
Breaking Symmetry of Interchangeable
Variables and Values⋆

Y.C. Law1, J.H.M. Lee1, Toby Walsh2, and J.Y.K. Yip1

1 Deparment of Computer Science and Engineering, The ChineseUniversity of Hong Kong,
Shatin, N.T., Hong Kong

{yclaw,jlee,ykyip}@cse.cuhk.edu.hk
2 National ICT Australia and School of CSE, University of New South Wales, Sydney, Australia

tw@cse.unsw.edu.au

Abstract. A common type of symmetry is when both variables and values par-
tition into interchangeable sets. Polynomial methods havebeen introduced to
eliminate all symmetric solutions introduced by such interchangeability. Unfor-
tunately, whilst eliminating all symmetric solutions is tractable in this case, prun-
ing all symmetric values is NP-hard. We introduce a new global constraint called
SIGLEX and its GAC propagator for pruning some (but not necessarilyall) sym-
metric values. We also investigate how different postings of the SIGLEX con-
straints affect the pruning performance during constraintsolving. Finally, we test
these static symmetry breaking constraints experimentally for the first time.

1 Introduction

When solving complex real-life problems like staff rostering, symmetry may dramati-
cally increase the size of the search space. A simple and effective mechanism to deal
with symmetry is to add static symmetry breaking constraints to eliminate symmetric
solutions [1–4]. Alternatively, we can modify the search procedure so that symmetric
branches are not explored [5–7]. Unfortunately, eliminating all symmetric solutions is
NP-hard in general. In addition, even when all symmetric solutions can be eliminated
in polynomial time, pruning all symmetric values may be NP-hard [8]. One way around
this problem is to develop polynomial methods for special classes of symmetries.

One common type of symmetry is when variables and/or values are interchangeable.
For instance, in a graph colouring problem, if we assign colours (values) to nodes (vari-
ables), then the colours (values) are fully interchangeable. That is, we can permute the
colours throughout a solution and still have a proper colouring. Similarly, variables may
be interchangeable. For example, if two nodes (variables) have the same set of neigh-
bours, we can permute them and keep a proper colouring. We call this variable and
value interchangeability. It has also been calledpiecewise symmetry[9] andstructural
symmetry[10]. Recent results show that we can eliminate all symmetric solutions due

⋆ We thank the anonymous referees for their constructive comments. The work described in this
paper was substantially supported by grants (Project no. CUHK4131/05 and CUHK4219/04E)
from the Research Grants Council of the Hong Kong SAR. NICTA is funded by DCITA and
ARC through Backing Australia’s Ability and the ICT Centre of Excellence program.

to variable and value interchangeability in polynomial time. Sellmann and Van Henten-
tryck gave a polynomial time dominance detection algorithmfor dynamically break-
ing such symmetry [10]. Subsequently, Flener, Pearson, Sellmann and Van Hentenryck
identified a set of static symmetry breaking constraints to eliminate all symmetric solu-
tions [9]. In this paper, we propose using a linear number of the new SIGLEX constraint
for breaking such symmetry. A SIGLEX constraint orders the interchangeable variables
as well as the interchangeable values. Its propagator is based on a decomposition using
REGULAR constraints [11].

2 Background

A constraint satisfaction problem(CSP) consists of a set ofn variables, each with a
finite domainof possible values, and a set ofconstraintsspecifying allowed combi-
nations of values for given subsets of variables. A constraint restricts values taken by
some subset of variables to a subset of the Cartesian productof the variable domains.
Without loss of generality, we assume that variables initially share the same domain
of m possible values,d1 to dm. Each finite domain variable takes one value from this
domain. We also assume an ordering on values in whichdi < dj iff i < j. A solution
is an assignment of values to variables satisfying the constraints.

A global constraint has a parameterised number of variables. We will use four com-
mon global constraints. The first, AMONG([X1, .., Xn], v, M), holds iff |{i | Xi ∈
v}| = M . That is,M of the variables fromX1 to Xn take values among the setv.
Combining together multiple AMONG constraints gives the global cardinality constraint
[12]. GCC([X1, .., Xn], [d1, .., dm], [O1, .., Om]) holds iff |{i | Xi = dj}| = Oj for
1 ≤ j ≤ m. That is,Oj of the variables fromX1 to Xn take the valuedj . If Oj ≤ 1
for all j then no value occurs more than once and we have an all different constraint.
ALL DIFF([X1, . . . , Xn]) holds iff Xi 6= Xj for 1 ≤ i < j ≤ n. Finally, a global con-
straint that we will use to encode other global constraints is the REGULAR constraint
[11]. LetM = (Q, Σ, δ, q0, F) denote adeterministic finite automaton(DFA) whereQ
is a finite set of states,Σ an alphabet,δ : Q × Σ → Q a partial transition function,q0

the initial state andF ⊆ Q the set of final states. REGULAR([X1, . . . , Xn],M) holds
iff the string[X1, . . . , Xn] belongs to the regular language recognised byM. Quimper
and Walsh encode a linear time GAC propagator for the REGULAR constraint using
ternary constraints [13]. They introduce variables for thestate of the DFA after each
character, and post ternary constraints ensuring that the state changes according to the
transition relation. One advantage of this encoding is thatwe have easy access to the
states of the DFA. In fact, we will need here to link the final state to a finite domain
variable.

Systematic search constraint solvers typically explore partial assignments using
backtracking search, enforcing a local consistency at eachsearch node to prune val-
ues for variables which cannot be in any solution. We consider a well known local
consistency called generalized arc consistency. Given a constraintC on finite domain
variables, asupportis an assignment to each variable of a value in its domain which sat-
isfiesC. A constraintC on finite domain variables isgeneralized arc consistent(GAC)
iff for each variable, every value in its domain belongs to a support.

3 Variable and value interchangeability

We suppose that there is a partition of then finite domain variables of our CSP intoa
disjoint sets, and the variables within each set are interchangeable. That is, if we have
a solution{Xi = dsol(i) | 1 ≤ i ≤ n} and any bijectionσ on the variable indices
which permutes indices within each partition, then{Xσ(i) = dsol(i) | 1 ≤ i ≤ n} is
also a solution. We also suppose that there is a partition of them domain values intob
disjoint sets, and the values within each set are interchangeable. That is, if we have a
solution{Xi = dsol(i) | 1 ≤ i ≤ n} and any bijectionσ on the value indices which
permutes indices within each partition, then{Xi = dσ(sol(i)) | 1 ≤ i ≤ n} is also a
solution. Ifn = a we have just interchangeable values, whilst ifm = b we have just
interchangeable variables. We will order variable indicesso thatXp(i) to Xp(i+1)−1 is
the ith variable partition, and value indices so thatdq(j) to dq(j+1)−1 is thejth value
partition where1 ≤ i ≤ a, 1 ≤ j ≤ b. In other words,p(i) andq(j) give the starting
indices of theith variable partition and thejth value partition respectively.

Example 1 Consider a CSP problem representing 3-colouring the following graph:

X2

X1

X3

X4

X5

��
HH

��
HHJ
J

JJ

Nodes are labelled with the variablesX1 to X5. Values correspond to colours.X1

andX2 are interchangeable as the corresponding nodes have the same set of neigh-
bours. If we have a proper colouring, we can permute the values assigned toX1 and
X2 and still have a proper colouring. Similarly,X3, X4 andX5 are interchangeable.
The variables thus partition into two disjoint sets:{X1, X2} and{X3, X4, X5}. In ad-
dition, we can uniformly permute the colours throughout a solution and still have a
proper colouring. Thus, the values partition into a single set: {d1, d2, d3}. In graph
colouring, variable partitions can be identified by checking whether two nodes have
the same set of neighbours, while in general problems, the underlying symmetry can be
discovered automatically [14].

Fleneret al. [9] show that we can eliminate all solutions which are symmetric due
to variable and value interchangeability by posting the following constraints:

Xp(i) ≤ .. ≤ Xp(i+1)−1 ∀ i ∈ [1, a] (1)

GCC([Xp(i), .., Xp(i+1)−1], [d1, .., dm], [Oi
1, .., O

i
m]) ∀ i ∈ [1, a] (2)

(O1
q(j), .., O

a
q(j)) ≥lex .. ≥lex (O1

q(j+1)−1, .., O
a
q(j+1)−1) ∀ j ∈ [1, b] (3)

(O1
k, .., Oa

k) is called thesignatureof the valuedk, which gives the number of occur-
rences of the valuedk in each variable partition. Note that the signature is invariant to
the permutation of variables within each equivalence class. By ordering variables within
each equivalence class using (1), we rule out permuting interchangeable variables. Sim-
ilarly, by lexicographically ordering the signatures of values within each equivalence
class using (3), we rule out permuting interchangeable values.

Example 2 Consider again the 3-colouring problem in Example 1. There are 30 proper
colourings of this graph. When we post the above symmetry breaking constraints, the
number of proper colourings reduces from 30 to just 3:

(a)
d1

d1

d2

d2

d2

��
HH

��

HHJ
J
JJ

(b)
d1

d1

d2

d2

d3

��
HH

��
HHJ
J

JJ

(c)
d2

d1

d3

d3

d3

��
HH

��

HHJ
J
JJ

Each colouring is representative of a different equivalence class. In fact, it is the lexi-
cographically least member of its equivalence class. On theother hand, the following
colourings are eliminated by the above symmetry breaking constraints:

(d)
d1

d2

d3

d3

d3

��
HH

��

HHJ
J
JJ

(e)
d1

d1

d3

d3

d3

��
HH

��
HHJ
J

JJ

(f)
d1

d1

d2

d3

d3

��
HH

��

HHJ
J
JJ

For instance, the proper colouring given in (e) is symmetricto that in (a) since if we
permuted2 with d3 in (e), we get (a). The proper colouring given in (e) is eliminated by
the symmetry breaking constraint(O1

2 , O
2
2) ≥lex (O1

3 , O
2
3) sinceO1

2 = O1
3 = 0 (neither

d2 nor d3 occur in the first equivalence class of variables) butO2
2 = 0 andO2

3 = 3 (d2

does not occur in the second equivalence class of variables but d3 occurs three times).

Suppose BREAKINTERCHANGEABILITY(p, q, [X1, .., Xn]) is a global constraint
that eliminates all symmetric solutions introduced by interchangeable variables and
values. That is, BREAKINTERCHANGEABILITY orders the variables within each equiv-
alence class, as well as lexicographically orders the signatures of values within each
equivalence class. It can be seen as the conjunction of the ordering, GCC and lex-
icographic ordering constraints given in Equations (1), (2) and (3). Enforcing GAC
on such a global constraint will prune all symmetric values due to variable and value
interchangeability. Not surprisingly, decomposing this global constraint into separate
ordering, GCC and lexicographic ordering constraints may hinder propagation.

Example 3 Consider again the 3-colouring problem in Example 1. Suppose X1 to
X5 have domains{d1, d2, d3}, the signature variablesO1

1, O
1
2 , O

1
3 have domains

{0, 1, 2}, whilst O2
1 , O

2
2, O

2
3 have domains{0, 1, 2, 3}. Flener et al.’s decomposi-

tion and the binary not-equals constraints between variables representing neighbour-
ing nodes are GAC. However, by considering (a), (b) and (c), we see that GAC on
BREAKINTERCHANGEABILITY and the binary not-equals constraints ensuresX1 =
d1, X2 6= d3, X3 6= d1, X4 6= d1 andX5 6= d1.

As decomposing BREAKINTERCHANGEABILITY hinders propagation, we might
consider a specialised algorithm for achieving GAC that prunes all possible symmetric
values. Unfortunately enforcing GAC on such a global constraint is NP-hard [8].

4 A new decomposition

We propose an alternative decomposition of BREAKINTERCHANGEABILITY. This de-
composition does not need global cardinality constraints which are expensive to propa-
gate. In fact, Fleneret al.’s decomposition requires a propagator for GCC which prunes
the bounds on the number of occurrence of values. The decomposition proposed here
uses just REGULAR constraints which are available in many solvers or can be easily
added using simple ternary transition constraints [13]. This new decomposition can be
efficiently and incrementally propagated.

The results in Table 5 of [15] suggest that propagation is rarely hindered by de-
composing a chain of lexicographic ordering constraints into individual lexicographic
ordering constraints between neighbouring vectors. Results in Table 1 of [16] also sug-
gest that propagation is rarely hindered by decomposing symmetry breaking constraints
for interchangeable values into symmetry breaking constraints between neighbouring
pairs of values in each equivalence class. We therefore propose a decomposition which
only considers the signatures of neighbouring pairs of values in each equivalence class.

This decomposition replaces BREAKINTERCHANGEABILITY by a linear number
of symmetry breaking constraints, SIGLEX. These lexicographically order the signa-
tures ofneighbouringpairs of values in each equivalence class, as well as order vari-
ables within each equivalence class. We decompose BREAKINTERCHANGEABILITY

into SIGLEX(k, p, [X1, .., Xn]) for q(j) ≤ k < q(j + 1) − 1, 1 ≤ j ≤ b. The global
constraint SIGLEX(k, p, [X1, .., Xn]) itself holds iff:

Xp(i) ≤ .. ≤ Xp(i+1)−1 ∀ i ∈ [1, a] (4)

AMONG([Xp(i), .., Xp(i+1)−1], {dk}, O
i
k) ∀ i ∈ [1, a] (5)

AMONG([Xp(i), .., Xp(i+1)−1], {dk+1}, O
i
k+1) ∀ i ∈ [1, a] (6)

(O1
k, .., Oa

k) ≥lex (O1
k+1, .., O

a
k+1) (7)

SIGLEX orders the variables within each equivalence class and lexicographically or-
ders the signatures of two interchangeable and neighbouring values. To propagate each
SIGLEX constraint, we give a decomposition using REGULAR constraints which does
not hinder propagation.

Theorem 1 GAC can be enforced onSIGLEX(k, p, [X1, .., Xn]) in O(n2) time.

Proof: We first enforce the ordering constraintsXp(i) ≤ .. ≤ Xp(i+1)−1 on each
variable partition. We then channel into a sequence of four valued variables using the
constraints:Y k

i = (Xi > dk+1) + (Xi ≥ dk+1) + (Xi ≥ dk). That is,Y k
i = 3 if

Xi > dk+1, Y k
i = 2 if Xi = dk+1, Y k

i = 1 if Xi = dk, andY k
i = 0 if Xi < dk.

Within the ith variable partition, we enforce GAC on a REGULAR constraint on
Y k

p(i) to Y k
p(i+1)−1 to compute the difference betweenOi

k andOi
k+1 and assign this

difference to a new integer variableDi
k. The automaton associated with this REGULAR

constraint has state variablesQk
p(i) to Qk

p(i+1)−1 whose values are tuples containing the
difference between the two counts seen so far as well as the last value seen (so that we
can ensure that values forY k

i are increasing). From(δ, y), the transition function on
seeingY k

i moves to the new state(δ + (Y k
i = 2)− (Y k

i = 1), max(y, Y k
i)) if and only

if Y k
i ≥ y. The initial state is(0, 0). We set the difference between the two counts in the

final state variable equal to the new integer variableDi
k (which is thus constrained to

equalOi
k+1−Oi

k) Finally, we ensure that the vectors,(O1
k, .., Oa

k) and(O1
k+1, .., O

a
k+1)

are ordered using a final REGULAR constraint on the difference variables,D1
k to Da

k.
The associated automaton has 0/1 states, a transition function which moves from state
b to b∨ (Di

k < 0) providedDi
k ≤ 0 or b = 1, an initial state0 and 0 or 1 as final states.

The constraint graph of all the REGULAR constraints is Berge-acyclic. Hence en-
forcing GAC on these REGULAR constraints achieves GAC on the variablesY k

i [17].
Consider a support for theY k

i variables. We can extend this to a support for theXi vari-
ables simply by picking the smallest value left in their domains after we have enforced
GAC on the channelling constraints between theXi andY k

i variables. Support for val-
ues left in the domains of theXi variables can be constructed in a similar way. Enforcing
GAC on this decomposition therefore achieves GAC on SIGLEX(k, p, [X1, .., Xn]).

Assuming bounds can be accessed and updated in constant timeand a constraint is
awoken only if the domain of a variable in its scope has been modified, enforcing GAC
on the ordering constraints takesO(n) time, on the channelling constraints betweenXi

andY k
i takesO(n) time, on the first set of REGULAR constraints which computeDi

k

takesO(n2) time, and on the final REGULAR constraint takesO(na) time. Asa ≤ n,
enforcing GAC on SIGLEX takesO(n2) time.⋄

We compare this with the GCC decomposition in [9]. This requires a GCC propaga-
tor which prunes the bounds of the occurrence variables. This will takeO(mn2 +n2.66)
time [12]. To break the same symmetry, we need to post up toO(m) SIGLEX con-
straints, which takeO(mn2) time in total to propagate. In the best case for this new
decomposition,m grows slower thanO(n0.66) and we are faster. In the worst case,m
grows asO(n0.66) or worse and both propagators takeO(mn2) time. The new decom-
position is thus sometimes better but not worse than the old one. We conjecture that
the two decompositions are incomparable. The GCC decomposition reasons more glob-
ally about occurrences, whilst the SIGLEX decomposition reasons more globally about
supports of increasing value. Indeed, we can exhibit a problem on which the SIGLEX

decomposition gives exponential savings. We predict that the reverse is also true.

Theorem 2 On the pigeonhole problemPHP (n) with n interchangeable variables
andn + 1 interchangeable values, we exploreO(2n) branches when enforcing GAC
and breaking symmetry using theGCC decomposition irrespective of the variable and
value ordering, but we solve in polynomial time when enforcing GAC usingSIGLEX.

Proof: The problem hasn+1 constraints of the form
∨n

i=1 Xi = dj for 1 ≤ j ≤ n+1,
with Xi ∈ {d1, .., dn+1} for 1 ≤ i ≤ n. The problem is unsatisfiable by a simple
pigeonhole argument. Enforcing GAC on SIGLEX(i, [X1, . . . , Xn]) for i > 0 prunes
di+1 from X1. Hence,X1 is set tod1. Enforcing GAC on SIGLEX(i, p, [X1, . . . , Xn])
for i > 1 now prunesdi+1 from X2. The domain ofX2 is thus reduced to{d1, d2}.
By a similar argument, the domain of eachXi is reduced to{d1, . . . di}. The SIGLEX

constraints are now GAC. Enforcing GAC on the constraint
∨n

i=1 Xi = dn+1 then
proves unsatisfiability. Thus, we prove that the problem is unsatisfiable in polynomial
time. On the other hand, using the GCC decomposition, irrespective of the variable
and value ordering, we will only terminate each branch whenn−1 variables have been

assigned (and the last variable is forced). A simple calculation shows that the size of the
search tree as least doubles as we increasen by 1. Hence we will visitO(2n) branches
before declaring the problem unsatisfiable.⋄

5 Some special cases

Variables are not interchangeable

Suppose we have interchangeable values but no variable symmetries (i.e.a = n andb <
m). To eliminate all symmetric solutions in such a situation,Law and Lee introduced
value precedence [4]. This breaks symmetry by constrainingwhen a value is first used.
More precisely, PRECEDENCE(k, [X1, .., Xn]) holds iffmin{i |Xi = dk∨i = n+1} <
min{i | Xi = dk+1∨ i = n+2}. That is, the first time we usedk is before the first time
we usedk+1. This prevents the two values being interchanged. It is not hard to show
that the SIGLEX constraint is equivalent to value precedence in this situation.

Theorem 3 PRECEDENCE(k, [X1, .., Xn]) is equivalent toSIGLEX(k, p, [X1, .., Xn])
whenn = a (i.e.,p(i) = i for i ∈ [1, n]).

Proof: If n = a then the vectors computed within SIGLEX, namely(O1
k, .., Oa

k) and
(O1

k+1, .., O
a
k+1), aren-ary 0/1 vectors representing the indices at whichdk anddk+1

appear. Lexicographically ordering these vectors ensuresthat eitherdk is used before
dk+1 or neither are used. This is equivalent to value precedence.⋄

In this case, the propagator for SIGLEX mirrors the work done by the propagator for
PRECEDENCEgiven in [16]. Although both propagators have the same asymptotic cost,
we might prefer the one for PRECEDENCEas it introduces fewer intermediate variables.

All variables and values are interchangeable

Another special case is when all variables and values are fully interchangeable (i.e.
a = b = 1). To eliminate all symmetric solutions in such a situation,Walsh introduced a
global constraint which ensures that the sequence of valuesis increasing but the number
of their occurrences is decreasing [16]. More precisely, DECSEQ([X1, .., Xn]) holds
iff X1 = d1, Xi = Xi+1 or (Xi = dj and Xi+1 = dj+1) for 1 ≤ i < n and
|{i | Xi = dk}| ≥ |{i | Xi = dk+1}| for 1 ≤ k < m. Not surprisingly, the SIGLEX

constraint ensures such an ordering of values.

Theorem 4 DECSEQ([X1, .., Xn]) is equivalent toSIGLEX(k, p, [X1, .., Xn]) for 1 ≤
k < m whena = b = 1 (i.e.,p : {1} → {1}).

Proof: Suppose SIGLEX(k, p, [X1, .., Xn]) holds for1 ≤ k < m. ThenO1
k ≥ O1

k+1

for 1 ≤ k < m. Now O1
k = |{i | Xi = dk}|. Hence|{i | Xi = dk}| ≥ |{i | Xi =

dk+1}| for 1 ≤ k < m. SupposeO1
1 = 0. ThenO1

k = 0 for 1 ≤ k ≤ m and no values
can be used. This is impossible. HenceO1

1 > 0 andd1 is used. AsX1 ≤ .. ≤ Xn,
X1 = d1. Suppose thatdk is the first value not used. ThenO1

k = 0. HenceO1
j = 0 for

all j > k. That is, all values up todk are used and all values including and afterdk are
not used. SinceXi ≤ Xi+1, it follows thatXi = Xi+1 or (Xi = dj andXi+1 = dj+1)
for 1 ≤ i < n. Thus, DECSEQ([X1, .., Xn]) holds. The proof reverses easily.⋄

6 Variable partition ordering

Suppose there are two variable partitions{X1, X2} and{X3, X4, X5}, and all domain
valuesd1, . . . , d5 are interchangeable. Section 4 suggests that we can break the sym-
metry using SIGLEX(k, p, X) for 1 ≤ k < 5, whereX = [X1, . . . , X5], p(1) = 1 and
p(2) = 3. In fact, the symmetry can be also broken by posting the SIGLEX constraints in
another way: SIGLEX(k, p′, X ′) for 1 ≤ k < 5, whereX

′ = [X ′
1, X

′
2, X

′
3, X

′
4, X

′
5] =

[X3, X4, X5, X1, X2], p′(1) = 1 andp′(2) = 4. The former posting places the parti-
tion {X1, X2} in front of {X3, X4, X5} in SIGLEX, and vice versa for the latter. The
two postings eliminate different symmetric solutions, i.e., the solutions of the two post-
ings are different. We observe that in the presence of ALL DIFF constraints, the order
of the variable partitions placed in the SIGLEX constraints affects propagation. In the
following, we study the issue of variable partition ordering in details.

In the above example, suppose that we also have ALL DIFF([X1, X2]) and
ALL DIFF([X3, X4, X5]), and we enforce GAC on these constraints. GAC on the for-
mer set of SIGLEX constraints alone removesd2, . . . , d5 from the domain ofX1 (due
to the lexicographic ordering on the signatures), makingX1 grounded. This triggers
propagation on ALL DIFF([X1, X2]) that removesd1 from the domain ofX2. Further
propagation on the constraints results inX1 ∈ {d1}, X2 ∈ {d2}, X3 ∈ {d1, d3},
X4 ∈ {d1, d2, d3, d4} andX5 ∈ {d1, d2, d3, d4, d5}. Note that all variables in the par-
tition {X1, X2} are grounded.

On the other hand, if we use the constraints SIGLEX(k, p′, X ′) for 1 ≤ k < 5,
then enforcing GAC on these constraints and the two ALL DIFF constraints results in
X1 ∈ {d1, d4}, X2 ∈ {d1, d2, d4, d5}, X3 ∈ {d1}, X4 ∈ {d2} andX5 ∈ {d3}. This
time, all variables in the partition{X3, X4, X5} are grounded.

In general, not every variable partition would contain an ALL DIFF constraint. If,
however, all domain values are interchangeable and thefirst variable partition placed in
the SIGLEX constraints contains an ALL DIFF, GAC on the SIGLEX and ALL DIFF con-
straints will either cause a domain wipe-out or groundall variables in the first partition.

Theorem 5 Enforcing GAC onALL DIFF([Xp(1), . . . , Xp(2)−1]) and the set ofSIGLEX

constraints decomposed fromBREAKINTERCHANGEABILITY causes either domain
wipe-out orXi = di for p(1) ≤ i ≤ min(p(2) − 1, m) if b = 1.

Proof: Consider two casesm < p(2)−1 orm ≥ p(2)−1. The former causes a domain
wipe-out, as there are fewer domain values than variables inthe ALL DIFF constraint.

For the latter case, we first prove by induction thatXi 6∈ {di+1, . . . , dm}∀p(1) ≤
i ≤ p(2) − 1. Wheni = p(1) = 1, suppose converselyX1 = dk for any1 < k ≤ m.
As SIGLEX impliesX1 ≤ . . . ≤ Xp(2)−1, we getO1

k ≥ 1 andO1
1 = 0. But O1

k > O1
1

violates the lexicographic order on the signatures. Hence,X1 6= dk for 1 < k ≤ m,
i.e.,X1 = d1. Assume the cases are true∀1 ≤ i′ < i. Suppose converselyXi = dk,
for anyi < k ≤ m. Since∀i′ < i, Xi′ 6∈ {dk−1, dk}, we getO1

k ≥ 1 andO1
k−1 = 0,

which contradicts with the lexicographic order. This completes the induction.
We can now prove that forp(1) ≤ i < p(2), eitherXi = di or Xi has empty do-

main. SinceX1 /∈ {d2, . . . , dm}, obviously eitherX1 = d1 or X1 has empty domain.
SupposeX1 = d1, enforcing GAC on ALL DIFF([Xp(1), . . . , Xp(2)−1]) will remove

d1 from the domains ofX2, . . . , Xp(2)−1. Now, X2 6= d1 andX2 /∈ {d3, . . . , dm}.
Then we haveX2 = d2 or X2 has empty domain. We can repeat the process of enforc-
ing GAC on ALL DIFF([Xp(1), . . . , Xp(2)−1]) to consequently make eitherXi = di or
domain wipe-out forp(1) ≤ i < p(2). ⋄

Therefore, if more than one variable partition contains an ALL DIFFconstraint, then
placing the largest variable partition at the front in the SIGLEX constraints ensures
the most variables are grounded, and therefore the most simplification of the problem.
This can be seen from the above example, in which the first posting grounds only two
variables, while the second posting grounds three. Furthermore, in the ALL DIFF con-
straints, a grounded variable in a larger partition triggers more prunings than one in a
smaller partition, and enforcing GAC on SIGLEX tends to prunes values from variables
earlier in the variable sequence, due to the≥lex ordering on the signatures. Therefore,
it is a good idea to place larger variable partitions at the front in the SIGLEX constraints
to increase the chance of more prunings due to a grounded variable. This gives us a
heuristic to rearrange the variables in the SIGLEX constraints so that(1) variable par-
titions with ALL DIFF constraints are ordered before those withoutALL DIFF, and (2)
among those variable partitions withALL DIFF constraints, order them in decreasing
partition size.

Theorem 5 applies to problems where all domain values are interchangeable. When
there is more than one value partition (b > 1), enforcing GAC on the SIGLEX con-
straints does not necessarily ground the first variable in the first partition, since the first
valuedq(j) in every partitionj can remain in its domain, making no subsequent ground-
ings of the other variables in the partition by the SIGLEX and ALL DIFF constraints.
Nonetheless, propagation by other problem constraints or variable instantiations during
search can eventually ground variables and trigger the prunings by the ALL DIFF con-
straints. Therefore, in the case ofb > 1, it is still worthwhile to reorder the variables
using this heuristic. Note that this variable partition ordering heuristic helps improve
the amount of pruning for the SIGLEX decomposition. Although it can be applied also
to the GCC decomposition, the heuristic may not help here.

The discussion brings out an interesting question about posting symmetry breaking
constraints. Ideally, symmetry breaking constraints remove all but one solution from
each equivalence class of solutions. Different postings ofthe symmetry breaking con-
straints can leave a different solution. This is true for SIGLEX and also other symmetry
breaking constraints. In terms of eliminating symmetric solutions, it does not matter
which solution we leave. However, in terms of propagation, apparently the different
postings give different behaviour. This is one of the first times it has been shown that
breaking symmetry to leave a particular distinguished element of a symmetry class can
reduce search. It would be interesting to study this systematically and formally in the
future.

7 Implementation notes

The proof of Theorem 1 already gives an overview of the implementation of the SIGLEX

global constraint, which involves enforcing the≤ ordering of theXi variables, the chan-
nelling between theXi andY k

i variables, anda + 1 REGULAR constraints, wherea is

the number of variable partitions. The firsta REGULAR constraints are used to do the
counting, while the last one enforces the≥lex ordering using the final state information
associated with the automata in the firsta REGULAR constraints. The maintenance of
the≤ ordering and the channeling is straightforward. The REGULAR constraint, how-
ever, has to be slightly modified to fit the requirement of our implementation. In partic-
ular, we introduce an extra finite domain variableFs to the REGULAR constraint so that
REGULAR([X1, . . . , Xn], Fs,M) meansFs is the final state of the string[X1, . . . , Xn]
admissible by the DFAM = (Q, Σ, δ, q0, F), whereQ is the set of all states,Σ is the
alphabet,δ is the state transition,q0 is the initial state, andF is the set of final states.

Pesant [11] proposes a GAC propagator for the original REGULAR constraint by
maintaining an associated layered directed multigraph(N1, . . . , Nn+1, A), wheren is
the number of variables in the constraint. LetΣ = {v1, . . . , vn}. Each layerN i =
{qi

0, . . . , q
i
|Q|−1} contains a nodeqi

l for each stateql ∈ Q and directed arcs inA appear
only between two consecutive layers. The graph is acyclic byconstruction. There exists
an arc fromqi

k to qi+1
l iff there exists somevj in the domain ofXi such thatδ(qk, vj) =

ql. The arc is labelled with the valuevj allowing the transition between the two states.

The multigraph isconsistentif each node has a non-zero in-degree and a non-zero
out-degree. Suppose a multigraph is inconsistent, i.e., there exists a node with either
in-degree or out-degree being zero. We can make the multigraph consistent again by
removing the node together with all its incoming or outgoingarcs from the graph. When
the arc fromqi

k to qi+1
l is removed, we check if the out-degree ofqi

k become zeros and
if the in-degree ofqi+1

l becomes zero to ensure consistency of the multigraph. Pesant
[11] gives a theorem stating that REGULAR([X1, . . . , Xn],M) is GAC iff the domain
of Xi is equal to the set of all labels from the outgoing arcs originating from nodes in
layerN i of a consistent multigraph associated withM.

In the original constraint REGULAR([X1, . . . , Xn],M), propagation is triggered
when some values are deleted from the domain of some variableXi. This corre-
sponds to removing arcs from the associated multigraph ofM. In the new constraint
REGULAR([X1, . . . , Xn], Fs,M), we have to allowalso triggerings caused by value
deletions from the domain ofFs. This corresponds to removing a node in layerNn+1

of the associated multigraph ofM. If such a removal causes inconsistency in the multi-
graph, Pesant’s procedure is still able to restore consistency. We can easily verify that
REGULAR is GAC iff the domain ofXi is equal to the set of all labels from the outgoing
arcs originating from nodes in layerN i of a consistent multigraph associated withM,
and the domain ofFs is the set of nodes (states) in layerNn+1.

We show in the proof of Theorem 1 that a SIGLEX constraint can be decomposed
into several REGULAR constraints without hindering propagation, since the constraint
graph of the decomposition is Berge-acyclic. However, we provide a global constraint
implementation for SIGLEX as it provides opportunities for efficiencies. In our imple-
mentation, we achieved GAC on SIGLEX using a two-pass iteration. In the first pass, we
enforce GAC on the decomposed constraints in a forward manner, from the≤ ordering
constraints on theXi variables to the final REGULAR constraint for the≥lex ordering.
In the second pass, the constraints are propagated again butin the reverse order. This
two-pass iteration guarantees that each constraint in the decomposition is propagated at
most twice but GAC is still enforced on one SIGLEX constraint as a whole.

8 Experiments

To test the efficiency and effectiveness of the SIGLEX constraints, we perform exper-
iments on the graph colouring and concert hall scheduling problems. We compare the
SIGLEX constraints against (1) the GCC decomposition (GCC) and (2) PRECEDENCE

constraints with≤ ordering constraints (ValPrec). All three methods break both the
variable and value interchangeability. When using SIGLEX constraints, we consider
two variable partition orderings: the data file ordering (SigLex) and the decreasing par-
tition size ordering (SigLex-dec) introduced in Section 6. The experiments are run on
a Sun Blade 2500 (2× 1.6GHz US-IIIi, 2GB RAM) using ILOG Solver 4.4. The time
limit is 1 hour. The variable ordering heuristic is to choosefirst a variable with the
smallest domain. Both benchmark problems are optimisationproblems, and we report
the number of fails and CPU time to find and prove the optimum inthe results.

8.1 Graph colouring

In graph colouring, nodes having the same set of neighbours form a partition and are
interchangeable. We generate random graphs using four parameters〈n, r, p, q〉, where
n is the number of nodes andr is the maximum node partition size. We start from an in-
dependent graph (graph with no arcs) withn nodes and ensure node interchangeability
while adding arcs to the graph in two steps. First, the subgraph containing nodes of two
partitions must be either a complete bipartite or independent graph. In Example 1, the
graph between partitions{X1, X2} and{X3, X4, X5} is complete bipartite. The pa-
rameterp is the proportion of complete bipartite subgraphs between pairs of partitions.
Second, the subgraph in one partition must also be either complete or independent. In
Example 1, both subgraphs of the two partitions are independent. The parameterq is
the proportion of complete subgraphs among the partitions.A complete subgraph in a
partition is modelled using an ALL DIFF constraint on the variable partition.

With the four parameters, we generate two types of random graphs using different
distributions on the variable partition size. In the first type, the number of nodesni

in the ith partition isuniformly distributed in[1, r]. Sincen is initially fixed, if the
generated value of a particularni makes the total number of nodes exceedn, then the
ith partition will be the final partition and its sizeni will be chosen such that the total
number of nodes is exactlyn. The second type has abiaseddistribution. The size of the
first ⌊n

2 ⌋ partitions are preset to 1, i.e.,⌊n
2 ⌋ of the nodes are not interchangeable at all.

The remaining nodes are then partitioned using a uniform distribution like in the first
type. The latter type of graphs models a common scenario in real life problems where
variable interchangeability occurs in only a subset of the variables. We test with various
values ofn, r = 8, p = 0.5 andq ∈ {0.5, 1}, and 20 instances are generated for each
set of parameters. Fig. 1(a) and (b) show the experimental results for the uniform and
biased distributions respectively. A data point is plottedonly when at least 90% of the
instances are solved within the time limit. All graphs are plotted in the log-scale.

At the same parameter setting, the instances of biased distribution are more difficult
to solve than those of uniform distribution, since the former instances have fewer sym-
metries than the latter and thus fewer symmetry breaking constraints can be posted to
reduce the search space. Nevertheless, for both distributions,SigLex andSigLex-dec

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 30 32 34 36 38 40

A
ve

ra
ge

 F
ai

ls

n

Graph Colouring Problem, r: 8, q: 0.5

ValPrec
SigLex

SigLex-dec
GCC

 0.1

 1

 10

 100

 30 32 34 36 38 40

A
vg

er
ag

e
T

im
e

n

Graph Colouring Problem, r: 8, q: 0.5

ValPrec
SigLex

SigLex-dec
GCC

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 30 32 34 36 38 40

A
ve

ra
ge

 F
ai

ls

n

Graph Colouring Problem, r: 8, q: 1

ValPrec
SigLex

SigLex-dec
GCC

 0.1

 1

 10

 100

 1000

 30 32 34 36 38 40

A
vg

er
ag

e
T

im
e

n

Graph Colouring Problem, r: 8, q: 1

ValPrec
SigLex

SigLex-dec
GCC

(a) Uniform distribution:q = 0.5 (top) or1.0 (bottom)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 22 24 26 28 30 32 34 36 38 40

A
ve

ra
ge

 F
ai

ls

n

Graph Colouring Problem(Biased), r: 8, q: 0.5

ValPrec
SigLex

SigLex-dec
GCC

 0.1

 1

 10

 100

 1000

 20 22 24 26 28 30 32 34 36 38 40

A
vg

er
ag

e
T

im
e

n

Graph Colouring Problem(Biased), r: 8, q: 0.5

ValPrec
SigLex

SigLex-dec
GCC

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 22 24 26 28 30 32 34 36 38 40

A
ve

ra
ge

 F
ai

ls

n

Graph Colouring Problem(Biased), r: 8, q: 1

ValPrec
SigLex

SigLex-dec
GCC

 0.1

 1

 10

 100

 1000

 20 22 24 26 28 30 32 34 36 38 40

A
vg

er
ag

e
T

im
e

n

Graph Colouring Problem(Biased), r: 8, q: 1

ValPrec
SigLex

SigLex-dec
GCC

(b) Biased distribution:q = 0.5 (top) or1.0 (bottom)

Fig. 1. Graph colouring: average number of fails (left) and time (right)

took fewer number of fails thanGCC andValPrec in almost all parameter settings.
The fewer number of fails, however, does not always lead to better run times, due to the
overhead incurred by the introduction of intermediate variables inside the implementa-
tion of the SIGLEX constraint.ValPrec is competitive only for small values ofn. The
relative performance ofSigLex andSigLex-dec overGCC andValPrec increases as
q increases. Among the two variable partition orderings in SIGLEX, SigLex-dec has
much better performance thanSigLex in both number of fails and run time, confirming
the effectiveness of our proposed heuristic. The performance advantage ofSigLex-dec
over the other models becomes larger as bothn andq increases.

8.2 Concert hall scheduling

A concert hall director receivesn applications to use thek identical concert halls. Each
application specifies a period and an offered price to use a hall for the whole period. The
concert hall scheduling problem [18] is to decide which applications to accept in order
to maximise the total income. Each accepted application should be assigned the same
hall during its whole applied period. We use a variable to represent each application
whose domain is{1, . . . , k +1} in two value partitions. Values1, . . . , k represent thek
interchangeable halls, while the valuek + 1 represents a rejected application. Variables
representing identical applications (same period and offered price) are interchangeable
and form a partition. We generate problem instances with a maximum ofr = 8 identical
applications, and the size of each partition is generated uniformly. We test withn from
20 to 40 in steps of2, r = 8 andk ∈ {10, 14}. Experimental results are shown in Fig. 2.

Regarding the number of fails,SigLex-dec achieves the best result andValPrec
performs the worst. Regarding the run time,SigLex-dec also achieves the best for
almost all cases.SigLex has a slower run-time on this problem, despite a better number
of fails thanValPrec andGCC. This is again due to the implementation overhead in the
SIGLEX constraint. The decreasing variable partition ordering heuristic helps hugely to
improve the pruning performance and hence outweigh the overhead to reduce the run
time. We also generated instances using a biased distribution like in graph colouring
and obtained similar experimental results. Due to space limitation, we skip the details.

Note that the concert hall scheduling problem does not really have ALL DIFF con-
straints in the variable partitions. However, the problem constraints are very similar to
ALL DIFF: two variablesXi andXj representing two interchangeable applications can-
not take the same value (hall)if the two applications are not rejected. That is,Xi 6= Xj

if Xi 6= k + 1 andXj 6= k + 1. The propagation behaviour of such kind of constraint
is still similar to that of ALL DIFF. Thus, the decreasing size variable partition ordering
can still help improve the pruning performance.

9 Related work

Puget proved that symmetries can always be eliminated by theadditional of suitable
constraints [1]. Crawfordet al.presented the first general method for constructing such
symmetry breaking constraints, which are so-called “lex-leader” constraints [2]. They
also argued that it is NP-hard to eliminate all symmetric solutions in general. The full

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 22 24 26 28 30 32 34 36 38 40

A
ve

ra
ge

 F
ai

ls

n

Concert Hall Problem, r: 8, k: 10

ValPrec
SigLex

SigLex-dec
GCC

 0.1

 1

 10

 100

 1000

 20 22 24 26 28 30 32 34 36 38 40

A
vg

er
ag

e
T

im
e

n

Concert Hall Problem, r: 8, k: 10

ValPrec
SigLex

SigLex-dec
GCC

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 22 24 26 28 30 32 34 36 38 40

A
ve

ra
ge

 F
ai

ls

n

Concert Hall Problem, r: 8, k: 14

ValPrec
SigLex

SigLex-dec
GCC

 0.1

 1

 10

 100

 1000

 20 22 24 26 28 30 32 34 36 38 40

A
vg

er
ag

e
T

im
e

n

Concert Hall Problem, r: 8, k: 14

ValPrec
SigLex

SigLex-dec
GCC

Fig. 2. Concert hall scheduling (uniform distribution): average number of fails (left) and time
(right), k = 10 (top) or14 (bottom)

set of lex-leader constraints can often be simplified. For example, when variables are
interchangeable and must take all different values, Puget showed that the lex-leader
constraints simplify to a linear number of binary inequality constraints [19]. To break
value symmetry, Puget introduced one variable per value anda linear number of bi-
nary constraints [20]. Law and Lee formally defined value precedence and proposed
a specialised propagator for breaking the special type of value symmetry between two
interchangeable values [4]. Walsh extended this to a propagator for any number of inter-
changeable values [16]. Finally, an alternative way to break value symmetry statically
is to convert it into a variable symmetry by channelling intoa dual viewpoint and using
lexicographic ordering constraints on this dual view [3, 18]. Different postings of sym-
metry breaking constraints can leave a different solution from each equivalence class
of solutions and affect search performance. Frischet al. discussed choosing a good
posting to give the best propagation and allow new implied constraints [21]. Smith
presented experiments with different symmetry breaking constraints using the graceful
graph problem, but did not give heuristics for choosing a good posting [22].

10 Conclusions

We have considered breaking the symmetry introduced by interchangeable variables
and values. Whilst there exist polynomial methods to eliminate all symmetric solutions,

pruning all symmetric values is NP-hard. We have introduceda new propagator called
SIGLEX for pruning some (but not necessarily all) symmetric values. The new propaga-
tor is based on a decomposition using REGULAR constraints. We have also introduced
a heuristic for ordering the variable partitions when posting SIGLEX constraints that
improves pruning. Finally, we have tested these symmetry breaking constraints experi-
mentally for the first time and shown that they are effective in practice.

References

1. Puget, J.F.: On the satisfiability of symmetrical constrained satisfaction problems. In: Proc.
of ISMIS’93. (1993) 350–361

2. Crawford, J., Luks, G., Ginsberg, M., Roy, A.: Symmetry breaking predicates for search
problems. In: Proc. of KR’96. (1996) 148–159

3. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking row
and column symmetry in matrix models. In: Proc. of CP’02. (2002) 462–476

4. Law, Y.C., Lee, J.: Global constraints for integer and setvalue precedence. In: Proc. of
CP’04. (2004) 362–376

5. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Proc. of CP’01. (2001)
93–107

6. Gent, I., Smith, B.: Symmetry breaking in constraint programming. In: Proc. of ECAI’00.
(2000) 599–603

7. Roney-Dougal, C., Gent, I., Kelsey, T., Linton, S.: Tractable symmetry breaking using re-
stricted search trees. In: Proc. of ECAI’04. (2004) 211–215

8. Walsh, T.: Breaking value symmetry. In: Proc. of CP’07. (2007)
9. Flener, P., Pearson, J., Sellmann, M., Van Hentenryck, P.: Static and dynamic structural

symmetry breaking. In: Proc. of CP’06. (2006) 695–699
10. Sellmann, M., Van Hentenryck, P.: Structural symmetry breaking. In: Proc. of IJCAI’05.

(2005) 298–303
11. Pesant, G.: A regular language membership constraint for finite sequences of variables. In:

Proc. of CP’04. (2004) 482–295
12. Quimper, C., van Beek, P., Lopez-Ortiz, A., Golynski, A.: Improved algorithms for the global

cardinality constraint. In: Proc. of CP’04. (2004) 542–556
13. Quimper, C., Walsh, T.: Global grammar constraints. In:Proc. of CP’06. (2006) 751–755
14. Puget, J.F.: Automatic detection of variable and value symmetries. In: Proc. of CP’05. (2005)

475–489
15. Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Propagation algorithms for lexico-

graphic ordering constraints. Artificial Intelligence170 (2006) 803–908
16. Walsh, T.: Symmetry breaking using value precedence. In: Proc. of ECAI’06. (2006) 168–

172
17. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database

schemes. JACM30 (1983) 479–513
18. Law, Y.C., Lee, J.: Symmetry breaking constraints for value symmetries in constraint satis-

faction. Constraints11 (2006) 221–267
19. Puget, J.F.: Breaking symmetries in all different problems. In: Proc. of IJCAI’05. (2005)

272–277
20. Puget, J.F.: Breaking all value symmetries in surjection problems. In: Proc. of CP’05. (2005)

490–504
21. Firsch, A., Jefferson, C., Miguel, I.: Symmetry breaking as a prelude to implied constraints:

A constraint modelling pattern. In: Proc. of ECAI’04. (2004) 171–175
22. Smith, B.: Sets of symmetry breaking constraints. In: Proc. of SymCon’05. (2005)

