
A Parameterized Local Consistency for Redundant
Modeling in Weighted CSPs⋆

Y.C. Law, J.H.M. Lee, and M.H.C. Woo

Department of Computer Science and Engineering
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

{yclaw,jlee,hcwoo}@cse.cuhk.edu.hk

Abstract. Theweighted constraint satisfaction problem(WCSP) framework is a
soft constraint framework which can model many real life optimization or over-
constrained problems. While there are many local consistency notions available to
speed up WCSP solving, in this paper, we investigate how to effectively combine
and channel mutually redundant WCSP models to increase constraint propaga-
tion. This successful technique for reducing search space in classical constraint
satisfaction has been shown non-trivial when adapted for the WCSP framework.
We propose a parameterized local consistency LB(m,Φ), which can be instanti-
ated withany local consistencyΦ for single models and applied to a combined
model withm sub-models, and also provide a simple algorithm to enforce it.
We instantiate LB(2,Φ) with different state-of-the-art local consistencies AC*,
FDAC*, and EDAC*, and demonstrate empirically the efficiency of the algorithm
using different benchmark problems.

1 Introduction

Theweighted constraint satisfaction problem(WCSP) framework is a well known soft
constraint framework for modeling optimization or over-constrained problems. WCSPs
are usually solved using backtracking branch and bound search incorporated with con-
straint propagation that helps reduce the search space. A crucial factor in the solving
efficiency is therefore the level of constraint propagationduring search. While many
state-of-the-art local consistency notions, like AC* [1, 2], FDAC* [3], and EDAC* [4],
and their associated algorithms can effectively increase constraint propagation to speed
up the search, another common approach is to useredundant modeling[5]. The tech-
nique, which has been applied successfully in classical constraint satisfaction, is to
combine two different models of a problem usingchanneling constraints. Law, Lee,
and Woo [6] showed that adapting redundant modeling to WCSPsis a non-trivial task;
the node and arc consistency notions have to be refined so as towork on combined
models. In this paper, instead of refining a particular localconsistency, we propose a
parameterizedlocal consistency LB(m,Φ) and its associated enforcement algorithm.
The advantages of our proposal are three-fold. First, the LB(m,Φ) consistency can be

⋆ We thank the anonymous referees for their constructive comments. The work described in
this paper was substantially supported by grants (CUHK4358/02E, CUHK4219/04E, and
CUHK4132/07E) from the Research Grants Council of Hong KongSAR.



1 2 3

3

3

1 2

1
1

2

3

(e) P c

3

3

1
21

1 1 22

1 2 3

(d) P2 after AC*

1

1

1

1

2

3

(b) P1 after AC*

1

1

(g) P c after LB(2,AC*)

(j) P c after 2-AC*c

1 2 3

1

1
1

2

3

(f) P c after LB(2,NC*)

1
21

1 1

1 2 3

1

1
1

2

3

(i) P c before 2-NC*c

1
1

1 1

1 2 3

3

3

1 2

1
1

2

3

(h) P c

3

3

1
21

1 1 22

1 2 3

1

2

3 1

1

1 2 3

1

2

3

1

2

3

(a) P1

3

3

1
21

1 2

1 2 3

(c) P2

3

3

1 2

1

1 2

→

→

→

→

→ →

x1

x1

x1

x1 x1

x1

x1

x1

x2

x2

x2

x2 x2

x2

x2

x2

x3

x3

x3

x3 x3

x3

x3

x3

y1

y1

y1

y1 y1

y1

y1

y1

y2

y2

y2

y2 y2

y2

y2

y2

y3

y3

y3

y3 y3

y3

y3

y3

C∅ = 1, ⊤ = 4C∅ = 1, ⊤ = 4

C∅ = 4, ⊤ = 8

C∅ = 2, ⊤ = 4 C∅ = 2, ⊤ = 4

C∅ = 2, ⊤ = 8 C∅ = 6, ⊤ = 8

C1

∅ = 1, C2

∅ = 1, C∅ = 1, ⊤ = 4 C1

∅
= 1, C2

∅
= 2, C∅ = 2, ⊤ = 4 C1

∅ = 3, C2

∅ = 2, C∅ = 3, ⊤ = 4

Fig. 1. Enforcing node and arc consistencies on WCSPsP1, P2, andPc

instantiated withany local consistencyΦ for single models and can be applied to a
combined model withm sub-models. Second, the local consistencyΦ used for instan-
tiation needs not be refined. Third, enforcing LB(m,Φ) on a combined WCSP modelP
achievesstrongerconstraint propagation than enforcingΦ on any individual sub-model
of P alone. We instantiate LB(2,Φ) with AC*, FDAC*, and EDAC* and perform exper-
iments to confirm the feasibility and efficiency of our proposal. Empirical results show
that the instantiations always achieve significantly better constraint propagation.

2 Background

WCSPs associatecoststo tuples [7]. The costs are specified by avaluation structure
S(k) = ([0, . . . , k],⊕,≥), wherek is a natural number,⊕ is defined asa ⊕ b =
min{k, a+b}, and≥ is the standard order among naturals. The minimum and maximum
costs are denoted by⊥ = 0 and⊤ = k respectively. A binary WCSP is a quadruplet
P = (k,X ,D, C) with the valuation structureS(k). X = {x1, . . . , xn} is a finite set
of variablesandD = {Dx1

, . . . , Dxn
} is a set of finitedomainsfor eachxi ∈ X . An

assignmentx 7→ a in P is a mapping from variablex to valuea ∈ Dx. A tuple is a set
of assignments inP . It is completeif it contains assignments of all variables inP . C
is a set of unary and binary constraints and a zero-arity constraint. A unary constraint
involving variablex is a cost functionCx : Dx → {0, . . . , k}. A binary constraintin-
volving variablesx andy is a cost functionCx,y : Dx×Dy → {0, . . . , k}. A zero-arity
constraintC∅ is a constant denoting the lower bound of costs inP . Fig. 1(a) shows a
WCSP with variables{x1, x2, x3} and domains{1, 2, 3}. We depict the unary costs as
labeled nodes and binary costs as labeled edges connecting two assignments. Unlabeled
edges have⊤ cost;⊥ costs are not shown for clarity.



The cost of a tupleθ = {xij
7→ aij

| 1 ≤ j ≤ r} in P is V(θ) = C∅ ⊕∑
j Cxij

(aij
)⊕

∑
j<j′ Cxij

,xi
j′

(aij
, aij′

). If θ is complete andV(θ) < ⊤, θ is asolu-

tion of P . Solving a WCSP is to find a solutionθ with minimizedV(θ), which is NP-
hard. The WCSP in Fig. 1(a) has an optimal solution{x1 7→ 2, x2 7→ 1, x3 7→ 3} with
cost3, asC∅⊕Cx1

(2)⊕Cx2
(1)⊕Cx3

(3)⊕Cx1,x2
(2, 1)⊕Cx1,x3

(2, 3)⊕Cx2,x3
(1, 3) =

1 ⊕⊥ ⊕ 1 ⊕⊥ ⊕ 1 ⊕ ⊥⊕ ⊥ = 3. A WCSP reduces to a classical CSP if each cost in
the WCSP is either⊥ or⊤. Two WCSPs areequivalentif they have the same variables
and for every complete tupleθ, V(θ) is the same for both WCSPs.

WCSPs can be solved by backtrackingbranch and bound(B&B) search that main-
tains some form of local consistency at each search node. Alocal consistencyis simply
some properties of a WCSP.Enforcinga local consistencyΦ on a WCSPP means
transformingP to an equivalent WCSPP ′ that satisfies the properties specified byΦ.
P ′ is usually simplified in the sense that either some domain values of the variables are
pruned or the lower bound is increased. In the following, we give the definitions of two
common local consistencies NC* [1, 2] and AC* [1, 2] for WCSPs.

Definition 1. A variablexi in a WCSPP is node consistent(NC*) if (1) for all values
a ∈ Dxi

, C∅⊕Cxi
(a) < ⊤ and (2) there exists a valuea ∈ Dxi

such thatCxi
(a) = ⊥.

A WCSPP is NC* if every variable inP is NC*.

Definition 2. Given a constraintCxi,xj
in a WCSPP , a valueb ∈ Dxj

is a support
for a valuea ∈ Dxi

if Cxi,xj
(a, b) = ⊥. A variablexi is arc consistent(AC*) if every

valuea ∈ Dxi
has a support in every constraintCxi,xj

. A WCSPP is arc consistent
(AC*) if every variable inP is AC*.

NC* can be enforced by sending some costs from theunaryconstraints toC∅ and
pruning the node-inconsistent values [1, 2]. Similarly, AC* can be enforced by sending
some costs from thebinary constraints to the unary constraints, and then relying on
NC* to further move the costs toC∅ or prune any values [1, 2]. Thus,C∅ can be seen
as a lower bound of costs of a WCSP. For example, the WCSP in Fig. 1(b) is AC*
and equivalent to the one in Fig. 1(a). It has some domain values pruned and the lower
boundC∅ is increased. In backtracking B&B search, wheneverC∅ is increased to⊤,
we cannot continue to extend a tuple to obtain a solution, andhence a backtrack (or
sometimes called a fail) is triggered. Also, whenever a solution θ is found, the⊤ value
will be set toV(θ) to continue the search, ensuring that the next solution found must
have a better cost thanθ. At the end of the search, the last found solution is optimal.

3 A Parameterized Local Consistency for Redundant Modeling

In this section, we first describe how we can obtain redundantWCSP models. Then, we
suggest a method to combine mutually redundant models into one model. A parame-
terized local consistency LB(m,Φ) and its enforcement algorithm are proposed for the
suggested combined model. Theoretical comparisons are made between the proposed
consistency and an existing approach for redundant modeling.



3.1 Obtaining a Redundant Model

Deriving multiple classical CSP models for the same problemis common, although not
trivial. It is even more difficult to obtain an alternative model in WCSP since each prob-
lem solution is associated with a cost and we have to ensure the same cost distribution
on the solutions of the redundant WCSP models. Two WCSPsP1 andP2 aremutually
redundant[6] if (1) there is a bijectiong between the two sets of all solutions ofP1

andP2 and (2) for every solutionθ of P1, the associated costs of solutionθ of P1 and
solutiong(θ) of P2 are the same, i.e.,V(θ) = V(g(θ)).

Based on these two requirements, Law et al. [6] proposedgeneralized model in-
ductionthat generates mutually redundantpermutation WCSPsfrom a given one. In a
permutation WCSP, the variables in a solution must take all-different values. Given a
WCSPP = (k,X ,DX , CX ). A channel functionmaps assignments inP to those in
another set of variables. IfP is a permutation WCSP, without loss of generality, we
always have the bijective channel functionf(xi 7→ j) = yj 7→ i. The constraintsCY
in the induced modelP ′ = (k,Y,DY , CY) are defined such that for1 ≤ a, i ≤ n,
Cya

(i) = Cxi
(a), and for1 ≤ a, b, i, j ≤ n, Cya,yb

(i, j) = Cxi,xj
(a, b) if i 6= j;

andCya,yb
(i, j) = ⊤ otherwise. Note that the induced modelP ′ must be a permutation

WCSP, sinceCya,yb
(i, i) = ⊤ for all 1 ≤ a, b, i ≤ n. Fig. 1(c) shows the induced model

P2 ofP1 in Fig. 1(a). In the example, we have, say, the unary costCy1
(2) = Cx2

(1) = 1
and the binary costCy2,y3

(1, 2) = Cx1,x2
(2, 3) = 3.

3.2 Combining Mutually Redundant Models

Given a problem, we can always formulate it into different mutually redundant WCSP
models. Redundant modeling is a common technique to take advantages of each model
by combining them into one model usingchanneling constraints, which are constraints
that set forth the relationship between the variables in anytwo models.

Considerm mutually redundant modelsPi = (k,Xi,Di, Ci) for 1 ≤ i ≤ m of
the same problem, we propose to connect them using a set of channeling constraints
Cc to give acombined modelPc = (k,

⋃
i Xi,

⋃
i Di,

⋃
i Ci ∪ Cc). In addition to a

singleC∅ for a combined modelPc, we now associate each sub-modelPi with a local
zero-arity constraintCi

∅
to denote the local lower bound of costs inPi. Since each sub-

modelPi has its ownCi
∅
, enforcing NC* sends the costs of the unary constraints in

sub-modelPi to Ci
∅ of Pc. Besides,Cc are hard constraints connecting sub-models in

Pc. For example, a channeling constraint is typically of the form xi = p ⇔ yj = q.
It has the cost functionCxi,yj

(a, b) = ⊥ if a = p ⇔ b = q; andCxi,yj
(a, b) = ⊤

otherwise. In addition, the valuek remains unchanged for each sub-modelPi in Pc.
The lower boundC∅ of Pc takes the maximum value of all local lower boundsCi

∅

of Pi (i.e., C∅ = maxi{C
i
∅
}). Based on the combined model, we denote a complete

tuple in a sub-modelPi as asemi-complete tupleθi. Thus, similar toC∅, the cost of a
complete tupleθ in Pc takes the maximum value of all semi-complete tuplesθi in Pi

(i.e.,V(θ) = maxi{V(θi)}). Fig. 1(e) shows the combined modelPc of P1 andP2 in
Figs. 1(a) and 1(c) respectively.



3.3 Enforcing Consistency on Combined Models

In redundant modeling, mutually redundant models are connected using a setCc of
channeling constraints, which are mainly used to transmit pruning and variable instan-
tiation information between sub-models. If we rely on the generic AC* or other local
consistency algorithms to propagte the channeling constraints, it will cause a large over-
head on the execution. Considerm mutually redundant WCSP sub-models inPc. With
a set of channeling constraints of the formx = a ⇔ y = b connecting sub-modelsPi

andPj , we can define a bijective channel function that maps assignments inPi to those
in Pj , giving, for example,f(x 7→ a) = y 7→ b. A channel function can be imple-
mented using table lookup inO(1) time and can be used to aid the propagation of the
channeling constraints more efficiently. During constraint propagation, when a value
a ∈ Dx is pruned from sub-modelPi, we can use the channel function to immediately
know that the corresponding valueb ∈ Dy should be pruned as well. Similarly, when a
variablex in Pi is bound to the valuea, according to the channel function, we can also
know that the corresponding variabley in Pj should be bound to the valueb.

Given a combined modelPc with m mutually redundant sub-modelsPi. We can
enforce local consistencyΦ on each sub-modelPi of Pc and use the channel function
to transmit instantiation and pruning information betweenPi to ensure that the bijective
mapping between assignments of any two sub-modelsPi andPj for 1 ≤ i < j ≤ m

is maintained. Based on these ideas, we proposed a parameterized local consistency
LB(m,Φ) for combined modelsPc with m mutually redundant sub-modelsPi. Note
thatΦ can be any local consistency that can be applied to a single WCSP model.

Definition 3. LetPc be a combined model ofm mutually redundant sub-modelsPs for
1 ≤ s ≤ m, Φ be a local consistency, andfs,t be a bijective channel function from
assignments ofPs to assignments ofPt for all 1 ≤ s < t ≤ m. Pc is said to be
LB(m,Φ) if:

1. all sub-modelsPs areΦ, and
2. for all assignmentsxs,i 7→ a of Ps, a ∈ Dxs,i

⇔ b ∈ Dxt,j
, wherefs,t(xs,i 7→

a) = xt,j 7→ b.

Consider the combined modelPc in Fig. 1(e). It is not LB(2,AC*) since both sub-
modelsP1 andP2 are not AC*. After enforcing AC* on each sub-model and sharing
the pruning information between sub-models, Fig. 1(g) gives an equivalent combined
modelPc′, which is now LB(2,AC*).

LB(m,Φ) can be enforced using a simple algorithm shown in Fig. 2. In this algo-
rithm, we enforceΦ on each sub-model (lines 2–3). This ensures that all sub-models
Ps satisfy theΦ property (condition 1). For condition 2, if there is a valuea ∈ Dxs,i

being pruned in one sub-modelPs, the corresponding valueb ∈ Dxt,j
obtained via the

channel function will also be pruned in other sub-modelsPt for 1 ≤ t ≤ m ands 6= t

(lines 4–8). The algorithm repeats until there are no more changes in any sub-models,
andPc is then made LB(m,Φ). Since each sub-modelPs has its local lower boundCs

∅
,

unary constraints are projected towards its ownCs
∅

when enforcing NC*. For example,
unary constraints inP1 are projected toC1

∅ and those inP2 are projected toC2

∅ . Dur-
ing constraint propagation, when the global lower boundC∅ of the combined model



function LB(m, Φ,Pc)
1. repeat
2. for each sub-modelPs of Pc do
3. enforceΦ onPs;
4. for each pair of sub-modelsPs,Pt of Pc (s 6= t) do
5. for eachxs,i ∈ Xs do
6. for eacha ∈ Dxs,i

do
7. if b /∈ Dxt,j

wherext,j 7→ b = fs,t(xs,i 7→ a) then
8. removea from Dxs,i

;
9. until Pc remains unchanged;
endfunction

Fig. 2. Algorithms for enforcing LB(m,Φ)

Pc reaches the global upper bound⊤ (i.e., C∅ = maxs{C
s
∅
} = ⊤), this means that

there exists at least one sub-modelPs in which its local lower boundCs
∅

is increased
to ⊤, and we cannot extend a tuple of this sub-model to obtain a solution. Since all the
sub-models are mutually redundant to each other, the other sub-models will also lead to
failure. Therefore, a backtrack is triggered in the search.The following theorem states
that the algorithm in Fig. 2 enforces LB(m,Φ).

Theorem 1. LetPc be a combined model ofm WCSP sub-modelsPs for 1 ≤ s ≤ m,
and Φ be any local consistency. The LB(m, Φ,Pc) algorithm transformsPc into an
equivalent combined modelPc′.

Proof. When a combined modelPc is passed to the LB(m, Φ,Pc) algorithm, enforcing
Φ on each sub-modelPi transformsPi to an equivalent sub-modelP ′

i. Furthermore,
the mutual redundancy of two sub-modelsPs andPt guarantees that if valueb is not in
Dxt,j

, then valuea must not be in the domain ofxs,i, wherext,j 7→ b = fs,t(xs,i 7→ a).
Thus, removing valuea from Dxs,i

in line 8 will not remove any values that belong to
a solution of the combined modelPc. Hence, upon termination of the algorithm, the
transformed modelPc′ is equivalent to the input modelPc. ⊓⊔

Following Debruyne and Bessiere [8], we define some notions to compare the prop-
agation strength of two local consistenciesΦ1 andΦ2. Φ1 is said to bestronger than[8]
Φ2 if in any WCSP in whichΦ1 holds, thenΦ2 holds.Φ1 is said to bestrictly stronger
than [8] Φ2 if (1) Φ1 is stronger thanΦ2 and (2) there exists a WCSP whereΦ2 holds
butΦ1 does not hold.

Theorem 2. LetPc be a combined model ofm sub-modelsPs for 1 ≤ s ≤ m. Enforc-
ing LB(m,Φ) onPc is strictly stronger than enforcingΦ on anyPs.

Proof. By definition 3,Pc is LB(m,Φ) if all sub-modelsPs for 1 ≤ s ≤ m areΦ.
This shows that LB(m,Φ) is stronger thanΦ. To show strictness, consider the model in
Fig. 1(e) which is a combined model ofP1 andP2 in Figs. 1(a) and 1(c) respectively.
Enforcing AC* onP1 andP2 individually yields the models in Figs. 1(b) and 1(d)
respectively. However, the combined model of these two sub-models is not LB(2,AC*).
In fact, enforcing LB(2,AC*) results in the model in Fig. 1(g). Hence the result. ⊓⊔



Note that unlike classical CSPs, enforcing AC* on a WCSP can result in more
than one possible outcome, depending on the order of the domain values to be pruned
and the constraints to be handled in an algorithm [2]. Therefore, although we have
the “strictly stronger” notion, when comparing a LB(m,AC*) combined model and a
AC* sub-model, we cannot guarantee that the domain of a variable in the combined
model must be a subset of that in the single sub-model. Nonetheless, such theoretical
comparison is still worthwhile as it shows that enforcing one local consistency can
generally prune more domain values than enforcing another.

3.4 Comparison with Existing Work

Givenm mutually redundant WCSPsPs = (ks,Xs,DX s, Cs) for 1 ≤ s ≤ m, Law et
al. [6] suggested another way to form a combined model. Instead of taking the samek
and⊤ as each sub-model has, the combined modelPc = (

∑
s ks,

⋃
s Xs,

⋃
s Ds,

⋃
s Cs∪

Cc) uses the valuesk and⊤ which are the sum of all valuesks and⊤s respectively of
its sub-modelsPs. For example, Fig. 1(h) gives a combined modelPc of two mutually
redundant modelsP1 andP2 in Figs. 1(a) and 1(c) respectively, withC∅ = 1 ⊕ 1 = 2
and⊤ = 4 ⊕ 4 = 8. Besides,Pc has only one lower boundC∅; there are no individual
lower bound for sub-models. Any cost that is sent from the unary constraints in any sub-
model all goes toC∅. SinceC∅ and⊤ are shared among sub-models inPc, the local
consistency has to be refined for combined models. Law et al. [6] proposed new notions
of node consistencym-NC∗

c and arc consistencym-AC∗
c to transmit pruning and cost

movement information between sub-models. In our proposed combined model, sub-
models have their own local lower bound; pruning information are transmitted via the
channel function. Thus, refinements of local consistenciesare not required.

When enforcingm-NC∗
c

andm-AC∗
c
, not only the instantiation and pruning infor-

mation but also the cost projection information is transmitted between sub-models in
the combined model. Transmitting cost projection information can further discover and
remove more node inconsistent values or increase the globallower bound. Thus, enforc-
ing 2-NC∗

c and2-AC∗
c achieves more constraint propagation than enforcing LB(2,NC*)

and LB(2,AC*) respectively.

Theorem 3. LetPc be a combined model ofm mutually redundant sub-modelsPs for
1 ≤ s ≤ m. Enforcingm-NC∗

c (resp.m-AC∗
c) onPc is strictly strongerthan enforcing

LB(m,NC*) (resp.LB(m,AC*)) onPc.

Due to space limitation, we do not provide the formal definitions ofm-NC∗
c and

m-AC∗
c

and thus the proof. Instead, we give an example to demonstrate the theorem.
Consider the problem in Fig. 1. Figs. 1(f) and 1(i) give two combined WCSPs after
enforcing LB(2,NC*) and2-NC∗

c
respectively. We can observe that enforcing2-NC∗

c

achieves more domain prunings and a greater lower bound (i.e., C∅ = 4 > C1

∅
⊕ C2

∅
=

1 ⊕ 2 = 3). Similarly, the WCSP in Fig. 1(j) is2-AC∗
c and has a greater lower bound

than the LB(2,AC*) WCSP in Fig. 1(g).



Table 1.Experimental results on solving softn-queens problem

AC* FDAC* EDAC* 2-AC∗

c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)
n fail time fail time fail time fail time fail time fail time fail time
15 5608 0.46 5044 0.50 4959 0.63 2759 0.58 2803 0.57 2719 0.61 2664 0.72
16 10611 0.96 9566 1.03 9382 1.29 5340 1.23 5427 1.20 5220 1.27 5097 1.50
17 17369 1.65 15139 1.80 14703 2.25 7291 1.85 7429 1.81 7136 1.91 6937 2.26
18 58375 6.23 51073 6.76 49309 8.29 26370 7.73 26762 7.48 26380 7.82 25743 9.14
19 81022 9.20 70179 10.05 67341 12.41 32921 9.91 33681 9.62 31300 10.16 29843 11.73
20 172220 21.65 150939 23.50 145062 28.94 94256 32.44 95941 31.19 93105 32.74 89644 38.41
21 535145 73.28 463225 79.78 441403 97.35 178540 65.39 182731 62.38 171430 65.62 162308 75.82
22 1287717 196.071130132 211.091078297 257.76 470117 200.77 478708 187.70 468555 194.32 450117 225.86
23 4780028 810.604256142 868.884076254 1060.101274332 617.771294032 571.991288272 588.331243028 683.01
24 11079154 2042.669928478 2182.879518203 2637.393256536 1738.8633077701592.563304062 1630.3931806731876.61

4 Experiments

To evaluate the effectiveness and efficiency of the combinedmodels, we implement our
approach in ToolBar1, a branch and bound WCSP solver maintaining local consistencies
at each search tree node. Three benchmarks,n-queens problem, knight’s tour problem,
and Langford’s problem are modeled as WCSPs to test our approach. Comparisons are
made among AC* [1, 2], FDAC* [3], and EDAC* [4] on a single model P , 2-AC∗

c

[6] on a combined modelPc, and LB(2,AC*), LB(2,FDAC*), and LB(2,EDAC*) on a
combined modelPc proposed in this paper. All combined modelsPc contain a single
modelP and its induced modelP ′, generated automatically using generalized model
induction [6], as sub-models.

The experiments are run on a Sun Blade 2500 (2× 1.6GHz US-IIIi) workstation
with 2GB memory. We use thedom/degvariable ordering heuristic which chooses the
variable with the smallest ratio of domain size to future degree. Values are chosen using
thedual-smallest-domain-firstheuristic [5]. The initial⊤ value provided to the solver
is n2, wheren is the number of variables in a model. Ten random models are gener-
ated for each soft instance and we report the average number of fails (i.e., the number
of backtracks occurred in solving a model) and CPU time in seconds to find the first
optimal solution for each instance. In the tables, the first column shows the problem
instances; those marked with “*” have a⊥ optimal cost. The subsequent columns show
the results of enforcing various local consistencies on eitherP orPc. The best number
of fails and CPU time among the results for each instance are highlighted in bold. A
cell labeled with “-” denotes a timeout after two hours.

Table 1 shows the experimental results of softn-queens problem. Then-queens
problem is to placen queens on an × n chessboard so that no two queens are placed
on the same row, same column, or same diagonal. To model the problem into a WCSP
P1 = (X ,DX , CX ), we usen variablesX = {x1, . . . , xn}. Each variablexi denotes
the row position of queeni in columni of the chessboard. The domains of the variables
are thus{1, . . . , n}. The constraints can be expressed using these variables accordingly.

Since then-queens problem has many solutions, we assert preferences among the
solutions by assigning to each allowed binary tuple a randomcost from⊥ to⊤ inclusive
for soft instances. From the results, we observe that solving a combined modelPc

achieves fewer number of fails and faster runtime than solving a single modelP , which

1 Available at http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro.



Table 2.Experimental results on solving classical knight’s tour problem

AC* FDAC* EDAC* 2-AC∗

c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)
(m,n) fail time fail time fail time fail time fail time fail time fail time
(3, 5) 672 0.07 672 0.07 672 0.10 210 0.08 210 0.08 210 0.07 210 0.08
(3, 6) 4416 0.45 4416 0.53 4416 0.70 816 0.36 816 0.34 824 0.28 829 0.32
(3, 7)* 545 0.06 545 0.07 545 0.10 158 0.08 158 0.08 160 0.07 161 0.08
(3, 8)* 2657 0.33 2657 0.38 2657 0.50 732 0.35 732 0.34 747 0.28 748 0.34
(3, 9)* 11535 1.66 11535 1.94 11535 2.61 2005 1.29 2005 1.25 2004 1.04 2004 1.18
(3, 10)* 72183 11.79 72183 13.74 72183 18.72 10628 8.25 10628 7.88 10665 6.46 10667 7.46
(3, 11)* 13225 2.17 13225 2.46 13225 3.39 1878 1.79 1878 1.69 1882 1.29 1884 1.52
(3, 12)* 2349445 467.802349445 550.142349445 743.09212657 269.15 212657 252.73 213287 194.02 213367 218.55
(3, 13)* 766731 172.10 766731 202.52 766731 274.80 49684 94.08 49684 85.28 49697 62.68 49700 72.19
(3, 14)* - - - - - - - - 36793096900.7636852205163.603685742 5843.19
(3, 15)* 1498214 367.451498214 426.991498214 588.97 58889 147.85 58889 130.51 58943 103.23 58948 111.20
(4, 5)* 336 0.03 336 0.03 336 0.04 77 0.04 77 0.04 80 0.04 80 0.03
(4, 6)* 7914 0.68 7914 0.76 7914 1.04 1415 0.56 1415 0.54 1461 0.44 1467 0.55
(4, 7)* 40344 4.19 40344 4.62 40344 6.55 5526 2.70 5526 2.53 5867 2.07 5899 2.58
(4, 8)* 1183823 145.181183823 161.481183823 228.35 76661 53.58 76661 49.24 80496 39.37 80794 47.28
(4, 9)* 462506 67.28 462506 74.85 462506 105.82 33575 31.86 33575 28.10 34329 22.10 34390 25.68
(4, 10)* 29317520 5166.2329317520 5769.60 - - 9711621469.12 9711621308.99 993327 969.59 994797 1128.98

Table 3.Experimental results on solving soft knight’s tour problem

AC* FDAC* EDAC* 2-AC∗

c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)
(m,n) fail time fail time fail time fail time fail time fail time fail time
(3, 5) 685 0.08 672 0.11 683 0.19 210 0.10 210 0.09 210 0.08 210 0.11
(3, 6) 4482 0.52 4418 0.81 4463 1.46 816 0.39 816 0.36 820 0.39 817 0.57
(3, 7) 21005 2.94 13629 3.85 13785 5.74 4576 2.13 4750 2.08 3600 2.18 3550 3.14
(3, 8) 112979 19.93 61182 24.30 60967 34.70 21452 11.46 22971 11.43 14454 11.21 14085 16.06
(3, 9) 679347 140.38 341322 166.53 339664 238.65 113032 72.89 121562 72.09 73755 70.40 72240 105.37
(3, 10) 3822955 952.941720858 1061.831697349 1505.17 511042 431.53 557168 428.79 301248 388.95 295271 579.64
(3, 11) - - - - - - 2319839 2587.782590939 2563.7612444942142.5312191793177.08
(4, 5) 45516 4.86 27468 5.85 27374 8.72 5515 1.96 5719 1.93 4202 1.96 4133 2.81
(4, 6) 863270 116.09 415083 129.63 407198 187.90 98151 42.53 104256 42.58 62394 39.38 60791 57.88
(4, 7) 12899196 2335.485005880 2339.554831495 3248.171344421 815.541468226 814.50725627 667.64 704774 987.19

means that2-AC∗
c
, LB(2,AC*), LB(2,FDAC*), and LB(2,EDAC*) do more prunings

than AC*, FDAC*, and EDAC* and reduce more search space. LB(2,AC*) is the most
efficient for the larger instances. Although2-AC∗

c is stronger than LB(2,AC*), it gives
a longer runtime than LB(2,AC*) even it achieves smaller number of fails in solving
the soft instances. This is mainly due to the overhead of costprojection transmitting
between sub-models in2-AC∗

c . LB(2,EDAC*) always has the fewest number of fails
since EDAC* is stronger than AC* and FDAC*. However, its runtime is not always
the fastest, as the time saved for not traversing the pruned subtree cannot compensate
the time spent on discovering these prunings. This explainswhy LB(2,AC*) has more
fails than LB(2,EDAC*) but a faster runtime. We perform experiments on the classical
n-queens problem as well, and the results are similar to thoseof the soft case. Due to
space limitation, we omit the details.

Tables 2 and 3 show the results of classical and soft knight’stour problem. This
problem is to find a sequence of moves by a knight on am× n chessboard so that each
square on the chessboard is traversed exactly once. We modelthis problem into a WCSP
P usingmn variablesX = {x1, . . . , xmn}. Each variablexi denotes a square on the
chessboard and the domains of the variables{1, . . . , mn} denote the order of a move
sequence. There are constraints to ensure that the knight takes a valid move (i.e., moves
either one square horizontally and two squares vertically,or two squares horizontally
and one square vertically). Similar to then-queens problem, we soften the problem by



assigning a random cost to each allowed binary tuple for softinstances. The random
cost is assigned from⊥ to mn inclusively. In this problem, the induced modelP ′ is a
better model thanP . Therefore, we useP ′ as a basic model instead ofP .

For both classical and soft instances, enforcing local consistencies onPc, similar
to then-queens problem, achieves smaller number of fails and shorter runtime than
those onP . For the instance(3, 14), using AC*, FDAC*, EDAC*, and even2-AC∗

c

cannot solve the problem before timeout, but using LB(2,AC*), LB(2,FDAC*), and
LB(2,EDAC*) can. In soft case, we observe that LB(2,AC*) and 2-AC∗

c have similar
runtime but 2-AC∗

c
has a slightly smaller number of fails. LB(2,EDAC*) achieves the

smallest number of fails in most instances, while LB(2,FDAC*) has the shortest runtime
in large and difficult instances.

For the Langford’s problem2 (which we do not present the experimental data), using
LB(2,Φ) is not always faster than using2-AC∗

c , although both are much better than using
single models. In classical case, LB(2,AC*) and LB(2,FDAC*) have a slightly faster
runtime than2-AC∗

c
for the large instances, but they are slightly slower than2-AC∗

c
in

the soft case. Although LB(2,Φ) does not always perform better than2-AC∗
c , it has the

flexibility of choosingany local consistency for single models to solve a problem.

5 Conclusion

Combining mutually redundant WCSP models is a non-trivial task. In this paper, we
have proposed a parameterized local consistency LB(m,Φ) that is specifically designed
for combined models to increase constraint propagation. One important advantage of
our proposal is that LB(m,Φ) can be used withany number of sub-models andany
existing or future local consistencies that are targeted for solving single models, mak-
ing our proposal highly flexible. Experimental results confirm that LB(2,Φ) performs
well when instantiated with the state-of-the-art AC*, FDAC*, and EDAC*. The search
space is significantly reduced when compared with using single models. LB(2,Φ) is also
competitive with, if not better than,2-AC∗

c
in the benchmarks.

Redundant modeling for WCSPs is a new concept which has much scope for future
work. In classical CSPs, it is common to have one model in integer variables while
another in set variables. We can investigate if WCSPs with different types of variables
can be combined and solved. It would also be interesting to study if branch and bound
search instead of the local consistencies can be refined to cope with combined models.

References

1. Larrosa, J.: Node and arc consistency in weighted CSP. In:Proc. of AAAI’02. (2002) 48–53
2. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artificial

Intelligence159(1-2) (2004) 1–26
3. Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for weighted CSP.

In: Proc. of IJCAI’03. (2003) 239–244
4. de Givry, S., Heras, F., Zytnicki, M., Larrosa, J.: Existential arc consistency: Getting closer

to full arc consistency in weighted CSPs. In: Proc. of IJCAI’05. (2005) 84–89

2 Prob024 in CSPLib, available at http://www.csplib.org.



5. Cheng, B.M.W., Choi, K.M.F., Lee, J.H.M., Wu, J.C.K.: Increasing constraint propagation by
redundant modeling: an experience report. Constraints4(2) (1999) 167–192

6. Law, Y.C., Lee, J.H.M., Woo, M.H.C.: Speeding up weightedconstraint satisfaction using
redundant modeling. In: Proc. of AI’06. (2006) 59–68

7. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard and easy
problems. In: Proc. of IJCAI’95. (1995) 631–637

8. Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint satisfac-
tion problem. In: Proc. of IJCAI’97. (1997) 412–417


