403698.3| 1.9| 295890.7| 1.8 | 283001.7
9 | 812.5| 32760909.4 40.4 | 1298722.0/ 18.6 | 907508.6
10 - 221.1| 3625737.8| 25.4 | 1101655.2

Table 2. Runtime in seconds and number of
fails to solve Social Golfer Problem

WSBC FDWSBC EDWSBC
g-s-w Time Fails | Time Fails | Time Fails
4-2-4| 13.78| 423451.3| 2.07 21080.1 2.30 15652.0
4-2-5| 363.53| 6459221.4| 27.93| 193848.5| 35.36| 153661.3
4-3-3 9.50 | 439445.0 1.79 387475 1.80 28241.9
4-3-4 - - | 426.55| 5560572.7| 263.37 | 2089071.9
4-4-3 | 151.07| 6229119.3| 39.78| 831585.9| 33.83| 544083.1
5-2-3| 19.84| 973711.9] 3.82 54306.2 3.15 33693.8
5-3-3 - - | 205.48| 2927103.8| 154.43| 1623065.9
5-4-2 | 13.11| 1047593.8| 3.45| 242389.4| 3.94| 229203.4
5-5-2 | 115.11| 9115070.9| 11.73| 445503.0f 10.21| 320592.9
6-2-3 - - | 193.19| 2013072.5] 33.09| 228857.9
6-3-2 | 38.15| 3223477.9| 5.48| 175822.7| 2.06 49102.7
6-4-2 - 206.35| 6098467.7| 156.51| 3766946.9

6.1 Steiner Triple System (CSPLib044)

The problem of order. is to find a set ofn(n — 1)/6
triples of distinct integer elements if1,...,n} such that
any pair of triples havat most oneeommon element. We
form an over-constrained version by requiring thacom-
mon element between any pair of triples. Each violation

firmed and thus the solving times are much shorter. As ED-
WSBC enforcement has higher complexity than FDWSBC,
in some instances, FDWSBC has shorter runtime even with
larger number of fails. However, when the search space is
effectively pruned, such overhead of EDWSBC can be justi-
fied resulting in the shortest runtime, especially for large
stances. Generally, enforcing stronger consistency leads
an order of magnitude improvement in runtime than enforc-
ing WSBC. While some instances cannot be solved within
time limit with WSBC, it is feasible to solve them by en-
forcing FDWSBC and EDWSBC.

7 Conclusion and future work

WCSPs with set variables enable modeling of optimiza-
tion and over-constrained problems involving sets of ob-
jects naturally. While the existing consistency notions fo
set variables in WCSPs are basic ones, there are more so-
phisticated notions in the integer domain. In this paper, we
extend FDAC and EDAC to the set domain. One challenge
is to extend the notions for ternary constraints and come up
with efficient consistency algorithms.

Algorithms are designed to enforce the adopted EFDAC,
EFDHAC, and EEDHAC. Experimental results show that
maintaining the stronger consistencies can improve one or-
der of magnitude in problem solving when compared with
WSBC. However, there is large overhead of maintaining
EEDHAC in some instances, which requires improvement.
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randomly to simulate the suitability of an elementin a tipl
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The problem is to schedulegroups ofs golfers overw
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other golfer in more than one occasion. Extra random costs
are added to reflect the preferences of golfers to each group

We have to optimize the schedule to respect the preferences.

Table 2 shows the result of solving the problems. FD-
WSBC and EDWSBC have smaller number of fails than
WSBC. With the large reduction in number of fails, the
larger pruning power of the stronger consistency is con-
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