
Stronger Consistencies in WCSPs with Set Variables

J.H.M. Lee C.F.K. Siu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong SAR, China

{jlee,fksiu}@cse.cuhk.edu.hk

Abstract

Lee and Siu made possible for the first time modeling and
reasoning with set variables in weighted constraint satisfac-
tion problems (WCSPs). In addition to an efficient set vari-
able representation scheme, they also defined the notion of
set bounds consistency, which is generalized from NC* and
AC* for integer variables in WCSPs, and their associated
enforcement algorithms. In this paper, we adapt ideas from
FDAC and EDAC for integer variables to achieve stronger
consistency notions for set variables. The generalization
is non-trivial due to the common occurrence of ternary set
constraints. Enforcement algorithms for the new consisten-
cies are proposed. Empirical results confirm the feasibility
and efficiency of our proposal.

1 Introduction

Set variables and constraints are ubiquitous in modeling
many (soft) constraint problems in practice. While set vari-
ables inweighted constraint satisfaction problems(WCSPs)
[4] can be simulated using 0-1 variables, Lee and Siu [5]
showed such direct simulation is impractical. They pro-
posed a compact representation scheme for set variables in
WCSPs. Adapted fromstar node consistency(NC*) and
star arc consistency(AC*) [4] for integer variables in WC-
SPs, basic consistency notions, includingelement node con-
sistency(ENC), element arc consistency(EAC), andele-
ment hyper-arc consistency(EHAC), and their associated
enforcement algorithms are defined and evaluated.

Stronger consistency can prune larger part of the search
space. Larrosa et. al. introducedfull directional arc con-
sistency(FDAC) [3] andexistential directional arc consis-
tency(EDAC) [1] for integer variables, and demonstrated
how reasoning overheads can be well justified by the extra
reduction in the search space leading to a faster runtime.
By enforcing stronger consistency, we can often solve the
problems in shorter time. In this paper, we adapt FDAC and

EDAC for set variables and constraints in WCSPs.
Consistency notions, including FDAC and EDAC, on

WCSPs for integer variables are defined for unary and
binary constraints only. Enforcing consistencies on con-
straints of higher arities are expensive. However, set models
in WCSPs usually contain soften versions of set constraints
such as membership (e ∈ A), subset (A ⊆ B), equality
(A = B), union-equal(A ∪ B = C) and intersect-equal
(A∩B = C). In particular, union-equal and intersect-equal
constraints are common. We need to define consistency no-
tions for thesepossibly ternaryset constraints. The con-
straints can obviously be generalized to arbitrary arity. To
balance the cost of consistency enforcement and efficiency,
we support consistency notions up to ternary constraints
only. One challenge in deriving the set variable counter-
parts is thus in dealing with ternary constraints and the re-
lated consistency notions. We give also efficient enforce-
ment algorithms for the new consistencies to make solving
set problem with stronger consistencies viable. Experimen-
tal results confirm the benefits of maintaining these stronger
consistencies. By enforcing the stronger consistency, we
can obtain one order of magnitude in improvement on the
problem solving.

2 Background

A classicalconstraint satisfaction problem(CSP) is a tu-
ple P = (X ,D, C) whereX is a finite set ofvariables,
D is a finite set ofvariable domains, andC is a finite set
of constraints. A variablexi ∈ X can only take a value
from its variable domainD(xi) ∈ D. An n-ary constraint
Ci1,...,in ∈ C restricts the values taken by the variables
xi1 , . . . , xin simultaneously.

A weighted constraint satisfaction problem(WCSP)
extends classical CSP. A WCSP is a tupleP =
(k,X ,D, C) which relies on avaluation structureS(k) =
([0, 1, . . . , k],⊕,≥), wherek ∈ [1, . . . ,∞]. The operator
⊕ is defined asa ⊕ b = min{k, a + b}. The set is totally
ordered by the standard order≥ among naturals. There are

1

minimum cost⊥ = 0 and maximum cost⊤ = k. In addi-
tion, cost subtraction⊖ is defined as follows:

a ⊖ b =

{

a − b if a 6= k
k otherwise

wherea, b ∈ [0, . . . , k] anda ≥ b. X andD are the finite
set of variables and the finite set of variable domains respec-
tively. A tuple of assignments(xi1 7→ di1 , . . . , xin 7→ din)
assigns valuesdij ∈ D(xij), whereD(xij) ∈ D, to vari-
ablexij ∈ X , for 1 ≤ j ≤ n. C is the set ofcost functions
which maps a tuple of assignments to costs. There is a zero-
arity constraintC∅ representing the global lower bound of
the problem.

The costV(τ) of a tuple of variable assignmentsτ is
obtained by combining the costs for all constraints using⊕:

V(τ) = C∅ ⊕
∑

Ci1,...,in
∈C,

{xi1 ,...,xin}⊆var(τ)

Ci1,...,in(τ ↓{xi1 ,...,xin})

The notationvar(τ) is the set of variables appearing inτ
and τ ↓{xi1 ,...,xin} projectsτ on {xi1 , . . . , xin}. When
V(τ) < ⊤, the tupleτ is said to beconsistent. In solving
WCSP, our goal is to find a complete consistent assignment
with minimum cost.

A WCSP with set variables [5] contains a finite set of
set variablesSi ∈ X . Each set variableSi can contains
elements from its own universeUi defined by the problem.
An existence stateof a set elementa w.r.t. set valueu is
defined as a boolean value ofa ∈ u. While the existence
state of1 in the set{1, 3} is t (true), the existence state of
2 is f (false). The set ofpossible existence statesof a set
elementa for a set variableSi is denoted asE(Si, a). Ini-
tially, E(Si, a) = {t, f}. WhenSi cannot containa, t is
removed fromE(Si, a). Similar case applies to existence
statef . The set constraints are cost functions mapping tu-
ples of set variable assignments to costs. Since common
set constraints, such as subset (A ⊆ B) and union-equal
(A ∪ B = C), consider the existence states of each set el-
ement individually, the cost of a set constraint is defined at
the element level throughelement cost functions.

A unary element cost functionϕ(i)/a maps existence
states of a set elementa of set variableSi to costs.
The unary constraint ofSi is defined asCi(u) =
∑

a∈Ui
ϕ(i)/a(a ∈ u). Set domain in classical CSP is repre-

sented as an interval with lower and upper bounds, namely
required set(RS) andpossible set(PS) respectively. Re-
quired set contains set elements whichmustbelong to the
set while possible set contains set elements whichmaybe-
long to the set. With the unary element cost functions, we
can deduce the required set and possible set of a set variable.
A set elementa is in required set ofSi if ϕ(i)/a(f) = ⊤. A
set elementa is in possible set ofSi if ϕ(i)/a(t) < ⊤.

Figure 1(a) shows a WCSP with set variables. The costs
of lower boundC∅ and upper bound⊤ is shown on top.
There are two set variablesS1 andS2, each with two pos-
sible set elements{1, 2}. The upper left and right tables
represent unary constraints ofS1 andS2 respectively. For
example, the cost forS1 to contain set element1 is 1 and
the cost forS1 not to contain set element1 is 0.

The binary and ternary set constraints are defined in
a similar fashion. A binary set constraint is defined
as Ci,j(u, v) =

∑

a∈Ui∪Uj
ϕ(i,j)/a(a ∈ u, a ∈ v).

A ternary set constraint is defined asCi,j,k(u, v, w) =
∑

a∈Ui∪UjUk
ϕ(i,j,k)/a(a ∈ u, a ∈ v, a ∈ w). The dashed

rectangle in Figure 1(a) represents a binary constraintC1,2.
A dotted line separates the table for each set element verti-
cally. The table is a binary element cost function ofC1,2.
The left portion of the table shows the costs for set element
1 while the right portion shows the costs for set element2.
From the table, the cost ofϕ(1,2)/1(t, t) is 2.

There are cardinality constraintsC|i| mapping assign-
ments of set variableSi to costs according to the cardinality
of Si. In this paper, we only focus on unary, binary, and
ternary set constraints which are involved in the stronger
consistency notions.

3 Basic consistency notions

The framework of WCSP with set variables defined some
basic consistency notions which are based onstar node con-
sistencyandstar arc consistencyin the integer domain [4].

Definition 1 An existence stateα of set elementb is ele-
ment node consistent(ENC) w.r.t. unary constraintCi if
C∅ ⊕ ϕ(i)/b(α) < ⊤. A set elementb is ENC if

1. ∀α ∈ E(Si, b), α is ENC w.r.t.Ci, and

2. ∃α ∈ E(Si, b) such thatϕ(i)/b(α) = 0.

The existence stateα is a support for the set elementb. A
set variableSi is ENCw.r.t. Ci if every set element is ENC.
A WCSP isENC if every set variableSi is ENC.

Definition 2 An existence stateα of set elementb is ele-
ment arc consistent(EAC) w.r.t. binary constraintCi,j if
∃β ∈ E(Sj , b) such thatϕ(i,j)/b(α, β) = 0. An existence
stateβ is a simple supportof the existence stateα. A set
elementb is EAC if ∀α ∈ E(Si, b), α is EAC w.r.t.Ci,j . A
set variable isEAC if every set element is EAC w.r.t.Ci,j .
A WCSP isEAC if every set variable is EAC and ENC.

Definition 3 An existence stateα of set elementb is ele-
ment hyper-arc consistent(EHAC) w.r.t. ternary constraint
Ci,j,k if ∃β ∈ E(Sj , b) and ∃γ ∈ E(Sk, b) such that
ϕ(i,j,k)/b(α, β, γ) = 0. Existence statesβ andγ aresimple
supportsof the existence stateα. A set elementb is EHAC

2

C∅ = 0,⊤ = 5C∅ = 0,⊤ = 5C∅ = 0,⊤ = 5C∅ = 0,⊤ = 5 C∅ = 1,⊤ = 5

00

0

0

0

0

0

0

0

00

0

00

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

00

0

0

0

0

0

0

00

00

0

0

0

0

0

00

00

0

1

1

1

1

1

1

1

1

1

1

1

11

1

11

1

1

1

1

1

11

1

11

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

t

t

t

tt

t

t

t

tt

t

t

t

tt

t

t

t

tt

t

t

t

tt

f

f

f

ff

f

f

f

ff

f

f

f

ff

f

f

f

ff

f

f

f

ff

S1

S1

S1

S1

S1

S1

S1

S1

S1

S1

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

(a) (b) (c) (d) (e)

Figure 1. Equivalent WCSPs with set variables.

if ∀α ∈ E(Si, b), α is EHAC w.r.t.Ci,j,k. A set variable is
EHAC if every set element is EHAC w.r.t.Ci,j,k. A WCSP
is EHAC if every set variable is EHAC and ENC.

For example, in Figure 1(a), the WCSP is ENC but not
EAC. The existence state1 ∈ S1 does not have support in
C1,2. By transferring the minimum costs ofϕ(1,2)/1(t, t)
and ϕ(1,2)/1(t, f) to unary element costϕ(1)/1(t), the
WCSP is transformed into the one in Figure 1(b), which
is now EAC. Such operation is calledcost projectionwhich
is used to maintain consistency. The WCSP is transformed
into an equivalent WCSP by projecting the costs.

When all the above consistency notions are enforced,
the problem is said to beweighted set bounds consistent
(WSBC), which is a generalized notion ofset bounds con-
sistency(SBC) in classical set CSP defined in [2]. The
complexity of WSBC enforcing algorithm in [5] isO(n3e)
when there aren set variables with maximum number of
elementse in the problem.

4 Stronger consistency notions

We now propose our stronger consistency notions in
WCSPs with set variables. A consistencyA is strongerthan
a consistencyB, writtenA ≻ B, if whenever a problem isA
consistent, the problem isB consistent. Enforcing stronger
consistency can reduce the search space of a problem.

In the integer domain, there are two stronger consistency
notions:full directional arc consistency(FDAC) [3] andex-
istential directional arc consistency(EDAC) [1]. Both of
them are based ondirectional arc consistency[3] and re-
quire an ordering on the variables. Without loss of gener-
ality, we order the variables in WCSP asxi < xj if i < j.
In maintaining directional arc consistency, different level of
consistencies are applied onCi,j andCj,i, which are effec-
tively the same constraint but with different order of vari-
ables, because it is impractical to enforce such strong con-
sistency in both directions [1].

The stronger consistency notions for WCSP with set
variables are as follows.

Definition 4 A set elementb of a set variableSi is element
full directional arc consistent(EFDAC) w.r.t. binary con-
straint Ci,j , wherei < j, if ∀α ∈ E(Si, b), ∃β ∈ E(Sj , b)
such thatϕ(i,j)/b(α, β) ⊕ ϕ(j)/b(β) = 0. The existence
stateβ is a full supportof α. The set elementb is EFDAC
w.r.t. Cij , wherej < i, if ∀α ∈ E(Si, b), ∃β ∈ E(Sj , b)
such thatϕ(i,j)/b(α, β) = 0. A set variable isEFDAC if
all its set elements are EFDAC w.r.t. binary constraintCi,j .
The problem isEFDAC if every set variable is EFDAC and
ENC.

The notion of EFDAC is a direct generalization of FDAC
to the set domain. To extend the notion to ternary, we need
to have the notion of full support for ternary constraints,
which, as far as we know, is not available in the litera-
ture. The notion of EFDAC is generalized to ternary set
constraint with our definition of ternary full support as fol-
lows:

Definition 5 A set elementb of a set variableSi is ele-
ment full directional hyper-arc consistent (EFDHAC)w.r.t.
ternary constraintCi,j,k:

1. for i < j < k, if ∀α ∈ E(Si, b), ∃β ∈ E(Sj , b)
and ∃γ ∈ E(Sk, b) such thatϕ(i,j,k)/b(α, β, γ) ⊕
ϕ(j)/b(β) ⊕ ϕ(k)/b(γ) = 0. The existence statesβ
andγ are thefull supportsof α.

2. for j < i < k, if ∀α ∈ E(Si, b), ∃β ∈ E(Sj , b), γ ∈
E(Sk, b) such thatϕ(i,j,k)/b(α, β, γ)⊕ϕ(k)/b(γ) = 0.
The existence statesβ and γ are thesimple support
and full supportof α respectively.

3. for j < k < i, if ∀α ∈ E(Si, b), ∃β ∈ E(Sj , b), γ ∈
E(Sk, b) such thatϕ(i,j,k)/b(α, β, γ) = 0. The exis-
tence statesβ andγ are thesimple supportsof α.

A set variable isEFDHAC if all its set elements are EFD-
HAC w.r.t.Ci,j,k. The problem isEFDHAC if every set vari-
able is EFDHAC and ENC.

Our definition of ternary full support is consistent with
the definition of binary full support when we consider the

3

smallest and largest variables in the constraint: the smallest
variable requires full supports for all other variables andthe
largest variable requires simple supports only. A variable
always finds simple support from the smaller variables and
finds full support from the larger variables.

The problem in Figure 1(b) is not EFDAC becauset for
element2 of set variableS1 does not have full support in
S2 in C1,2. Unlike finding simple support, there is no cost
for projection. To ensure a support for2 ∈ S1, we extend
the unary cost ofϕ(2)/2(t) to binary costsϕ(1,2)/2(t, t) and
ϕ(1,2)/2(f, t) as in Figure 1(c). Then, we can project the
cost toϕ(1)/2(t) which is shown in Figure 1(d). The prob-
lem is not ENC and we project the unary cost of set element
2 of set variableS1 to C∅. The results depicted in Figure
1(e) is now EFDAC.

Before we introduce the stronger notion ofelement ex-
istential directional hyper-arc consistency(EEDHAC), we
first give our generalization ofstar existential arc consis-
tency(EAC*) in the integer domain [1], namelyelement ex-
istential hyper-arc consistency(EEHAC). The definition of
EEDHAC is based on the EEHAC. We immediately define
the notion at hyper-arc level instead of arc level since all the
constraints in the problem are under consideration.

Definition 6 A set elementb of a set variableSi is element
existential hyper-arc consistent (EEHAC)if ∃α ∈ E(Si, b)
such thatϕ(i)/b(α) = 0 andα has a full support in every
binary constraintCi,j and every ternary constraintCi,j,k.
A set variable isEEHAC if all its set elements are EEHAC.
The problem isEEHAC is every set variable is EEHAC and
ENC.

Definition 7 A problem iselement existential directional
hyper-arc consistent (EEDHAC)if it is EFDAC, EFDHAC,
and EEHAC.

Figure 2(a) shows a WCSP which is EFDAC. It is not
EEDHAC since the existence statet of the set element1 of
S3 does not have full support inC1,3 andf of the same set
element does not have full support inC2,3. The unary costs
of ϕ(1)/1(f) andϕ(2)/1(t) are extended toC1,3 andC2,3

respectively as shown in Figure 2(b). The costs in these
two constraints are then projected to the unary cost ofC3 as
depicted in Figure 2(c). Since the problem is not ENC, the
unary cost ofC3 is further projected toC∅. The WCSP in
Figure 2(d) shows the result which is now EEDHAC.

We can incorporate EFDAC, EFDHAC, and EEDHAC
into the weighted set bounds consistency.

Definition 8 A WCSP is full directional weighted set
bounds consistent (FDWSBC)if it is weighted set bounds
consistent, EFDAC, and EFDHAC.

Definition 9 A WCSP isexistential directional weighted set
bounds consistent (EDWSBC)if it is weighted set bounds
consistent and EEDHAC.

The definitions of FDWSBC and EDWSBC subsume the
definition of WSBC. Additionally, the definition of EED-
HAC also subsumes EFDAC and EFDHAC. We immedi-
ately have the following theorem.

Theorem 1 EDWSBC≻ FDWSBC≻ WSBC.

Proof 1 Given a WCSP with set variablesP , we can trans-
formP into equivalent WCSPsP1, which is EDWSBC, and
P2, which is FDWSBC. For each constraintC1 in P1 and
its corresponding constraintC2 in P2, C1 and C2 are of
the same consistency level if they are unary or cardinality
constraints. Otherwise,C1 is EEDHAC andC2 is EFDAC
(or EFDHAC ifC2 is a ternary constraint). As EEDHAC is
stronger than EFDAC or EFDHAC by definition, EDWSBC
is also stronger than FDWSBC. By similar argument, FD-
WSBC is stronger than WSBC.

5 Consistency enforcement

ProcedurefindUSup(i,a)
c := minα∈E(Si,a)(ϕ(i)/a(α));
C∅ := C∅ ⊕ c;
for α ∈ E(Si, a) do

ϕ(i)/a(α) := ϕ(i)/a(α) ⊖ c;

ProcedureprojTern(i, j, k, a, γ, c)
ϕ(k)/a(γ) := ϕ(k)/a(γ) ⊕ c;
for α ∈ E(Si, a), β ∈ E(Sj , a) do

ϕ(i,j,k)/a(α, β, γ) := ϕ(i,j,k)/a(α, β, γ) ⊖ c;

ProcedureextTern(i, j, k, a, γ, c)
for α ∈ E(Si, a), β ∈ E(Sj , a) do

ϕ(i,j,k)/a(α, β, γ) := ϕ(i,j,k)/a(α, β, γ) ⊕ c;

ϕ(k)/a(γ) := ϕ(k)/a(γ) ⊖ c;

Figure 3. Finding unary support and pro-
jection/extension of ternary costs.

The algorithms for enforcing EFDAC, EFDHAC, and
EEDHAC are based on cost extension and projection [4] to
find the required supports. The algorithm shown in Figure
3 describes the procedure to find the unary supports. In pro-
cedurefindUSup, the minimum cost among the possible
existence states is subtracted from the unary element costs
and projected toC∅. As a result, there are at least one pos-
sible existence state which has unary cost 0 to satisfy the el-
ement node consistency. The procedures for finding binary
simple and full supports are omitted here since we focus on
ternary case. The procedureprojTern is used to project
costc from the ternary element cost functionϕ(i,j,k)/a to
unary element cost functionϕ(k)/a for the existence state

4

C∅ = 0,⊤ = 3C∅ = 0,⊤ = 3C∅ = 0,⊤ = 3 C∅ = 1,⊤ = 3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

11

1

1

1

1

1

1

1

11

11

1

1

1

1

11

1

11

1

1

1

1

1

1

1

1

1

t

t

t

t

t

tt

t

t

t

t

t

tt

t

t

t

t

t

tt

t

t

t

t

t

tt

f

f

f

f

f

ff

f

f

f

f

f

ff

f

f

f

f

f

ff

f

f

f

f

f

ff

S1

S1

S1

S1

S1

S1

S1

S1

S2

S2

S2

S2

S2

S2

S2

S2

S3

S3

S3S3

S3

S3S3

S3

S3S3

S3

S3

(a) (b) (c) (d)

Figure 2. Transformation of WCSP from EFDAC to EEDHAC.

of γ for set variableSk. The procedureextTern works
in another direction. It extends the unary element cost ofγ
for set variableSk from ϕ(k)/a to the ternary element cost
functionϕ(i,j,k)/a. All these three procedures are useful in
enforcing ternary supports.

It is more complex to enforce full supports in ternary
constraints. There are three possible cases as shown in
Figure 4. First, it only requires to enforce simple ternary
supports. The procedurefindTernSimpSup is used to
enforce simple supports for variableSk. After getting the
minimum cost in ternary element cost function,projTern
is called to project the minimum cost to unary element
cost function ofSk. Second, it requires to find a simple
support in one variable and a full support in another vari-
able. The procedurefindTernSemiFullSup handles
this case. It first calculates the costs to be projected in
an arrayP for each possible existence states ofSj . Since
some costs may need to be extended fromSk, the costs to
be extended is stored in an arrayE. After getting these
two arrays, the procedure can extend and project costs us-
ing projTern and extTern. In the last case, it en-
forces full support on both of two variables with the use
of findTernFullSup. The structure of them are similar
tofindTernSemiFullSup. However, this time we may
need to extend the cost from unary element cost functions
of both other variables.

In enforcing binary full support, when we want to find a
full support inS1 for a value inS2 and there is insufficient
cost in binary constraintC1,2 to project to unary constraint
C2, we can first extend the unary cost inC1 to C1,2. Then
the binary cost inC1,2 can be project toC2. The proce-
dure is straightforward as there is only one source of costs
for extension. However, in ternary constraint, when we en-
force a full support for a variable, there are two source of
costs. An example is shown in Figure 5(a). The dashed
rectangle represents a ternary constraintC1,2,3. Inside the
rectangle, the upper table represents the costs when1 ∈ S1

while the lower table represents the costs when1 /∈ S1.
Thus the cost ofϕ(1,2,3)/1(t, f, f) is 2. Now, a full support
of 1 ∈ S1 is required. There are three costs can be pro-

jected to the unary element cost1 ∈ S1. If we choose to
extend the unary element cost1 /∈ S2 to the ternary ele-
ment function, we will have the problem in Figure 5(b). As
the costs ofϕ(1,2,3)/1(t, t, t) and ϕ(1,2,3)/1(t, f, t) is less
than three, there must be some cost required to extend to
1 ∈ S3. The problem after the extension is shown in Figure
5(c). All the unary element costs in the problem are ex-
tended to the ternary element cost function. Alternatively,
we can extend the unary element cost of1 ∈ S3 before ex-
tending the cost of1 /∈ S2 which results in the problem in
Figure 5(d). While the cost to be projected fromϕ(1,2,3)/1

to ϕ(1)/1 is the same, there is some cost left inϕ(2)/1(f).
A cost in unary element function is more explicit than in
ternary constraint. When later in the search, a cost is pro-
jected toϕ(2)/1(t), the unary element cost of1 ∈ S2 can
be immediately projected toC∅ to raise the global lower
bound. However, deciding which costs to be extended first
will increase the complexity of cost extension. In our im-
plementation, the order of cost extension is arranged lexi-
cographically starting with the smallest variable.

It is observed that the cost extension and projection can
affect the availability of existing supports. Figure 6 shows
an example. In Figure 6(a) the ternary set constraint is not
element full directional hyper-arc consistent since thereis
no full supports inS2 andS3 for 1 ∈ S1. To enforcing full
supports, the unary element costs of1 /∈ S2 and1 ∈ S3

are extended toϕ(1,2,3)/1. The result is shown in Figure
6(b). In the next step, the costs of the ternary element cost
function areprojectedto the unary cost of1 ∈ S1 as shown
in Figure 6(c). These two steps ensure full support in binary
constraint. However, it is not the case for ternary constraint
as the simple support for1 /∈ S1 is lost after the above
steps. We have to ensure simple supports for1 /∈ S1. To
circumvent the situation, the algorithm invokes procedures
to ensure the availability of more basic supports at the end.
For example, at the end offindTernFullSup, it invokes
findTernSemiFullSup to ensure there is a support for
other variables in the same constraint.

Figure 7 shows the algorithm for enforcing EEDHAC.
We use the procedurefindExistSup to find an existence

5

ProcedurefindTernSimpSup(i,j,k,a)
flag := false;
for γ ∈ E(Sk, a) do

c := minα∈E(Si,a),β∈E(Sj,a)(ϕ(i,j,k)/a(α, β, γ));
if c > ⊥ then

if ϕ(k)/a(γ) = ⊥ then flag := true;
projTern(i,j,k,a,γ,c);

findUSup(k, a);
return flag;

ProcedurefindTernSemiFullSup(i,j,k,a)
flag := false;
for β ∈ E(Sj , a) do

P [β] := minα∈E(Si,a),γ∈E(Sk,a)(ϕ(i,j,k)/a(α, β, γ) ⊕
ϕ(k)/a(γ));
if P [β] > ⊥ ∧ ϕ(j)/a(β) = ⊥ then flag := true;

for γ ∈ E(Sk, a) do
E[γ] :=
maxα∈E(Si,a),β∈E(Sj,a)(P [β] ⊖ ϕ(i,j,k)/a(α, β, γ));

for γ ∈ E(Sk, a) do
extTern(i,j,k,a,γ,E[γ]);

for β ∈ E(Sj , a) do
projTern(i,k,j,a,β,P [β]);

findUSup(j, a);
flag := flag∨findTernSimpSup(i,j,k,a);
return flag;

ProcedurefindTernFullSup(i,j,k,a)
flag := false;
for α ∈ E(Si, a) do

P [α] = minβ∈E(Sj,a),γ∈E(Sk,a)(ϕ(i,j,k)/a(α, β, γ) ⊕
ϕ(j)/a(β) ⊕ ϕ(k)/a(γ));
if P [α] > ⊥ ∧ ϕ(i)/a(α) == ⊥ then flag := true;

for β ∈ E(Sj , a) do
Ej [β] :=
maxα∈E(Si,a),γ∈E(Sk,a)(P [α] ⊖ ϕ(i,j,k)/a(α, β, γ));
Ej [β] := min(ϕ(j)/a(β), Ej [β]);

for γ ∈ E(Sk, a) do
Ek[γ] := maxα∈E(Si,a),β∈E(Sj,a)(P [α] ⊖ Ej [β] ⊖
ϕ(i,j,k)/a(α, β, γ));

for β ∈ E(Sj , a) do
extTern(i,k,j,a,β,Ej[β]);

for γ ∈ E(Sk, a) do
extTern(i,j,k,a,γ,Ek[γ]);

for α ∈ E(Si, a) do
projTern(j,k,i,a,α,P [α]);

findUSup(i, a);
flag := flag∨findTernSemiFullSup(i,j,k,a);
return flag;

Figure 4. Finding ternary supports.

C∅ = 0,⊤ = 5C∅ = 0,⊤ = 5

C∅ = 0,⊤ = 5C∅ = 0,⊤ = 5

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

1 1

1

1

11

1

111

1

111

1

111

2

2

2

2

2

2

3

33

3

3

3

3

3

3

3

3

4

4

4

4

5

5
t

t

t

t

t

t

tt

t

t

t

t

t

t

tt

t

t

t

t

t

t

tt

t

t

t

t

t

t

tt

f
f

f

f

f

f

ff

f
f

f

f

f

f

ff

f
f

f

f

f

f

ff

f
f

f

f

f

f

ff

S1

S1

S1

S1

S1

S1

S1

S1

S2

S2

S2

S2

S2

S2

S2

S2

S3

S3

S3

S3

S3

S3

S3

S3

(a) (b)

(c) (d)

Figure 5. Different choices of cost extension
in ternary constraint.

C∅ = 0,⊤ = 5C∅ = 0,⊤ = 5

C∅ = 0,⊤ = 5C∅ = 0,⊤ = 5

0

0

0

00

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

1

11

1

1

1 1

111

1 1

111

1 11

1

111

2

2

2

2

2

2

22

2

2

2

2

3

3

3

3

3

4

4

4

t

t

t

t

t

t

tt

t

t

t

t

t

t

tt

t

t

t

t

t

t

tt

t

t

t

t

t

t

tt

f
f

f

f

f

f

ff

f
f

f

f

f

f

ff

f
f

f

f

f

f

ff

f
f

f

f

f

f

ff

S1

S1

S1

S1

S1

S1

S1

S1

S2

S2

S2

S2

S2

S2

S2

S2

S3

S3

S3

S3

S3

S3

S3

S3

(a) (b)

(c) (d)

Figure 6. Enforcing full supports in ternary
constraints can lose simple support.

6

ProcedurefindExistSup(i, a)
flag := false;
c :=
minα∈E(Si,a)(ϕ(i)/a

⊕

ϕ(i,j)/a s.t. j<i
minβ∈E(Sj,a)(ϕ(i,j)/a⊕

ϕ(j)/a)
⊕

ϕ(i,j,k)/a s.t. j<i<k
minβ∈E(Sj,a),γ∈E(Sk,a)(ϕ(i,j,k)/a ⊕

ϕ(j)/a))
⊕

ϕ(i,j,k)/a s.t. j<k<i
minβ∈E(Sj,a),γ∈E(Sk,a)(ϕ(i,j,k)/a ⊕

ϕ(j)/a ⊕ ϕ(k)/a));
if c > ⊥ then

for ϕ(i,j)/a s.t. j < i do
flag := flag∨FindBinFullSup(i, j, a);

for ϕ(i,j,k)/a s.t. j < i < k do
flag := flag∨findTernSemiFullSup(k,
i, j, a);

for ϕ(i,j,k)/a s.t. j < k < i do
flag := flag∨findTernFullSup(i, j, k,
a);

return flag;

ProcedureEEDHAC(X,D,C)
for Si ∈ X do

for a ∈ Ui do
R := R ∪ (i, a);
S := S ∪ (i, a);

while R 6= ∅ ∨ S 6= ∅ do
P := {(j, a) | (i, a) ∈ S, j > i, Cij ∈ C ∨ Cijk ∈
C} ∪ S;
S := ∅;
while P 6= ∅ do

(i, a) := popMin(P);
if findExistSup(i,a) then

R := R ∪ {(i, a)};
for Cij ∈ C ∨ Cijk ∈ C s.t. j > i do

P := P ∪ {(j, a)};

while R 6= ∅ do
(i, a) := popMax(R);
for ϕ(i,j)/a s.t. i < j do

if FindBinFullSup(i,j,a) then
R := R ∪ {(j, a)};
S := S ∪ {(j, a)};

for ϕ(i,j,k)/a s.t. j < i < k do
if findTernSemiFullSup(j,i,k,a)
then

R := R ∪ {(k, a)};
S := S ∪ {(k, a)};

for ϕ(i,j,k)/a s.t. i < j < k do
if findTernFullSup(i,j,k,a) then

R := R ∪ {(j, a), (k, a)};
S := S ∪ {(j, a), (k, a)};

Figure 7. Enforcing EEDHAC.

state satisfying the property of EEDHAC. If no such exis-
tence state is found, procedures are invoked to force full
supports on the constraints involving the set element.

ProcedureEEDHAC, which is integrated as the last step
of enforcing WSBC, enforces EEDHAC on the problem.
Thus, the problem is assumed to be ENC, EAC, and EHAC.
There are two priority queues holding the set elements
which may not be consistent. Since enforcing full support
in one direction can lose full support in another direction,
set element of other variables need to enqueue again.We
can obtain an algorithm for enforcing EFDAC and EFD-
HAC by removing the first inner while-loop of the EEDHAC
algorithm. In the following, we give the complexity of only
the EEDHAC algorithm.

Theorem 2 The complexity ofEEDHAC is O(c(ne)3),
where there arec constraints andn set variables with max-
imum number of possible elementse.

Proof 2 The procedures for finding supports, projection
and extension are of constant time as their complexity is
determined by the fixed number of possible existence states.
Now, the procedurefindExistSup requires examining
each constraints when finding or enforcing supports, so it
has complexityO(c). For EEDHAC, the while-loop with
queueP contains all the set variable and set element pairs.
When there is a change to the cost of the pair, the pair will
re-enqueue. Therefore, it can iterate at most(ne)3 times.
Each time it callsfindExistSup with O(c). The while-
loop with queueR iterates less time than the one with queue
P as only the pairs in the same constraint are re-enqueued.
Thus, the complexity ofEEDHAC isO(c(ne)3).

6 Experimental results

We conducted experiments with implementation of dif-
ferent consistency enforcing algorithms to compare their
performance. We modified ToolBar1, which is a generic
WCSP solver in the integer domain, to adopt WCSP with
set variables. We tested on three different levels of consis-
tencies: (1) WSBC, (2) FDWSBC, and (3) EDWSBC.

We experimented on theweighted versionsof two bench-
mark problems: Steiner Triple System and Social Golfer
Problem. To eliminate the effect of search heuristics, we
solved the problems for all optimal solutions using the lex-
icographic ordering on both variable and value selections.
The experiments were conducted on Sun Blade 2500 (2×
1.6GHz US-IIIi) machines with 2GB memory. The aver-
age runtime in seconds and number of fails of 10 instances
are measured. The shortest runtime and smallest number
of fails are in bold. The ‘-’ indicates the instance did not
terminate in 1800 seconds.

1Available at http://carlit.toulouse.inra.fr/cgi-
bin/awki.cgi/ToolBarIntro.

7

Table 1. Runtime in seconds and number of
fails to solve Steiner Triple System

WSBC FDWSBC EDWSBC
n Time Fails Time Fails Time Fails
6 0.0 2508.0 0.0 2051.0 0.0 2037.6
7 2.6 403698.3 1.9 295890.7 1.8 283001.7
9 812.5 32760909.4 40.4 1298722.0 18.6 907508.6

10 - - 221.1 3625737.8 25.4 1101655.2

Table 2. Runtime in seconds and number of
fails to solve Social Golfer Problem

WSBC FDWSBC EDWSBC
g-s-w Time Fails Time Fails Time Fails
4-2-4 13.78 423451.3 2.07 21080.1 2.30 15652.0
4-2-5 363.53 6459221.4 27.93 193848.5 35.36 153661.3
4-3-3 9.50 439445.0 1.79 38747.5 1.80 28241.9
4-3-4 - - 426.55 5560572.7 263.37 2089071.9
4-4-3 151.07 6229119.3 39.78 831585.9 33.83 544083.1
5-2-3 19.84 973711.9 3.82 54306.2 3.15 33693.8
5-3-3 - - 205.48 2927103.8 154.43 1623065.9
5-4-2 13.11 1047593.8 3.45 242389.4 3.94 229203.4
5-5-2 115.11 9115070.9 11.73 445503.0 10.21 320592.9
6-2-3 - - 193.19 2013072.5 33.09 228857.9
6-3-2 38.15 3223477.9 5.48 175822.7 2.06 49102.7
6-4-2 - - 206.35 6098467.7 156.51 3766946.9

6.1 Steiner Triple System (CSPLib044)

The problem of ordern is to find a set ofn(n − 1)/6
triples of distinct integer elements in{1, . . . , n} such that
any pair of triples haveat most onecommon element. We
form an over-constrained version by requiring thatnocom-
mon element between any pair of triples. Each violation
contributes a cost to the problem. Unary costs were added
randomly to simulate the suitability of an element in a triple.

The result is depicted in Table 1. We can observe that
EDWSBC always have the smallest number of fails as ED-
WSBC is the strongest consistency notion in the experi-
ment. With the increase of the problem size, FDWSBC and
EDWSBC prune more search space. The time required to
solve the problem with FDWSBC and EDWSBC is shorter
when compared with WSBC.

6.2 Social Golfer Problem (CSPLib010)

The problem is to scheduleg groups ofs golfers overw
weeks so that no golfer plays in the same group with any
other golfer in more than one occasion. Extra random costs
are added to reflect the preferences of golfers to each group.
We have to optimize the schedule to respect the preferences.

Table 2 shows the result of solving the problems. FD-
WSBC and EDWSBC have smaller number of fails than
WSBC. With the large reduction in number of fails, the
larger pruning power of the stronger consistency is con-

firmed and thus the solving times are much shorter. As ED-
WSBC enforcement has higher complexity than FDWSBC,
in some instances, FDWSBC has shorter runtime even with
larger number of fails. However, when the search space is
effectively pruned, such overhead of EDWSBC can be justi-
fied resulting in the shortest runtime, especially for largein-
stances. Generally, enforcing stronger consistency leadsto
an order of magnitude improvement in runtime than enforc-
ing WSBC. While some instances cannot be solved within
time limit with WSBC, it is feasible to solve them by en-
forcing FDWSBC and EDWSBC.

7 Conclusion and future work

WCSPs with set variables enable modeling of optimiza-
tion and over-constrained problems involving sets of ob-
jects naturally. While the existing consistency notions for
set variables in WCSPs are basic ones, there are more so-
phisticated notions in the integer domain. In this paper, we
extend FDAC and EDAC to the set domain. One challenge
is to extend the notions for ternary constraints and come up
with efficient consistency algorithms.

Algorithms are designed to enforce the adopted EFDAC,
EFDHAC, and EEDHAC. Experimental results show that
maintaining the stronger consistencies can improve one or-
der of magnitude in problem solving when compared with
WSBC. However, there is large overhead of maintaining
EEDHAC in some instances, which requires improvement.

8 Acknowledgments

We thank the anonymous referees for constructive com-
ments. The work described in this paper was substantially
supported by grants (CUHK413207 and CUHK413808)
from the Research Grants Council of Hong Kong SAR.

References

[1] S. de Givry, F. Heras, M. Zytnicki, and J. Larrosa. Existen-
tial arc consistency: Getting closer to full arc consistency in
weighted CSPs. InProceedings of the 19th IJCAI, pages 84–
89, 2005.

[2] C. Gervet. Interval propagation to reason about sets: Defini-
tion and implementation of a practical language.Constraints,
1(3):191–244, 1997.

[3] J. Larrosa and T. Schiex. In the quest of the best form of local
consistency for weighted CSP. InProceedings of the 18th
IJCAI, pages 239–244, 2003.

[4] J. Larrosa and T. Schiex. Solving weighted CSP by main-
taining arc consistency.Artificial Intelligence, 159(1-2):1–26,
2004.

[5] J. H. M. Lee and C. F. K. Siu. Weighted constraint satisfaction
with set variables. InProceedings of the 21st AAAI, pages 80–
85, 2006.

8

