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Abstract. Salinity is the relative concentration of salts in water.dreity of
southern China, the local water supply company pumps waten & nearby
river for potable use. During the winter dry season, theusitm of sea water
raises the salinity of the river to a high level and affectgragimately the daily
life of 450,000 residents of the city. This paper reportsdpelication of con-
straint programming (CP) to optimize the logistical opienag of the raw water
system so as to satisfy the daily water consumption reqeinérof the city and
to keep the potable salinity below a desirable level for asyrdays as possi-
ble. CP is the key to the success of the project for its separaf concerns and
powerful constraint language that allows for rapid cordtan of a functional
prototype and production system. Flexibility and adaptéss allow us to deal
with our clients’ many changes in the requirements. Deg\dgood variable and
value ordering heuristics, and generating useful implieastraints, we demon-
strate that branch-and-bound search with constraint gadjzm can cope with an
optimization problem of large size and great difficulty.

1 Introduction

Salinity is the relative concentration of salts in water swad in parts per million
(ppm). All types of water, except distilled water, contaiffietent concentration of salts.
The salinity of very clean water is about 50 ppm, while seéewia about 35,000 ppm.
In a city of southern China, the local water supply companypsiwater into a raw
water system from a nearby river for supplying water to thg dihe pumped water is
to be stored and mixed with water in a number of reservoirbénraw water system.
The water is also treated before supplying to the generdigias daily consumption.
The geographic location of the pumping station is close éaitrer estuary. During
the winter dry season, the water level of the river is low du&atk of rainfall. Tidal
flows and other weather conditions lead to the intrusion efwater into the river. As
a result, the salinity of the water pumped from the river dodilastically rise to such
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levels as 2,500 ppm while the desirable salinity level ofapte water is below 250
ppm. During thesalinity period the daily life of some 450,000 residents is affected.
There are a number of ways to better prepare for the crisish®angineering side,
the water company can improve the monitoring of the saliletels and the pumping
system. Reservoirs can be topped up with fresh water befierelty season begins.
Better leak detection at the water pipes and the resenairseduce water loss.

Before attempting on larger scale engineering work, suceawater desalination,
the water company decided to tackle the salinity issue aspéimization problem.
The idea is to carefully plan when and how much water to puromfthe river using
supplied prediction information of the salinity profile hetwater source, and how much
water should be transferred among the reservoirs in the @engystem. The aim is to
satisfy the daily water consumption while optimizing thenher of days in which the
salinity of the potable water is below a given desirablelleve

In the beginning of this project, the water supply compamuned us to handle at
most 90 days for the duration of the salinity period. Lat@om receiving satisfactory
preliminary results, the water supply company requested astend the duration to at
most 180 days, the problem model of which consists of ab&@34variables and 9,000
constraints. The search space of such model is gB96t2, 000)!%°. In addition to the
shear size, the problem consists of physical conditionssssible as a mixture of linear
and non-linear constraints, as well as ad hoc conditionshwvtgn only be modeled as
a table constraint. In view of the stringent requirementstaght production schedule,
we adopt constraint programming (CP) as the key technolbdgyeoproject, following
the success of the CLOCWiSe project [1].

The rest of this paper is organized as follows. Section 2udises the current prac-
tice and why constraint programming (CP) is used in thisgobjSection 3 details the
application domain. Operations of the raw water system,elkas the objective of the
problem, are described in length. Section 4 describes hovws @pplied to model the
problem. Section 5 describes the improvements to incressels efficiency, followed
by a discussion of some testing results in Section 6. In &atj we discuss the added
values of CP and other possible approaches that have bedrdrsolve the problem.
We conclude the paper in Section 8.

2 Current Practice versus Constraint Programming

The water supply company has developed a spreadsheet toizgthe operations of
water pumping and transfer during the salinity period. Theeadsheet approach is
primitive and uses manual trial-and-error method to penfoptimization. The spread-
sheet consists of macros that encode equations on the lasneévation of matters.
Users of the spreadsheet have to input the given data and guee values for the num-
ber of pumping hours and amount of water to be transferreddsst reservoirs. The
macro will then compute automatically the potable salinging the given inputs. Users
have to check whether the resulting potable salinity is&adtory; if not, the guessed
values must be manually tuned repeatedly until a satisfacésult is obtained.

The major weakness of such manual method is that it is tedinddime consum-
ing. The problem on hand is usually too large and too compekfimans to perform
such manual optimization process. Users of the spreadsfteatobtain solutions that



violate some constraints of the problem, since some cdanrstated above cannot be
enforced automatically using a spreadsheet. Field woikete pumping stations and
reservoirs often lack the knowledge of operating a sprezgtsh

The water supply company would like to have an automatesystith a more
realistic model and a simple interface so as to generat¢i@atuwhich satisfy all the
constraints of the problem. Moreover, the system shoulddxéfke enough to cater for
changes in the topology of the water system and additionmedtcaints.

We propose the application of CP to develop an automateth@atiion engine for
solving the salinity problem. A key advantage of CP is theasafon of modeling and
solving. By modeling, we mean the process of determining#nibles, the associated
domains of the variable, the constraints and the objectinetfon. The availability of
a rich constraint language allows for a constraint modaitiedly close to the original
problem statement, making the model easy to verify and atféoto changes. Indeed,
during the development of the system, our client changed@dhstraints and require-
ments a good many times. CP allowed us to change the moddlygaicd meet the
tight development schedule.

Although efficient commercial constraint solvers are alz#, out-of-the-box exe-
cution strategies usually fail to handle even small tesiistances of the problem. We
make two improvements to speed up solution search and goékblutions. First, by
studying the problem structure and insights of human expedepth, we devise good
search heuristics for both variables and values that allsvioufind solutions faster.
We also program an opportunistic iterative improvemergtsgy. Second, we give a
general theorem that allows us to derive useful implied tairgs from a set of linear
equalities. Adding these implied constraints into the nhade increase the amount of
constraint propagation, which in turns reduces the segrabessubstantially.

Our application exemplifies the advantage of separatiomoéerns offered by CP.
After the problem model was constructed, we never had tditthemodel again except
when users requested changes in the requirements. Thedfdtiesdevelopmentis thus
on improving search and looking for better heuristics.

3 Application Domain Description

The entire water supply system consists of the raw wateesysvater treatment plant
and potable water distribution network. In the raw wateteys water is pumped from

the river and carried to the treatment plant. Surplus wateistred in reservoirs for

emergency and salinity control during dry season. In ordegrtsure that the water
supplied to the city is safe for drinking, raw water is treate the treatment plant

before being carried by the distribution network to genbralseholds and commercial
establishments. It is important to note that the water tneat plant is incapable of

removing salt from the raw water since salt is highly solwrid tends to stay dissolved.
In this project, we focus on optimizing the logistical op@ras of the raw water system
to control the salinity of potable water.

3.1 The Raw Water System

Figure 1 shows the topology of the water supply system. Thenater system consists
of 3 pumping stationsX, Y and Z) denoted by black dots, 4 reservoirs, (B, C and



To Distribution
Network

Fig. 1. The Raw Water System Model

D) denoted by cylinders and a water treatment plaitdenoted by a rectangle. Arrows
denote connecting pipes and the direction of water flow. Ratex(from the river) is
pumped at pumping statioki and carried all the way to reservdirfor storage. Surplus
water is delivered, via pumping statioli'sand 7, to and stored in reservoir$ and B
respectively for future use. Water in reservaitsand B can be transferred and mixed
with water in reservoilC' for regulation of salinity of water during the dry seasons.
Water is carried from reservofr to reservoirD for storage and to the water treatment
plant £ which is connected directly to the distribution networkttie water treatment
plant £, water from reservoit’' can be mixed with water from reservair. Water is
treated in the water treatment plafitbefore being supplied to the general public for
consumption.

There are several (reasonable) assumptions made by thesupgdy company for
the raw water system to simplify the computational modek Whit of measurement for
volume is cubic meter () and the unit of measurement for operation of pumps is in
hours. Salinity concentration in each reservoir is homeges and instantaneous mix-
ing occurs when water is poured in each reservoir. Theréles tainfall during the dry
seasons and the river is the only source of raw water. The gtatipnal model operates
on a day-by-day basis, so that the predicted salinity dat@sent daily averages. Since
salinity of the raw water varies during a single day, opemati the pumping station
would use their experience to decide the best time duringlélyeto pump water with
lower salinity.

3.2 Physical and Human Constraints

There are three types of constraints concerning the rawrwgstem. The first type of
constraints is about the law of conservation of matters\iader and salts). The general
form for the law of conservation of water of a reservoir is

volume today= volume yesterday- volume flow-out+ volume flow-in (1)
Analogously, the general form for the law of conservatiosalts of a reservoir is

(salinity today x volume today = (salinity yesterdayx volume yesterday—
(salinity flow-out x volume flow-ouj + (salinity flow-in x volume flow-in (2)

The second type of constraints is about physical limitatiothe capacity of pumps,
reservoirs and pipes. Each pumping station has a maximunb&uaf usable pumps
and each pump has a given capacity measured in cubic metdieyre Each reservoir
has a minimum and maximum capacity. It is impossible to purafenout of a reser-
voir when it is at the minimum capacity, and overflowing a rese at its maximum



Maximum Flow-out
Volume of Reservoil”' (m?) | Capacity of Reservoi€’ (m?/day)
2,345,650 — 2,454,590 211,395

1,200,000 - 1,256,250 160,445

Table 1. Constraint on Water Flowing Out of Reservair

capacity for dilution is forbidden. Each reservoir also haglume threshold which
reserves certain amount of water above the minimum capfcigmergency use. The
volume threshold for each reservoir is different from ongteanother, and the volume
threshold overrides the minimum capacity. The pipes, whiammect reservoird and
B to reservoilC and the pipe which connects reservbito the treatment plarit’, have
a maximum capacity measured in cubic meters per day.

Flowing from reservoirC' located at a high topographical level, water is carried
by gravity to reservoitD and the water treatment plait Therefore, the maximum
amount of water that can flow out of reservoéirdepends on the water pressure which
decreases as the water level of reser¢digoes down. Due to the complex nature of
the physics behind the water transfer mechanism, the @nstis given in the form
of a table constructed empirically using measurement apdraxentation. The water
supply company provides a table (see Table 1) to specify soktraint.

The third type of constraints is about the requirements@fneral public on wa-
ter consumption. It is mandatory to have enough water suggptie general public
everyday. There is a maximum level of potable salinity toueashat water is safe for
drinking. Between any two consecutive days, the salinipgllef potable water should
not increase too drastically; otherwise, the general pubiil feel a sudden increase
in saltiness of drinking water and that will raise publicatiatent. There arao cor-
responding constraints to restrict sudden decreasege drop in salinity is generally
welcome by the public.

3.3 Problem Statement

To control the salinity of potable water, the water supplynpany needs to control
carefully when and how much water is pumped from the river laod much water
is transferred among the reservoirs. The aim is to satisfthalconstraints stated in
Section 3.2 and to keep the salinity of potable water beloesirdble level for as many
days as possible during the salinity period. The given dathude the initial volume
and salinity level of reservoirs and the predictiaf salinity level of the river during
the salinity period.

4 Problem Modeling

Letn denote the duration of the given salinity period, (he< 180 days). Since values
in our model are defined on a day-by-day basis, we have a satiables for each day
i € {1,...,n}, and each set contains seven variables. The first threeolesiareP;*

! The prediction of salinity level of the river is supplied te ly the water supply company. The
prediction model is beyond the scope of this project.



PY and PZ which denote the number of pumping hours to operate at pugrgbations
X, Y and Z respectively. The other four variables av', OF, OY andOP which
denote the amount of water flowing out of reservolrsB, C and D respectively.

4.1 Domains Discretization

The associated domains of the above variables are all eanttin nature, i.e. time
for pumping hours and volume for water transfers. After cdiirsy the water supply
company, we learn that it does not make sense to operatengsdor a very short time
(e.g. 3 minutes) or to transfer a very small amount of watey. (€0 n¥). Therefore, we
discretize the domains to reflect this reality and to redheesearch space. Assuming
the pumps are operated in unit®@pumping hours (e.g» = 6 hours), the domain®

of the 3 pump variables are

D(PX)=1{0,...,|NX-24/¢|} D(PY)={0,...,[NY -24/6|}
D(P?)=1{0,...,|N%-24/¢|}

where NX, NY and N denote the maximum number of usable pumps in pump-
ing stationsX, Y and Z respectively. Assuming water is transferred in unitrain?®
(e.g.7 = 5,000m?3), the domaingD of the 4 flow-out variables are

D(O#) ={0,....[F/r]}  D(OF) =A{0,...,[F¥/r|}
D(Of) ={0,...,[F/r]}  D(OP)={0,...,[FP/7]}

whereF4, B, ¢, and P denote the maximum amount of water that can flow out
of reservoird, B, C, andD respectively. We also have a number of other variables but
they are auxiliary in the sense that the values of the auyiliariables are fixed once
the values of the decision variables are known.

4.2 Constraints and Objective Function
To express the constraints on the law of conservation ofatethe reservoirs, we
derive the following constraints from Equation 1,

VA=VA —©Of T+ I (3)
VP =VE - (OF -71)+1f (4)
VE =V —(0F -7)+ (0 7)+ (OF 7)+ X — I} — IP (5)
VP =VP, —(OF 7)+1P (6)

whereVA, V.B, V.¢ andV,” are auxiliary variables denoting the volume of the four
reservoirs on day € {1,...,n}; I, IB, IX andI} are auxiliary variables denoting

the amount of water to flow into the four reservoirs on day {1, ...,n}. We express
the amount of water pumps from the pumping stations usingahstraints

[iA:PiY'¢'KY II‘B:PL'Z'¢'KZ I’iX:PiX'(//)'KX

whereKY, K% and KX denote the capacity of the pumps in pumping statiBns’
and X respectively. We use the following constraints to expréss there is only a
single source of water flowing into reserva,

P =(0f -7) - U; VE=Ui+(0F 7



whereV.F denotes the amount of water consumption on day {1,...,n}, andU;
denotes the surplus water flowing out of reser@iafter some water is supplied for
consumption .

To express the constraints on the law of conservation of $altreservoirs, B,
C, D, we derive the following constraints from Equation 2,

(S VA) (S, -Vidy) — (sS4 ) + (S I
(SP-VP) = (SF 1 VB - (SF 1 OB + (57 IB
(S¢ - Vc) (SF L VG — (82, - 0F - ) +(Si O;“ )+

(S21-0F - 1)+ (5% - 1) — (S - 1) — (5% - IP)
(SD VD) (SZD1 V£1) - (Silzl ’ Oz'D )+ (Siql ’ Iz'D)
whereS#, SB, S¢, SP are auxiliary variables denoting the salinity level of tioeif
reservoirsondaye {1,...,n}, andS;X is the (given) predicted value of salinity level
of the river. We also need a constraint to specify the law ofseovation of salts for
potable water

(SF-V,P) = (52, -U) + (52, -0 -7)

whereV.” andSF denote the amount of water consumption and the potablétgadim
dayi € {1,...,n}. Note that the variables denoting salinity level are cardims, and
the constraints associated to these variables involvefboth domain and continuous
variables.

We can express the physical limitation on the volume of tlsemeirs using the
following constraints,
VB L+ HP <VB<VE

VA +HA<VA<VA

T LS A S T i LS S T
len + H < V < ‘/;Ilax me + H < V < mex

wflerevrfm, VvE V< andV.E  denote the minimum capacity of the four reservoirs,
v

vE vC andVD denote the maximum capacity of the four reservoirs, and

m a.X ' max? max max

HA, HE, HF andHP denote the volume threshold of the four reservoirs oniday

{1,...,n}.

The following set of constraints expresses the requiresngiaén in Table 1,

211,395 if 2,345,650 < V;C < 2,454,590
0% <

[ —

160,445 if 1,200,000 < V,€ < 1,256,250

We have intentionally used and< to specify the bounds on each level to avoid poten-
tial conflict with domain discretization.

Last but not least, we have the following constraints to egpthe requirements of
the general public on potable salinity,

SE<S£ax SF§S£1+5

whereSZ, denotes the maximum level of potable salinity ardknotes the maximum

allowable daily increase in potable salinity. Clearly, titgective of the problem is to



maximizethe sum

Z(SZE S S(iE(;sire)

=1
which represents the total number of days that potableigalgibelow the desirable
level SE

desire*

5 Improving Search

We implement the above model using ILOG Solver 6.0 [5]. Oithe-box execution
strategies used in our initial implementation fails to Harelen small testing instances
of the problem. There are two important issues in applyingd@gvlve problems. The
first issue is to use an appropriate search strategy so thad)golutions appear earlier
in the search. There is no definite rule for discovering what good search strategy.
By studying the problem structure and insights of human egpe depth, we are able
to come up with a good search strategy. The second issuet ihthaodel should also
havestrong propagation: that is, it should be able to quickly reducedbmains of
the variables of the problem. We give a theorem for deriviseful implied constraints
from a set of linear equalities to increase the amount oftcaims propagation.

5.1 Variable and Value Ordering Heuristics

Since values in our model are defined on a day-by-day badises make sense to label
the variables chronologically by the days. We propose t& fiist the seven decision
variables for day 1, then day 2, and so on until daysuch variable ordering has the
advantages of turning many of the non-linear constrairttslinear constraints, since
constraint propagation on linear constraints is usuatiyrgter than that on non-linear
constraints.

Within dayi € {1,...,n}, we propose to pick the variables based on the following
order: (P, PY, PZ,0¢, 0P, 04, OF). This ordering is the best we have so far after
extensive experiments. The rationale is that the river ésahly source of water, the
pumps dictate the amount of salts to take into the reseraoidsare very important in
controlling the salinity of potable water. In the raw watgstem, reservoirsl and B
serve only as storage for surplus water which can be usedute dhe water pumps
from the river, and hence are less important than resergbasdD.

Different variables represent different control paramsetd# the raw water system.
Rather than using a single value ordering heuristic for atlables, we have different
heuristics for different variables depending on theirtega roles in the raw water
system.

— For variableP/X, the value ordering heuristic depends on the salinity afrriz*
ondayi € {1,...,n}. In order to control the salinity, it is common sense to pick
lower value forPX (i.e. pump less water) i is high (i.e. salty river water);
and pick higher value foP/X otherwise. We make use of a user-supplied salinity
level avoidPumpo indicate when the salinity should be considered higl;ifis
less tharavoidPumpthen larger values in the domain 8§ can be tried first; and
vice versa, otherwise. In comparirtg® and avoidPump the magnitude of their
difference is taken into account too.



— For variables?} and PZ, the value ordering heuristic picks the middle value first.
Pumping stationd” and Z pump the water coming from pumping statiah and
we prefer to pump more water from the river when it is lessysaMle lean on
pumping more water into Reservoirs and B for dilution, but at the same time
do not want to overdo it (since it is dangerous when the sglofithe water from
pumping stationX is high).

— For variableO¢, rather than choosing the values one-by-one from the danain
use bisection to perform domain splitting. Bisection désdhe values in a vari-
able domain into two equal halves, and this process is regeatursively forming
a binary tree with leave nodes containing only a single valiee water supply
company prefers to use more water in reser¢dfor consumption. Therefore, our
heuristic prefers to visit the branch with larger domainuesl first each time the
domains are bisected.

— For variableOP, the water supply company wants to avoid using too much water
from reservoirD. If S¢, < S¥ . we use bisection and visit first the branch with
smaller domain values. Otherwise, our heuristic picks thlees which gives the
minimum amount of water required to satisfyy < ST .

— For variableO# andOZ, we use bisection and visit first the branch with smaller
values. The rationale is to keep more fresh water in resexvicand B for dilution.

For most of the test cases given by the water supply compheyalbove search
strategy performs well. We called this strategy 8@RMAL strategy. However, there
are some stringent (unrealistic) test cases where the arabdaily water consumption
is usually higher than the maximum amount of water that can fat of reservoir
C'. If we are too frugal in supplying water from reservoitsand B to C, reservoirs
C and D alone would not be able to handle the high daily water consiampTo
deal with such situation, we propose another set of valuerord heuristic, called the
HIGH strategy, especially for test cases with such stringeny dater consumption
pattern. The only modification is to visit first the branchtwiarger domain values
when bisecting domains of variables' andOF. The rationale is to keep reservair
as full as possible.

5.2 Greedy Search Strategy

The basic solution search technology is branch-and-bouthcbenstraint propagation.
TheavoidPumpiser input parameter turns out to have great impact on thayogthe
solutions generated. Since our value ordering heuristeslasigned to generate good
quality solutions earlier in the search, prolonging therde&ffort could be fruitless.
We adopt an opportunistic iterative improvement approach.

Our search strategy encompasses trying diffea@nidPumpvalues in succession
with a timeout (300 seconds) period for each value. After consultatior vaigman
operators and extensive experimentations, we adopt tchéyfdllowing avoidPump
values in sequencé00, 700, ...,1500. A smaller (largeravoidPumpvalue implies a
more conservative (aggressive) approach to pumping watether words, we progress
from a more conservative to a more aggressive approach.

For everyavoidPumpvalue, we start execution with the best solution from the las
execution as guidance. Aftertimeoutperiod expires, the system examines if a better



solution is found. If yes, execution continues for anotitaeoutperiod; otherwise, the
nextavoidPumpvalue is tried. The rationale is that if a better solutionaarid within
the timeoutperiod for a particulanvoidPumpvalue, the value is good and should be
given more chance to search for even better solution. Onttiex band, avoidPump
value failing to find any good solutions within thieneoutperiod is probably no good
and there is probably no point to search further.

5.3 Adding Implied Constraints
Most of the constraints in our model are linear equalitiesatieg the law of conser-
vation of water and salts. Given a set of linear equalitierigly common terms, we
can introduce a new variable to denote the common terms dodmelate the linear
equalities in terms of the new variables. The resulting $dinear equalities can be
added as implied constraints to increase the amount of reamispropagation. Modern
constraint solvers use bounds propagation [6] for lineiéin@etic constraints. We state
without proof the following theorem based on the work of Harand Stuckey [4] and
Choietal.[2, 3].
Theorem 1. Letc; = Zz(at)(xl) + Z](bj)(yj) = d; andcy = Z](bj)(yj) +
> k(cx)(zr) = d2, we can reformulate; andcy ascz = >_,(b;)(y;) —v = 0,
cs = Y ;(a;)(x;) +v=di,andes = v + Y, (cr)(2) = d2. Bounds propagation on
{c1, ca, c3, 4, c5} IS Stronger than bounds propagation éa, co }.

For instance, observe that there is a common tefi@* - 7) + I* between Equa-
tions 3 and 5, similarly a common term(OF - 7) + I? between Equations 4 and 5.
We can reformulate Equations 3, 4 and 5 as follow

WA = (08 7) + I} WE = —(OF .7) + IF
VA=VA Wi VP =VE +wF
VO =VE - (OF - m) + I =W - WF

whereWA and W/ are auxiliary variables representing the common term. We ca
add the above equalities as implied constraints to our m&ilgiposer = 5000 and
the domainD is such thatD(Vy') = {1300000}, D(V,?) = {1237350}, D(V,{) =
{2450000}, D(VA) = {320000, .. .,1500000}, D(V;{®) = {100000,...,1260000},
D(V€) = {1200000, . . .,2450000}, D(O{') = {0,...,15}, D(OP) = {0, ..., 15},
D(OS) = {27,...,42}, D(I{*) = {0,...,36000}, D(I¥) = {0,...,36000}, and
D(I{¥) = {0,...,432000}. Constraint propagation with the original set of constisin
returns the domain®’ such thatD’(I1;¥) = {0, ...,282000}, while constraint propa-
gation with the new and enlarged set of constraints retiragslomainsD” such that
D"(I{¥) = {0, ...,268650}. The latter is stronger in propagation.

6 Experiments

We have tested the system using both real-life and handdradftta provided by the
water supply company. We have chosen three representat&sefdata to illustrate the
performance of our system. Each set of data has a differanacteristic, aiming to test
the versatility and robustness of our engine. The threed$etata differ in terms of:

— the duration of the salinity periodhj,

10
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Fig. 2. Salinity Prediction Curves for Data Sets 1 to 3

salinity normal high old
desire max|daygsecsfails||dayssecs fails||dayssecs fails
200 300| 157 21| 3|| 126 619134,520,608 104 44| 2,367
250 350|180 21| 3|| 168 621134,520,608 162 330/30,005
250 400|180 23 3|| 168 623 1,807| 162 33330,013
250 500|180 29 3|| 168 627/134,520,608 162 337/30,013
250 600| 180 34| 3|| 168 631 1,807| 162 34230,013
2501,00Q| 180 58 3|| 168 649134,520,608 162 364{30,013
300 600| 180 35 3|| 180 32 4/l 180 21520,674
3001,00Q| 180 62| 3|| 180 50 4/| 180 23820,674

Table 2. Result of Set 1, Duration = 180 days

— the predicted salinity level of riverst¥),

— the daily water consumption of the city’f),

— the volume thresholds for the reservoifg, HZ,HE andH}), and

— the initial volumes and salinity values of the reservolg'( Sg', V%, S, V&,
S§, Ve”, 5¢)-

Figure 2 gives the salinity curves of the prediction data.

The following experiments are executed using a Linux Watksh (Intel Pentium-
Il 1GHz with 1GB memory) running Fedora Core release 3. Weosle ILOG Solver
6.0 [5] as our implementation platform. The time limit foethystem to run is set to one
hour. Execution is aborted when the time limit is reached,the best solution located
so far is reported.

For this project, there is no way to do comparison with thetaxg manual method
based on spreadsheet. We cannot make any meaningful cempami terms of the
quality of solution since the manual method often fails téadiba solution satisfying
all constraints. We also cannot make any fair comparisoarim$ of time since one is
a manual method and the other is an automated method. Theref® present only the
results obtained from our system.

Table 2 shows the result of Set 1. The first two columns withdhrgp“salinity”
indicate the different combination of desirable and maximsalinity level. The next
three columns with heading “normal” indicate the resulisigghe NORMAL strategy.
We measure the number of days for which the potable saligibyelow the desirable

11



salinity normal high old
desire max|days secg fails|{|days secs$ fails||daygsecsfails
200 300| - - -l - T i
250 350| - - -l - T i
250 400| - - - - - - - - -
250 500 107|1,222269,201,68F 1071,222134,725,598 - —| —
250 600| 117 926269,080,068 117 925134,604,57Q) — - -
2501,00Q| 117 943269,063,234 117 943134,582,928 73| 53| 520
300 600| 137 952269,096,834 1291,225269,196,838 — —| -
3001,00Q| 146/ 647/269,041,205 146 646 78,408 114 52| 605

Table 3.Result of Set 2, Duration = 180 days

level (column “days”), the runtime in seconds (column “Sgesid the total number of
fails (column “fails”). The next three columns with headiftggh” indicate the results
using theHIGH strategy. The last three columns with heading “old” indicthie results
of an earlier implementation without the custom heurisdied implied constraints listed
in Section 5. Our system performs very well for Set 1 and i dblfulfill all 180
days with the potable salinity below 250 ppm in just 21 sesoi@r this scenario, the
NORMAL strategy clearly works better than thesH strategy. This scenario represents
a typical dry season of the city that lasts only 90 days ouhefi80 day period. The
search is clearly improved comparing to the “old” implenagion for theNORMAL
strategy is able to find better solution much faster and tessmber of fails.

Table 3 shows the result of Set 2, which is a more difficult acerthan Set 1. Set 2
has a prolonged drought period lasting the entire 180 dayishnsone of the worst in
the last 150 years for the cityror this set of data, our system can maintain the potable
salinity always below 500 ppm, but it can only fulfill 107 dayst of 180 days with
the potable salinity below 250 ppm. It takes around 20 mitde our system to find
this solution. If we can relax the desirable salinity lexeBD0 ppm and the maximum
salinity level to 1000 ppm, our system can return a bettastswni fulfilling 146 days
out of 180 days with the potable salinity below 300 ppm. Th&tey is now able to
find the solution in 10 minutes. This example illustratesftexeibility of our system. If
we allow the desirable salinity level to raise slightly héghour system would be able
to distribute the salinity level of potable water more eyearihong the days to improve
the quality of solution.

Table 4 shows the result of Set 3, which is an artificially haatted scenario. The
salinity level of the river for Set 3 is similar to the first 9@y of Set 1. The difficulty
of Set 3 lies in the unrealistically high daily water constiog? comparing to Set 1
and Set 2 as shown in Figure 3. Set 1 (the bold dotted line) bastant daily water
consumption. Set 2 (the thin line) has a fluctuating dailyawabnsumption. Set 3 (the
bold line) has a more fluctuating daily water consumptiort thaisually higher than
the maximum amount of water that can flow out of resergdiii.e. 211,395 m/day).
Set 3 suffers from the problem discussed at the end of Sebtibnvhich makes the

2The capacities of the reservoirs ard: = 1,500,000 m®, B = 1,260,000 m*, C' =
2,450,000 m?, andD = 2,060,000 m® for comparison with the daily consumption.
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salinity normal high old
desire max|daygsecsfails||days secs fails||daygsecsfails
200 300| - - - - - | i
250 350| - - | - - | i
250 400 - - -—|| 21}2,403404,174,730 - - -
250 500 - - || 28/1,803269,394,622 12| 4| 9
250 600 - - -—|| 281,803269,480,570 12| 4| 9
2501,009f - - —|| 281,805 639,731 12 6| 9
300 600 —| -—| || 45/1,803269,441,669 24/ 4| 5
3001,00Q] - - -—|| 45/1,805135,072,89)f 24/ 6| 5

Table 4. Result of Set 3, Duration = 90 days
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Fig. 3. Daily Water Consumptioni(;”)

NORMAL strategy fail. ThedIGH strategy is able to find a solution fulfilling 28 days out
of 90 days with the potable salinity below 250 ppm and maimitgj the potable salinity
always below 500 ppm. It takes about 30 minutes to find thigtimi.

7 Discussions

In this project, we collaborate with the International Inge for Software Technol-

ogy, United Nations University (UNU/IIST). We are respdaisifor the design and
implementation of the core optimization engine, while UNST is responsible for

constructing a web user interface to invoke our optimizagogine. We discuss in the
following issues regarding system development and depboym

7.1 Added Values of CP

Our client gave us the problem in late September, 2004, oobuale of months before
the beginning of the winter dry season. During that time,ditye was suffering from

one of the most serious droughtin the last 150 years. Duetorthiency of the problem,
we were given only 2 weeks to come up with a functional prgietyand to release a
fully functional production system in early December, 2004t before the winter dry
season began. This version replicates and automates ittefuadities and model of the
client’s spreadsheet model described in Section 2. We caméth a version to model

the table constraint (water flow limit from Reserva@irto D) plus a large number of
change requests in another month’s time. The project iegtlie authors coming up
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with the model and techniques for improving search, and tnaeugraduate students
for the implementation effort. The use of CP allowed us tottteedeadline and come
up with the first fully functional production system in justi®nths of development.
We spent another 5 months to study and experiment with vegearch improvements.

We have delivered the system to the water supply compantalliaison and user
trainings were provided, together with a 12-month mainteeaand support period.
The system has passed user acceptance test and has beail iptoduction mode
since June, 2005. We received positive feedbacks from tbes usg the water supply
company. The only support request was just for a re-insi@atidbecause of the ILOG
product upgrade. However, due to the continuing worsenfitigeodrought condition in
the past years, even optimizing the logistical operatidrie@raw water system alone
is insufficient to control the salinity problem. The watepply company is seriously
considering physical measures such as reverse osmosiggriibe pumping station to
upper stream of the river, and even purchasing fresh waten frearby provinces to
effectively handle the salinity crisis.

The optimization engine is abstracted from the web intexfédee end-users do not
need to understand CP at all. Indeed, our client does notataret the optimization
methodology we use, and wanted only a practical solutiothfeisalinity problem that
could be developed in 2 months, although our method has rmaugtgge for optimality.

7.2 Reasons for Choosing Finite Domain

Although the domain of the salinity problem is continuotea{mumbers), a more nat-
ural choice seems to be modeling the problem using intevastcaints instead of fi-
nite domain constraints. However, we still decided to usiéefilomain constraints for
the following practical considerations. First, as diseass Section 4.1, it does not
make sense to operate the pumps for a very short time (e.gn@tes) or to trans-
fer a very small amount of water (e.g. 1¢)nTherefore, we decided to discretize the
domains. Second, finite domain constraints have had marmgssitl industrial appli-
cations including scheduling, time-tabling, resourceddltion, etc. Third, the develop-
ment schedule was extremely tight and opportunity cost ugs At the time we were
given the problem, we simply could not afford a lot of expezitation but had to adopt
a proven technology.

7.3 Other Optimization Methodologies

Besides CP, we have investigated with UNU/IIST in applyingliEer [7], which is
a genetic algorithm based optimization engine for Micrt8pExcel, to the project.
Experimental results show that this approach is less dfititieth in terms of execution
time and quality of solution. Moreover, Evolver is only seatitomatic, requiring expert
human guidance during the search for solutions. This apgprésmalso unstable and
unpredictable with regard to convergence. Nevertheles$ an approach is good for
fast prototyping.

We also works with the operations research (OR) colleaguesii university to
investigate the use of linear programming (LP) [8] for sotythe salinity problem. The
advantage of using LP is that the domain of the salinity prbis continuous in na-
ture (i.e. real numbers); hence, there is no need to digereite domains. However, the
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major obstacle to the LP approach is ttenlinearconstraints in the problem, i.e. con-
straints on the law of conservation of salts and the tablstcaimts on the water flowing
out of reservoilC'. The idea is to construct aapproximatemodel of the problem with
only linear constraints and objectives. Preliminary ressaite encouraging, outperform-
ing our engines in selected test cases. The possibility wib@oing the LP model and
the CP model is a promising research direction.

8 Conclusion

By applying CP, we have developed a fully automated optitiinaengine incorpo-
rating a more realistic model for solving the salinity prefl. Experimental results
demonstrate that the engine is more efficient and can prdugber quality solutions
than the human counterpart. Now, even a non-domain expenneke use of our en-
gine to plan for water management operations and experimigmidifferent salinity
scenarios in advance.

In summary, the choice of CP has immense impact on the sudatdstivery of the
project. First, the rich constraint language availabledammercial constraint solvers al-
lows efficient modeling of the problem. Separation of consaf CP allows us to focus
on programming search heuristics. We were thus able to aimplworking prototype
and a functional production system within a tight developtreehedule. Second, CP
is flexible and adaptive to changes. During the course ofldpw@ent, our client re-
quested for numerous, often unreasonable, changes to dh&ament specification.
Without CP as the core technology, we were not sure if we cdald with all the re-
quests in a timely and mostly effortless manner. Third, wesvedso able to adopt and
generalize latest research result in propagation redwyddn?2, 3] to come up with
useful implied constraints for our implementation, thubamcing the constraint prop-
agation in the salinity control engine. And this work on thedual is orthogonal to the
search strategies we employ. This is again a triumph of agpaf concerns.

References

1. M. Brdys, T. Creemers, J. Riera, H. Goossens, and A. Herkb Clocwise: Constraint logic
for operational control of water systems. The 26th Annual Water Resources Planning and
Management Conferencpages 1-13, 1999.

2. C. W. Choi, W. Harvey, J. H. M. Lee, and P. J. Stuckey. Fidenain bounds consistency
revisited. InAustralian Conference on Artificial Intelligencpages 49-58, 2006.

3. C. W. Choi, J. H. M. Lee, and P. J. Stuckey. Removing prof@gaedundant constraints in
redundant modeling(to appear) ACM Transactions on Computational Log007.

4. W. Harvey and P. J. Stuckey. Improving linear constrainppgation by changing constraint
representationConstraints 8(2):173-207, 2003.

5. ILOG, S.A.ILOG Solver 6.0: User's Manuak003.

6. K. Marriott and P. J. StuckeyProgramming with Constraints: an IntroductionThe MIT
Press, 1998.

7. Palisade Corporation. Evolver 4.0, 2005. Available fton p: / / ww. pal i sade. com

8. R. J. VanderbeilLinear Programming—Foundations and Extensiogringer, 2nd edition,
2001.

15



