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Abstract. Theweighted constraint satisfaction problgfVCSP) framework is a
soft constraint framework which can model many real lifeimjation or over-
constrained problems. While there are many local consigteotions available to
speed up WCSP solving, in this paper, we investigate howféatdfely combine
and channel mutually redundant WCSP models to increaseraorigpropaga-
tion. This successful technique for reducing search spacéassical constraint
satisfaction has been shown non-trivial when adapted ®WICSP framework.
We propose a parameterized local consistencynhBY), which can be instanti-
ated withany local consistencyp for single models and applied to a combined
model withm sub-models, and also provide a simple algorithm to enfarce i
We instantiate LBZ,®) with different state-of-the-art local consistencies AC*
FDAC*, and EDAC*, and demonstrate empirically the efficigio€ the algorithm
using different benchmark problems.

1 Introduction

Theweighted constraint satisfaction problgfCSP) framework is a well known soft
constraint framework for modeling optimization or ovemstrained problems. WCSPs
are usually solved using backtracking branch and boundkséacorporated with con-
straint propagation that helps reduce the search spacaidtatfactor in the solving
efficiency is therefore the level of constraint propagatioming search. While many
state-of-the-art local consistency notions, like AC* [[,,2DAC* [3], and EDAC* [4],
and their associated algorithms can effectively increasstcaint propagation to speed
up the search, another common approach is taregendant modelingg]. The tech-
nigue, which has been applied successfully in classicastcaimt satisfaction, is to
combine two different models of a problem usidganneling constraintd_aw, Lee,
and Woo [6] showed that adapting redundant modeling to WGS&son-trivial task;
the node and arc consistency notions have to be refined sovesrkoon combined
models. In this paper, instead of refining a particular laxaisistency, we propose a
parameterizedocal consistency LB(,®) and its associated enforcement algorithm.
The advantages of our proposal are three-fold. First, th@:1,8) consistency can be
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Fig. 1. Enforcing node and arc consistencies on WCBPsP,, andP¢

instantiated withany local consistency? for single models and can be applied to a
combined model withn sub-models. Second, the local consiste@taysed for instan-
tiation needs not be refined. Third, enforcing bB(®) on a combined WCSP modgl
achievestrongerconstraint propagation than enforciégn any individual sub-model
of P alone. We instantiate LB(®) with AC*, FDAC*, and EDAC* and perform exper-
iments to confirm the feasibility and efficiency of our propb&mpirical results show
that the instantiations always achieve significantly bettastraint propagation.

2 Background

WCSPs associateoststo tuples [7]. The costs are specified byaluation structure
S(k) = ([0,...,k],®,>), wherek is a natural numbess is defined as1 & b =
min{k, a+b}, and> is the standard order among naturals. The minimum and masimu
costs are denoted hy = 0 and T = k respectively. A binary WCSP is a quadruplet
P = (k,X,D,C) with the valuation structur& (k). X = {x1,...,x,} is a finite set
of variablesandD = {D,,, ..., D, } is a set of finitedomainsfor eachz; € X. An
assignment — a in P is a mapping from variable to valuea € D,.. A tupleis a set
of assignments irP. It is completef it contains assignments of all variables# C

is a set of unary and binary constraints and a zero-aritytcaing A unary constraint
involving variablex is a cost functiorC,, : D, — {0,...,k}. A binary constraintin-
volving variables: andy is a cost functior”, ,, : D, x D, — {0,..., k}. A zero-arity
constraintCy is a constant denoting the lower bound of cost®irFig. 1(a) shows a
WCSP with variablegz, 22, 23} and domaing1, 2, 3}. We depict the unary costs as
labeled nodes and binary costs as labeled edges connewtimgsignments. Unlabeled
edges havé cost; L costs are not shown for clarity.



The cost of a tupléd = {z;, — a5 |1 < j < r}inPisV(@) = Cyp @
> Ca,, (ai;) &3 55 Ca,, i (as;,ai, ). If 0is complete and(9) < T, 0 is asolu-
tion of P. Solving a WCSP is to find a solutighwith minimizedV(6), which is NP-
hard. The WCSP in Fig. 1(a) has an optimal soluffaq — 2,22 — 1, 23 — 3} with
cost3, asCy & Cy, (2)BCy, (1)BCo, (3)BC o, 2,(2,1)BChy 24(2,3)BCly 24(1,3) =
1elaelelalae el =3 AWCSP reduces to a classical CSP if each costin
the WCSP is eithet or T. Two WCSPs arequivalenif they have the same variables
and for every complete tuple V(9) is the same for both WCSPs.

WCSPs can be solved by backtrackbmgnch and boun@dB&B) search that main-
tains some form of local consistency at each search noétecah consistencys simply
some properties of a WCSEnforcinga local consistencg on a WCSPP means
transformingP to an equivalent WCSP’ that satisfies the properties specifiedday
‘P’ is usually simplified in the sense that either some domaimesbf the variables are
pruned or the lower bound is increased. In the following, e the definitions of two
common local consistencies NC* [1, 2] and AC* [1, 2] for WCSPs

Definition 1. A variablez; in a WCSPP is node consister(NC*) if (1) for all values
a € D,,, Cy®C,, (a) < T and (2) there exists a valuec D,, such thaC,, (a) = L.
A WCSPP is NC* if every variable irP is NC*.

Definition 2. Given a constrainC;, ., in a WCSPP, a valueb € D, is asupport

foravaluea € D,, if Cy, »,(a,b) = L. Avariablex; is arc consistenfAC*) if every

valuea € D, has a support in every constraiat,, ... A WCSPP is arc consistent
(AC*) if every variable inP is AC*.

NC* can be enforced by sending some costs fromuthary constraints ta” and
pruning the node-inconsistent values [1, 2]. Similarly,*A@n be enforced by sending
some costs from thbinary constraints to the unary constraints, and then relying on
NC* to further move the costs 6} or prune any values [1, 2]. Thu€y can be seen
as a lower bound of costs of a WCSP. For example, the WCSP inlfy is AC*
and equivalent to the one in Fig. 1(a). It has some domairegghuuned and the lower
bound(y is increased. In backtracking B&B search, wheneVgiis increased tar,
we cannot continue to extend a tuple to obtain a solution,hemte a backtrack (or
sometimes called a fall) is triggered. Also, whenever atgmid is found, theT value
will be set toV(6) to continue the search, ensuring that the next solutiondonnst
have a better cost thah At the end of the search, the last found solution is optimal.

3 A Parameterized Local Consistency for Redundant Modeling

In this section, we first describe how we can obtain redund&®8P models. Then, we
suggest a method to combine mutually redundant models imtonoodel. A parame-
terized local consistency LB{,®) and its enforcement algorithm are proposed for the
suggested combined model. Theoretical comparisons are betd/een the proposed
consistency and an existing approach for redundant maglelin



3.1 Obtaining a Redundant Model

Deriving multiple classical CSP models for the same prolifecommon, although not
trivial. It is even more difficult to obtain an alternative del in WCSP since each prob-
lem solution is associated with a cost and we have to ensarssattme cost distribution
on the solutions of the redundant WCSP models. Two WC3PandP, aremutually
redundant6] if (1) there is a bijectiory between the two sets of all solutions Bf
andPs and (2) for every solutiof of P, the associated costs of solutiéof P; and
solutiong(6) of P, are the same, i.e})(0) = V(g(0)).

Based on these two requirements, Law et al. [6] propggsateralized model in-
ductionthat generates mutually redundaeirmutation WCSPBom a given one. In a
permutation WCSP, the variables in a solution must takelifitrent values. Given a
WCSPP = (k,X,Dx,Cx). A channel functiormaps assignments iR to those in
another set of variables. ¥ is a permutation WCSP, without loss of generality, we
always have the bijective channel functigtec; — j) = y; — . The constraintgy,
in the induced modeP’ = (k,Y,Dy,Cy) are defined such that fdr < a,i < n,
Cy, (1) = Cg,(a), and forl < a,b,i,j < n, Cy, 4, (i,7) = Cqg, ,(a,b) if i # 7,
andC,, ,,(i,j) = T otherwise. Note that the induced mo@Imust be a permutation
WCSP, since&’,, ., (4,7) = T forall 1 < a,b,i < n. Fig. 1(c) shows the induced model
P, of Py in Fig. 1(a). In the example, we have, say, the unary€gst2) = Cy, (1) = 1
and the binary cost, ,,(1,2) = Cy, 4,(2,3) = 3.

3.2 Combining Mutually Redundant Models

Given a problem, we can always formulate it into differentoally redundant WCSP
models. Redundant modeling is a common technique to talensalyes of each model
by combining them into one model usicbanneling constraintsvhich are constraints
that set forth the relationship between the variables intaymodels.

Considerm mutually redundant modelB; = (k, X;,D;,C;) for1 < i < m of
the same problem, we propose to connect them using a set ofielrag constraints
C¢ to give acombined modeP¢ = (k,J; Ai, U, Ds, U, Ci U C). In addition to a
singleCy for a combined modeP<, we now associate each sub-mof@ebwith alocal
zero-arity constraintC’; to denote the local lower bound of costsfn Since each sub-
modelP; has its ownCy, enforcing NC* sends the costs of the unary constraints in
sub-modelP; to C; of P¢. Besides(® are hard constraints connecting sub-models in
Pc. For example, a channeling constraint is typically of therfe:; = p < y; = q.
It has the cost functiod’, . (a,b) = Lifa = p & b = ¢, andCy, 4, (a,b) = T
otherwise. In addition, the value remains unchanged for each sub-moggin P¢.
The lower bound”) of P¢ takes the maximum value of all local lower bound$
of P; (i.e.,Cy = maX,-{C'é}). Based on the combined model, we denote a complete
tuple in a sub-modeP; as asemi-complete tuplé;. Thus, similar toCy, the cost of a
complete tuple in P¢ takes the maximum value of all semi-complete tugles P;
(i.e.,V(0) = max;{V(0,)}). Fig. 1(e) shows the combined mod@t of P; andPx in
Figs. 1(a) and 1(c) respectively.



3.3 Enforcing Consistency on Combined Models

In redundant modeling, mutually redundant models are coedeusing a sef® of
channeling constraints, which are mainly used to transraitipg and variable instan-
tiation information between sub-models. If we rely on thagéc AC* or other local
consistency algorithms to propagte the channeling cansdtdt will cause a large over-
head on the execution. Considermutually redundant WCSP sub-modelsif. With
a set of channeling constraints of the form= a < y = b connecting sub-modeiB;
andP;, we can define a bijective channel function that maps assgtsinP; to those
in P;, giving, for example f(z — a) = y — b. A channel function can be imple-
mented using table lookup if(1) time and can be used to aid the propagation of the
channeling constraints more efficiently. During constrairopagation, when a value
a € D, is pruned from sub-modé&®;, we can use the channel function to immediately
know that the corresponding valie= D, should be pruned as well. Similarly, when a
variablex in P; is bound to the value, according to the channel function, we can also
know that the corresponding variabjén P; should be bound to the valde

Given a combined modép¢ with m mutually redundant sub-modefy. We can
enforce local consistenay on each sub-modé®; of P< and use the channel function
to transmit instantiation and pruning information betw@gho ensure that the bijective
mapping between assignments of any two sub-maBgndP; forl1 <i < j < m
is maintained. Based on these ideas, we proposed a par&aeétlrcal consistency
LB(m,®) for combined model$ with m mutually redundant sub-mode#s. Note
that® can be any local consistency that can be applied to a singl8R\@odel.

Definition 3. LetP¢ be a combined model @i mutually redundant sub-modée?s for

1 < s < m, ¢ be a local consistency, anfl ; be a bijective channel function from
assignments dP;, to assignments oP; forall 1 < s < t < m. P° is said to be
LB(m,®) if:

1. all sub-model®, are &, and
2. for all assignments, ; — a of P, a € D,,, < b € Dy, ;, wheref; ;(zs; —
a) = x ; — b.

Consider the combined modg¥ in Fig. 1(e). It is not LBR,AC*) since both sub-
modelsP; andP, are not AC*. After enforcing AC* on each sub-model and shgrin
the pruning information between sub-models, Fig. 1(g) gi@e equivalent combined
modelP¢’, which is now LB@,AC*).

LB(m,®) can be enforced using a simple algorithm shown in Fig. 2his &lgo-
rithm, we enforce? on each sub-model (lines 2—-3). This ensures that all sukelmod
P, satisfy thed property (condition 1). For condition 2, if there is a values D,_,
being pruned in one sub-modgl, the corresponding valuec D,, ; obtained via the
channel function will also be pruned in other sub-modalsor 1 < ¢t < m ands # ¢
(lines 4-8). The algorithm repeats until there are no moemghs in any sub-models,
andP¢ is then made LB{,®). Since each sub-modg\ has its local lower bound’y,
unary constraints are projected towards its @jrwhen enforcing NC*. For example,
unary constraints ifP?; are projected taﬁé and those P, are projected taﬁg. Dur-
ing constraint propagation, when the global lower bodhdof the combined model



function LB (m, &, P°)
1. repeat
for each sub-modeP, of P¢ do

enforced onP;;
for each pair of sub-modet8;, P; of P° (s # t) do

for eachx,,; € X5 do

for eacha € D, , do
if b ¢ Dy, ; wherex; j — b= fs (x5, — a) then

. removeu from D, ,;
9. until P¢ remains unchanged;
endfunction

n

© NGO~

Fig. 2. Algorithms for enforcing LB{n,®)

P¢ reaches the global upper bouiid(i.e., Cy = max,{Cj} = T), this means that
there exists at least one sub-mo@elin which its local lower bound’j is increased

to T, and we cannot extend a tuple of this sub-model to obtainwisal Since all the

sub-models are mutually redundant to each other, the atiben®dels will also lead to
failure. Therefore, a backtrack is triggered in the seaftie following theorem states
that the algorithm in Fig. 2 enforces LB(®).

Theorem 1. LetP¢ be a combined model af WCSP sub-modefB; for 1 < s < m,
and @ be any local consistency. The (B, &, P€) algorithm transformsP¢ into an
equivalent combined modgl¢’.

Proof. When a combined mod@t© is passed to the L@n, ¢, P¢) algorithm, enforcing

& on each sub-modé?; transformspP; to an equivalent sub-mod@l. Furthermore,
the mutual redundancy of two sub-mod#lsandP; guarantees that if valueis not in
D,, ;, then value: must not be in the domain af, ;, wherez; ; — b = fs (25, — a).
Thus, removing value from D, , in line 8 will not remove any values that belong to
a solution of the combined mod@©. Hence, upon termination of the algorithm, the
transformed modeP<’ is equivalent to the input modét©. a

Following Debruyne and Bessiere [8], we define some notiogsipare the prop-
agation strength of two local consistencigsand®,. ¢, is said to bestronger thar[8]
@, if in any WCSP in whichd, holds, then?; holds.®, is said to bestrictly stronger
than[8] & if (1) @, is stronger tha, and (2) there exists a WCSP wheabg holds
but®, does not hold.

Theorem 2. LetP¢ be a combined model et sub-model®, for 1 < s < m. Enforc-
ing LB(m,®) onP¢ is strictly stronger than enforcing on anyP;.

Proof. By definition 3,P¢ is LB(m,®) if all sub-modelsP, for 1 < s < m ared.
This shows that LB{:,®) is stronger tha®. To show strictness, consider the model in
Fig. 1(e) which is a combined model & and?P. in Figs. 1(a) and 1(c) respectively.
Enforcing AC* onP; and P, individually yields the models in Figs. 1(b) and 1(d)
respectively. However, the combined model of these tworaobels is not LBZ,AC¥).

In fact, enforcing LB2,AC*) results in the model in Fig. 1(g). Hence the result. O



Note that unlike classical CSPs, enforcing AC* on a WCSP esmult in more
than one possible outcome, depending on the order of theidoralmes to be pruned
and the constraints to be handled in an algorithm [2]. Tleegfalthough we have
the “strictly stronger” notion, when comparing a LB(AC*) combined model and a
AC* sub-model, we cannot guarantee that the domain of a biaria the combined
model must be a subset of that in the single sub-model. Nefeth, such theoretical
comparison is still worthwhile as it shows that enforcingedacal consistency can
generally prune more domain values than enforcing another.

3.4 Comparison with Existing Work

Givenm mutually redundant WCSPB, = (ks, X5, Dx,,Cs) for 1 < s < m, Law et
al. [6] suggested another way to form a combined model. &astd taking the same
andT as each sub-model has, the combined m@dek (> _ ks, U, Xs, U, Ds, U, CsU
C°) uses the valuek and T which are the sum of all valués and T, respectively of
its sub-model$,. For example, Fig. 1(h) gives a combined mogélof two mutually
redundant model®; andP; in Figs. 1(a) and 1(c) respectively, witty = 11 = 2
andT =4 ¢ 4 = 8. BesidesP has only one lower boun@j; there are no individual
lower bound for sub-models. Any cost that is sent from theyioanstraints in any sub-
model all goes ta@’;. SinceCy and T are shared among sub-modelsHf, the local
consistency has to be refined for combined models. Law edJghrpposed new notions
of node consistency:-NC; and arc consistency:-AC? to transmit pruning and cost
movement information between sub-models. In our proposedbined model, sub-
models have their own local lower bound; pruning informatioe transmitted via the
channel function. Thus, refinements of local consisteraiesot required.

When enforcingn-NC? andm-AC?, not only the instantiation and pruning infor-
mation but also the cost projection information is transmlitoetween sub-models in
the combined model. Transmitting cost projection inforimatan further discover and
remove more node inconsistent values or increase the dtbat bound. Thus, enforc-
ing 2-NC} and2-AC} achieves more constraint propagation than enforcin@[NB{*)
and LBQ,AC*) respectively.

Theorem 3. LetP¢ be a combined model af mutually redundant sub-mode#s for
1 < s < m. Enforcingm-NC; (resp.m-AC}) onPe¢ is strictly strongethan enforcing
LB(m,NC*) (resp.LB(m,AC*)) onPc.

Due to space limitation, we do not provide the formal defams of m-NC? and
m-AC? and thus the proof. Instead, we give an example to demoedtrattheorem.
Consider the problem in Fig. 1. Figs. 1(f) and 1(i) give twontoned WCSPs after
enforcing LB@,NC*) and 2-NC? respectively. We can observe that enforctaC*
achieves more domain prunings and a greater lower bound{j,e= 4 > CQ} D Cg =
1 & 2 = 3). Similarly, the WCSP in Fig. 1(j) i2-AC and has a greater lower bound
than the LB2,AC*) WCSP in Fig. 1(g).



Table 1. Experimental results on solving seftqueens problem

AC* FDAC* EDAC* 2-AC? LB(2,AC*) LB(2,FDAC*) | LB(2,EDAC*)
n fail time fail time fail time fail time fail time fail time fail time
15| 5608 0.46 5044 0.5 4959 0.6 2759 0.5 2803 0.57 2719 0.6 2664 0.72
16| 10611 0.9 9566 1.0 9382 1.2 5340 1.2 5427 1.2 5220 1.2 5097 1.50
171 17369 1.6 15139 1.80 14703 2.2 7291 1.84 7429 1.8 7136 1.9 6937 2.26
18| 58375 6.23 51073 6.76 49309 8.2§ 26370 7.7§ 26762 7.48 26380 7.8 25743 9.14
19| 81022 9.20 70179 10.05 67341 124l 32921 9.9} 33681 9.62 31300 10.1p 29843 11.73
20] 172220 21.65 150939 23.50 145062 28.9¢ 94256 32.44f 95941 31.19 93105 32.74 89644 38.4]
21| 535145 73.2B463225 79.78441403 97.3p 178540 65.3P 182731 62.3§ 171430 65.6P 162308 75.87
22| 1287717 196.02130132 211.04078297 257.76% 470117 200.7[f 478708 187.7Q 468555 194.32 450117 225.84
23 4780028 810.6@256142 868.88076254 1060.101274332 617.7]J1294032 571.991288272 588.33243028 683.01
24111079154 2042.66928478 2182.649518203 2637.398256536 1738.9833077701592.563304062 1630.381806731876.61

4 Experiments

To evaluate the effectiveness and efficiency of the comhimedels, we implement our
approach in ToolBat a branch and bound WCSP solver maintaining local congitsn
at each search tree node. Three benchmarksieens problem, knight’s tour problem,
and Langford’s problem are modeled as WCSPs to test our appr€omparisons are
made among AC* [1, 2], FDAC* [3], and EDAC* [4] on a single mddg, 2-AC?

[6] on a combined modé&P¢, and LBR,AC*), LB(2,FDAC*), and LB@2,EDAC*) on a
combined modeP¢ proposed in this paper. All combined mod#1$ contain a single
modelP and its induced modeP’, generated automatically using generalized model
induction [6], as sub-models.

The experiments are run on a Sun Blade 250& (2.6GHz US-Illi) workstation
with 2GB memory. We use thdom/degvariable ordering heuristic which chooses the
variable with the smallest ratio of domain size to futureréegValues are chosen using
the dual-smallest-domain-firgteuristic [5]. The initialT value provided to the solver
is n2, wheren is the number of variables in a model. Ten random models anerge
ated for each soft instance and we report the average nurhfsisq(i.e., the number
of backtracks occurred in solving a model) and CPU time iroeds to find the first
optimal solution for each instance. In the tables, the fiocbirmn shows the problem
instances; those marked with “*” havelaoptimal cost. The subsequent columns show
the results of enforcing various local consistencies dmee® or P¢. The best number
of fails and CPU time among the results for each instance igldighted in bold. A
cell labeled with “-” denotes a timeout after two hours.

Table 1 shows the experimental results of seffjueens problem. The-queens
problem is to place: queens on & x n chessboard so that no two queens are placed
on the same row, same column, or same diagonal. To model déepn into a WCSP
P = (X,Dx,Cx), we usen variables¥ = {z1,...,z,}. Each variabler; denotes
the row position of queenin column: of the chessboard. The domains of the variables
are thug(1, ..., n}. The constraints can be expressed using these variableslauly.

Since then-queens problem has many solutions, we assert preferemmeahe
solutions by assigning to each allowed binary tuple a randashfrom_ to T inclusive
for soft instances. From the results, we observe that splaitombined modepP¢
achieves fewer number of fails and faster runtime than sglaisingle modeP, which

! Available at http://carlit.toulouse.inra.fr/cgi-bimi.cgi/ToolBarIntro.



Table 2. Experimental results on solving classical knight's towstppem

AC* FDAC* EDAC* 2-AC: LB(2,AC%) LB(2,FDAC* | LB(2,EDACY
(m,n) fail  time fail  time fail  time| fail  time fail  time fail  time fail  time
(3,5) 672  0.07 672  0.07 672 0.1 210 0.08 210 0.08 210 0.07 210 0.08
(3,6) 4416 0.4 4416 053 4416 0.7 816  0.3f 816 0.34 824 0.28 829  0.32
(3,7)* 545  0.0§ 545 0.07 545 0.1 158  0.08 158  0.0§ 160 0.07 161 0.08
(3,8)* 2657 0.3 2657 0.3 2657 0.5 732 0.35 732 0.34 747 0.28 748  0.34
(3,9)* 11535 1.6 11535 1.94 11535 2.6)] 2005 1.2 2005 1.2 2004 1.04 2004 1.18
(3,10)* 72183 11.79 72183 13.74 72183 18.7% 10628 8.25 10628 7.8 10665 6.46 10667 7.4
(3,11)* 13225 217 13225 246 13225 3.39 1878 1.79 1878 169 1882 1.29 1884 1.52
(3,12)*| 2349445 467.802349445 550.12349445 743.0%12657 269.18| 212657 252.73 213287 194.02 213367 218.5p
(3,13)*| 766731 172.1D 766731 202.5R 766731 274.80) 49684 94.08| 49684 85.24 49697 62.68 49700 72.19
(3, 14)* - - - - - - - -||36793096900.7636852205163.6(43685742 5843.1j9
(3,15)*| 1498214 367.451498214 426.99498214 588.97 58889 147.85| 58889 130.5]1 58943 103.23 58948 111.2p
(4,5)* 336 0.03 336 0.03 336 0.04 77 0.04 77 0.04 80  0.04 80  0.03
(4,6)* 7914 0.6 7914 0.7 7914 1.04 1415 0.5 1415 054 1461 0.44 1467 0.54
(4,7)* 40344 4.1 40344 4.62 40344 653 5526 2.70 5526 253 5867 2.07 5899 2.5
(4,8)* | 1183823 145.181183823 161.48183823 228.35 76661 53.58) 76661 49.24 80496 39.37 80794 47.28
(4,9)* | 462506 67.28 462506 74.85462506 105.82 33575 31.86| 33575 28.1Q 34329 22.10 34390 25.68
(4,10)*|29317520 5166.229317520 5769.60 - -||9711621469.12| 9711621308.99 993327 969.59 994797 1128.98
Table 3. Experimental results on solving soft knight's tour problem
AC* FDAC* EDAC* 2-AC: LB(2,AC*) LB(2,FDAC¥) | LB(2,EDAC*)
(m,n) fail  time fail  time fail  time fail  time fail  time fail  time fail  time
(3,5) 685 0.0§ 672  0.11 683 0.1 210 0.1Q 210 0.09 210 0.08 210 0.11
(3,6) 4482 0.5 4418 0.8 4463 1.4 816 0.39 816 0.3 820 0.39 817 0.57
(3,7) 21005 294 13629 3.8 13785 5.7 4576 2.1 4750 2.08 3600 2.18 3550 3.14
(3,8)| 112979 19.98 61182 24.30 60967 34.7() 21452 11.4§ 22971 11.48 14454 11.21] 14085 16.06
(3,9)| 679347 140.38341322 166.53339664 238.6% 113032 72.89 121562 72.0p 73755 70.4Q 72240 105.31
(3,10)| 3822955 952.94720858 1061.83697349 1505.1f 511042 431.58 557168 428.7p 301248 388.95 295271 579.64
(3,11) - - - - - -|[2319839 2587.782590939 2563.762444942142.5312191793177.0
(4,5) 45516 4.86 27468 5.8% 27374 8.7 5515 1.9 5719 193 4202 1.9 4133 2.81
(4,6) | 863270 116.00415083 129.63407198 187.9() 98151 42.58 104256 42.58 62394 39.3§ 60791 57.8§
(4,7) 112899196 2335.48005880 2339.54831495 3248.1&344421 815.511468226 814.50725627 667.64 704774 987.1

means tha2-AC?, LB(2,AC*), LB(2,FDAC*), and LB@R,EDAC*) do more prunings
than AC*, FDAC*, and EDAC* and reduce more search space.2lBC*) is the most
efficient for the larger instances. AlthougkAC is stronger than LB{,AC*), it gives

a longer runtime than LB(AC*) even it achieves smaller number of fails in solving
the soft instances. This is mainly due to the overhead of pagéection transmitting
between sub-models i2+AC}. LB(2,EDAC*) always has the fewest number of fails
since EDAC* is stronger than AC* and FDAC*. However, its rumé is not always
the fastest, as the time saved for not traversing the prumlgile cannot compensate
the time spent on discovering these prunings. This explainsLB(2,AC*) has more
fails than LB@,EDAC*) but a faster runtime. We perform experiments on tlassical
n-queens problem as well, and the results are similar to tbb#ee soft case. Due to
space limitation, we omit the details.

Tables 2 and 3 show the results of classical and soft knigbiis problem. This
problemis to find a sequence of moves by a knight @an a n chessboard so that each
square on the chessboard is traversed exactly once. We thisdgloblem into a WCSP
P usingmn variablest’ = {z1,...,zm,}. Each variabler; denotes a square on the
chessboard and the domains of the varialles. ., mn} denote the order of a move
sequence. There are constraints to ensure that the knligistaavalid move (i.e., moves
either one square horizontally and two squares verticatlyyvo squares horizontally
and one square vertically). Similar to thequeens problem, we soften the problem by



assigning a random cost to each allowed binary tuple foriesfances. The random
cost is assigned from. to mn inclusively. In this problem, the induced mod@! is a
better model thafP. Therefore, we us®’ as a basic model instead Bt

For both classical and soft instances, enforcing local isterscies orP<, similar
to the n-queens problem, achieves smaller number of fails and eshorhtime than
those onP. For the instancé3, 14), using AC*, FDAC*, EDAC*, and ever2-AC}
cannot solve the problem before timeout, but using ,BC*), LB(2,FDAC*), and
LB(2,EDAC*) can. In soft case, we observe that EB{C*) and 2-AC? have similar
runtime but 2-AC has a slightly smaller number of fails. LBEDAC*) achieves the
smallest number of fails in most instances, while 2BDAC*) has the shortest runtime
in large and difficult instances.

For the Langford’s problef(which we do not present the experimental data), using
LB(2,2) is not always faster than usi2gAC;, although both are much better than using
single models. In classical case, 2BAC*) and LB(2,FDAC*) have a slightly faster
runtime thar2-AC? for the large instances, but they are slightly slower thakC? in
the soft case. Although LB(®) does not always perform better th2wAC, it has the
flexibility of choosinganylocal consistency for single models to solve a problem.

5 Conclusion

Combining mutually redundant WCSP models is a non-trivagkt In this paper, we
have proposed a parameterized local consistencyd,8) that is specifically designed
for combined models to increase constraint propagatio. iBmortant advantage of
our proposal is that LBf,®) can be used witlany number of sub-models arghy
existing or future local consistencies that are targeteddtving single models, mak-
ing our proposal highly flexible. Experimental results confthat LBQ,®) performs
well when instantiated with the state-of-the-art AC*, FDA@nd EDAC*. The search
space is significantly reduced when compared with usindesingdels. LB2,®) is also
competitive with, if not better thar2-AC} in the benchmarks.

Redundant modeling for WCSPs is a new concept which has noagedor future
work. In classical CSPs, it is common to have one model ingettevariables while
another in set variables. We can investigate if WCSPs wifierdint types of variables
can be combined and solved. It would also be interestinguidysf branch and bound
search instead of the local consistencies can be refinegmwith combined models.
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