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Abstract If we have two representations of a problem as constraint satisfaction
problem (CSP) models, it has been shown that combining the models using chan-
neling constraints can increase constraint propagation in tree search CSP solvers.
Handcrafting two CSP models for a problem, however, is often time-consuming. In
this paper, we propose model induction, a process which generates a second CSP
model from an existing model using channeling constraints, and study its theoretical
properties. The generated induced model is in a different viewpoint, i.e., set of
variables. It is mutually redundant to and can be combined with the input model,
so that the combined model contains more redundant information, which is useful
to increase constraint propagation. We also propose two methods of combining CSP
models, namely model intersection and model channeling. The two methods allow
combining two mutually redundant models in the same and different viewpoints
respectively. We exploit the applications of model induction, intersection, and chan-
neling and identify three new classes of combined models, which contain different
amounts of redundant information. We construct combined models of permutation
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CSPs and show in extensive benchmark results that the combined models are more
robust and efficient to solve than the single models.

Keywords Constraint satisfaction · Model redundancy

1 Introduction

The task at hand is to tackle constraint satisfaction problems (CSPs), the definition of
which, in the sense of Mackworth [29], can be stated as follows:

We are given a set of variables, a domain of possible values for each variable, and
a conjunction of constraints. Each constraint is a relation defined over a subset of
the variables, limiting the combination of values that the variables in this subset
can take. The goal is to find a consistent assignment of values to the variables so
that all the constraints are satisfied simultaneously.

When tackling a real life problem, selecting the most appropriate CSP model for
the problem is difficult in general. However, if we have two different formulations of
the problem, we need not choose between them. Cheng et al. [3, 4] showed that two
different models of a problem, based on different sets of variables, can be used at
the same time; they introduced channeling constraints to link the variables of the two
models. Each model, since it completely represents the problem being modeled, is
(logically) redundant with respect to the other. However, using both models, linked
by channeling constraints, can reduce the tree search efforts required to solve the
problem, even though each provides essentially the same information about the
problem.

Redundant modeling [3, 4] requires two CSP models of a problem. However,
human modelers often find handcrafting CSP models time consuming. In this paper,
we propose a process called model induction which automatically generates a CSP
model from a given one using channeling constraints. The generated induced model
has a different viewpoint, i.e., set of variables, from the original model. We give the
syntactic construction rule for model induction and detailed examples, and prove its
properties.

An induced model can be combined with other models of a problem to enjoy
the benefits of reduced search effort in CSP solving. We show that two models
of the same problem can share the same variables. We therefore propose model
intersection and model channeling as two different methods to combine CSP models.
Model intersection allows combining models with the same variables, while model
channeling allows combining models with different variables, which is indeed a
formalization of redundant modeling [3]. By exploiting different applications of
model induction, intersection, and channeling, we identify three new classes of
combined models, which contain different amount of redundant information. We
construct different combined models of permutation CSPs and show in our extensive
benchmark results that the proposed classes of combined models are more robust
and efficient to solve than the single models do.

This paper, a revised and extended version of the work by Law and Lee [25],
is organized as follows. In Section 2, we present a brief review of related work
about CSP models and reformulations, and combining models. Section 3 provides the
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background to the paper, where we formally introduce the viewpoint notion. Section
4 formally introduces model induction. We give its syntactic construction rule with
detailed examples, examine its properties, and analyze its time and space complex-
ities. In Section 5, we introduce model intersection and channeling. We exploit the
applications of model induction and the two methods to give the three new classes
of combined models. In Section 6, we present experimental results on combining
mutually redundant models of permutation CSPs using our proposed scheme applied
to Langford’s problem, random CSPs, and mutually redundant random CSP pairs.
We conclude the paper in Section 7 by discussing our contributions and possible
directions for future research.

2 Related Work

Rossi et al. [32] proposed a definition of equivalence of CSPs, based on the concept of
mutual reducibility. Two CSPs are equivalent if it is possible to obtain the solutions of
one CSP from those of another, and vice versa. Their definition makes a fundamental
contribution in that it allows us to consider two different CSPs to be models of the
same problem. Geelen [17] introduced two improved problem-independent value
and variable ordering heuristics for solving CSPs and introduced a “dual-viewpoint”
approach for a special but broad class of CSPs, namely permutation CSPs. We can
consider a permutation CSP from two different perspectives. In one perspective, we
solve the problem by finding a value for every variable, while in another perspective,
we solve the problem by finding a variable for each value. Weigel and Bliek [39]
introduced an algorithm to transform a CSP into its Boolean form which is then
used to find reformulations. The resulting reformulations have different redundant
constraints, and thus one may allow pruning in some situations where it is not
possible in another.

Jourdan [23, 24] discussed multiple modeling, in which models representing
different but redundant views of the same problem are synchronized using the
communication mechanisms of constraint logic programming and concurrent con-
straint languages. Cheng et al. [3, 4] formally introduced redundant modeling. Two
models of the same problem are combined together using channeling constraints.
The combined model contains the two original models as sub-models. Channeling
constraints allow the sub-models to cooperate during constraint solving by allowing
constraint propagation to take place between them. This approach is shown to
give increased constraint propagation and efficiency in a real life nurse rostering
problem. Dotú et al. [11] used the redundant modeling technique to solve some
hard quasigroup completion problem instances in the phase transition region. Using
an additional viewpoint and channeling constraints in CSP solving can also allow
breaking value symmetries in matrix models efficiently [12, 26, 27].

Choi et al. [8, 9] introduced the notion of propagation redundancy. If a constraint
is propagation redundant with respect to some constraints, that constraint cannot
contribute extra pruning to reduce search effort. Hence, removing propagation re-
dundant constraints will not sacrifice propagation but will save overhead for handling
those constraints. Choi et al. gave general theorems about propagation redundancy
of one constraint with respect to channeling constraints and constraints in the
other model. Their work explains Smith’s empirical results [34, 35] for Langford’s
problem that constraint propagation of the minimal combined model is the same as
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in redundant modeling. A minimal combined model is similar to redundant modeling
but the constraints in the second model are dropped.

Hnich et al. [20] and Walsh [38] conducted extensive theoretical and empirical
studies on using different models of permutation CSPs and combined models using
channeling constraints. They compared models by defining a measure of constraint
tightness based on the level of consistency being enforced on the constraints in a
model. Their results aid human CSP modelers to choose a viewpoint for permutation
CSPs. They also illustrated a general methodology for comparing different CSP
models. Their works [20, 38] concentrate on the effect of different levels of constraint
propagation on the constraints in a model to ensure a permutation for the variables
in permutation CSPs.

Another approach to automatic CSP model generation is to require human
modelers to specify a problem in some formal language. Frisch et al. [15] proposed a
modeling language Essence, with some discrete mathematics notions, for specifying
combinatorial problems in a manner similar to using natural human languages. A
specification in Essence can then be refined into a set of alternative CSP models
using a system called Conjure [16]. Flener et al. [13] designed the constraint language
esra and showed how it is compiled into the programming language opl. Hnich
[19] introduced function variables which are variables whose domains are sets of
functions. He showed how function variables and constraints can be mapped into
different representations using integer and set variables, so that a model using
function variables can automatically be transformed into alternate CSP models in
terms of integer and set variables. Martínez-Hernández and Frisch [31] studied
the automatic addition of redundant information and the corresponding channeling
constraints to a CSP model.

CSP model transformation can be seen as a generalization of transformations from
CSP to satisfiability (SAT). Walsh [37] comprehensively studied two CSP to SAT
mappings, the direct and the log encodings, and compared the impact of maintaining
arc consistency in a CSP with unit propagation on the SAT problem obtained from
each of the mappings. Gent [18] carried out a similar comparison for the support
encoding. Both Ansótegui and Manyà [1] and Frisch et al. [14] provided empirical
evidence to assess the performance of the SAT problems obtained from CSP to
SAT mappings. Frisch et al. [14] further proposed a new mapping to improve on
the existing ones and identified sufficient conditions for omitting the at-least-one and
at-most-one clauses to simplify the transformed problem.

3 Background

There is usually more than one way of formulating a problem P as a CSP. Central to
the formulation process is to determine the variables and their domains (the sets of
possible values the variables can take). Different choices of variables and domains
result from viewing the problem P from different angles/perspectives. As in [25], we
define a viewpoint1 to be a pair (X, D), where X = {x1, . . . , xn} is a set of variables,
and D is a set containing, for every x ∈ X, an associated domain D(x) giving the set
of possible values for x.

1Geelen [17] used the notion of viewpoint loosely but did not define it.
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A viewpoint V = (X, D) defines the possible assignments for variables in X. An
assignment x �→ a in a viewpoint V (or in a set of variables U ⊆ X) is a mapping
from variable x ∈ X (or U) to a value a ∈ D(x). A compound assignment in V (or in
U ⊆ X) is a set of assignments {xi j �→ a j | 1 ≤ j ≤ k}, where {xi1 , . . . , xik} ⊆ X (or U)
and a j ∈ D(xi j) for 1 ≤ j ≤ k. Note the requirement that no variable may be assigned
more than one value in a compound assignment. A compound assignment θ in U can
be projected onto U ′ ⊆ U using πU ′(θ) = {x �→ a | x ∈ U ′ ∧ (x �→ a) ∈ θ}. Given a set
of assignments θ , we use the predicate cmpd(θ, V) to ensure that θ is a compound
assignment in V. A complete assignment in V is a compound assignment {x1 �→
a1, . . . , xn �→ an} for all variables in X. Given a problem P and any viewpoint V,
suppose sol(P) is the set of all solutions of P (in whatever notation and formalism).
We say that a V is a viewpoint for problem P if we can find a subset S of the set of all
possible complete assignments in V so that there is a one-to-one mapping between S
and sol(P).

A constraint c places restrictions on a subset of variables limiting the combination
of values that these variables can take. The subset of variables is called the scope of
c, denoted by var(c). We abuse terminology by saying that the compound assignment
θ = {xi j �→ a j | 1 ≤ j ≤ k} also has a scope var(θ) = {xi1 , . . . , xik}. Given a compound
assignment θ such that var(c) ⊆ var(θ), we use cθ as a predicate to denote whether θ

satisfies or violates c.
A CSP M is a pair (V, C), where V is a viewpoint and C is a set of constraints

in V. A solution of M is a complete assignment θ in V so that
∧

c∈C cθ is true. A
CSP M is satisfiable if sol(M) 	= ∅, and unsatisfiable otherwise. We say that a CSP
M = (V, C) is a model for a problem P if V is a viewpoint for P and the constraints
C in M are defined in such a way that the one-to-one correspondence is maintained
(i.e., S = sol(M)).

Suppose M1 and M2 are two different models for the same problem P. By
definition, there exists a one-to-one mapping between sol(M1) and sol(M2). We say
that M1 and M2 are mutually redundant. As we shall see, it is possible for mutually
redundant models M1 and M2 to have the same viewpoint. In that special case, it is
easy to verify that sol(M1) = sol(M2).

Given two models M1 = ((X, DX), CX) and M2 = ((Y, DY), CY) for the same
problem, Cheng et al. [3] defined a channeling constraint c to be a constraint where
var(c) 	⊆ X, var(c) 	⊆ Y, and var(c) ⊆ X ∪ Y, and c relates M1 and M2 by limiting
the combination of values that their variables can take. Note that in the definition of
channeling constraints, the constraints in the two models are immaterial. Channeling
constraints relate only the viewpoints of the models; they set forth a relationship
between the possible assignments of the two viewpoints.

We illustrate the ideas of channeling constraints and mutual redundancy of models
using the 4-queens problem, which is to place four queens on a 4 × 4 chessboard such
that no two queens can attack each other. A textbook model M1 = ((X, DX), CX)

of the problem has four variables X = {x1, x2, x3, x4}. Each xi denotes the column
position of queen i in row i of the chessboard. The domain of the variables is thus
DX(xi) = {1, 2, 3, 4} for 1 ≤ i ≤ 4. The choice of variables ensures no two queens can
be on the same row by default. The constraints CX enforce that no two queens can
be on the same column or diagonal:

• xi 	= x j for 1 ≤ i < j ≤ 4; and
• |xi − x j| 	= j − i for 1 ≤ i < j ≤ 4.
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The two solutions of this model are θ1 = {x1 �→ 2, x2 �→ 4, x3 �→ 1, x4 �→ 3} and θ2 =
{x1 �→ 3, x2 �→ 1, x3 �→ 4, x4 �→ 2}.

The 4-queens problem can be modeled in another viewpoint (Y, DY). which also
has four variables Y = {y1, y2, y3, y4}. Each yj denotes the row position of queen j in
column j of the chessboard. The domain of the variables is thus DY(y j) = {1, 2, 3, 4}
for 1 ≤ j ≤ 4. The constraints CY can be stated in this viewpoint accordingly, giving
the model M2 = ((Y, DY), CY). The two solutions of this model are φ1 = {y1 �→
3, y2 �→ 1, y3 �→ 4, y4 �→ 2} and φ2 = {y1 �→ 2, y2 �→ 4, y3 �→ 1, y4 �→ 3}.

To connect the models M1 and M2, we can state the channeling constraints as xi =
j ⇔ y j = i for 1 ≤ i, j ≤ 4. They collectively define a one-to-one mapping between
sol(M1) and sol(M2) such that θ1 corresponds to φ1 and θ2 corresponds to φ2. The
two models M1 and M2 are mutually redundant to each other.

4 Model Induction

In this section, we introduce model induction: a method for systematically generating
a new induced model from an existing model, using another viewpoint and channeling
constraints as input. Model induction is a transformation of the constraints of
one model, both implicit and explicit, to constraints in another viewpoint. In the
following, we describe the choice of channeling constraints, the construction of
induced models with detailed examples, and the properties and complexities of
model induction.

4.1 Channeling Constraints

In order for model induction to generate a mutually redundant model, the set of
channeling constraints cannot be chosen arbitrarily. Given viewpoints VX = (X, DX)

and VY = (Y, DY), suppose we want to construct an induced model in VY using a
model in VX . A necessary condition is that the set of channeling constraints between
VX and VY must collectively define a total function f from the possible assignments
in VX to those in VY :

f : {x �→ a | x ∈ X ∧ a ∈ DX(x)} → {y �→ b | y ∈ Y ∧ b ∈ DY(y)}.
In other words, f maps every assignment in VX to an assignment in VY . We call the
function f a channeling function. We overload a channeling function f to act also on
a set of assignments θ such that f (θ) = { f (x �→ a) | (x �→ a) ∈ θ}.

Note that the channeling constraints are used to connect two models and prop-
agate pruning information between the two models. The concept of a channeling
function, however, is introduced solely for the purpose of generating a model from
one viewpoint to another, which is a one way process. Therefore, the channeling
function does not have to be bijective. We shall see later examples of model induction
using both injective and bijective channeling functions.

4.2 Induced Models

The description of model induction assumes that constraints are represented ex-
tensionally. We define ng(c) of a constraint c as the set of no-goods in var(c).
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Suppose var(c) = {xi1 , . . . , xik}, a no-good {xi1 �→ a1, . . . , xik �→ ak} of c is a com-
pound assignment in var(c) that violates c. It has the logical meaning ¬((xi1 =
a1) ∧ . . .∧ (xik = ak)).

Given a CSP M = (VX , CX) where VX = (X, DX), a viewpoint VY = (Y, DY), and
a channeling function f from the possible assignments in VX to those in VY , we note
that M contains two types of constraints: the explicit constraints stated in CX and
the implicit constraints on variable assignments. The implicit constraints are similar
to the uniqueness constraints by Weigel and Bliek [39] and can be further broken
down into the no-double-assignment (NDA) and at-least-one-assignment (ALOA)
constraints. They restrict each variable to be assigned no more than one value and at
least one value from its domain respectively. The idea of model induction is to use f
to transform both the explicit and the implicit constraints in M to constraints CY in
viewpoint VY , yielding the induced model i( f, M) = (VY , CY).

We first transform the explicit constraints stated in CX . Since a constraint in CX is
represented by a set of no-goods, we can apply f to every assignment in each no-good
of all constraints in CX to collect the transformed no-goods in a set SY :

SY = { f (θ) | c ∈ CX ∧ θ ∈ ng(c) ∧ cmpd( f (θ), VY)}.
It is indeed possible for f (θ) not to be a valid compound assignment. For instance,
suppose θ = {x1 �→ 1, x2 �→ 2}, f (x1 �→ 1) = y �→ 1, and f (x2 �→ 2) = y �→ 2. The
set f (θ) = {y �→ 1, y �→ 2} is not a compound assignment. The viewpoint VY already
restricts implicitly that the variable y cannot be assigned values 1 and 2 simultane-
ously. Therefore, we can discard f (θ).

Example 1 Suppose c∈CX and {x1 �→ 1, x2 �→ 2}∈ng(c). If f (x1 �→ 1)= y2 �→ 1 and
f (x2 �→ 2)= y1 �→ 1, then f ({x1 �→ 1, x2 �→ 2})={y1 �→ 1, y2 �→ 1} is in SY . Fur-
ther suppose {x1 �→ 1, x2 �→ 1} ∈ ng(c) and f (x2 �→ 1) = y2 �→ 2. Then f ({x1 �→ 1,

x2 �→ 1}) = {y2 �→ 1, y2 �→ 2} is not a compound assignment and is not in SY .

Implicit in a CSP formulation is that each variable should be assigned exactly one
value. Part of this restriction can be translated to the NDA constraints which require
that no variable can be assigned two values from its domain at the same time. This
corresponds to a set of (invalid) no-goods of the form {x �→ a, x �→ b} for all x ∈ X
and a, b ∈ DX(x) (where a 	= b), which is satisfied implicitly and not represented
in M. Their transformed counterparts, however, are needed in the induced model.
We apply f to every assignment in the invalid no-goods, and collect the valid
transformations in a set NY :

NY =
⋃

x∈X

{θ | a, b ∈ DX(x) ∧ a 	= b ∧ θ = f ({x �→ a, x �→ b}) ∧ cmpd(θ, VY)}.

Example 2 Suppose DX(x1)={2, 3}, f (x1 �→ 2) = y1 �→ 2, and f (x1 �→ 3)= y2 �→ 1.
Then, f ({x1 �→ 2, x1 �→ 3}) = {y1 �→ 2, y2 �→ 1} is in NY .

The other type of implicit constraint in M can be translated to the ALOA
constraints which require that each variable must be assigned at least one value from
its domain. This corresponds to the constraints

∨
a∈DX (x) x = a for each x ∈ X, which

are satisfied implicitly and not stated in M. Unlike the explicit and NDA constraints,
these unary constraints cannot be expressed in terms of no-goods. For each x ∈ X,
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we first apply f to all the assignments of x. Let DX(x) = {a1, . . . , ad}. We obtain
the assignments f (x �→ a1) = yj1 b 1 �→, . . . , f (x �→ ad) = y jd �→ b d. The unary con-
straint

∨
1≤i≤d x = ai is then logically equivalent to

∨
1≤i≤d yji = bi in VY , whose scope

is U = {yj1 , . . . , yjd}. A compound assignment with scope U that contains any of
yji �→ bi for 1 ≤ i ≤ d will satisfy the constraint

∨
1≤i≤d yji = bi. Therefore, the no-

goods of the constraint are those compound assignments θ with var(θ) = U such that∧
1≤i≤d(yji �→ bi) /∈ θ .

AY =
⋃

x∈X

{θ | DX(x) = {a1, . . . , ad} ∧
⎛

⎝
∧

1≤i≤d

f (x �→ ai) = yji �→ bi

⎞

⎠ ∧

var(θ) = {yj1 , . . . , yjd} ∧ cmpd(θ, VY) ∧
∧

1≤i≤d

(yji �→ bi) /∈ θ}.

Example 3 Suppose DX(x1) = DY(y1) = DY(y2) = {1, 2, 3}, f (x1 �→ 1) = y1 �→ 1,
f (x1 �→ 2) = y1 �→ 2, and f (x1 �→ 3) = y2 �→ 1. Then, for variable x1, applying f
to the assignments x1 �→ 1, x1 �→ 2, and x1 �→ 3 tells us that the no-goods from the
ALOA constraint for x1 have the scope {y1, y2}. All compound assignments {y1 �→
a, y2 �→ b} that do not contain any of y1 �→ 1, y1 �→ 2, and y2 �→ 1 are no-goods in
AY . Thus, {y1 �→ a, y2 �→ b} where a = 3 and 2 ≤ b ≤ 3, i.e., {y1 �→ 3, y2 �→ 2} and
{y1 �→ 3, y2 �→ 3}, are included in AY .

We note that the no-goods in a constraint c ∈ CX can be transformed to contribute
to the no-goods of more than one constraint in the induced model. The set SY ∪
NY ∪ AY consists of all the induced no-goods, which have different scopes in VY .
The next step is to collect no-goods with the same scope from SY ∪ NY ∪ AY to form
a constraint in VY . Thus,

CY = {c | var(c) ⊆ Y ∧ ng(c) = σvar(c)(SY ∪ NY ∪ AY) 	= ∅},
where σU (�) = {θ | θ ∈ � ∧ var(θ) = U}.
4.3 Examples

We illustrate the construction of two induced models using the model M1 of the
4-queens problem introduced in Section 3. The two examples show two common
usages of model induction: the first transforms a model to the Boolean viewpoint (a
viewpoint whose variables have Boolean domains), while the second demonstrates a
transformation that is generally applicable to permutation CSPs.

4.3.1 Integer-to-Boolean Induction

We first give an example which transforms M1 to a model with Boolean variables
(variables with {0, 1} domain). For the 4-queens problem, consider the Boolean
viewpoint (Z , DZ ) with 16 variables Z = {zij | 1 ≤ i, j ≤ 4} and DZ (zij) = {0, 1} for
1 ≤ i, j ≤ 4. The assignment zij �→ 1 denotes that chessboard position (i, j) (row i
and column j) contains a queen; and zij �→ 0 denotes the contrary. The channeling
constraints xi = j ⇔ zij = 1 for 1 ≤ i, j ≤ 4 define the channeling function:

g(xi �→ j) = zij �→ 1 for 1 ≤ i, j ≤ 4.
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This channeling function is injective but not bijective, since it never generates
assignments of the form “zij �→ 0.”

We first transform the explicit constraints in CX . The no-goods for the diagonal
constraints in M1 have the form {xi �→ k, x j �→ k ± (i − j)} for 1 ≤ i < j ≤ 4, 1 ≤ k ≤
4, and 1 ≤ k ± (i − j) ≤ 4. Hence, the induced no-goods are {zik �→ 1, z j,k±(i− j) �→ 1}.
For example, the diagonal constraint |x1 − x2| 	= 2 − 1 generates the no-goods

{z11 �→ 1, z22 �→ 1}, {z12 �→ 1, z23 �→ 1}, {z13 �→ 1, z24 �→ 1},
{z12 �→ 1, z21 �→ 1}, {z13 �→ 1, z22 �→ 1}, {z14 �→ 1, z23 �→ 1}

for inclusion in SZ . The no-goods for the column constraints in M1 have the form
{xi �→ k, x j �→ k} for 1 ≤ i < j ≤ 4 and 1 ≤ k ≤ 4. Hence, the induced no-goods are
{zik �→ 1, z jk �→ 1}. For example, the constraint x1 	= x2 generates the no-goods

{z11 �→ 1, z21 �→ 1}, {z12 �→ 1, z22 �→ 1}, {z13 �→ 1, z23 �→ 1}, {z14 �→ 1, z24 �→ 1}
for inclusion in SZ .

We then transform to (Z , DZ ) the NDA constraints which restrict each xi ∈ X
not to be assigned two different values. Thus,

NZ =
⋃

xi∈X

{{g(xi �→ j1), g(xi �→ j2)} | 1 ≤ j1 < j2 ≤ 4}

= {{zij1 �→ 1, zij2 �→ 1} | 1 ≤ i ≤ 4 ∧ 1 ≤ j1 < j2 ≤ 4}.
For example, the NDA constraint for x1 ∈ X generates the no-goods

{z11 �→ 1, z12 �→ 1}, {z11 �→ 1, z13 �→ 1}, {z11 �→ 1, z14 �→ 1},
{z12 �→ 1, z13 �→ 1}, {z12 �→ 1, z14 �→ 1}, {z13 �→ 1, z14 �→ 1}

to ensure that no two queens will be placed on row 1 of the chessboard.
Last but not least, we need to transform the ALOA constraints. For each xi ∈

X, applying g to the assignments xi �→ j for 1 ≤ j ≤ 4 tells us that the no-goods in
(Z , DZ ) have scope {zi1, . . . , zi4}. The no-goods are those compound assignments
{zi1 �→ q1, . . . , zi4 �→ q4} that do not contain any of zi1 �→ 1, zi2 �→ 1, zi3 �→ 1, and
zi4 �→ 1. Since the domain of all variables zij is only {0, 1}, {zi1 �→ 0, . . . , zi4 �→ 0} is
the only no-good needed. Thus:

AZ = {{z11 �→ 0, z12 �→ 0, z13 �→ 0, z14 �→ 0},
{z21 �→ 0, z22 �→ 0, z23 �→ 0, z24 �→ 0},
{z31 �→ 0, z32 �→ 0, z33 �→ 0, z34 �→ 0},
{z41 �→ 0, z42 �→ 0, z43 �→ 0, z44 �→ 0}},

meaning that a row of the chessboard cannot be empty.
The induced model i(g, M1) = ((Z , DZ ), CZ ) can be formed by extracting and

grouping no-goods of the same scope to form a constraint in CZ . As we shall see,
by Theorem 1, i(g, M1) and M1 are mutually redundant, and are both models of
the 4-queens problem. Figure 1 shows the constraint |x1 − x2| 	= 1 in M1 and its
induced counterpart in i(g, M1) with the transformed NDA and ALOA constraints
from variable x1. In the figure, the nodes are the assignments and the edges are the
no-goods between two nodes. In particular, the edge for the transformed ALOA
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Fig. 1 The constraint |x1 − x2| 	= 1 in M1 and its induced counterpart in i(g, M1) with the NDA and
ALOA constraints from x1

constraint is a hyper-edge among the variables z11, z12, z13, and z14, denoting the
no-good {z11 �→ 0, z12 �→ 0, z13 �→ 0, z14 �→ 0}.

This example shows that model induction can be used as an encoding of a CSP to a
satisfiability (SAT) problem. In particular, it corresponds to the direct encoding [37]
(also known as the standard mapping [1] and the unary/unary transform [14]). The
NDA constraints are transformed to the at-most-one clauses (AMO) [1, 14, 33], while
the ALOA constraints are transformed to the at-least-one clauses (ALO) [1, 14, 33].

Note that in our transformation of the NDA constraints, the number of no-goods
generated per variable is quadratic in the domain size, and the arity of the no-
goods is always two. In fact, it is possible to transform the NDA constraints in other
ways. Roussel [33] proposed a different encoding of the NDA constraints, interesting
for large domains. The encoding uses only a linear number of no-goods, but of a
higher arity (which depends on the domain size). We choose instead to generate
a larger number of low-arity constraints, since propagating high-arity constraints is
less efficient in CSP solvers.

4.3.2 Permutation Induction

The model M1 of the 4-queens problem is an example of a permutation CSP. In
a permutation CSP [17, 20, 34, 35] ((X, DX), C), we always have DX(xi) = DX(x j)

for xi, x j ∈ X, and |DX(xi)| = |X|. In addition, any solution {x1 �→ k1, . . . , xn �→ kn}
of a permutation CSP must have the property that ki 	= k j for 1 ≤ i < j ≤ n. For
a permutation CSP, a second viewpoint (Y, DY) always exists by interchanging
the roles of variables and values. For example, in the 4-queens problem, we can
have another viewpoint (Y, DY) for the 4-queens problem for model induction with
Y = {y1, y2, y3, y4} and DY(yj) = {1, 2, 3, 4} for 1 ≤ j ≤ 4. Each yj denotes the row
position of the queen on column j. The channeling constraints xi = j ⇔ yj = i for
1 ≤ i, j ≤ 4 define the channeling function

f (xi �→ j) = yj �→ i for 1 ≤ i, j ≤ 4.

Note that this channeling function is bijective, as we have f −1(yj �→ i) = xi �→ j for
1 ≤ i, j ≤ 4. This is generally true for channeling functions for permutation CSPs.

To obtain an induced model in the viewpoint (Y, DY), we first transform the
explicit constraints in CX . Recall the no-goods {xi �→ k, xj �→ k ± (i − j )} for the
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diagonal constraints in M1. The induced no-goods are thus {yk �→ i, yk±(i− j) �→ j}.
For example, the constraint |x1 − x2| 	= 2 − 1 generates the no-goods

{y1 �→ 1, y2 �→ 2}, {y2 �→ 1, y3 �→ 2}, {y3 �→ 1, y4 �→ 2},
{y2 �→ 1, y1 �→ 2}, {y3 �→ 1, y2 �→ 2}, {y4 �→ 1, y3 �→ 2}

for inclusion in SY . For the column constraints, the no-goods in M1 are {xi �→ k,

xj �→ k} for 1 ≤ i < j ≤ 4 and 1 ≤ k ≤ 4. Hence, the induced counterparts are
{yk �→ i, yk �→ j}, which are not valid no-goods because they contain two different
assignments for the same variable yk. Thus, SY does not contain any no-goods
corresponding to the column constraints.

The NDA constraints ensure that each xi ∈ X cannot be assigned two different
values. They are transformed to the no-goods:

NY =
⋃

xi∈X

{{ f (xi �→ j1), f (xi �→ j2)} | 1 ≤ j1 < j2 ≤ 4}

= {{y j1 �→ i, y j2 �→ i} | 1 ≤ i ≤ 4 ∧ 1 ≤ j1 < j2 ≤ 4}
in (Y, DY). For example, the NDA constraint for x1 ∈ X generates the no-goods

{y1 �→ 1, y2 �→ 1}, {y1 �→ 1, y3 �→ 1}, {y1 �→ 1, y4 �→ 1},
{y2 �→ 1, y3 �→ 1}, {y2 �→ 1, y4 �→ 1}, {y3 �→ 1, y4 �→ 1}

to ensure that row 1 of the chessboard cannot contain two queens. In fact, the no-
goods generated from the NDA constraints ensures that the induced model is also
a permutation CSP, since they guarantee that the values taken by the variables in Y
must be all different in a solution.

The ALOA constraints are obtained from the implicit constraints “each xi ∈ X
must be assigned at least one value” in M1. For each xi ∈ X, applying f to the
assignments xi �→ j for 1 ≤ j ≤ 4 tells us that the no-goods in (Y, DY) have the scope
{y1, . . . , y4}. The no-goods are those {y1 �→ q1, . . . , y4 �→ q4} that do not contain
any of y1 �→ i, y2 �→ i, y3 �→ i, and y4 �→ i. Since the domain of all variables in Y
is {1, 2, 3, 4}, we obtain the no-goods {y1 �→ q1, . . . , y4 �→ q4} for 1 ≤ q j ≤ 4, 1 ≤
j ≤ 4, and q j 	= i. For example, the no-goods for x1 are {y1 �→ q1, . . . , y4 �→ q4} for
2 ≤ q1, q2, q3, q4 ≤ 4. The intuitive meaning of these no-goods is that a row of the
chessboard cannot be empty. However, the NDA constraints ensure that at most
one queen can be placed in each of the four rows. Furthermore, we have to place
four queens in the chessboard. Therefore, there can never be no queens in a row of
the chessboard, and the information from these no-goods is implied already. Hence,
we can ignore the ALOA constraints in this special case and allow AY = ∅. In the
rest of the paper, we assume that whenever we perform model induction on one
permutation CSP to obtain another permutation CSP using the channeling function
f (xi �→ j) = yj �→ i, we set AY = ∅.

The induced model i( f, M1) = ((Y, DY), CY) can be formed by extracting and
grouping no-goods of the same scopes to form constraints in CY . In this special
example, the induced model i( f, M1) is equal to the model M2 given in Section 3. The
models i(g, M1), i( f, M1), and M1 are mutually redundant to each other, and all of
them are models of the 4-queens problem. Figure 2 shows the constraint |x1 − x2| 	= 1
in M1 and its induced counterpart in i( f, M1) with the transformed NDA constraint
from variable x1.
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Fig. 2 The constraint |x1 − x2| 	= 1 in M1 and its induced counterpart in i( f, M1) with the trans-
formed NDA constraints from x1

This example shows that given a permutation CSP and the channeling function
f (xi �→ j) = yj �→ i, model induction can always be used to generate a redundant
model which is also a permutation CSP.

4.4 Properties

The following theorem and corollaries give an important consequence of model
induction: the transformation of no-goods is meaning-preserving. Theorem 1 states
that applying model induction on M generates a mutually redundant model i( f, M)

of M.

Theorem 1 If M = (V1, C1) is a model for problem P and V2 is a viewpoint for P,
then M and i( f, M) are mutually redundant models for all total functions f (defined
by channeling constraints connecting V1 and V2) mapping from possible assignments
in V1 to those in V2.

Proof Suppose there is a set of channeling constraints defining a total function f such
that M and i( f, M) are not mutually redundant. By definition, there is no one-to-one
mapping between sol(M) and sol(i( f, M)), nor between sol(P) and sol(i( f, M)) (since
M is a model for P). Thus no subset S of the set of all possible complete assignments
in V2 can have a one-to-one mapping with sol(i( f, M)). Consequently, V2 cannot be
a viewpoint for P; hence a contradiction. �

Given M1 and M2 in viewpoints V1 and V2 respectively, we can generate an
induced model using M1 that has the same solution set as M2.

Corollary 2 If M1 = (V1, C1) and M2 = (V2, C2) are mutually redundant models for
P, and f is a total function mapping from possible assignments in V1 to those in V2,
then sol(M2) = sol(i( f, M1)).

Proof By Theorem 1, M1 and i( f, M1) are mutually redundant. So are M1, M2, and
i( f, M1). By definition, there must be a one-to-one mapping between sol(M2) and
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sol(i( f, M1)). Since M2 and i( f, M1) have the same viewpoint V2, the only possible
one-to-one mapping is the identity mapping. Thus, sol(M2) = sol(i( f, M1)). �

Inducing a model twice using f and f −1 generates a model that has the same
solution set as the original model.

Corollary 3 If M = (V1, C1) is a model for problem P, V2 is a viewpoint for P, and f
is a total and bijective function (i.e., f −1 exists) mapping from possible assignments in
V1 to those in V2, then sol(i( f −1, i( f, M))) = sol(M).

Proof By Theorem 1, M and i( f, M) are mutually redundant. Similarly, i( f, M)

and i( f −1, i( f, M)) are mutually redundant. M and i( f −1, i( f, M)) have the same
viewpoint. By Corollary 2, sol(i( f −1, i( f, M))) = sol(M). �

In general, M and i( f −1, i( f, M)) are not identical, although they share the same
viewpoint and the same solution set; applying model induction twice can result in
adding (logically) redundant information to M. However, applying model induction
twice on a permutation CSP using channeling function f and its inverse f −1, where
f (xi �→ j ) = y j �→ i for all i, j, can result in the same CSP as the original. The
following theorems and corollaries state when model induction cannot obtain new
models for permutation CSPs.

Theorem 4 If the following conditions hold:

1. M = ((X, D), C) is a permutation CSP;
2. No two constraints in M have the same scope;
3. The all-different constraints in M are ensured by the no-goods {xi �→ k, xj �→ k}

for xi, xj ∈ X and k ∈ D(xi) with i 	= j;
4. There are not any no-goods θ in the constraints of M such that for xi, xj ∈

X(i 	= j), π{xi,xj}(θ) = {xi �→ k, x j �→ k} except those in (3); and
5. We have another viewpoint connected with channeling constraints defining

f (xi �→ j) = yj �→ i for all i, j,

then

M = i( f −1, i( f, M)).

Proof Since no two constraints in M have the same scope, we can consider the set
of no-goods of all constraints in M. Let � = {θ | c ∈ C ∧ θ ∈ ng(c)} be such set of
no-goods. Alternatively, we can write � = �ad ∪ �s, where

�ad = {{xi �→ k, xj �→ k} | xi, xj ∈ X ∧ k ∈ D(xi) ∧ i 	= j } and

�s = {θ | c ∈ C ∧ θ ∈ ng(c) ∧ θ /∈ �ad}.

�ad is the set of the no-goods of the all-different constraints, while �s is the set of
other no-goods of the model. By condition (4), for all θ ∈ �s, xi, xj ∈ X, and i 	= j,
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we do not have π{xi,x j}(θ) = {xi �→ k, xj �→ k}. Let V and V ′ be the viewpoints of M
and i( f, M) respectively. We first construct the set �′ of all no-goods of i( f, M).

�′ = SY ∪ NY = { f (θ) | θ ∈ � ∧ cmpd( f (θ), V ′)} ∪ NY

= { f (θ) | θ ∈ �s ∪ �ad ∧ cmpd( f (θ), V ′)} ∪ NY

= { f (θ) | θ ∈ �s} ∪ NY

SY and NY are the sets of no-goods in i( f, M) transformed from the explicit
constraints in M and the NDA constraints respectively. The no-goods transformed
from the ALOA constraints are discarded since i( f, M) involves model induction
from a permutation CSP to another. On the one hand, all no-goods in �s can be
transformed and included in �′ since the individual assignments in a no-good in �s

must have different values in them. On the other hand, all no-goods in �ad have the
form {xi �→ k, x j �→ k}. Applying f to these no-goods yields {yk �→ i, yk �→ j} which
are invalid no-goods in V ′ and thus cannot be included in �′.

With �′, we can construct the set �′′ of all no-goods in i( f −1, i( f, M)).

�′′ = SX ∪ NX = { f −1(θ) | θ ∈ �′ ∧ cmpd( f −1(θ), V)} ∪ NX

= { f −1(θ) | θ ∈ �′ \ NY} ∪ NX

= { f −1( f (θ)) | θ ∈ �s} ∪ NX

= {θ | θ ∈ �s} ∪ NX

= �s ∪ {{xi �→ k, xj �→ k} | xi, xj ∈ X ∧ k ∈ D(xi) ∧ i 	= j}
= �s ∪ �ad

= �

SX and NX are the sets of no-goods in i( f −1, i( f, M)) transformed from the explicit
constraints in i( f, M) and the NDA constraints respectively. Again, the ALOA
constraints are discarded. All no-goods in NY have the form {yi �→ k, y j �→ k}.
Applying f −1 to these no-goods yields invalid no-goods {xk �→ i, xk �→ j}. Thus, we
need to consider only the no-goods in �′ \ NY , which are transformed to rediscover
the set �s. Furthermore, the set NX is actually equal to �ad. Thus, we have �′′ = �.
Since M and i( f −1, i( f, M)) have the same set of no-goods, and both do not have two
constraints with the same scope, we have M = i( f −1, i( f, M)). �

Theorem 4 applies to general, possibly non-binary CSPs. (A CSP M is binary if
|var(c)| ≤ 2 for each constraint c in M.) Note that condition (4) in the theorem is
trivially true if M is a binary permutation CSP (a binary CSP as well as a permutation
CSP).

Corollary 5 If the following conditions hold:

1. M = ((X, D), C) is a binary permutation CSP;
2. No two constraints in M have the same scope;
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3. The all-different constraints in M are ensured by the no-goods {xi �→ k, xj �→ k}
for all xi, xj ∈ X and k ∈ D(xi) with i 	= j;

4. We have another viewpoint connected with channeling constraints defining
f (xi �→ j) = yj �→ i for all i, j,

then

M = i( f −1, i( f, M)).

Proof All no-goods of a binary CSP must be of the form θ = {xi �→ a, xj �→ b}. If
a = b , then θ is part of the all-different constraints. Therefore, condition (4) of
Theorem 4 must be satisfied. Hence the result by Theorem 4. �

Besides, by applying model induction twice to any permutation CSPs, condition
(4) in Theorem 4 is also trivially true for the model i( f −1, i( f, M)). Therefore, if we
let dblInduce( f, M) = i( f −1, i( f, M)) and

dblInducei( f, M) =
{

dblInduce( f, M) if i = 1
dblInduce( f, dblInducei−1( f, M)) if i > 1,

then dblInduce can be idempotent. In other words, the second application of
dblInduce results in no new redundant information.

Corollary 6 If the following conditions hold:

1. M = ((X, D), C) is a permutation CSP;
2. No two constraints in M have the same scope;
3. The all-different constraints in M are ensured by the no-goods {xi �→ k, xj �→ k}

for all xi, xj ∈ X and k ∈ D(xi) with i 	= j; and
4. We have another viewpoint connected with channeling constraints defining

f (xi �→ j) = yj �→ i for all i, j,

then

dblInduce( f, M) = dblInducen( f, M) for n ≥ 1.

Proof After model induction from i( f, M) to i( f −1, i( f, M)), there are not any no-
goods θ in the constraints of i( f −1, i( f, M)) such that for all xi, x j ∈ X and i 	= j,
π{xi,x j}(θ) = {xi �→ k, xj �→ k} except those of the all-different constraints. This is
because the individual assignments of each no-good in i( f, M) must be of different
variables. Therefore, the individual assignments of each induced counterpart in
i( f −1, i( f, M)) must be of different values. Hence the result by Theorem 4. �

The model dblInduce( f, M) differs from M in that all no-goods in M of the form
{. . . , xi �→ k, . . . , x j �→ k, . . .} are removed. Therefore, further applying dblInduce to
dblInduce( f, M) results in the same model and is not worthwhile.

4.5 Complexity Analysis

In this subsection, we focus our complexity analysis of model induction on permu-
tation CSPs. Given a permutation CSP M = ((X, DX), CX) where X = {x1, . . . , xn},
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DX(xi) = {1, . . . , n} for 1 ≤ i ≤ n, |CX | = c, and the constraints in CX have maximum
constraint arity (scope size) a. A constraint in CX can have O(na) no-goods. Thus,
M has O(cna) no-goods in total. Suppose we are performing model induction on
M to another viewpoint (Y, DY), where Y = {y1, . . . , yn} and DY(y j) = {1, . . . , n},
using the channeling function f (xi �→ j) = y j �→ i for 1 ≤ i, j ≤ n. Each no-good in
the constraints of M can be transformed to an induced no-good in the induced
model. Furthermore, we need to include the no-goods transformed from the NDA
constraints, which are O(n3) in size. Since we can skip the ALOA constraints for
model induction on permutation CSPs, the induced model has a total of O(cna + n3)

no-goods.
In model induction, we need to apply the channeling function f to each assign-

ment of the O(cna) no-goods in M. By using a table lookup, f can be computed
in O(1) time. Since each no-good contains O(a) assignments, an induced no-good
can be computed in O(a) time, and inducing O(cna) no-goods takes O(cnaa) time.
Furthermore, the no-goods from the NDA constraints always have a constant scope
size of two. Therefore, the computation cost for O(n3) such no-goods is O(2n3) =
O(n3). Hence, the time complexity for model induction on a permutation CSP is
O(cnaa + n3). Although the time complexity is exponential in the maximum con-
straint arity, handcrafting CSP models is a time-consuming task for human modelers.
Therefore, human modelers should find model induction a useful tool, especially for
CSPs with low constraint arities.

5 Application of Model Induction to Exploit Redundancy

While an induced model by itself is a complete specification of a problem, in this
section, we focus our interest on combining induced models with other models
of the same problem. We introduce two methods for combining models, namely
model intersection and model channeling, and a method for merging constraints.
By exploiting the applications of model intersection, channeling, and induction,
we identify three new classes of combined models and show that the redundant
information in the combined models allows more constraint propagation and better
solving efficiency.

5.1 Combining Models

In this subsection, we describe two model combining methods, namely model inter-
section and model channeling. Although they are general model combining meth-
ods, we focus their applications on combining mutually redundant models. Model
intersection and channeling allow combining two mutually redundant models in the
same and different viewpoints respectively. We give their syntactic construction rules
and define their set-theoretic meanings. We also discuss how the methods can help
increase constraint propagation.

5.1.1 Model Intersection

Model intersection forms conjoint models by essentially conjoining constraints from
constituent models. A solution of a conjoint model must thus also be a solution of all
of its constituent models.
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Given two models M1 = ((X1, DX1), CX1) and M2 = ((X2, DX2), CX2), the view-
point V = (X, DX) of the conjoint model, denoted by M1  M2, contains variables
X = X1 ∪ X2. A non-shared variable x of M1 and M2 has the same domain as in
its constituent model, while the domain of a shared variable x is the intersection of
DX1(x) and DX2(x). The constraint set CX is the union of CX1 and CX2 .

Example 4 Given two models M1 = ((X1, DX1), CX1) and M2 = ((X2, DX2), CX2),
where

• X1 = {x1, x2, x3}, DX1(xi) = {1, 2, 3} for 1 ≤ i ≤ 3, and CX1 = {x1 	= x3},
• X2 = {x2, x3, x4}, DX2(xi) = {1, 2} for 2 ≤ i ≤ 4, and CX2 = {x2 = x3}.
The conjoint model is M1  M2 = ((X, DX), CX), where

• X = {x1, . . . , x4}, DX(x1) = {1, 2, 3}, and DX(xi) = {1, 2} for 2 ≤ i ≤ 4,
• CX = {x1 	= x3, x2 = x3}.

Note that if we represent constraints using sets of no-goods as in model induction,
a no-good in a constraint of a sub-model can become invalid in the conjoint model,
as the domains of the shared variables are now tightened. Therefore, such invalid
no-goods should be removed from the constraints CX of the conjoint model, i.e.,
CX = {c′ | c ∈ CX1 ∪ CX2 ∧ var(c′) = var(c) ∧ ng(c′) = {θ ∈ ng(c) | cmpd(θ, V)}}.

A consequence of the definition of model intersection is that every solution of a
conjoint model must satisfy all constraints in its constituent models.

Theorem 7 Let V be the viewpoint of M1  M2, then sol(M1  M2) = {θ1 ∪ θ2 | θ1 ∈
sol(M1) ∧ θ2 ∈ sol(M2) ∧ cmpd(θ1 ∪ θ2, V)}.

Proof Let θ1 and θ2 be complete assignments of M1 and M2 respectively.

θ1 ∈ sol(M1) ∧ θ2 ∈ sol(M2) ∧ cmpd(θ1 ∪ θ2, V)

⇔ ∀c1 ∈ CX1 · [c1θ1] ∧ ∀c2 ∈ CX2 · [c2θ2] ∧ cmpd(θ1 ∪ θ2, V)

⇔ ∀c1 ∈ CX1 · [c1(θ1 ∪ θ2)] ∧ ∀c2 ∈ CX2 · [c2(θ1 ∪ θ2)] ∧ cmpd(θ1 ∪ θ2, V)

⇔ ∀c ∈ CX · [c(θ1 ∪ θ2)] ∧ cmpd(θ1 ∪ θ2, V)

⇔ θ1 ∪ θ2 ∈ sol(M1  M2) �

Theorem 7 gives a construction of the solution set of M1  M2 from those of M1

and M2. In particular, solutions θ1 of M1 and θ2 of M2 can be combined to form a
solution of M1  M2 if and only if each shared variable in θ1 and θ2 is assigned the
same value in θ1 and θ2. Otherwise, θ1 ∪ θ2 cannot form a compound assignment in
the conjoint viewpoint. This condition is enforced by the cmpd predicate.

For the purpose of the paper, we consider mutually redundant models M1 =
(V, C1) and M2 = (V, C2) which have the same viewpoint. Thus, M1  M2 = (V, C1 ∪
C2). Furthermore, M1, M2, and M1  M2 are mutually redundant to one another and
have the same solution set. This property allows us to combine two models of the
same problem in the same viewpoint, with the conjoint model still having the same
solution set as the individual models.



486 Y.C. Law et al.

Fig. 3 Increased propagation
due to constraint merging 1

2

3

y yyx xx

c1

1

2

3

c2

1

2

3

c’

Theorem 8 Let M1 and M2 be mutually redundant models in the same viewpoint,
then M1, M2, and M1  M2 are mutually redundant to one another and sol(M1) =
sol(M2) = sol(M1  M2).

Proof Since M1 and M2 are mutually redundant and in the same viewpoint, the
identity mapping is the only one-to-one mapping between sol(M1) and sol(M2), i.e.,
sol(M1) = sol(M2). By Theorem 7, sol(M1  M2) = sol(M1) = sol(M2) and the three
models are mutually redundant to one another. �

Model intersection is “additive” in nature; it collects constraints from both
constituent models to increase the source of constraint propagation. For example,
suppose M1 and M2 are in the same viewpoint and x + y < 3 and x − y > 1 are two
constraints in M1 and M2 respectively, with D(x) = D(y) = {0, . . . , 4}. Constraint
propagation in M1 removes the values 3 and 4 from D(x) and D(y). Similarly,
propagation in M2 removes 0 and 1 from D(x) and 3 and 4 from D(y). In the
conjoint model M1  M2, the information of domain reduction is combined, causing
x be automatically assigned the value 2. The assignment x �→ 2 makes all j ∈ D(y)

with j < 1 be removed, since both 2 + y < 3 and 2 − y > 1 imply y < 1. Hence,
D(y) = {0}, i.e., y is bound to value 0, and the assignment y �→ 0 can trigger further
propagation.

When using sets of no-goods to represent constraints, we have the option of
merging constraints with the same scope into one constraint by taking the union
of the constraints’ sets of no-goods. Given two constraints c1 and c2 with var(c1) =
var(c2), we can construct a merged constraint c′ to replace c1 and c2 such that
var(c′) = var(c1) = var(c2) and ng(c′) = ng(c1) ∪ ng(c2). The resultant constraint c′,
logically equivalent to c1 ∧ c2, potentially provides more constraint propagation
than the individual constraints c1 and c2 do when used separately. For example,
suppose D(x) = D(y) = {1, 2, 3} and consider two constraints c1 : x = 2 ⇒ y = 2 and
c2 : x 	= y. Both c1 and c2 have the same scope var(c1)=var(c2) = {x, y}. Figure 3
shows the configurations of the two constraints and the merged constraint c′. Al-
though both c1 and c2 are arc consistent individually, the merged constraint c′ is
not; the value 2 in D(x) has no support in D(y) and hence can be removed from
D(x). Constraint merging is therefore beneficial. It is applicable whenever there is
more than one constraint having the same scope in a CSP. Furthermore, it arises
more naturally from model intersection, since it is quite plausible for two constituent
models to have different constraints with the same scope.

5.1.2 Model Channeling

Suppose there is a set Cc of channeling constraints connecting the viewpoints
V1 and V2. Model channeling [3] combines M1 = ((X1, DX1), CX1) and M2 =
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((X2, DX2), CX2) using Cc to form a channeled model, denoted by M1
Cc�� M2, which

is M1  M2 plus the channeling constraints Cc, i.e., the constraints in M1
Cc�� M2 is

CX1 ∪ CX2 ∪ Cc.

Given two models M1 and M2, the channeled model M1
Cc�� M2 is more constrained

than the conjoint model M1  M2. A solution of M1
Cc�� M2 must be a solution of

M1  M2 and also satisfy the channeling constraints Cc.

Theorem 9 Let V be the viewpoint of M1
Cc�� M2, then sol(M1

Cc�� M2) = {θ1 ∪ θ2 | θ1 ∈
sol(M1) ∧ θ2 ∈ sol(M2) ∧ cmpd(θ1 ∪ θ2, V) ∧ ∀c ∈ Cc · c(θ1 ∪ θ2)}.

Proof Similar to the proof of Theorem 7. �

Redundant modeling [3] is an application of model channeling to two mutually
redundant models.

Theorem 10 Suppose M1 and M2 are mutually redundant models. If Cc is a set
of channeling constraints enforcing the one-to-one mapping between sol(M1) and

sol(M2), then M1, M2, and M1
Cc�� M2 are mutually redundant to one another.

Proof By definition, any solution θ of M1
Cc�� M2 can be projected on V1 and V2 to

form solutions of M1 and M2 respectively. Suppose θ1 is a solution of M1. Then there
must be θ2 that can be mapped to θ1 by Cc (and vice versa) and is a solution of

M2. In addition, cmpd(θ1 ∪ θ2, V), where V is the viewpoint of M = M1
Cc�� M2, must

hold since θ1 ∪ θ2 satisfies Cc and shared variables in θ1 and θ2 must share the same
assignments. Therefore, there is a one-to-one mapping between sol(M1) and sol(M).
Similarly, there is also a one-to-one mapping between sol(M2) and sol(M). �

Model channeling is “collaborative” in the sense that it allows each sub-model
to perform constraint propagation on its own, and yet communicate its results
(variable instantiation and domain pruning) to the other sub-model via the chan-
neling constraints to possibly initiate further constraint propagation. Furthermore,
model channeling allows constraint propagation to explore different variable spaces
(viewpoints). For example, Fig. 4a shows two mutually redundant models M1 and M2

Fig. 4 Constraint propagation
on model channeling
between two models

x1 x2 x3

y1 y2 y3
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x1 x2 x3
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being channeled with the channeling constraints Cc xi = j ⇔ yj = i for all i, j pairs.
M1 has three constraints c12, c13, and c23, each contains the no-goods:

c12 : {x1 �→ 1, x2 �→ 1}, {x1 �→ 1, x2 �→ 3}, {x1 �→ 2, x2 �→ 2},
{x1 �→ 2, x2 �→ 3}, {x1 �→ 3, x2 �→ 3},

c13 : {x1 �→ 1, x3 �→ 1}, {x1 �→ 2, x3 �→ 2}, {x1 �→ 3, x3 �→ 2}, {x1 �→ 3, x3 �→ 3},
c23 : {x2 �→ 1, x3 �→ 1}, {x2 �→ 2, x3 �→ 2}, {x2 �→ 3, x3 �→ 3}.

M2 has three constraints c′
12, c′

13, and c′
23, each contains the no-goods

c′
12 : {y1 �→ 1, y2 �→ 1}, {y1 �→ 2, y2 �→ 2}, {y1 �→ 3, y2 �→ 3},

c′
13 : {y1 �→ 1, y3 �→ 1}, {y1 �→ 1, y3 �→ 2}, {y1 �→ 2, y3 �→ 2}, {y1 �→ 3, y3 �→ 3},

c′
23 : {y2 �→ 1, y3 �→ 1}, {y2 �→ 1, y3 �→ 2}, {y2 �→ 2, y3 �→ 2},

{y2 �→ 3, y3 �→ 1}, {y2 �→ 3, y3 �→ 3}.
Constraint propagation in M1 alone removes value 3 from DX(x2) but no more,

as x2 �→ 3 is incompatible to all assignments of x1. Propagation in M2 alone removes

no values. In the channeled model M1
Cc�� M2, however, the removal of x2 �→ 3 causes

y3 �→ 2 to be removed also, as shown in Fig. 4b. Note that y3 �→ 2 is the only support
in variable y3 for the assignment y2 �→ 3. Thus, removing y3 �→ 2 makes y2 �→ 3
incompatible with all the remaining assignments of y3. As a result, y2 �→ 3 in M2

and consequently x3 �→ 2 in M1 are removed also. Figure 4c shows the final state of
propagation, showing that the channeled model allows more constraint propagation
than either M1 or M2 alone does.

5.2 Three New Classes of Combined Models

A viewpoint can greatly influence how a human modeler looks at a problem. Each
viewpoint provides a distinct perspective emphasizing perhaps a specific aspect of the
problem. Therefore, if a modeler handcrafts two CSP models of the same problem in
two different viewpoints, the constraints in the two models are likely to be expressed
very differently. A constraint expressed in one viewpoint might not even have an
(explicit) counterpart in the other [30]. However, since the CSP models are modeling
the same problem, the constraints in each model should give the same solutions to
the problem being modeled.

Suppose M1 = (V1, C1) and M2 = (V2, C2) are mutually redundant models in
different viewpoints handcrafted by human modeler, and Cc is a set of channeling
constraints which defines a total function f from possible assignments of V1 to those
of V2. Model channeling and intersection give various possibilities to combine M1,
M2, and their induced models. Assuming f −1 exists, we propose three classes of
interesting combined models.

1. i( f, M1)  M2 and M1  i( f −1, M2)

2. M1
Cc�� i( f, M1) and M2

Cc�� i( f −1, M2)

3. (i( f, M1)  M2)
Cc�� i( f −1, i( f, M1)  M2) and (i( f −1, M2)  M1)

Cc�� i( f, i( f −1,

M2)  M1)

We first exploit the use of model intersection to combine two mutually redun-
dant models in the same viewpoint. Model induction of M1 essentially translates
constraints expressed in V1 to constraints in V2 via the channeling function f . The
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transformed constraints express in V2 the constraint information of the problem as
viewed from V1; they are likely to be different from constraints expressed directly
using V2 by a human modeler. Therefore, i( f, M1) and M2, which have the same
viewpoint V2, are mutually redundant and yet complementary to each other. In the
first class, we conjoin the two models to form M1i2 = i( f, M1)  M2. Similarly, we can
construct the model M12i = M1  i( f −1, M2).

A model M1 is mutually redundant with its induced model i( f, M1) according to
Theorem 1. As the two models are in different viewpoints V1 and V2 respectively,
in the second class, we use model channeling to combine them using the channeling

constraints Cc, giving the channeled model M1
Cc�� i( f, M1). Such application of model

channeling allows us to enjoy the benefits of combining models even when we have
only one handcrafted model. The other model that we can construct in this class is

M2
Cc�� i( f −1, M2).

In the first and second classes, we make use of model intersection and model
channeling respectively to form combined models. In the third class, we apply both
methods simultaneously to form further combined models. We first conjoin the
models i( f, M1) and M2 as suggested in the first class. Since the conjoint model M1i2 is
in a single viewpoint V2, we can then apply model induction to M1i2 using f −1, giving
the induced model i( f −1, M1i2). By Theorem 1, M1i2 and i( f −1, M1i2) are mutually
redundant. Using the technique in the second class, we channel the two models using

channeling constraints Cc, giving the combined model M1i2
Cc�� i( f −1, M1i2). The other

model in the third class is therefore M12i
Cc�� i( f, M12i).

Note that f −1 always exists for permutation CSPs. Therefore, we can always
perform model induction using either M1 or M2. The model M1i2 in the first class
combines the constraint information of both handcrafted models M1 and M2 in the
single viewpoint V2. By Corollary 6, we cannot construct further induced models
that are different from the result of the second induction, i.e., we need not consider
the models dblInducek( f, M1i2) for k > 1. Furthermore, dblInduce( f, M1i2) contains
fewer no-goods than M. Hence, in viewpoint V2, M1i2 is the model that has the

largest number of no-goods. The model M1i2
Cc�� i( f −1, M1i2) in the third class, in

the combined viewpoint of V1 and V2, has therefore exploited the most redundant
information from the original models M1 and M2 using model induction, intersection,
and channeling.

Also note that for the special case of binary permutation CSPs, i( f −1, i( f, M1) 
M2) = M1  i( f −1, M2) with constraint merging. Similarly, i( f, i( f −1, M2)  M1) =
M2  i( f, M1). Thus, the second model in the third class (i( f −1, M2)  M1)

Cc��
i( f, i( f −1, M2)  M1) becomes i( f −1, i( f, M1)  M2)

Cc�� (M2  i( f, M1)), which is ac-
tually the first model in the class. Therefore, it is only necessary to consider one of the
two models for the third class in the case of binary permutation CSP with constraint
merging.

Corollary 11 If the following conditions hold:

• M1 = ((X, DX), CX) and M2 = ((Y, DY), CY) are mutually redundant permuta-
tion CSPs and M1 is binary;
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• The all-different constraints in M1 are ensured by the no-goods {xi �→ k, x j �→ k}
for all xi, x j ∈ X and k ∈ DX(xi) with i 	= j; and

• (X, DX) and (Y, DY) are connected with channeling constraints defining f (xi �→
j) = yj �→ i for all i, j,

then

i( f −1, i( f, M1)  M2) = M1  i( f −1, M2) with constraint merging.

Proof With constraint merging, we have

i( f −1, i( f, M1)  M2) = i( f −1, i( f, M1))  i( f −1, M2).

By Theorem 4, i( f −1, i( f, M1)) = M1. Hence,

i( f −1, i( f, M1)  M2) = i( f −1, i( f, M1))  i( f −1, M2) = M1  i( f −1, M2) �

6 Experiments

In this section, we present experimental results on combining mutually redundant
models using our proposed scheme. The experimental problems are Langford’s
problem, which can be modeled as permutation CSPs, and random permutation
CSPs. We realize and evaluate various models of these problems using ILOG Solver
4.4 [21], a tree search based CSP solver, running on a Sun Blade 2500 (2 × 1.6 GHz
US-IIIi) workstation with 2 GB memory. Note that our experiments aim to show that
using a standard level of constraint propagation in Solver, the redundant information
obtained by model induction, intersection, and channeling can help reduce search
effort in practice. It is outside the scope of this paper to consider (1) the effects
of maintaining different levels of constraint propagation in the combined models
and (2) whether each piece of redundant information in the combined models is
propagation redundant [7, 8] with respect to some other constraints.

We implement the REVISE2001/3.1 procedure [2] to enforce arc consistency
on constraints represented extensionally by sets of no-goods. Since we explicitly
use no-goods to build constraints, it is straightforward to apply constraint merging.
Hence, we merge constraints whenever possible so that every constraint in a model
has a unique scope. The channeling constraints are expressed using Solver’s inverse
constraint [21], which is essentially equivalent to the set of constraints xi = j ⇔ y j = i
for all i, j pairs, although more efficiently implemented. The smallest-domain-first
dynamic variable ordering heuristic is used throughout the experiments.

6.1 Langford’s Problem

Langford’s problem2 can be modeled as permutation CSPs for experimenting with
model induction, intersection, and channeling. The problem is to find a (m × n)-
number sequence which includes the numbers 1 to n, with each number occurring m
times, such that two consecutive occurrences of number i are separated by i positions.

2“Prob024” in CSPLib, available at <http://www.csplib.org/>.

http://www.csplib.org/
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An instance is denoted by (m, n). A solution of the (2, 3) instance is the sequence
〈2, 3, 1, 2, 1, 3〉.

Smith [34] suggested two permutation CSP models for Langford’s problem. We
use the (2, 3) instance to illustrate them. In the first model M1, we use six variables
X = {x0, . . . , x5}, which we can think of as {11, 12, 21, 22, 31, 32}. Here, i j represents
the j-th occurrence of number i in a sequence. The variable domain is the possible
positions of a number in the sequence. We use {0, . . . , 5} to represent the domain,
giving us the viewpoint V1 = (X, DX) where DX(xi) = {0, . . . , 5} for 0 ≤ i ≤ 5.

Using V1, we can model the problem using two types of constraints. The all-
different constraints ensure that all numbers occur in different positions in the
sequence, whereas the separation constraints ensure the correct spacings between
consecutive occurrences of the same number.

All-different constraints: xi 	= x j for 0 ≤ i < j ≤ 5
Separation constraints: x1 = x0 + 2, x3 = x2 + 3, and x5 = x4 + 4

In the second model M2, we again use 6 variables Y = {y0, . . . , y5} to represent
each position in the sequence. Their domains are {0, . . . , 5}, corresponding to the
numbers {11, 12, 21, 22, 31, 32}. Hence, we have the viewpoint V2 = (Y, DY) where
DY(yj) = {0, . . . , 5} for 0 ≤ j ≤ 5.

Using this viewpoint, we also have two types of constraints as in V1:

All-different constraints: yi 	= yj for 0 ≤ i < j ≤ 5
Separation constraints: yj = 0 ⇔ yj+2 = 1 for 0 ≤ j ≤ 3, yj = 2 ⇔ y j+3 = 3 for

0 ≤ j ≤ 2, yj = 4 ⇔ yj+4 = 5 for 0 ≤ j ≤ 1, yj 	= 0 for
4 ≤ j ≤ 5, yj 	= 2 for 3 ≤ j ≤ 5, and yj 	= 4 for 2 ≤ j ≤ 5

We can express the channeling constraints Cc connecting V1 and V2 as xi = j ⇔
y j = i for 0 ≤ i, j ≤ 5. These constraints define a total and bijective function f where
f (xi �→ j) = y j �→ i for all valid i, j. With M1, M2, and f , we can construct the three
proposed classes of combined models. Since both M1 and M2 are binary permutation
CSPs, Corollary 11 suggests that it is only necessary to consider

M12i
Cc�� M1i2 = (M1  i( f −1, M2))

Cc�� (i( f, M1)  M2)

for the third class of combined models.
Note that the separation constraints are expressed differently in the two view-

points. For example, to express in the (2, 3) instance that 11 and 12 are separated
by one position, we use simply one constraint x1 = x0 + 2 in M1, which is shown in
Fig. 5a. Figure 5b shows its counterpart in i( f, M1). The same requirement in M2,
however, has to be expressed by six constraints y0 = 0 ⇔ y2 = 1, y1 = 0 ⇔ y3 = 1,
y2 = 0 ⇔ y4 = 1, y3 = 0 ⇔ y5 = 1, y4 	= 0, and y5 	= 0, as shown in Fig. 5c. Although
i( f, M1) and M2 have the same viewpoint V2, the same requirement is represented
differently. Therefore, combining these mutually redundant models using model
intersection can enhance constraint propagation. Figure 5d shows the constraints in
the conjoint model i( f, M1)  M2.

We evaluate the various models for some instances of Langford’s problem. Tables
1 and 2 show our comparison results of the satisfiable and unsatisfiable instances
respectively. Column 1 gives the models. In models with more than one viewpoint,
it suffices to assign values to the variables of either viewpoint, or one can choose
to search on both sets of variables: in column 2, we give the search variables used.
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The remaining columns report the execution results. We report the number of fails
(i.e., the number of backtracks in a search tree, the smaller the better) and CPU time
in seconds of an execution. A cell labeled with “–” means that execution does not
terminate within two hours of CPU time. In Table 1, we report the results for finding
the first solution, while in Table 2, we report the results for proving unsatisfiability of
the instances. We also highlight in bold the best result of each column.

We divide the models into five groups. The first group consists of individual
models, while the second group consists of combined models constructed using the
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Fig. 5 The constraints for correct separation of 11 and 12 in M1, i( f, M1), M2 and i( f, M1)  M2 of
the (2, 3) instance respectively
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redundant modeling approach [3]. The remaining groups correspond to our three
proposed classes of combined models.

In analyzing the results, attention should be directed not just to the CPU time,
but also to the number of fails (i.e., the number of times the search backtracks).
In fact, the latter is more important and accurate as a measure of the robustness
of a model. Combined models are bigger in size, and higher execution overhead
is expected. The idea of combining mutually redundant models is to spend more
time in constraint propagation at each node of the search tree, in the hope that the
extra effort will result in more substantial pruning of the search space. A model
giving more pruning has a greater chance of solving problems that are otherwise
computationally infeasible than those with less pruning.

The first and fifth groups of models represent the two ends of a spectrum, which
indicates the amount of model redundancy utilized in the models. The single models
in the first group use no redundancy, and thus perform the worst in terms of the
number of fails. Their execution times are not the worst since these models are the
smallest in size, incurring the least execution overhead in constraint propagation.
Model M2 is a poor model. Any model involving M2 as a base model performs poorly,
in terms of both CPU time and number of fails. In the following, we focus on only
models using M1 as a base model.

The second group makes use of only model channeling, which helps M1 and M2

share pruning and variable instantiation information. Constraint propagation also
takes place in both viewpoints. Another advantage of this approach is that constraints
in M1 and M2, constructed under different viewpoints, are complementary to each
other. These characteristics are the source of increased constraint propagation; and
thus the drastic cut in the number of fails as compared to the models in the first group.

The third group of models uses only one viewpoint, but model intersection and
constraint merging combine the constraints from the two models to form stronger
constraints to achieve stronger constraint propagation. The reduction in the number
of fails, however, is not as substantial as the case in the second group of models.

The fourth group of models employs both model induction and model channeling.
The models inherit the good characteristics of model channeling, except that the
constraints are based only on one original model, and so do not have the chance
to share constraint information from the other. Therefore, the performance of the
fourth group is slightly worse than that of the second group.

The model in the fifth group enjoys the best of both worlds. Each of the sub-
models is a conjoint model, which encompasses strengthened constraints obtained
from model intersection. The conjoint models are then connected via model chan-
neling to take advantage of the sharing of pruning information and constraint
propagation in different viewpoints. That explains why models in this group always
give the lowest number of fails. Their timings are also the fastest in most instances,
although these models are the largest in size.

6.2 Random Permutation CSPs

A random (binary) CSP can be characterized by (n, m, p1, p2), where n is the number
of variables and m is the domain size of the variables. The constraint density p1 is
the proportion of pairs of variables that have a constraint between them. Given a
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constraint between a variable pair, the constraint tightness p2 is the proportion of
value pairs that are inconsistent for the variable pair.

In a permutation CSP, the number of variables always equals the domain size,
i.e., n = m. Thus, a random permutation CSP can be characterized by (n, p1, p2).
It is generated by artificially adding to a random CSP (n, n, p1, p2) the no-goods
{xi �→ k, x j �→ k} for all i, j, k pairs with i 	= j, which represent the all-different
constraints of the random CSP. Therefore, the actual constraint density in a random
permutation CSP is 1.0 due to the all-different constraints, but only a proportion p1

of them can have no-goods other than those of the all-different constraints. Note that
given a constraint between two variables in a random permutation CSP, the expected
number of no-goods in the constraint is (n2 − n)p2 + n instead of n2 p2 in a constraint
of a random CSP.

For a permutation CSP, a second viewpoint always exists by interchanging the
roles of variables and values. The channeling constraints connecting the two view-
points are the same as those in Langford’s problem, i.e., xi = j ⇔ yj = i, giving
the channeling function f (xi �→ j ) = y j �→ i for all i, j pairs. Hence, we can always
construct an induced model i( f, M) for a permutation CSP M.

Our experiments on random permutation CSPs are divided in two categories. In
the first set of experiments, we use single random models to study the effect of the in-
duced models with model channeling. In the second, we use two mutually redundant
random models to experiment with both model intersection and channeling.

6.2.1 Single Models

We evaluate the models M, i( f, M), and M
Cc�� i( f, M) for the instances of the random

permutation CSPs. We fix n = m = 18 and p1 ∈ {1.0, 0.8, 0.6}, and vary p2 in steps of
0.01 up to 1.0. The series of experiments with a particular n and p1 is denoted by
(n, p1). We generate ten instances for each set of parameters and plot the average
number of fails and average CPU time in the graphs.

The left-hand-side graphs in Fig. 6a,b, and c show the amount of search in terms of
number of fails for finding all solutions for the series (18, 1.0), (18, 0.8), and (18, 0.6)

at different p2 levels respectively. In M
Cc�� i( f, M), for graph clarity, we plot only

the curves of searching the variables of both constituent models, since this searching
strategy generally performs better than searching the variables in either model. The
right-hand-side graphs in the figures show the ratio of the number of fails of i( f, M )

or M
Cc�� i( f, M ) to that of M. A model with ratio higher (lower) than 1.0 means it

needs more (less) search than the original model does. Hence, a lower ratio is better.
A horizontal line is drawn at ratio 1.0 to distinguish the two regions. The vertical
lines in the graphs indicate the mushy region [36] in which phase transition occurs,
i.e., some of the instances are satisfiable but some are unsatisfiable.

Figure 6a,b, and c show that the number of fails decreases smoothly as p2

increases. This is in contrary to the case of first solution search, where a peak is found
during phase transition. At high constraint tightness, constraint propagation alone is
enough to prove the instances unsatisfiable. Hence, the number of fails is 1. The ratios
generally increase with p2 regardless of the mushy regions and gradually converge to
1.0 because at high p2 values, both the original models and channeled models need
no search to prove unsatisfiability and the number of fails (and hence the ratio) is
1 at that case. Note that the ratios when p1 = 1.0 are generally lower than those at
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Fig. 6 Average number of fails and ratios of fails to the single models for the series (18, 1.0), (18, 0.8),
and (18, 0.6) respectively

the other p1 values. Also, in the mushy regions, the ratio decreases with increasing
p1. For example, the average ratios in the mushy regions of (18, 1.0), (18, 0.8), and
(18, 0.6) are 0.38, 0.51, and 0.63 respectively. These indicate that model channeling is
useful to reduce search space in CSPs with variables highly connected by constraints.

We can also see from the figures that an induced model alone performs no better
than the original model. Only at p1 = 1.0 are the induced models competitive. At
lower p1 values, they perform worse than the original models, since a low p1 in M
means a low p2 in the induced model i( f, M ), which implies that a domain value
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Fig. 7 An unsatisfiable CSP
and its induced model
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the constraint between x1 and x2 can never be satisfied as it contains all the possible
no-goods. Before tree search, constraint propagation alone will prune all the domain
values of x1 or x2 to prove the model unsatisfiable. The induced model on the right,
however, is clearly still arc consistent, since domain values 1 and 2 of a variable are
always consistent with value 3 in another variable, and vice versa. Hence, constraint
propagation prunes no domain values and tree search is needed to prove the induced
model unsatisfiable. Only when p1 = 1.0 can we detect arc inconsistencies in the
induced model before tree search. This explains why the induced models alone are
difficult to solve when p1 < 1.0. Nevertheless, they are useful to combine with other
models through intersection or channeling to obtain extra redundant information.

Figure 8a,b, and c show the timing results of the series (18, 1.0), (18, 0.8), and
(18, 0.6) respectively. Despite the drastic pruning of the search spaces, the channeled
models do not always have faster run times than the single models, as they are larger
in size and constraint propagation takes longer at each node of the search tree. When
p1 is high, the run times of the channeled models are usually better than those of the
single models in or before the mushy region. For example, for p1 = 1.0, a combined
model is more efficient than a single model when p2 ≤ 0.25. As p2 increases to cross
the region, the instances become easier to prove unsatisfiability. The longer time
spent on propagating the channeled models cannot be compensated and the ratios
reach 2.0 on high p2 values. Note that in our experiments, there are cases that a
single model requires much longer run time than its corresponding channeled model,
and the ratio is more than an order of magnitude. This shows that while a channeled
model in general can have propagation overhead over a single model, it is possible
that in some circumstances, the channeled model is substantially more efficient than
the single model and can tackle a problem which is computationally infeasible for
the single model. Besides, since the induced models alone for p1 < 1.0 requires more
search than the single models, they have a comparatively longer run time, especially
at high p2 values.

6.2.2 Mutually Redundant Random Model Pairs

In order to apply model intersection, we need, as in Langford’s problem, two
mutually redundant models in the same viewpoint. For random permutation CSPs,
we do not have two such models in general, since the solutions of two random
instances are usually not equivalent. Therefore, we have designed an algorithm [28]
to generate pairs of mutually redundant random permutation CSPs M1 and M2 of
the same class, by forcing them to have equivalent sets of solutions with respect
to the channeling constraints. Table 3 shows the results of finding all solutions for
the instances in the mushy regions of (18, 1.0), (18, 0.8), and (18, 0.6). The reported
figures are the average results of the satisfiable instances in a class.

Since the generated models M1 and M2 are of the same class, they exhibit similar
number of fails and run time, and so do their induced models. We note that the search
efforts for the models which use both M1 and M2 is greatly reduced. In the second
and third groups, about 99% of the search effort is saved. This shows that there is
much more constraint propagation than using single models alone. The fifth group
exhibits further search reduction and always achieves the smallest number of fails,
which is only half of those in the third group. Although these models are not the
fastest, they are not far behind the best.
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It must be remembered that in real problems (such as Langford’s problem), the
problem specification itself restricts the constraint formulations in a viewpoint. Here,
we arbitrarily declare two different instances to be mutually redundant models of the
same “problem” by forcing them to have equivalent sets of solutions with respect to
the channeling constraints. This does not parallel how problem modeling is done in
practice. Hence, we should not expect the large reduction in search from combining
M1, M2, and/or their induced models that we find in random permutation problems
to occur in real problems, in general. Nevertheless, our experiments are useful in
demonstrating the extreme case of the benefit of combining mutually redundant
models.

7 Concluding Remarks

We conclude the paper by giving discussions and summarizing our contributions and
possible directions for future research.

7.1 Discussion

Handcrafting CSP models is an unamiable and costly task performed daily by human
modelers, who should thus find model induction a useful tool. What human modelers
need to be familiar with is the viewpoints of a problem and the channeling constraints
between them. Moreover, the execution time for model induction is acceptable
when constraint arities are small: the induced models used in all of our experiments
can be generated almost instantly from the input models. The generated models
can be combined with other models using model intersection and/or channeling.
Model intersection helps increase constraint propagation within the same viewpoint
by adding new constraints or making the existing constraints tighter, while model
channeling provides an additional source of constraint propagation with the intro-
duction of an extra viewpoint. Model redundancy is a relatively new concept and
our formal study helps advance our understanding of its benefits. It demonstrates
that mutually redundant models can incorporate different information and that
combining the information from different sources can improve search efficiency. Our
work is also a means to open up new possibilities to study, understand, and apply
model redundancy in constraint satisfaction.

7.2 Contributions

The contributions of our work can be summarized as follows. First, based on the
viewpoint notion, we have introduced model induction, which can automatically
generate an alternative model in a different viewpoint from an existing model. We
have given its syntactic construction rule, detailed examples, and also examined its
properties. Second, we have proposed two methods to combine models, namely
model intersection and model channeling. They allow combining two models of
the same problem in the same and different viewpoints respectively. The latter is
a formalization of redundant modeling by using the constraints of both models and
defining a relationship between the viewpoints of the constituent models with the use
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of channeling constraints. Third, we have identified three new classes of combined
models by exploiting different applications of model induction, intersection, and
channeling. We have demonstrated the usefulness of the three classes of combined
models using Langford’s problem and random permutation CSPs. Model induction,
intersection, and channeling increase the flexibility of human modelers by producing
more models for a problem and providing more possibilities of combining models.
Benchmark results on permutation problems confirm that all the three proposed
classes of combined models can achieve more propagation and better solving effi-

ciency than the individual models. In fact, the model M12i
Cc�� M1i2 in the third class,

when available, always produces the fewest number of fails.

7.3 Future Work

Our work proposes a systematic study of transforming and combining CSP models.
There is plenty of scope for future work on this important direction of research. First,
it would be interesting to refine the definition of model induction. Although our
current definition is applicable to general CSPs, our empirical results are developed
for only permutation CSPs. It will be interesting to check if the same techniques
can be applied/generalized to other CSP classes. For example, in many assignment
problems, it is possible to have two viewpoints, which use variables with integer
domains and set domains respectively. Generalizing model induction to generate a
set model from an integer model is a challenge. Further study can also be conducted
to refine the requirement on the type of channeling constraints that model induction
can apply.

Second, it would be preferable to avoid using the extensional representation of
constraints, if possible. For many constraints, it is simply impracticable to construct
the extensional representation, and it would be in any case preferable not to solve
CSPs in extensional form since propagation is generally more time-consuming in
many constraint programming systems if constraints are expressed extensionally
rather than intensionally. It would be worthwhile to study how the indexical rep-
resentation [10] of a constraint can be learned from its extensional counterpart. Dao
et al. [10] proposed learning indexicals, which are approximations of constraints and
enforce only bounds consistency. Cheng et al. [5, 6] proposed box constraint collec-
tion (BCC), which allows efficient representation of extensional constraints. BCC
enforces arc consistency on the constraints and can be implemented efficiently using
indexicals. Furthermore, SICStus Prolog [22] also provides the case/4 constraint
for representing arbitary constraints. These tools can be used together with model
induction to represent and propagate the extensional constraints in the induced
models more efficiently.
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