
Solving the Salinity Control Problem in
a Potable Water System⋆

Chiu Wo Choi and Jimmy H.M. Lee

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
{cwchoi,jlee}@cse.cuhk.edu.hk

Abstract. Salinity is the relative concentration of salts in water. Ina city of
southern China, the local water supply company pumps water from a nearby
river for potable use. During the winter dry season, the intrusion of sea water
raises the salinity of the river to a high level and affects approximately the daily
life of 450,000 residents of the city. This paper reports theapplication of con-
straint programming (CP) to optimize the logistical operations of the raw water
system so as to satisfy the daily water consumption requirement of the city and
to keep the potable salinity below a desirable level for as many days as possi-
ble. CP is the key to the success of the project for its separation of concerns and
powerful constraint language that allows for rapid construction of a functional
prototype and production system. Flexibility and adaptiveness allow us to deal
with our clients’ many changes in the requirements. Deriving good variable and
value ordering heuristics, and generating useful implied constraints, we demon-
strate that branch-and-bound search with constraint propagation can cope with an
optimization problem of large size and great difficulty.

1 Introduction

Salinity is the relative concentration of salts in water measured in parts per million
(ppm). All types of water, except distilled water, contain different concentration of salts.
The salinity of very clean water is about 50 ppm, while sea-water is about 35,000 ppm.

In a city of southern China, the local water supply company pumps water into a raw
water system from a nearby river for supplying water to the city. The pumped water is
to be stored and mixed with water in a number of reservoirs in the raw water system.
The water is also treated before supplying to the general public for daily consumption.

The geographic location of the pumping station is close to the river estuary. During
the winter dry season, the water level of the river is low due to lack of rainfall. Tidal
flows and other weather conditions lead to the intrusion of sea-water into the river. As
a result, the salinity of the water pumped from the river could drastically rise to such
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levels as 2,500 ppm while the desirable salinity level of potable water is below 250
ppm. During thesalinity period, the daily life of some 450,000 residents is affected.

There are a number of ways to better prepare for the crisis. Onthe engineering side,
the water company can improve the monitoring of the salinitylevels and the pumping
system. Reservoirs can be topped up with fresh water before the dry season begins.
Better leak detection at the water pipes and the reservoirs can reduce water loss.

Before attempting on larger scale engineering work, such asseawater desalination,
the water company decided to tackle the salinity issue as an optimization problem.
The idea is to carefully plan when and how much water to pump from the river using
supplied prediction information of the salinity profile at the water source, and how much
water should be transferred among the reservoirs in the raw water system. The aim is to
satisfy the daily water consumption while optimizing the number of days in which the
salinity of the potable water is below a given desirable level.

In the beginning of this project, the water supply company required us to handle at
most 90 days for the duration of the salinity period. Later, upon receiving satisfactory
preliminary results, the water supply company requested usto extend the duration to at
most 180 days, the problem model of which consists of about 4,500 variables and 9,000
constraints. The search space of such model is about(3, 612, 000)180. In addition to the
shear size, the problem consists of physical conditions expressible as a mixture of linear
and non-linear constraints, as well as ad hoc conditions which can only be modeled as
a table constraint. In view of the stringent requirements and tight production schedule,
we adopt constraint programming (CP) as the key technology of the project, following
the success of the CLOCWiSe project [1].

The rest of this paper is organized as follows. Section 2 discusses the current prac-
tice and why constraint programming (CP) is used in this project. Section 3 details the
application domain. Operations of the raw water system, as well as the objective of the
problem, are described in length. Section 4 describes how CPis applied to model the
problem. Section 5 describes the improvements to increase search efficiency, followed
by a discussion of some testing results in Section 6. In Section 7, we discuss the added
values of CP and other possible approaches that have been tried to solve the problem.
We conclude the paper in Section 8.

2 Current Practice versus Constraint Programming

The water supply company has developed a spreadsheet to optimize the operations of
water pumping and transfer during the salinity period. The spreadsheet approach is
primitive and uses manual trial-and-error method to perform optimization. The spread-
sheet consists of macros that encode equations on the law of conservation of matters.
Users of the spreadsheet have to input the given data and guess some values for the num-
ber of pumping hours and amount of water to be transferred between reservoirs. The
macro will then compute automatically the potable salinityusing the given inputs. Users
have to check whether the resulting potable salinity is satisfactory; if not, the guessed
values must be manually tuned repeatedly until a satisfactory result is obtained.

The major weakness of such manual method is that it is tediousand time consum-
ing. The problem on hand is usually too large and too complex for humans to perform
such manual optimization process. Users of the spreadsheetoften obtain solutions that
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violate some constraints of the problem, since some constraints stated above cannot be
enforced automatically using a spreadsheet. Field workersin the pumping stations and
reservoirs often lack the knowledge of operating a spreadsheet.

The water supply company would like to have an automated system with a more
realistic model and a simple interface so as to generate solutions which satisfy all the
constraints of the problem. Moreover, the system should be flexible enough to cater for
changes in the topology of the water system and additional constraints.

We propose the application of CP to develop an automated optimization engine for
solving the salinity problem. A key advantage of CP is the separation of modeling and
solving. By modeling, we mean the process of determining thevariables, the associated
domains of the variable, the constraints and the objective function. The availability of
a rich constraint language allows for a constraint model relatively close to the original
problem statement, making the model easy to verify and adaptable to changes. Indeed,
during the development of the system, our client changed theconstraints and require-
ments a good many times. CP allowed us to change the model quickly and meet the
tight development schedule.

Although efficient commercial constraint solvers are available, out-of-the-box exe-
cution strategies usually fail to handle even small testinginstances of the problem. We
make two improvements to speed up solution search and quality of solutions. First, by
studying the problem structure and insights of human experts in depth, we devise good
search heuristics for both variables and values that allow us to find solutions faster.
We also program an opportunistic iterative improvement strategy. Second, we give a
general theorem that allows us to derive useful implied constraints from a set of linear
equalities. Adding these implied constraints into the model can increase the amount of
constraint propagation, which in turns reduces the search space substantially.

Our application exemplifies the advantage of separation of concerns offered by CP.
After the problem model was constructed, we never had to touch the model again except
when users requested changes in the requirements. The focusof the development is thus
on improving search and looking for better heuristics.

3 Application Domain Description

The entire water supply system consists of the raw water system, water treatment plant
and potable water distribution network. In the raw water system, water is pumped from
the river and carried to the treatment plant. Surplus water are stored in reservoirs for
emergency and salinity control during dry season. In order to ensure that the water
supplied to the city is safe for drinking, raw water is treated in the treatment plant
before being carried by the distribution network to generalhouseholds and commercial
establishments. It is important to note that the water treatment plant is incapable of
removing salt from the raw water since salt is highly solubleand tends to stay dissolved.
In this project, we focus on optimizing the logistical operations of the raw water system
to control the salinity of potable water.

3.1 The Raw Water System
Figure 1 shows the topology of the water supply system. The raw water system consists
of 3 pumping stations (X , Y andZ) denoted by black dots, 4 reservoirs (A, B, C and
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Fig. 1. The Raw Water System Model

D) denoted by cylinders and a water treatment plant (E) denoted by a rectangle. Arrows
denote connecting pipes and the direction of water flow. Raw water (from the river) is
pumped at pumping stationX and carried all the way to reservoirC for storage. Surplus
water is delivered, via pumping stationsY andZ, to and stored in reservoirsA andB
respectively for future use. Water in reservoirsA andB can be transferred and mixed
with water in reservoirC for regulation of salinity of water during the dry seasons.
Water is carried from reservoirC to reservoirD for storage and to the water treatment
plantE which is connected directly to the distribution network. Inthe water treatment
plantE, water from reservoirC can be mixed with water from reservoirD. Water is
treated in the water treatment plantE before being supplied to the general public for
consumption.

There are several (reasonable) assumptions made by the water supply company for
the raw water system to simplify the computational model. The unit of measurement for
volume is cubic meter (m3) and the unit of measurement for operation of pumps is in
hours. Salinity concentration in each reservoir is homogeneous and instantaneous mix-
ing occurs when water is poured in each reservoir. There is little rainfall during the dry
seasons and the river is the only source of raw water. The computational model operates
on a day-by-day basis, so that the predicted salinity data represent daily averages. Since
salinity of the raw water varies during a single day, operators at the pumping station
would use their experience to decide the best time during theday to pump water with
lower salinity.

3.2 Physical and Human Constraints
There are three types of constraints concerning the raw water system. The first type of
constraints is about the law of conservation of matters (i.e. water and salts). The general
form for the law of conservation of water of a reservoir is

volume today= volume yesterday− volume flow-out+ volume flow-in. (1)

Analogously, the general form for the law of conservation ofsalts of a reservoir is

(salinity today× volume today) = (salinity yesterday× volume yesterday) −

(salinity flow-out × volume flow-out) + (salinity flow-in × volume flow-in) (2)

The second type of constraints is about physical limitationon the capacity of pumps,
reservoirs and pipes. Each pumping station has a maximum number of usable pumps
and each pump has a given capacity measured in cubic meters per hour. Each reservoir
has a minimum and maximum capacity. It is impossible to pump water out of a reser-
voir when it is at the minimum capacity, and overflowing a reservoir at its maximum
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Maximum Flow-out
Volume of ReservoirC (m3) Capacity of ReservoirC (m3/day)

2,345,650 – 2,454,590 211,395
...

...
1,200,000 – 1,256,250 160,445

Table 1.Constraint on Water Flowing Out of ReservoirC

capacity for dilution is forbidden. Each reservoir also hasa volume threshold which
reserves certain amount of water above the minimum capacityfor emergency use. The
volume threshold for each reservoir is different from one day to another, and the volume
threshold overrides the minimum capacity. The pipes, whichconnect reservoirsA and
B to reservoirC and the pipe which connects reservoirD to the treatment plantE, have
a maximum capacity measured in cubic meters per day.

Flowing from reservoirC located at a high topographical level, water is carried
by gravity to reservoirD and the water treatment plantE. Therefore, the maximum
amount of water that can flow out of reservoirC depends on the water pressure which
decreases as the water level of reservoirC goes down. Due to the complex nature of
the physics behind the water transfer mechanism, the constraint is given in the form
of a table constructed empirically using measurement and experimentation. The water
supply company provides a table (see Table 1) to specify suchconstraint.

The third type of constraints is about the requirements of the general public on wa-
ter consumption. It is mandatory to have enough water supplyto the general public
everyday. There is a maximum level of potable salinity to ensure that water is safe for
drinking. Between any two consecutive days, the salinity level of potable water should
not increase too drastically; otherwise, the general public will feel a sudden increase
in saltiness of drinking water and that will raise public discontent. There areno cor-
responding constraints to restrict sudden decreases, since drop in salinity is generally
welcome by the public.

3.3 Problem Statement

To control the salinity of potable water, the water supply company needs to control
carefully when and how much water is pumped from the river andhow much water
is transferred among the reservoirs. The aim is to satisfy all the constraints stated in
Section 3.2 and to keep the salinity of potable water below a desirable level for as many
days as possible during the salinity period. The given data include the initial volume
and salinity level of reservoirs and the prediction1 of salinity level of the river during
the salinity period.

4 Problem Modeling

Let n denote the duration of the given salinity period, (i.e.n ≤ 180 days). Since values
in our model are defined on a day-by-day basis, we have a set of variables for each day
i ∈ {1, . . . , n}, and each set contains seven variables. The first three variables areP X

i ,

1 The prediction of salinity level of the river is supplied to us by the water supply company. The
prediction model is beyond the scope of this project.

5



PY
i andPZ

i which denote the number of pumping hours to operate at pumping stations
X , Y andZ respectively. The other four variables areOA

i , OB
i , OC

i andOD
i which

denote the amount of water flowing out of reservoirsA, B, C andD respectively.

4.1 Domains Discretization
The associated domains of the above variables are all continuous in nature, i.e. time
for pumping hours and volume for water transfers. After consulting the water supply
company, we learn that it does not make sense to operate the pumps for a very short time
(e.g. 3 minutes) or to transfer a very small amount of water (e.g. 10 m3). Therefore, we
discretize the domains to reflect this reality and to reduce the search space. Assuming
the pumps are operated in unit ofφ pumping hours (e.g.φ = 6 hours), the domainsD
of the 3 pump variables are

D(PX
i ) = {0, . . . , ⌊NX · 24/φ⌋} D(PY

i ) = {0, . . . , ⌊NY · 24/φ⌋}
D(PZ

i ) = {0, . . . , ⌊NZ · 24/φ⌋}

whereNX , NY and NZ denote the maximum number of usable pumps in pump-
ing stationsX , Y andZ respectively. Assuming water is transferred in unit ofτ m3

(e.g.τ = 5, 000m3), the domainsD of the 4 flow-out variables are

D(OA
i ) = {0, . . . , ⌊FA/τ⌋} D(OB

i ) = {0, . . . , ⌊FB/τ⌋}
D(OC

i ) = {0, . . . , ⌊FC/τ⌋} D(OD
i ) = {0, . . . , ⌊FD/τ⌋}

whereFA, FB, FC , andFD denote the maximum amount of water that can flow out
of reservoirsA, B, C, andD respectively. We also have a number of other variables but
they are auxiliary in the sense that the values of the auxiliary variables are fixed once
the values of the decision variables are known.

4.2 Constraints and Objective Function
To express the constraints on the law of conservation of water for the reservoirs, we
derive the following constraints from Equation 1,

V A
i = V A

i−1
− (OA

i · τ) + IA
i (3)

V B
i = V B

i−1 − (OB
i · τ) + IB

i (4)

V C
i = V C

i−1
− (OC

i · τ) + (OA
i · τ) + (OB

i · τ) + IX
i − IA

i − IB
i (5)

V D
i = V D

i−1 − (OD
i · τ) + ID

i (6)

whereV A
i , V B

i , V C
i andV D

i are auxiliary variables denoting the volume of the four
reservoirs on dayi ∈ {1, . . . , n}; IA

i , IB
i , IX

i andID
i are auxiliary variables denoting

the amount of water to flow into the four reservoirs on dayi ∈ {1, . . . , n}. We express
the amount of water pumps from the pumping stations using theconstraints

IA
i = PY

i · φ · KY IB
i = PZ

i · φ · KZ IX
i = PX

i · φ · KX

whereKY , KZ andKX denote the capacity of the pumps in pumping stationsY , Z
andX respectively. We use the following constraints to express that there is only a
single source of water flowing into reservoirD,

ID
i = (OC

i · τ) − Ui V E
i = Ui + (OD

i · τ)
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whereV E
i denotes the amount of water consumption on dayi ∈ {1, . . . , n}, andUi

denotes the surplus water flowing out of reservoirC after some water is supplied for
consumption .

To express the constraints on the law of conservation of salts for reservoirsA, B,
C, D, we derive the following constraints from Equation 2,

(SA
i · V A

i ) = (SA
i−1

· V A
i−1

) − (SA
i−1

· OA
i · τ) + (SX

i · IA
i )

(SB
i · V B

i ) = (SB
i−1

· V B
i−1

) − (SB
i−1

· OB
i · τ) + (SX

i · IB
i )

(SC
i · V C

i ) = (SC
i−1

· V C
i−1

) − (SC
i−1

· OC
i · τ) + (SA

i−1
· OA

i · τ)+
(SB

i−1
· OB

i · τ) + (SX
i · IX

i ) − (SX
i · IA

i ) − (SX
i · IB

i )
(SD

i · V D
i ) = (SD

i−1
· V D

i−1
) − (SD

i−1
· OD

i · τ) + (SC
i−1

· ID
i )

whereSA
i , SB

i , SC
i , SD

i are auxiliary variables denoting the salinity level of the four
reservoirs on dayi ∈ {1, . . . , n}, andSX

i is the (given) predicted value of salinity level
of the river. We also need a constraint to specify the law of conservation of salts for
potable water

(SE
i · V E

i ) = (SC
i−1

· Ui) + (SD
i−1

· OD
i · τ)

whereV E
i andSE

i denote the amount of water consumption and the potable salinity on
dayi ∈ {1, . . . , n}. Note that the variables denoting salinity level are continuous, and
the constraints associated to these variables involve bothfinite domain and continuous
variables.

We can express the physical limitation on the volume of the reservoirs using the
following constraints,

V A
min

+ HA
i ≤ V A

i ≤ V A
max

V B
min

+ HB
i ≤ V B

i ≤ V B
max

V C
min

+ HC
i ≤ V C

i ≤ V C
max

V D
min

+ HD
i ≤ V D

i ≤ V D
max

whereV A
min

, V B
min

, V C
min

andV D
min

denote the minimum capacity of the four reservoirs,
V A

max
, V B

max
, V C

max
andV D

max
denote the maximum capacity of the four reservoirs, and

HA
i , HB

i , HC
i andHD

i denote the volume threshold of the four reservoirs on dayi ∈
{1, . . . , n}.

The following set of constraints expresses the requirements given in Table 1,

OC
i ≤











211, 395 if 2, 345, 650 < V C
i ≤ 2, 454, 590

...
...

160, 445 if 1, 200, 000 < V C
i ≤ 1, 256, 250

We have intentionally used< and≤ to specify the bounds on each level to avoid poten-
tial conflict with domain discretization.

Last but not least, we have the following constraints to express the requirements of
the general public on potable salinity,

SE
i ≤ SE

max SE
i ≤ SE

i−1 + δ

whereSE
max denotes the maximum level of potable salinity andδ denotes the maximum

allowable daily increase in potable salinity. Clearly, theobjective of the problem is to
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maximizethe sum
n

∑

i=1

(SE
i ≤ SE

desire
)

which represents the total number of days that potable salinity is below the desirable
levelSE

desire
.

5 Improving Search

We implement the above model using ILOG Solver 6.0 [5]. Out-of-the-box execution
strategies used in our initial implementation fails to handle even small testing instances
of the problem. There are two important issues in applying CPto solve problems. The
first issue is to use an appropriate search strategy so that (good) solutions appear earlier
in the search. There is no definite rule for discovering what is a good search strategy.
By studying the problem structure and insights of human experts in depth, we are able
to come up with a good search strategy. The second issue is that the model should also
havestrong propagation: that is, it should be able to quickly reduce thedomains of
the variables of the problem. We give a theorem for deriving useful implied constraints
from a set of linear equalities to increase the amount of constraint propagation.

5.1 Variable and Value Ordering Heuristics
Since values in our model are defined on a day-by-day basis, itdoes make sense to label
the variables chronologically by the days. We propose to pick first the seven decision
variables for day 1, then day 2, and so on until dayn. Such variable ordering has the
advantages of turning many of the non-linear constraints into linear constraints, since
constraint propagation on linear constraints is usually stronger than that on non-linear
constraints.

Within dayi ∈ {1, . . . , n}, we propose to pick the variables based on the following
order: (PX

i , PY
i , PZ

i , OC
i , OD

i , OA
i , OB

i ). This ordering is the best we have so far after
extensive experiments. The rationale is that the river is the only source of water, the
pumps dictate the amount of salts to take into the reservoirsand are very important in
controlling the salinity of potable water. In the raw water system, reservoirsA andB
serve only as storage for surplus water which can be used to dilute the water pumps
from the river, and hence are less important than reservoirsC andD.

Different variables represent different control parameters of the raw water system.
Rather than using a single value ordering heuristic for all variables, we have different
heuristics for different variables depending on their strategic roles in the raw water
system.

– For variablePX
i , the value ordering heuristic depends on the salinity of river SX

i

on dayi ∈ {1, . . . , n}. In order to control the salinity, it is common sense to pick
lower value forPX

i (i.e. pump less water) ifSX
i is high (i.e. salty river water);

and pick higher value forPX
i otherwise. We make use of a user-supplied salinity

level avoidPumpto indicate when the salinity should be considered high. IfSX
i is

less thanavoidPump, then larger values in the domain ofSX
i can be tried first; and

vice versa, otherwise. In comparingSX
i andavoidPump, the magnitude of their

difference is taken into account too.

8



– For variablesPY
i andPZ

i , the value ordering heuristic picks the middle value first.
Pumping stationsY andZ pump the water coming from pumping stationX , and
we prefer to pump more water from the river when it is less salty. We lean on
pumping more water into ReservoirsA andB for dilution, but at the same time
do not want to overdo it (since it is dangerous when the salinity of the water from
pumping stationX is high).

– For variableOC
i , rather than choosing the values one-by-one from the domains, we

use bisection to perform domain splitting. Bisection divides the values in a vari-
able domain into two equal halves, and this process is repeated recursively forming
a binary tree with leave nodes containing only a single value. The water supply
company prefers to use more water in reservoirC for consumption. Therefore, our
heuristic prefers to visit the branch with larger domain values first each time the
domains are bisected.

– For variableOD
i , the water supply company wants to avoid using too much water

from reservoirD. If SC
i−1

≤ SE
desire

, we use bisection and visit first the branch with
smaller domain values. Otherwise, our heuristic picks the value which gives the
minimum amount of water required to satisfySE

i ≤ SE
desire

.
– For variableOA

i andOB
i , we use bisection and visit first the branch with smaller

values. The rationale is to keep more fresh water in reservoirsA andB for dilution.

For most of the test cases given by the water supply company, the above search
strategy performs well. We called this strategy theNORMAL strategy. However, there
are some stringent (unrealistic) test cases where the amount of daily water consumption
is usually higher than the maximum amount of water that can flow out of reservoir
C. If we are too frugal in supplying water from reservoirsA andB to C, reservoirs
C and D alone would not be able to handle the high daily water consumption. To
deal with such situation, we propose another set of value ordering heuristic, called the
HIGH strategy, especially for test cases with such stringent daily water consumption
pattern. The only modification is to visit first the branch with larger domain values
when bisecting domains of variablesOA

i andOB
i . The rationale is to keep reservoirC

as full as possible.

5.2 Greedy Search Strategy

The basic solution search technology is branch-and-bound with constraint propagation.
TheavoidPumpuser input parameter turns out to have great impact on the quality of the
solutions generated. Since our value ordering heuristics are designed to generate good
quality solutions earlier in the search, prolonging the search effort could be fruitless.
We adopt an opportunistic iterative improvement approach.

Our search strategy encompasses trying differentavoidPumpvalues in succession
with a timeout (300 seconds) period for each value. After consultation with human
operators and extensive experimentations, we adopt to try the following avoidPump
values in sequence:600, 700, . . . , 1500. A smaller (larger)avoidPumpvalue implies a
more conservative (aggressive) approach to pumping water.In other words, we progress
from a more conservative to a more aggressive approach.

For everyavoidPumpvalue, we start execution with the best solution from the last
execution as guidance. After atimeoutperiod expires, the system examines if a better
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solution is found. If yes, execution continues for anothertimeoutperiod; otherwise, the
nextavoidPumpvalue is tried. The rationale is that if a better solution is found within
the timeoutperiod for a particularavoidPumpvalue, the value is good and should be
given more chance to search for even better solution. On the other hand, aavoidPump
value failing to find any good solutions within thetimeoutperiod is probably no good
and there is probably no point to search further.

5.3 Adding Implied Constraints
Most of the constraints in our model are linear equalities denoting the law of conser-
vation of water and salts. Given a set of linear equalities sharing common terms, we
can introduce a new variable to denote the common terms and reformulate the linear
equalities in terms of the new variables. The resulting set of linear equalities can be
added as implied constraints to increase the amount of constraint propagation. Modern
constraint solvers use bounds propagation [6] for linear arithmetic constraints. We state
without proof the following theorem based on the work of Harvey and Stuckey [4] and
Choiet al. [2, 3].

Theorem 1. Let c1 ≡
∑

i(ai)(xi) +
∑

j(bj)(yj) = d1 and c2 ≡
∑

j(bj)(yj) +
∑

k(ck)(zk) = d2, we can reformulatec1 and c2 as c3 ≡
∑

j(bj)(yj) − v = 0,
c4 ≡

∑

i(ai)(xi) + v = d1, andc5 ≡ v +
∑

k(ck)(zk) = d2. Bounds propagation on
{c1, c2, c3, c4, c5} is stronger than bounds propagation on{c1, c2}.

For instance, observe that there is a common term−(OA
i · τ) + IA

i between Equa-
tions 3 and 5, similarly a common term−(OB

i · τ) + IB
i between Equations 4 and 5.

We can reformulate Equations 3, 4 and 5 as follow

WA
i = −(OA

i · τ) + IA
i WB

i = −(OB
i · τ) + IB

i

V A
i = V A

i−1
+ WA

i V B
i = V B

i−1
+ WB

i

V C
i = V C

i−1
− (OC

i · τ) + IX
i − WA

i − WB
i

whereWA
i andWB

i are auxiliary variables representing the common term. We can
add the above equalities as implied constraints to our model. Supposeτ = 5000 and
the domainD is such that:D(V A

0
) = {1300000}, D(V B

0
) = {1237350}, D(V C

0
) =

{2450000}, D(V A
1

) = {320000, . . . , 1500000}, D(V B
1

) = {100000, . . . , 1260000},
D(V C

1 ) = {1200000, . . . , 2450000}, D(OA
1 ) = {0, . . . , 15}, D(OB

1 ) = {0, . . . , 15},
D(OC

1
) = {27, . . . , 42}, D(IA

1
) = {0, . . . , 36000}, D(IB

1
) = {0, . . . , 36000}, and

D(IX
1

) = {0, . . . , 432000}. Constraint propagation with the original set of constraints
returns the domainsD′ such thatD′(IX

1 ) = {0, . . . , 282000}, while constraint propa-
gation with the new and enlarged set of constraints returns the domainsD′′ such that
D′′(IX

1 ) = {0, . . . , 268650}. The latter is stronger in propagation.

6 Experiments
We have tested the system using both real-life and handcrafted data provided by the
water supply company. We have chosen three representative sets of data to illustrate the
performance of our system. Each set of data has a different characteristic, aiming to test
the versatility and robustness of our engine. The three setsof data differ in terms of:

– the duration of the salinity period (n),
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Fig. 2. Salinity Prediction Curves for Data Sets 1 to 3

salinity normal high old
desire max dayssecsfails dayssecs fails dayssecs fails

200 300 157 21 3 126 619 134,520,603 104 44 2,367
250 350 180 21 3 168 621 134,520,602 162 330 30,005
250 400 180 23 3 168 623 1,807 162 333 30,013
250 500 180 29 3 168 627 134,520,602 162 337 30,013
250 600 180 34 3 168 631 1,807 162 342 30,013
250 1,000 180 58 3 168 649 134,520,602 162 364 30,013
300 600 180 35 3 180 32 4 180 215 20,678
300 1,000 180 62 3 180 50 4 180 238 20,678

Table 2.Result of Set 1, Duration = 180 days

– the predicted salinity level of river (SX
i ),

– the daily water consumption of the city (V E
i ),

– the volume thresholds for the reservoirs (HA
i , HB

i ,HC
i andHD

i ), and
– the initial volumes and salinity values of the reservoirs (V A

0 , SA
0 , V B

0 , SB
0 , V C

0 ,
SC

0
, V D

0
, SD

0
).

Figure 2 gives the salinity curves of the prediction data.
The following experiments are executed using a Linux Workstation (Intel Pentium-

III 1GHz with 1GB memory) running Fedora Core release 3. We choose ILOG Solver
6.0 [5] as our implementation platform. The time limit for the system to run is set to one
hour. Execution is aborted when the time limit is reached, and the best solution located
so far is reported.

For this project, there is no way to do comparison with the existing manual method
based on spreadsheet. We cannot make any meaningful comparison in terms of the
quality of solution since the manual method often fails to obtain a solution satisfying
all constraints. We also cannot make any fair comparison in terms of time since one is
a manual method and the other is an automated method. Therefore, we present only the
results obtained from our system.

Table 2 shows the result of Set 1. The first two columns with heading “salinity”
indicate the different combination of desirable and maximum salinity level. The next
three columns with heading “normal” indicate the results using theNORMAL strategy.
We measure the number of days for which the potable salinity is below the desirable
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salinity normal high old
desire max days secs fails days secs fails dayssecsfails

200 300 – – – – – – – – –
250 350 – – – – – – – – –
250 400 – – – – – – – – –
250 500 107 1,222269,201,686 107 1,222134,725,593 – – –
250 600 117 926 269,080,063 117 925 134,604,570 – – –
250 1,000 117 943 269,063,234 117 943 134,582,923 73 53 520
300 600 137 952 269,096,832 129 1,225269,196,833 – – –
300 1,000 146 647 269,041,205 146 646 78,408 114 52 605

Table 3.Result of Set 2, Duration = 180 days

level (column “days”), the runtime in seconds (column “secs”) and the total number of
fails (column “fails”). The next three columns with heading“high” indicate the results
using theHIGH strategy. The last three columns with heading “old” indicate the results
of an earlier implementation without the custom heuristicsand implied constraints listed
in Section 5. Our system performs very well for Set 1 and is able to fulfill all 180
days with the potable salinity below 250 ppm in just 21 seconds. For this scenario, the
NORMAL strategy clearly works better than theHIGH strategy. This scenario represents
a typical dry season of the city that lasts only 90 days out of the 180 day period. The
search is clearly improved comparing to the “old” implementation for theNORMAL

strategy is able to find better solution much faster and lesser number of fails.
Table 3 shows the result of Set 2, which is a more difficult scenario than Set 1. Set 2

has a prolonged drought period lasting the entire 180 days, which isone of the worst in
the last 150 years for the city. For this set of data, our system can maintain the potable
salinity always below 500 ppm, but it can only fulfill 107 daysout of 180 days with
the potable salinity below 250 ppm. It takes around 20 minutes for our system to find
this solution. If we can relax the desirable salinity level to 300 ppm and the maximum
salinity level to 1000 ppm, our system can return a better solution fulfilling 146 days
out of 180 days with the potable salinity below 300 ppm. The system is now able to
find the solution in 10 minutes. This example illustrates theflexibility of our system. If
we allow the desirable salinity level to raise slightly higher, our system would be able
to distribute the salinity level of potable water more evenly among the days to improve
the quality of solution.

Table 4 shows the result of Set 3, which is an artificially handcrafted scenario. The
salinity level of the river for Set 3 is similar to the first 90 days of Set 1. The difficulty
of Set 3 lies in the unrealistically high daily water consumption2 comparing to Set 1
and Set 2 as shown in Figure 3. Set 1 (the bold dotted line) has constant daily water
consumption. Set 2 (the thin line) has a fluctuating daily water consumption. Set 3 (the
bold line) has a more fluctuating daily water consumption that is usually higher than
the maximum amount of water that can flow out of reservoirC (i.e. 211,395 m3/day).
Set 3 suffers from the problem discussed at the end of Section5.1, which makes the

2 The capacities of the reservoirs are:A = 1, 500, 000 m3, B = 1, 260, 000 m3, C =

2, 450, 000 m3, andD = 2, 060, 000 m3 for comparison with the daily consumption.
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salinity normal high old
desire max dayssecsfails days secs fails dayssecsfails

200 300 – – – – – – – – –
250 350 – – – – – – – – –
250 400 – – – 21 2,403404,174,730 – – –
250 500 – – – 28 1,803269,394,622 12 4 9
250 600 – – – 28 1,803269,480,570 12 4 9
250 1,000 – – – 28 1,805 639,731 12 6 9
300 600 – – – 45 1,803269,441,669 24 4 5
300 1,000 – – – 45 1,805135,072,897 24 6 5

Table 4.Result of Set 3, Duration = 90 days
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Fig. 3. Daily Water Consumption (V E

i )

NORMAL strategy fail. TheHIGH strategy is able to find a solution fulfilling 28 days out
of 90 days with the potable salinity below 250 ppm and maintaining the potable salinity
always below 500 ppm. It takes about 30 minutes to find this solution.

7 Discussions

In this project, we collaborate with the International Institute for Software Technol-
ogy, United Nations University (UNU/IIST). We are responsible for the design and
implementation of the core optimization engine, while UNU/IIST is responsible for
constructing a web user interface to invoke our optimization engine. We discuss in the
following issues regarding system development and deployment.

7.1 Added Values of CP
Our client gave us the problem in late September, 2004, only acouple of months before
the beginning of the winter dry season. During that time, thecity was suffering from
one of the most serious drought in the last 150 years. Due to the urgency of the problem,
we were given only 2 weeks to come up with a functional prototype, and to release a
fully functional production system in early December, 2004, just before the winter dry
season began. This version replicates and automates the functionalities and model of the
client’s spreadsheet model described in Section 2. We came up with a version to model
the table constraint (water flow limit from ReservoirC to D) plus a large number of
change requests in another month’s time. The project involves the authors coming up
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with the model and techniques for improving search, and two undergraduate students
for the implementation effort. The use of CP allowed us to meet the deadline and come
up with the first fully functional production system in just 2months of development.
We spent another 5 months to study and experiment with various search improvements.

We have delivered the system to the water supply company. Installation and user
trainings were provided, together with a 12-month maintenance and support period.
The system has passed user acceptance test and has been into full production mode
since June, 2005. We received positive feedbacks from the users of the water supply
company. The only support request was just for a re-installation because of the ILOG
product upgrade. However, due to the continuing worsening of the drought condition in
the past years, even optimizing the logistical operations of the raw water system alone
is insufficient to control the salinity problem. The water supply company is seriously
considering physical measures such as reverse osmosis, moving the pumping station to
upper stream of the river, and even purchasing fresh water from nearby provinces to
effectively handle the salinity crisis.

The optimization engine is abstracted from the web interface, the end-users do not
need to understand CP at all. Indeed, our client does not careabout the optimization
methodology we use, and wanted only a practical solution forthe salinity problem that
could be developed in 2 months, although our method has no guarantee for optimality.

7.2 Reasons for Choosing Finite Domain

Although the domain of the salinity problem is continuous (real numbers), a more nat-
ural choice seems to be modeling the problem using interval constraints instead of fi-
nite domain constraints. However, we still decided to use finite domain constraints for
the following practical considerations. First, as discussed in Section 4.1, it does not
make sense to operate the pumps for a very short time (e.g. 3 minutes) or to trans-
fer a very small amount of water (e.g. 10 m3). Therefore, we decided to discretize the
domains. Second, finite domain constraints have had many successful industrial appli-
cations including scheduling, time-tabling, resource allocation, etc. Third, the develop-
ment schedule was extremely tight and opportunity cost was high. At the time we were
given the problem, we simply could not afford a lot of experimentation but had to adopt
a proven technology.

7.3 Other Optimization Methodologies

Besides CP, we have investigated with UNU/IIST in applying Evolver [7], which is
a genetic algorithm based optimization engine for Microsoft R© Excel, to the project.
Experimental results show that this approach is less efficient both in terms of execution
time and quality of solution. Moreover, Evolver is only semi-automatic, requiring expert
human guidance during the search for solutions. This approach is also unstable and
unpredictable with regard to convergence. Nevertheless, such an approach is good for
fast prototyping.

We also works with the operations research (OR) colleagues in our university to
investigate the use of linear programming (LP) [8] for solving the salinity problem. The
advantage of using LP is that the domain of the salinity problem is continuous in na-
ture (i.e. real numbers); hence, there is no need to discretize the domains. However, the
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major obstacle to the LP approach is thenonlinearconstraints in the problem, i.e. con-
straints on the law of conservation of salts and the table constraints on the water flowing
out of reservoirC. The idea is to construct anapproximatemodel of the problem with
only linear constraints and objectives. Preliminary results are encouraging, outperform-
ing our engines in selected test cases. The possibility of combining the LP model and
the CP model is a promising research direction.

8 Conclusion

By applying CP, we have developed a fully automated optimization engine incorpo-
rating a more realistic model for solving the salinity problem. Experimental results
demonstrate that the engine is more efficient and can producehigher quality solutions
than the human counterpart. Now, even a non-domain expert can make use of our en-
gine to plan for water management operations and experimentwith different salinity
scenarios in advance.

In summary, the choice of CP has immense impact on the successful delivery of the
project. First, the rich constraint language available in commercial constraint solvers al-
lows efficient modeling of the problem. Separation of concerns of CP allows us to focus
on programming search heuristics. We were thus able to complete a working prototype
and a functional production system within a tight development schedule. Second, CP
is flexible and adaptive to changes. During the course of development, our client re-
quested for numerous, often unreasonable, changes to the requirement specification.
Without CP as the core technology, we were not sure if we coulddeal with all the re-
quests in a timely and mostly effortless manner. Third, we were also able to adopt and
generalize latest research result in propagation redundancy [4, 2, 3] to come up with
useful implied constraints for our implementation, thus enhancing the constraint prop-
agation in the salinity control engine. And this work on the model is orthogonal to the
search strategies we employ. This is again a triumph of separate of concerns.
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