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Abstract Constraint satisfaction problems (CSPs) sometimes contain both variable
symmetries and value symmetries, causing adverse effects on CSP solvers based on
tree search. As a remedy, symmetry breaking constraints are commonly used. While
variable symmetry breaking constraints can be expressed easily and propagated
efficiently using lexicographic ordering, value symmetry breaking constraints are
often difficult to formulate. In this paper, we propose two methods of using symmetry
breaking constraints to tackle value symmetries. First, we show theoretically when
value symmetries in one CSP correspond to variable symmetries in another CSP of
the same problem. We also show when variable symmetry breaking constraints in
the two CSPs, combined using channeling constraints, are consistent. Such results
allow us to tackle value symmetries efficiently using additional CSP variables and
channeling constraints. Second, we introduce value precedence, a notion which can
be used to break a common class of value symmetries, namely symmetries of
indistinguishable values. While value precedence can be expressed using inefficient
if-then constraints in existing CSP solvers, we propose efficient propagation
algorithms for implementing global value precedence constraints. We also charac-
terize several theoretical properties of the value precedence constraints. Extensive
experiments are conducted to verify the feasibility and efficiency of the two proposals.

Keywords Symmetry breaking . Value symmetries . Constraint satisfaction

1 Introduction

Many real life problems can be modeled as constraint satisfaction problems (CSPs),
which is defined by Mackworth [38] as follows:

We are given a set of variables, a domain of possible values for each variable,
and a conjunction of constraints. Each constraint is a relation defined over a
subset of the variables, limiting the combination of values that the variables in
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this subset can take. The goal is to find a consistent assignment of values from
the domains to the variables so that all the constraints are satisfied
simultaneously.

A CSP often exhibit some symmetries, which are mappings that preserve
satisfiability of the CSP. They are a curse of CSP solving algorithms based on tree
search, since symmetrically equivalent states in the search tree can be explored
more than once. One main approach of symmetry breaking is to add symmetry
breaking constraints [43] to a CSP before search, so that some symmetrical
equivalent solutions are removed in the reformulated CSP.

There are two common types of CSP symmetries, namely variable symmetries and
value symmetries. Crawford et al. [18] suggested that we can always break variable
symmetries using lexicographic ordering constraints. In addition, efficient propaga-
tion algorithms [13, 14, 21] exist for maintaining lexicographic ordering. As a result,
variable symmetry breaking constraints can be expressed relatively easily and
executed efficiently in existing constraint programming systems. However, there are
no general methods to date to formulate symmetry breaking constraints for value
symmetries in CSPs. In this paper, we propose two methods to remedy this
difficulty.

The first method makes uses of multiple viewpoints and channeling constraints
[15] to break value symmetries in matrix models [21], which are CSPs with variables
indexed and organized into matrices. Flener et al. [21] suggested that it is possible to
transform an ðn� 1Þ-dimensional matrix with variable and value symmetries into an
n-dimensional matrix of 0/1 variables that contains only variable symmetries.
Symmetry breaking constraints are then expressed in the n-dimensional matrix to
break the symmetries of the problem. We formalize this idea by theoretically
showing that value symmetries in a matrix model always correspond to variable
symmetries in the 0/1 viewpoint. We also generalize the idea to characterize the
conditions when value symmetries in one matrix model correspond to variable
symmetries in another non-0/1 matrix model of the same problem. We then give the
conditions when variable symmetry breaking constraints in two matrix models of the
same problem, when combined using channeling constraints, are consistent. Such
results enable us to break value symmetries in one viewpoint using variable
symmetry breaking constraints in another.

In the second method, we identify an important class of value symmetries,
namely symmetries of indistinguishable values [10, 28], an example of which is the
colors in graph coloring problems. We introduce a notion called value precedence
and explain how imposing value precedence on a sequence of CSP variables can
break symmetries of indistinguishable values in both integer and set domains.
Although the value precedence condition on a sequence of variables is easy to
express using if-then constraints in many existing constraint programming systems,
such a formulation is inefficient both in terms of number of constraints and
propagation efficiency. We propose two efficient propagation algorithms for
implementing value precedence global constraints on integer and set variable
sequences respectively. We also study several theoretical properties of the proposed
value precedence constraints.

This paper, a revised and extended version of the work by Law and Lee [36, 37]
and Law [35], is organized as follows. Section 2 provides background to the paper.
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We formally define the concept of CSPs and two common types of CSP symmetries,
namely variable and value symmetries. Section 3 presents how to break value
symmetries in matrix models using multiple viewpoints and channeling constraints.
Section 4 introduces our other method that breaks symmetries of indistinguishable
values using value precedence. Section 5 presents experimental results using the two
proposals and Section 6 presents a brief review of the related work in symmetry
breaking. Section 7 summarizes our contributions, and gives discussions and possible
directions for future research.

2 Background

This section provides background to the paper. We provide the definitions of
various CSP related concepts and defines two common types of CSP symmetries,
namely variable and value symmetries. We give also common existing methods of
breaking such types of symmetries.

2.1 Constraint Satisfaction Problems

A viewpoint is a pair ðX;DÞ, where X is a set of variables, and D is a function that
maps each x 2 X to its associated domain, giving the set of possible values for x.
There are two common classes of variables in CSPs. An integer variable [1] x has an
integer domain, i.e., DðxÞ is a finite integer set. A set variable [1, 32] x has a set
domain; each element in the domain is a finite integer set. In most implementations,
the domain of a set variable x is represented by two sets. The possible set PSðxÞ
contains elements that belong to at least one of the possible values of the variable.
The required set RSðxÞ contains elements that belong to all the possible values of the
variable. By definition, RSðxÞ � PSðxÞ. The domain of x is then represented as
DðxÞ ¼ fa jRSðxÞ � a � PSðxÞg. Domain reduction of a set variable x is done by
removing values from PSðxÞ and adding values to RSðxÞ. If a value being removed
from PSðxÞ is in RSðxÞ, a fail is triggered. Adding a value to RSðxÞ which is not in
PSðxÞ also triggers a fail. When PSðxÞ ¼ RSðxÞ, the set variable is bound. For ease of
description, we abuse terminology by defining the possible set PSðxÞ of an integer
variable x to be DðxÞ.

An assignment x7!a in ðX;DÞ means variable x 2 X is mapped to the value
a 2 DðxÞ. A compound assignment is a set of assignments in which no variables
can be assigned more than once. We overload the 7! operator such that
hxi1 ; . . . ; xiki7!ha1; . . . ; aki means the compound assignment fxij 7!aj j 1 � j � kg. A
complete assignment is a compound assignment for all variables in a CSP.

A constraint in a viewpoint V places restrictions on a subset of variables in V,
limiting the combination of values that these variables can take. A CSP model M (or
simply model or CSP) of a problem P is a pair ðV;CÞ, where V ¼ ðX;DÞ is a
viewpoint of P and C is a set of constraints in V for P. Besides using ðV;CÞ, we also
use the triple ðX;D;CÞ to denote M, i.e., M ¼ ðV;CÞ ¼ ðX;D;CÞ. A solution of a
CSP M is a complete assignment that satisfies all the constraints in C. The set of all
solutions of M is denoted by solðMÞ.

In order to reason with integer and set variables uniformly, we introduce the
notion of decisions which are analogous to assignments. A decision x . b in ðX;DÞ
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means variable x 2 X is mapped to the value b 2 PSðxÞ. It has different meanings
depending on the class of variable x. If x is an integer variable, x . b simply means
x7!b. If x is a set variable, x . b means b is added to the required set RSðxÞ of x, i.e.,
b 2 x. A compound decision is a set of decisions. Decisions are different from
assignments in that multiple decisions are allowed for a set variable, while multiple
assignments are not allowed for any variable. For example, if x is an integer
variable, then � ¼ fx . 1; x . 2g is not a valid compound decision. However, if x is a
set variable, then � is a valid compound decision, meaning f1; 2g � x. A compound
decision has a scope indicating the set of assigned variables. For example, for integer
variable x and set variables y and z, the compound decision fx . 1; y . 1; y . 2g with
scope fx; y; zg means the compound assignment fx 7!1; y7!f1; 2g; z7!;g. With the
same scope U, compound assignments and compound decisions have a 1-1 cor-
respondence. Therefore, we use compound decisions as well as complete assign-
ments to represent solutions of a CSP interchangeably whenever necessary. We
overload the . operator such that hxi1 ; . . . ; xiki . ha1; . . . ; aki means the compound
decision fxij . aj j 1 � j � kg.

An extension of an assignment x7!a is a compound assignment that includes x7!a.
A constraint c is generalized arc consistent (GAC) [41] if and only if for each
variable x in c and a 2 DðxÞ, x 7!a can be extended to a solution of c. Generalized arc
consistency (GAC) is prohibitive to enforce on constraints involving set variables.
Instead, set bounds consistency (SBC) is typically enforced. A constraint c on set
variables is set bounds consistent (SBC) [32] if and only if for each set variable x in c,
both x7!PSðxÞ and x 7!RSðxÞ can be extended to solutions of c. That is, for each set
variable x in c and a 2 PSðxÞ n RSðxÞ, both c ^ a 2 x and c ^ a =2 x are satisfiable.

2.2 Symmetries

In this subsection, we define two types of symmetries, namely variable symmetries
and value symmetries. We illustrate existing methods for breaking such symmetries
using the social golfer problem as a running example.

The social golfer problem (SGP), Bprob010^ in CSPLib,1 is to find a W-week
schedule of G groups, each containing S golfers, such that no two golfers can play
together more than once. There are totally N ¼ G � S golfers. We denote each
instance of the problem by ðG;S;WÞ. The SGP is highly symmetric [20]:

1. players can be permuted among the N ! combinations,
2. weeks of schedule can be exchanged, and
3. groups can be exchanged inside weeks.

One way to model the problem into a CSP uses the viewpoint VG ¼ ðG;DGÞ
which contains an integer variable gi;k for each golfer i in week k with 1 � i � N
and 1 � k � W. The variable domain DGðgi;kÞ ¼ f1; . . . ;Gg contain the group
numbers that golfer i can play in week k. This model MG is a matrix model [21],
since G forms a 2-dimensional matrix of variables. Figure 1(a) gives a solution of the
ð3; 2; 3Þ instance.

1 Available at http://www.csplib.org/.
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2.2.1 Variable Symmetries

A variable symmetry of a CSP M ¼ ðX;D;CÞ is a solution-preserving bijective
mapping from the set of variables X to itself, � : X ! X . Given a bijective mapping
� : X ! X, we overload � to act on a sequence of variables~xx ¼ hx1; . . . ; xni such that
�ð~xxÞ ¼ h�ðx1Þ; . . . ; �ðxnÞi, and also on a compound decision � such that �ð�Þ ¼
f�ðxÞ . a j ðx . aÞ 2 �g. A variable symmetry � requires that

� 2 solðMÞ () �ð�Þ 2 solðMÞ:

Symmetry (1) of the SGP is an example of variable symmetries in VG. Consider
the solution in Fig. 1(a), we can exchange the variables of golfers 1 and 2 to obtain
another solution with hg1;1; g1;2; g1;3i . h1; 2; 2i and hg2;1; g2;2; g2;3i . h1; 1; 1i. Hence,
we have the bijective mapping � as the identity mapping except �ðhg1;k; g2;kiÞ ¼
hg2;k; g1;ki for 1 � k � 3.

Symmetry (2) is another example of variable symmetries in VG. In Fig. 1(a), we
can exchange the variables of weeks 1 and 2 to obtain another solution with
hg1;1; . . . ; g6;1i . h1; 2; 1; 3; 2; 3i and hg1;2; . . . ; g6;2i . h1; 1; 2; 2; 3; 3i. Hence, we have
another bijective mapping � 0 which is the identity mapping except � 0ðhgi;1; gi;2iÞ ¼
hgi;2; gi;1i for 1 � i � 6.

Variable symmetries can be broken using lexicographic ordering [26]. A sequence
~xx ¼ hx1; . . . ; xni is lexicographically smaller than or equal to another sequence
~yy ¼ hy1; . . . ; yni, written as ~xx�lex~yy or ~yy�lex~xx, if and only if

x1 � y1 and
� ^

1� i0 < i

xi0 ¼ yi0

�
! xi � yi for 1 < i � n:

The sequence ~xx is lexicographically smaller than~yy, written as ~xx<lex~yy or ~yy>lex~xx, if
and only if ~xx�lex~yy and ~xx 6¼~yy.

In general, a variable symmetry � can be broken by the lexicographic ordering
constraint [18]

~xx�lex �ð~xxÞ;

Fig. 1 Four equivalent solutions of ð3; 2; 3Þ in VG, VP, VW , and VZ respectively
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where ~xx is a sequence of the variables in the CSP. Using a constraint for each
variable symmetry �, all symmetrical solutions in each equivalence class except the
lexicographically smallest one, with respect to the sequence ~xx, would be removed.
Sometimes, these constraints can be simplified [34] to contain fewer variables. An
example is the row ordering and column ordering constraints for row and column
symmetries [21]. For example, symmetry (1) of the SGP can be broken by the
row ordering constraints hgi;1; . . . ; gi;Wi �lex hgiþ1;1; . . . ; giþ1;Wi for 1 � i < N . Sim-
ilarly, we can break symmetry (2) in VG by the column ordering constraints
hg1;k; . . . ; gN ;ki �lex hg1;kþ1; . . . ; gN ;kþ1i for 1 � k < W. Bessiere et al. [11] showed
the intractability of breaking row and column symmetries completely. These row
ordering and column ordering constraints are only a subset of all the variable
symmetry breaking constraints. They do not necessarily break all the compositions
of the row and column symmetries [21]. There are methods to introduce extra
constraints to break more [27] but they are out of the scope of this paper, which
focuses on value symmetries.

2.2.2 Value Symmetries

A value symmetry under a subset U � X of the variables of a CSP M ¼ ðX;D;CÞ,
where PSðxÞ ¼ PSðx0Þ for all x; x0 2 U, is a solution-preserving bijective mapping on
the possible set of the variables in U, � : PSðxÞ ! PSðxÞ where x 2 U. Given a
bijective mapping � : Z! Z, we overload � to act also on a variable subset and a
compound decision � such that �ðU; �Þ ¼ fx . �ðaÞ j ðx . aÞ 2 � ^ x 2 Ug [ fx . a j ðx .
aÞ 2 �^ x=2Ug, which is a compound decision such that for each decision ðx . aÞ 2 �,
x . �ðaÞ is in �ðU; �Þ if U contains the variable x, and x . a is in �ðU; �Þ if U does not
contain x. A value symmetry � under U requires that

� 2 solðMÞ () �ðU; �Þ 2 solðMÞ:

If U is a set of integer variables, � is called an integer value symmetry. If U is a set of
set variables, � is called a set value symmetry.

Value symmetry is similar to but more general than value interchangeability [24].
Interchangeable values can be exchanged for a single variable without affecting the
satisfiability of constraints, while a value symmetry is under a set of variables and
can be applied to a solution to form another solution of the same CSP. For example,
a value a for a variable x is fully interchangeable [24] with a value b for x if and only
if there is an integer value symmetry � under fxg such that � is the identity mapping
except �ðaÞ ¼ b and �ðbÞ ¼ a.

Symmetry (3) in the SGP is an example of integer value symmetries in VG.
Consider the solution in Fig. 1(a). We can permute the values assigned to the set of
variables U ¼ fg1;1; . . . ; g6;1g � G from 1 to 2, from 2 to 3, and from 3 to 1 to obtain
another solution with hg1;1; . . . ; g6;1i . h2; 2; 3; 3; 1; 1i. Thus, we have a value
symmetry � under U with �ð1Þ ¼ 2, �ð2Þ ¼ 3, and �ð3Þ ¼ 1.

Value symmetry breaking constraints are difficult to express in general, since we
do not know beforehand which variable will be assigned which value. Value
symmetries are usually handled by pre-assigning the affected variables as far as
possible with some values without loss of generality. However, these pre-assign-
ments, which must be extensible to solutions, cannot break all value symmetries in
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general. For example, in the SGP, without loss of generality, we can always have the
pre-assignments

hg1;1; . . . ; gN ;1ióh1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
S

; . . . ;G; . . . ;G|fflfflfflffl{zfflfflfflffl}
S

i and

hg1;k; . . . ; gS;kióh1; . . . ;Si for k > 1:

The former breaks the value symmetries for week 1. The latter breaks the value
symmetries of values 1 to S from week 2 and so on, but those of values S þ 1 to G
remains intact. Therefore, the larger G � S, the fewer value symmetries can be
broken by the pre-assignments.

Symmetries of indistinguishable values [10, 28] is a special class of value
symmetries. A set of values fv1; . . . ; vkg is indistinguishable under U ¼ fx1; . . . ; xng
if the values imply k! value symmetries � under U, where h�ðv1Þ; . . . ; �ðvkÞi is a
permutation of hv1; . . . ; vki. In the SGP, our previous example of value symmetry �
under U ¼ fg1;1; . . . ; g6;1g has the mapping �ð1Þ ¼ 2, �ð2Þ ¼ 3, and �ð3Þ ¼ 1.
Actually, the groups f1; 2; 3g are indistinguishable values under U, implying 3! ¼ 6
value symmetries under U, which are the six permutations of h1; 2; 3i. The value
symmetry � is one of the six permutations.

3 Breaking Value Symmetries with Channeling

In this section, we introduce the method of breaking value symmetries using
multiple viewpoints and channeling constraints. Our method is applicable to multi-
aspect assignment problems (MAPs), which can be naturally formulated into various
matrix models [21]. In the following, we first describe MAPs, and a general method
to derive nþ 1 viewpoints for modeling a MAP with n aspects as matrix models. We
then show theoretically when a value symmetry in a CSP ðV;CÞ corresponds to a
variable symmetry in another CSP ðV 0;C0Þ modeling the same problem. We also
show when variable symmetry breaking constraints in two viewpoints V and V 0,
connected with channeling constraints [15], are consistent. Using these results, we
can tackle value symmetries in ðV;CÞ by expressing variable symmetry breaking
constraints using another viewpoint V 0 and connecting V and V 0 using channeling
constraints.

3.1 Multi-aspect Assignment Problems

In the SGP, there are three aspects, corresponding to the sets of golfers, weeks, and
groups respectively. Solving the problem is to find a set of tuples of the form
ðaGolfer; aWeek; aGroupÞ that satisfies the problem requirements. The SGP is an
instance of multi-aspect assignment problems (MAPs). A MAP consists of n aspects,
each of which corresponds to a set of objects of the problem. Without loss of
generality, we define the set of objects of the i-th aspect as ObjðiÞ ¼ f1; . . . ; kig,
where ki is the number of objects in aspect i. For example, we can use
Objð1Þ ¼ f1; . . . ;Ng, Objð2Þ ¼ f1; . . . ;Wg, and Objð3Þ ¼ f1; . . . ;Gg to denote the
set of all golfers, weeks, and groups respectively in the SGP. Solving a MAP is to
find a solution set of tuples S � Objð1Þ � . . .�ObjðnÞ, i.e., a relation among the n
aspects, that satisfies the problem constraints. For example, the tuple ð1; 2; 3Þ in a
solution set of the SGP means that golfer 1 plays in group 3 in week 2. Note that a
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multi-aspect assignment problem is different from a multidimensional assignment
problem [42], which is an optimization problem subject to some constraints in
particular forms. Many real life problems, such as combinatorial, configuration,
scheduling, design, and assignment problems, are MAPs. As we shall see, MAPs can
readily be formulated into matrix models [21, 22], which are CSPs in which the
variables can be indexed and organized into one or more matrices.

3.2 Viewpoints for Modeling MAPs

A matrix can be multi-dimensional. We also use the array notation in addition to the
subscript notation to denote the matrix variables in the following discussions for
easier reading. In the following, we describe two types of viewpoints for modeling
MAPs, namely the aspect viewpoints and 0/1 viewpoint.

3.2.1 Aspect Viewpoints

Given a MAP with n aspects, we can always choose any n� 1 aspects as matrix
indices to form a matrix of variables and the remaining aspect to form the variable
domains. For 1 � s � n, let

Xs ¼ fxs½i1� � � � ½is�1�½isþ1� � � � ½in� j
^

1�k�n;k6¼s

ik 2 ObjðkÞg

be the matrix of variables using all but the s-th aspect as indices. The variable
domains correspond to the objects in the s-th aspect, i.e.,

PSðxs½i1� � � � ½is�1�½isþ1� � � � ½in�Þ ¼ ObjðsÞ:

For easier reading, we use the notation x½i1 � � � in n is� in subsequent discussions to
denote the variable xs½i1� � � � ½is�1�½isþ1� � � � ½in�. If the MAP allows only exactly one
decision for each variable in Xs, then Xs is a set of integer variables. Otherwise, Xs is
a set of set variables. Hence, we can derive n different aspect viewpoints
V1 ¼ ðX1;D1Þ; . . . ;Vn ¼ ðXn;DnÞ for a MAP. The subscript k in Vk ¼ ðXk;DkÞ
denotes the aspect corresponding to the domains in Vk. The variables between
any two aspect viewpoints Vs and Vt (s 6¼ t) can be related by the channeling
constraints [15]

x½i1 � � � in n is� ó is () x½i1 � � � in n it� ó it for
^

1�k�n

ik 2 ObjðkÞ:

They collectively induce a channeling function

fs;tðx½i1 � � � in n is� ó isÞ ¼ x½i1 � � � in n it� ó it

from decisions in Vs to those in Vt, for
V

1�k�n ik 2 ObjðkÞ. The reverse channeling
function ft;s is simply f�1

s;t . Note that f�1
s;t always exists. This can be seen from the

channeling constraints that the sets of all possible decisions in Vs and Vt have a one–
one mapping.

In the SGP, VG ¼ ðG;DGÞ is an aspect viewpoint using the golfers and weeks to
form the variables, and sets of groups to form the domain. The other two aspect
viewpoints are VP ¼ ðP;DPÞ and VW ¼ ðW;DWÞ. Viewpoint VP uses the groups and
weeks to form the variables, and sets of golfers to form the domain. Viewpoint VW
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uses the golfers and groups to form the variables, and sets of weeks to form the
domain. Since a group in a particular week can contain multiple golfers, the
variables pj;k 2 P are set variables with PSðpj;kÞ ¼ f1; . . . ;Ng. Similarly, a golfer can
have the same group number for multiple weeks, the variables wi;j 2W are also set
variables with PSðwi;jÞ ¼ f1; . . . ;Wg. Figure 1(a)–(c) show the same solution of
ð3; 2; 3Þ expressed in VG, VP, and VW respectively. The channeling constraints
between VG and VP are gi;k . j() pj;k . i, the ones between VG and VW are
gi;k . j() wi;j . k, and the ones between VP and VW are pj;k . i() wi;j . k, for
1 � i � N , 1 � j � G, and 1 � k � W.

3.2.2 0/1 Viewpoint

Besides the aspect viewpoints, we can use all n aspects of a MAP to form an n-
dimensional matrix of 0/1 variables

Z ¼ fz½i1� � � � ½in� j
^

1�k�n

ik 2 ObjðikÞg:

Each variable z½i1� � � � ½in� 2 Z denotes whether the tuple ði1; . . . ; inÞ is in a solu-
tion of the MAP. Hence, DZðz½i1� � � � ½in�Þ ¼ f0; 1g, giving us the 0/1 viewpoint
VZ ¼ ðZ;DZÞ. For 1 � s � n, the channeling constraints [15] between aspect
viewpoint Vs and 0/1 viewpoint VZ are

x½i1 � � � in n is� ó is () z½i1� � � � ½in� ó 1 for
^

1�k�n

ik 2 ObjðkÞ:

They collectively induce a channeling function

fs;Zðx½i1 � � � in n is� ó isÞ ¼ z½i1� � � � ½in� ó 1

from decisions in Vs to only those of the form Bz½i1� � � � ½in� . 1^ in VZ, for
V

1�k�n ik 2
ObjðkÞ (since the channeling constraints never generate decisions of the form
Bz½i1� � � � ½in� . 0^). Again, fZ;s is f�1

s;Z , which always exists because fs;Z is a one–one
mapping. In the SGP, VZ contains variables zi;k;j for each golfer i, week k, and
group j with DZðzi;k;jÞ ¼ f0; 1g. Figure 1(d) shows the same solution as those in
Fig. 1(a)–(c), but expressed in VZ. The channeling constraints between VZ and, say,
VG, are gi;k . j() zi;k;j . 1 for 1 � i � N , 1 � k � W, and 1 � j � G.

3.3 From Value Symmetries to Variable Symmetries

In the rest of the section, we suppose Ms ¼ ðVs;CsÞ, Mt ¼ ðVt;CtÞ, and MZ ¼
ðVZ;CZÞ are CSP models for the same MAP with n aspects, where Vs ¼ ðXs;DsÞ
and Vt ¼ ðXt;DtÞ are aspect viewpoints, and VZ ¼ ðZ;DZÞ is the 0/1 viewpoint.

3.3.1 From Aspect Viewpoint to 0/1 Viewpoint

Flener et al. [21] suggested that value symmetries in a matrix model can be broken
as variable symmetries in the 0/1 viewpoint. The following theorem formally
describes this idea and shows that a value symmetry � in Ms always corresponds to a
variable symmetry � in MZ.
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Theorem 1 Given a value symmetry � under Us � Xs, we have

� ð fs;Zð�ÞÞ ¼ fs;Zð�ðUs; �ÞÞ

for all � 2 solðMsÞ, where

�ðz½i1� � � � ½in�Þ ¼

z½i1� � � � ½is�1�½�ðisÞ�½isþ1� � � � ½in�

if xs½i1� � � � ½is�1�½isþ1� � � � ½in� 2 Us

z½i1� � � � ½in�
otherwise:

8>>>>>><
>>>>>>:

In addition, � is a variable symmetry in MZ corresponding to � in Ms.

Proof: Let � 2 solðMsÞ.

�ðUs; �Þ ¼ fx½i1 � � � in n is�óis j
ðx½i1 � � � in n is�óisÞ 2 � ^ x½i1 � � � in n is� =2 Usg
[ fx½i1 � � � in n is�ó�ðisÞ j
ðx½i1 � � � in n is�óisÞ 2 � ^ x½i1 � � � in n is� 2 Usg

2 solðMsÞ
fs;Zð�ðUs; �ÞÞ ¼ fz½i1� � � � ½in�ó1 j

ðx½i1 � � � in n is�óisÞ 2 � ^ x½i1 � � � in n is� =2 Usg
[ fz½i1� � � � ½is�1�½�ðisÞ�½isþ1� � � � ½in�ó1 j
ðx½i1 � � � in n is�óisÞ 2 � ^ x½i1 � � � in n is� 2 Usg

fs;Zð�Þ ¼ fz½i1� � � � ½in�ó1 j ðx½i1 � � � in n is�óisÞ 2 �g
¼ fz½i1� � � � ½in�ó1 j

ðx½i1 � � � in n is�óisÞ 2 � ^ x½i1 � � � in n is� =2 Usg
[ fz½i1� � � � ½in�ó1 j
ðx½i1 � � � in n is�óisÞ 2 � ^ x½i1 � � � in n is� 2 Usg

� ð fs;Zð�ÞÞ ¼ fz½i1� � � � ½in�ó1 j
ðx½i1 � � � in n is�óisÞ 2 � ^ x½i1 � � � in n is� =2 Usg

[ fz½i1� � � � ½is�1�½�ðisÞ�½isþ1� � � � ½in�ó1 j
ðx½i1 � � � in n is�óisÞ 2 � ^ x½i1 � � � in n is� 2 Usg

¼ fs;Zð�ðUs; �ÞÞ

Note that fs;Zð�Þ and fs;Zð�ðUs; �ÞÞ do not consist of all decisions for solutions
of MZ, since fs;Z only generates decisions of the form Bz½i1� � � � ½in� . 1.^ But they can
be complemented to include decisions with value 0 for all other variables in Z
to make them solutions of MZ. So, � is a solution preserving bijective map-
ping. Hence, a variable symmetry in MZ corresponds to the value symmetry �
in Ms. Í

For each solution � of Ms, since � is a value symmetry under Us, �ðUs; �Þ is also a
solution of Ms. Theorem 1 states that when both � and �ðUs; �Þ are transformed to
VZ via the channeling function fs;Z, obtaining fs;Zð�Þ and fs;Zð�ðUs; �ÞÞ, we can always
find a bijective mapping � such that �ð fs;Zð�ÞÞ ¼ fs;Zð�ðUs; �ÞÞ. Since � transforms
solutions to solutions, it is a variable symmetry corresponding to � .
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In the SGP, the value symmetry � under U ¼ fg1;1; . . . ; g6;1g with �ð1Þ ¼ 2,
�ð2Þ ¼ 3, and �ð3Þ ¼ 1 corresponds to the variable symmetry � in VZ where � is the
identity except �ðzi;1;1Þ ¼ zi;1;2, �ðzi;1;2Þ ¼ zi;1;3, and �ðzi;1;3Þ ¼ zi;1;1 for 1 � i � 6.

3.3.2 From Aspect Viewpoint to Aspect Viewpoint

The previous theorem states that a value symmetry � in Ms always corresponds to a
variable symmetry in MZ. However, we find that � does not always correspond to a
variable symmetry in Mt of aspect viewpoint Vt. The following theorem states the
conditions when this correspondence occurs.

Theorem 2 Given a value symmetry � under Us � Xs, if

1. there exists Obj0ðkÞ � ObjðkÞ for 1 � k � n and k 6¼ s such that Us ¼ fx½i1 � � � in n is�
j
V

1�k�n;k 6¼s ik 2 Obj0ðkÞg, and
2. Obj0ðtÞ ¼ ObjðtÞ,

then there is a mapping � : Xt ! Xt such that � ð fs;tð�ÞÞ ¼ fs;tð�ðUs; �ÞÞ for all
� 2 solðMsÞ, where

�ðx½i1 � � � in n it�Þ ¼
x½i01 � � � i0n n i0t� if

V
1�k�n;k6¼s;k6¼t ik 2 Obj0ðkÞ

x½i1 � � � in n it� otherwise:

�

In the mapping, i0j ¼ ij for j 2 f1; . . . ; ng n fs; tg and i0s ¼ �ðisÞ. In addition, � is a
variable symmetry in Mt corresponding to � in Ms.

Proof: Without loss of generality, we assume s < t in the proof. Let � 2 solðMsÞ
and B ¼

V
1�k�n;k 6¼s;k 6¼t ik 2 Obj0ðkÞ. If Us ¼ fx½i1 � � � in n is� j

V
1�k�n;k 6¼s ik 2 Obj0ðkÞ

� ObjðkÞg, then

�ðUs; �Þ ¼ fx½i1 � � � in n is� . is j
ðx½i1 � � � in n is� . isÞ 2 � ^ :ðB ^ it 2 Obj0ðtÞÞg
[ fx½i1 � � � in n is� . �ðisÞ j
ðx½i1 � � � in n is� . isÞ 2 � ^ B ^ it 2 Obj0ðtÞg

2 solðMsÞ

fs;tð�ðUs; �ÞÞ ¼ fs;tðfx½i1 � � � in n is�óis j
ðx½i1 � � � in n is�óisÞ 2 � ^ :ðB ^ it 2 Obj0ðtÞÞgÞ

[ fs;tðfx½i1 � � � in n is�ó�ðisÞ j
ðx½i1 � � � in n is�óisÞ 2 � ^ B ^ it 2 Obj0ðtÞgÞ

¼ fx½i1 � � � in n it�óit j
ðx½i1 � � � in n is�óisÞ 2 � ^ :ðB ^ it 2 Obj0ðtÞÞg
[ fxt½i1� � � � ½is�1�½�ðisÞ�½isþ1� � � � ½it�1�½itþ1� � � � ½tn�óit j
ðx½i1 � � � in n is�óisÞ 2 � ^ B ^ it 2 Obj0ðtÞg

2 solðMtÞ

If Obj0ðtÞ ¼ ObjðtÞ, then it 2 Obj0ðtÞ () it 2 ObjðtÞ, which is always true. Hence,

fs;tð�ðUs; �ÞÞ ¼ fx½i1 � � � in n it�óit j ðx½i1 � � � in n is�óisÞ 2 � ^ :Bg
[ fxt½i1� � � � ½is�1�½�ðisÞ�½isþ1� � � � ½it�1�½itþ1� � � � ½tn�óit j
ðx½i1 � � � in n is�óisÞ 2 � ^ Bg
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On the other hand,

fs;tð�Þ ¼ fx½i1 � � � in n it� . it j ðx½i1 � � � in n is�óisÞ 2 �g
¼ fx½i1 � � � in n it�óit j ðx½i1 � � � in n is�óisÞ 2 � ^ :Bg
[ fx½i1 � � � in n it�óit j ðx½i1 � � � in n is�óisÞ 2 � ^ Bg

2 solðMsÞ
�ðfs;tð�ÞÞ ¼ �ðfx½i1 � � � in n it�óit j ðx½i1 � � � in n is�óisÞ 2 � ^ :BgÞ

[ �ðfx½i1 � � � in n it�óit j ðx½i1 � � � in n is�óisÞ 2 � ^ BgÞ
¼ fx½i1 � � � in n it�óit j ðx½i1 � � � in n is� . isÞ 2 � ^ :Bg
[f[xt½i1� � � � ½is�1�½�ðisÞ�½isþ1� � � � ½it�1�½itþ1� � � � ½in�óit j

ðx½i1 � � � in n is�óisÞ 2 � ^ Bg
¼ fs;tð�ðUs; �ÞÞ

The bijective mapping � preserves solutions in Vt. Hence, it is a variable symmetry
in Vt and corresponds to the value symmetry � in Vs. Í

Theorem 2 shows that given a value symmetry � under Us in Vs, we can find a
solution-preserving bijective mapping � for variables in Mt (i.e., a variable symmetry
in Vt) under two sufficient conditions. First, the variable subset Us cannot be arbi-
trarily chosen. We need to ensure that Obj0ðkÞ � ObjðkÞ for 1 � k � n and k 6¼ s,
i.e., the set of variable indices in Us has to be the Cartesian product of a subset
Obj0ðkÞ of the objects ObjðkÞ in each aspect k except s. Second, Obj0ðtÞ ¼ ObjðtÞ,
i.e., Obj0ðtÞ must contain all the objects in aspect t, which corresponds to the
domains in Vt.

We illustrate the two conditions in Theorem 2 using the ð3; 2; 3Þ instance of the
SGP. Let the golfers, weeks, and groups be the first, second, and third aspect
respectively, giving Objð1Þ ¼ f1; . . . ; 6g and Objð2Þ ¼ Objð3Þ ¼ f1; 2; 3g. In VG, any
value symmetry is under all the golfers in one week. For example, the value sym-
metry �ð1Þ ¼ 2, �ð2Þ ¼ 3, and �ð3Þ ¼ 1 is under U ¼ fg1;1; . . . ; g6;1g ¼ fgi;k j ði; kÞ 2
Obj0ð1Þ �Obj0ð2Þ ^Obj0ð1Þ ¼ f1; . . . ; 6g ^Obj0ð2Þ ¼ f1gg, i.e., the set of all golf-
ers in week 1. This satisfies condition (1) in Theorem 2. Consider VP as the sec-
ondary viewpoint, which uses aspect 1 (golfers) to form the domains. Condition
(2) is also satisfied because Obj0ð1Þ ¼ Objð1Þ ¼ f1; . . . ; 6g, i.e., Obj0ð1Þ con-
tains all the golfers. Therefore, � corresponds to a variable symmetry � in VP,
with �ðhp1;1; p2;1; p3;1iÞ ¼ hp2;1; p3;1; p1;1i. On the other hand, consider VW as
the secondary viewpoint, which uses aspect 2 (weeks) to form the domains,
Obj0ð2Þ ¼ f1g 6¼ Objð2Þ ¼ f1; 2; 3g. Hence, condition (2) is not satisfied. In this
case, � does not correspond to any variable symmetry in VW . Figure 2 shows the
solution in VW after applying � to the solution in Fig. 1(a). No variable symmetries
can transform the solution in Fig. 1(c) to the one in Fig. 2.

3.4 Symmetry Breaking Constraints in Two Viewpoints

Recall that variable symmetry breaking constraints are easier to express than value
symmetry breaking constraints. By Theorems 1 and 2, value symmetries in a matrix
model ðV;CÞ can correspond to variable symmetries in another matrix model
ðV 0;C0Þ of the same MAP. We can thus break the value symmetries in ðV;CÞ by
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combining ðV;CÞ and ðV 0;C0 [ CsÞ using channeling constraints [15], where Cs is the
set of variable symmetry breaking constraints in V 0 for breaking the value
symmetries in V. Since ðV;CÞ and ðV 0;C0Þ are models for the same MAP, C0 is
logically redundant with respect to C and the channeling constraints. Hence, we can
drop any of the constraints in C0 when we connect V and V 0. However, combining
mutually redundant models with channeling constraints increases constraint
propagation [15]. Therefore, a possible way is to drop only constraints in C0 which
are propagation redundant [16, 17] so that there would not be less propagation, but
this is outside the scope of the paper. Note that if we drop all the constraints in C0,
then only ðV;CÞ and ðV 0;CsÞ are combined, and V 0 is solely used for expressing the
variable symmetry breaking constraints for the value symmetries in V. Variable
symmetries in ðV;CÞ, if they exist, can be tackled by variable symmetry breaking
constraints in V as well. Now that both variable and value symmetries can be
tackled by symmetry breaking constraints and channeling constraints, we enjoy the
best of both worlds.

An important issue of such symmetry breaking technique is the consistency of the
symmetry breaking constraints in the two viewpoints V and V 0. Two sets of
symmetry breaking constraints are consistent [21] if and only if at least one element
in each symmetry class of assignments, defined by the compositions of the
symmetries under consideration, satisfies both sets of constraints. In row and
column symmetries, Flener et al. [21] showed that the row ordering constraints and
the column ordering constraints are consistent symmetry breaking constraints. In
our multiple viewpoint method, we would also want to show that symmetry breaking
constraints in two viewpoints can be made consistent. In the following, we give first
an example of inconsistent symmetry breaking constraints in two viewpoints, and
then theoretical results on how to avoid such inconsistency problem.

3.4.1 Inconsistent Symmetry Breaking Constraints in Two Viewpoints

The quasigroup existence problem (QEP), Bprob003^ in CSPLib, is to find an N �
N matrix consisting of numbers 1 to N with no rows and no columns con-
taining the same number more than once. We consider the variant of the prob-
lem (QEP�) which further restricts the main (Bsoutheast^) diagonal of the matrix
to contain the same number. Figure 3(a) shows all the six solutions of order 3 QEP�

(i.e., N ¼ 3). The QEP� is a MAP with three aspects, namely the rows, col-
umns, and numbers. Aspect viewpoint VN ¼ ðN;DNÞ uses the rows and columns as
indices to form the variables ni;j 2 N and the numbers to form the domains
DNðni;jÞ ¼ f1; . . . ;Ng.

Fig. 2 Another solution of
ð3; 2; 3Þ expressed in VW
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In the QEP�, consider the symmetries of (1) the 180	 rotation, and (2) the
permutation of the numbers in the matrix. Symmetry (1) implies a variable
symmetry � in VN , with �ðni;jÞ ¼ nnþ1�i;nþ1�j for 1 � i; j � N . For order 3 QEP�,
we have:

ni;j n1;1 n1;2 n1;3 n2;1 n2;2 n2;3 n3;1 n3;2 n3;3

�ðni;jÞ n3;3 n3;2 n3;1 n2;3 n2;2 n2;1 n1;3 n1;2 n1;1

Symmetry (2) implies that f1; . . . ;Ng are indistinguishable values under N in VN .
Consider a sequence ~hh ¼ hh1; . . . ; hjNji of variables in N. In other words, hi 2 N

for 1 � i � jNj ¼ N 2
. Symmetry (1) can be broken by symmetry breaking constraint

~hh�lex �ð~hhÞ. Although we can form N ! possible variable sequences from N, two
common ways of flattening a matrix into sequences are the row-by-row and column-
by-column traversals, giving

~hhr ¼ hn1;1; n1;2; n1;3; n2;1; n2;2; n2;3; n3;1; n3;2; n3;3i and

~hhc ¼ hn1;1; n2;1; n3;1; n1;2; n2;2; n3;2; n1;3; n2;3; n3;3i

respectively for order 3 QEP�. The corresponding symmetry breaking constraints
for � are

~hhr�lexhn3;3; n3;2; n3;1; . . . ; n1;3; n1;2; n1;1i and

~hhc�lexhn3;3; n2;3; n1;3; . . . ; n3;1; n2;1; n1;1i

respectively. Note that in order 3 QEP�, n1;1 ¼ n3;3. Also, n1;2 6¼ n3;2 and n2;1 6¼ n2;3.
Therefore, the two constraints can be simplified to n1;2 < n3;2 and n2;1 < n2;3

respectively, which accept different solutions. Solutions �2, �4, and �6 in Fig. 3(a)
satisfy the former constraint, while �1, �3, and �5 satisfy the latter.

By Theorem 2, the value symmetries in VN become variable symmetries in
VR ¼ ðR;DRÞ, the aspect viewpoint using the numbers and columns to form the
variables rk;j 2 R and rows to form the domains DRðrk;jÞ ¼ f1; . . . ;Ng. Both the row-
by-row and column-by-column traversals of the matrix of variables in R generate,
after simplifications [34], the same symmetry breaking constraints hrk;1; . . . ; rk;N i�lex

hrkþ1;1; . . . ; rkþ1;N i, or equivalently rk;1 < rkþ1;1, for 1 � k < N . Figure 3(b) shows
the same six solutions as in Fig. 3(a), but expressed in VR. In the figure, solution �0i
corresponds to solution �i in Fig. 3(a) and the rows of the matrices �0i correspond
to the number aspect. Only �01 satisfies rk;1 < rkþ1;1, but �1 violates the variable

Fig. 3 All solutions of order 3 QEP�, expressed in VN and VR respectively
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symmetry breaking constraint n1;2 < n3;2. Therefore there are no solutions satis-
fying rk;1 < rkþ1;1 and n1;2 < n3;2 simultaneously, and hence they are inconsistent
symmetry breaking constraints. On the other hand, �1 satisfies both rk;1 < rkþ1;1 and
n2;1 < n2;3 simultaneously. As we shall see, the latter pair of symmetry breaking
constraints are consistent.

3.4.2 Aspect Priorities, Scanning Sequences, and Selections

We first define several notions which are useful to address the consistency issue for
variable symmetry breaking constraints in two viewpoints. In a symmetry breaking
constraint ~hh�lex�ð~hhÞ for a variable symmetry � in an aspect viewpoint Vs, ~hh is a
sequence of variables in Xs, i.e., ~hh is an arbitrary linearization of the matrix to a
single dimensional sequence. Given jXsj variables, there are jXsj! possible
combinations of variable sequences for Xs, and different sequences may generate
different variable symmetry breaking constraints in Vs. The QEP� is an example. In
the following, we restrict our attention to only the variable sequences generated by
aspect priorities. An aspect priority in an aspect viewpoint Vs is a sequence of
aspects which is a permutation of f1; . . . ; ng n fsg. It is a permutation of all the
aspects corresponding to the variable indices in Vs. Similarly, an aspect priority in
the 0/1 viewpoint VZ is a sequence of aspects which is a permutation of f1; . . . ; ng.
For example, in the SGP, hgolfer;weeki and hweek; golferi are aspect priorities in
VG and hgolfer;week; groupi is an aspect priority in VZ.

An aspect priority defines a scanning sequence of the variables in a view-
point. A scanning sequence of an aspect priority hk1; . . . ; kn�1i of Vs, denoted by
sseqðhk1; . . . ; kn�1iÞ, is a sequence hh1; . . . ; hjXsji of Xs such that ha 
 x½i1 � � � in n is�,
where

a ¼ 1þ
X

1�l < n

ððikl
� 1Þ �

Y
l <m< n

jObjðkmÞjÞ:

A scanning sequence in a viewpoint is an aspect-by-aspect traversal of the matrix of
variables in the viewpoint. There are n� 1 aspects in an aspect priority in Vs, so
there are ðn� 1Þ! possible aspect priorities in Vs, and hence the same number of
possible scanning sequences for the variables in Vs.

For example, there are three aspects in the QEP� (i.e., n ¼ 3), giving a ¼
ðik1
� 1Þ � jObjðk2Þj þ ik2

for aspect viewpoint VN . Let aspects 1, 2, and 3 be the
rows, columns, and numbers respectively. In order 3 QEP�, jObjð1Þj ¼ jObjð2Þj ¼
jObjð3Þj ¼ 3. On the one hand, the aspect priority h1; 2i (hrow; columni) thus gives
hði�1Þ�3þj 
 ni;j, giving the scanning sequence

~hhr ¼ hn1;1; n1;2; n1;3; n2;1; n2;2; n2;3; n3;1; n3;2; n3;3i:

On the other hand, the aspect priority h2; 1i (hcolumn; rowi) gives hð j�1Þ�3þi 
 ni; j,
giving the scanning sequence

~hhc ¼ hn1;1; n2;1; n3;1; n1;2; n2;2; n3;2; n1;3; n2;3; n3;3i:

Note that the sequences ~hhr and ~hhc correspond to the row-by-row and column-by-
column traversals of the matrix in VN respectively.

The previous definition of scanning sequence is applicable to aspect viewpoints.
We can define scanning sequences of aspect priorities in the 0/1 viewpoint similarly.
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A scanning sequence sseqðhk1; . . . ; kniÞ of an aspect priority hk1; . . . ; kni of VZ is a
sequence hh1; . . . ; hjZji of Z such that ha 
 z½i1� � � � ½in�, where

a ¼ 1þ
X

1�l�n

�
ðikl
� 1Þ �

Y
l <m�n

jObjðkmÞj
�
:

There are n! possible aspect priorities and scanning sequences in VZ.
Selection of a sequence ~hh under a variable set U, selectð~hh;UÞ, is a sub-

sequence of ~hh retaining only the variables in U. For example, in order 3 QEP�,
selection of ~hhr under U ¼ fn1;1; n2;1; n3;1g is selectð~hhr;UÞ ¼ hn1;1; n2;1; n3;1i. Similarly,
select ð~hhr; fn1;2; n2;2; n3;2gÞ ¼ hn1;2; n2;2; n3;2i.

3.4.3 Generating Consistent Symmetry Breaking Constraints

Before giving theorems to specify the conditions when symmetry breaking
constraints in two viewpoints are consistent, we give two lemmas to state the
ordering relationship between variables in aspect viewpoints and 0/1 viewpoint.

Lemma 3 Given two variables x½i1 � � � in n is� and x½ j1 � � � jn n js� in Vs and channeling
function fs;Z, we have

x½i1 � � � in n is� � x½j1 � � � jn n js� ()~zz1�lex~zz2

where

~zz1 ¼ hz½i1� � � � ½is�1�½1�½isþ1� � � � ½in�; . . . ; z½i1� � � � ½is�1�½jObjðsÞj�½isþ1� � � � ½in�i and

~zz2 ¼ hz½ j1� � � � ½ js�1�½1�½ jsþ1� � � � ½ jn�; . . . ; z½ j1� � � � ½ js�1�½jObjðsÞj�½ jsþ1� � � � ½ jn�i:

Proof: By fs;Z, a compound decision of ~zz1 is of the form ~zz1 . h0; . . . ; 0; 1; 0; . . . ; 0i
(i.e., only one B1^ and the rest are all B0^), and similarly for ~zz2. When
x½i1 � � � in n is� � x½ j1 � � � jn n js�, it means the B1^ in ~zz1 would never occur to the right
of the B1^ in ~zz2, which means ~zz1 �lex~zz2. The opposite is also true. Í

The lemma states that two variables x½i1 � � � in n is� and x½ j1 � � � jn n js� in Vs are
in non-decreasing order if and only if their corresponding sequences of var-
iables ~zz1 and~zz2 in VZ are in non-increasing lexicographic order, and vice versa.
For example, consider a MAP with three aspects and jObjðsÞj ¼ 3. When
hxs ½i�; xs½ j�i . h1; 2i, i.e., xs½i� � xs½ j�, we have hz½i�½1�; z½i�½2�; z½i�½3�i . h1; 0; 0i and
hz½ j�½1�; z½ j�½2�; z½ j�½3�i . h0; 1; 0i, i.e., hz½i�½1�; z½i�½2�; z½i�½3�i�lexhz½ j�½1�; z½ j�½2�; z½ j�½3�i.

Lemma 3 can be generalized to sequences of variables in Vs instead of only single
variables.

Lemma 4 Given two sequences ~hh and ~hh0 of variables in Vs of equal length, and
channeling function fs;Z, we have

~hh�lex
~hh0 ()~zz�lex~zz

0

where ~zz and ~zz0 are respectively formed by replacing each variable x½i1 � � � in n is� in ~hh
and ~hh0 with

z½i1� � � � ½is�1�½1�½isþ1� � � � ½in�; . . . ; z½i1� � � � ½is�1�½jObjðsÞj�½isþ1� � � � ½in�:
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Proof: Direct consequence of Lemma 3 extended to sequences of variables in Vs

instead of two variables x½i1 � � � in n is� and x½j1 � � � jn n js�.

We also recall the proposition by Crawford et al. [18] which states the consistency
of variable symmetry breaking constraints in 0/1 viewpoint using lexicographic
ordering.

Proposition 5 [18] Let MZ be a CSP model in 0/1 viewpoint VZ ¼ ðZ;DZÞ and~hh be
a sequence of variables in Z. Then the constraints

~hh �lex �ð~hhÞ

for each variable symmetry � in MZ are satisfied only by the lexicographically
smallest solution in each equivalence class of solutions. Hence, the constraints are
consistent for MZ.

Using Lemmas 3 and 4 and Proposition 5, we can state sufficient conditions for
consistent symmetry breaking constraints in two viewpoints. We start with the issue
between an aspect viewpoint Vs and the 0/1 viewpoint VZ. The following theorem
applies to any value symmetries.

Theorem 6 Let:

– � be a variable symmetry in Vs;
– �0 be a variable symmetry in VZ corresponding to a value symmetry in Vs;
– ~kk ¼ hk1; . . . ; kn�1i be an aspect priority in Vs; and
– ~xxs ¼ sseqð~kkÞ and ~zz be sequences of variables in Xs and Z respectively.

If

~zz ¼ sseqðhk1; . . . ; kn�1; siÞ;

then symmetry breaking constraints ~xxs�lex �ð~xxsÞ for � and �0ð~zzÞ�lex~zz for �0 are
consistent.

Proof: Let �ðx½i1 � � � in n is�Þ ¼ x½ j1 � � � jn n js�. The variable symmetry � in Vs

corresponds to another variable symmetry �z in VZ where �zðz½i1� � � � ½in�Þ ¼
z½ j1� � � � ½ js�1�½is�½ jsþ1� � � � ½ jn� for

V
1�k�n ik 2 ObjðkÞ. When ~zz ¼ sseqðhk1; . . . ; kn�1; siÞ,

~zz can be constructed from ~xxs by substituting each variable x½i1 � � � in n is� in ~xxs with

z½i1� � � � ½is�1�½1�½isþ1� � � � ½in�; . . . ; z½i1� � � � ½is�1�½jObjðsÞj�½isþ1� � � � ½in�:

By Lemma 4,~xxs�lex�ð~xxsÞ ()~zz�lex�zð~zzÞ. By Proposition 5,~zz�lex�zð~zzÞ and~zz�lex�
0ð~zzÞ

are consistent, and hence so do ~xxs�lex�ð~xxsÞ and ~zz�lex�
0ð~zzÞ.

To maintain consistency between the variable symmetry breaking con-
straints for � in Vs and �0 in VZ, Theorem 6 requires that the scanning sequence
sseqðhk1; . . . ; kn�1; siÞ in VZ is used. That means the aspect priority in VZ is the
sequence hk1; . . . ; kn�1i followed by s in the last position. Furthermore, the lexico-
graphic order in VZ is reverse of that in Vs. This is because by Lemma 4, a smaller-
than order in Vs corresponds to a greater-than order in VZ, and vice versa.

In the SGP, Theorem 6 ensures that the variable symmetry breaking constraints
hz1;k;j; . . . ; zN ;k;ji�lexhz1;k;jþ1; . . . ; zN ;k;jþ1i for 1 � j < G and 1 � k � W in VZ break
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the value symmetries in VG, and are consistent with those variable symmetry
breaking constraints in VG.

The condition when variable symmetries in Vt, corresponding to value
symmetries in Vs, can be broken consistently with the variable symmetries in Vs is
more difficult to specify. In the 0/1 viewpoint VZ, there is one more aspect in the
variable indices than Vs. We can simply add an aspect to an aspect priority in Vs to
form an aspect priority in Vt. Aspect viewpoints Vs and Vt, however, have the same
number of aspects as variable indices. We cannot use the same technique to form
aspect priorities. Instead, we consider the special class of value symmetries, the
symmetries of indistinguishable values, which have a special form of symmetry
breaking constraints in Vt to allow us to specify the consistency condition.

Theorem 7 Let:

– � be a variable symmetry in Vs;
– � be a value symmetry of two indistinguishable values a and b (where

a < b) under Us ¼ fx½i1 � � � in n is� j
V

1�k�n;k6¼s ik 2 Obj0ðkÞ � ObjðkÞg in Vs with
Obj0ðtÞ ¼ ObjðtÞ;

– ~kk ¼ hk1; . . . ; kn�2i be a permutation of f1; . . . ; ng n fs; tg; and
– ~qq be any aspect priority in Vt formed by inserting s into~kk (i.e.,~qq is a permutation

of f1; . . . ; ng n ftg and ~kk is a subsequence of ~qq).
If

~hh ¼ sseqðhk1; . . . ; kn�2; tiÞ;

then symmetry breaking constraints ~hh�lex �ð~hhÞ for � and ~hh0a �lex
~hh0b for �0

are consistent, where �0 is the variable symmetry in Vt corresponding to the
value symmetry � in Vs, ~hh0j ¼ selectðsseqð~qqÞ;U 0jÞ for j 2 fa; bg, and U 0j ¼
fx½i1 � � � in n it� j is ¼ j ^

V
1�k�n;k 6¼s;k6¼t ik 2 Obj0ðkÞg.

Proof: By Theorem 1, the value symmetry � in Vs corresponds to a variable
symmetry � 00 in VZ, where

�00ðz½i1� � � � ½in�Þ ¼

z½i1� � � � ½is�1�½b�½isþ1� � � � ½in� if is ¼ a ^
V

1�k�n;k6¼s ik 2 Obj0ðkÞ

z½i1� � � � ½is�1�½a�½isþ1� � � � ½in� if is ¼ b ^
V

1�k�n;k 6¼s ik 2 Obj0ðkÞ

z½i1� � � � ½in� otherwise:

8>>>>><
>>>>>:

If ~hh ¼ sseqðhk1; . . . ; kn�2; tiÞ, then by Theorem 6, ~hh�lex�ð~hhÞ is consistent with
~zz�lex�

00ð~zzÞ, where ~zz ¼ sseqðhk1; . . . ; kn�2; t; siÞ. From the definition of � 00, we can
see that ~zz�lex�

00ð~zzÞ can be simplified to

selectð~zz;U 00a Þ �lex selectð~zz;U 00bÞ; ð1Þ

where U 00j ¼ fz½i1� � � � ½in� j is ¼ j ^
V

1�k�n;k 6¼s ik 2 Obj0ðkÞg for j 2 fa; bg. Note that
the indices is of all variables in U 00j are fixed to j (i.e., either a or b). Therefore,
for any aspect priority ~ww in VZ formed by inserting s into hk1; . . . ; kn�2; ti,
selectðsseqð~wwÞ;U 00j Þ 
 selectð~zz;U 00j Þ is always true. Hence, constraint (1) is now
equivalent to

selectðsseqð~wwÞ;U 00a Þ �lex selectðsseqð~wwÞ;U 00bÞ: ð2Þ
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In particular, consider ~ww ¼ hq1; . . . ; qn�1; ti. Recall that ~qq ¼ hq1; . . . ; qn�1i is an
aspect priority in Vt formed by inserting s into hk1; . . . ; kn�2i. By Lemma 4,
constraint (2) is equivalent to

selectðsseqð~qqÞ;U 0aÞ �lex selectðsseqð~qqÞ;U 0bÞ; ð3Þ

where U 0j ¼ fx½i1 � � � in n it� j is ¼ j ^
V

1�k�n;k6¼s ik 2 Obj0ðkÞg for j 2 fa; bg. Constraint
~hh�lex � ð~hhÞ is consistent with ~zz�lex�

00ð~zzÞ, which is equivalent to constraint (3),
therefore ~hh�lex�ð~hhÞ is consistent with constraint (3).

Suppose a symmetry of two indistinguishable values in Vs corresponds to a var-
iable symmetry in Vt, and we lexicographically order the variables in Vt corresponding
to the indistinguishable values (i.e., ~hh0a �lex

~hh0b in the theorem). Theorem 7 states
that when generating the variable symmetry breaking constraints in Vs, aspect t (cor-
responding to the domain in Vt) must be least prioritized in the aspect priority in Vs.
In such case, consistency between the symmetry breaking constraints in Vs and Vt

are guaranteed.
Theorem 7 is applicable to symmetries of two indistinguishable values. It can be

generalized to handle multiple indistinguishable values.

Corollary 8 Let:

– � be a variable symmetry in Vs;
– fv1; . . . ; vmg be a set of indistinguishable values (where v1 < . . . < vm) under

Us ¼ fx½i1 � � � in n is� j
V

1�k�n;k6¼s ik 2 Obj0ðkÞ � ObjðkÞg in Vs with Obj0ðtÞ ¼
ObjðtÞ;

– ~kk ¼ hk1; . . . ; kn�2i be a permutation of f1; . . . ; ng n fs; tg; and
– ~qq be any aspect priority in Vt formed by inserting s into~kk (i.e.,~qq is a permutation

of f1; . . . ; ng n ftg and ~kk is a subsequence of ~qq).
If

~hh ¼ sseqðhk1; . . . ; kn�2; tiÞ;
then symmetry breaking constraints ~hh�lex �ð~hhÞ for � and ~hh01 �lex . . .�lex

~hh0m for the
symmetries of indistinguishable values are consistent, where ~hh0j ¼ selectðsseqð~qqÞ;U 0jÞ
for 1 � j � m and U 0j ¼ fx½i1 � � � in n it� j is ¼ j ^

V
1�k�n;k6¼s;k6¼t ik 2 Obj0ðkÞg.

Proof: Direct consequence of Theorem 7 for all pairs of indistinguishable
values.

For the QEP� example in Section 3.4.1, the symmetry breaking constraint, say,
hr1;1; . . . ; r1;N i�lexhr2;1; . . . ; r2;N i, in VR corresponds to the constraint ~hha�lex

~hhb in the
theorem. There are two possible aspect priorities h2; 3i and h3; 2i in VR, which
means hcolumn; numberi and hnumber; columni respectively. The variable sequence
hr1;1; . . . ; r1;N i is the selection of the scanning sequence of both aspect priorities with
index value 1 in aspect 3 (numbers), i.e., hr1;1; . . . ; r1;N i ¼ selectðsseqðh2; 3iÞ;U 0Þ ¼
selectðsseqðh3; 2iÞ;U 0Þ where U 0 ¼ fr1;1; . . . ; r1;N g. Similarly for hr2;1; . . . ; r2;N i. There-
fore, according to Theorem 7, the variable symmetry breaking constraints in VN

must be generated using the scanning sequence of the aspect priority h2; 1i, i.e.,
aspect 1 (rows) must be least prioritized, to maintain consistency between the
symmetry breaking constraints in VN and VR. The variable symmetry breaking
constraint n2;1 < n2;3 is generated using the scanning sequence of the aspect priority
h2; 1i. Thus, it is consistent with the symmetry breaking constraints in VR.

Í
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Consider again the value symmetries in VG of the SGP. By Theorem 2, they
correspond to variable symmetries in VP. Theorem 7 and Corollary 8 ensure that the
symmetry breaking constraints minðpj;kÞ < minðpjþ1;kÞ for 1 � j < G and 1 � k � W
in VP (the degenerated lexicographic ordering constraints for set variables) breaks
the value symmetries in VG. These constraints are consistent with the row and col-
umn lexicographic ordering constraints in VG, which are the simplification results of
those generated by both aspect priorities hgolfer;weeki and hweek; golferi in VG.
The solution in Fig. 1(a) satisfies both types of symmetry breaking constraints.

4 Value Precedence Constraints

The method discussed in the previous section makes use of existing modeling
techniques; no new algorithms have to be designed. In this section, we propose
another method which tackles an important and common class of value symmetries,
namely symmetries of indistinguishable values. This method requires designing new
propagation algorithms. In the following, we introduce the notion of value pre-
cedence on integer and set sequences and show how the notion can be used to break
symmetries of indistinguishable values. Two propagation algorithms for implement-
ing integer and set value precedence global constraints are presented. We also study
some theoretical properties attained by various usages of the global constraints.

4.1 Integer and Set Value Precedence

Value precedence of s over t in an integer sequence ~qq ¼ hq0; . . . ; qn�1i means that if
there exists j such that qj ¼ t, then there must exist i < j such that qi ¼ s. We say
that value s is an antecedent while value t is a subsequent, and that the antecedent
s precedes the subsequent t in ~qq, written as s �~qq t. For example, the sequence ~qq ¼
h0; 2; 2; 1; 0; 1i implies 0 �~qq 1, 0 �~qq 2, and 2 �~qq 1. Note that if a value j does not
appear in ~qq, then i �~qq j is true for any i. In the previous example, 0 �~qq 3 and 4 �~qq 3
are thus also true. Note also that value precedence is transitive: if i �~qq j and j �~qq k,
then i �~qq k.

The notion of value precedence can be extended to sequences of sets, where
antecedents and subsequents are elements of the sets in the sequence. Value
precedence of s over t in a sequence ~qq of sets means that if there exists j such that
s =2 qj and t 2 qj, then there must exist i < j such that s 2 qi and t =2 qi. For example,
consider the sequence ~qq ¼ hf0; 2g; f0; 1g; ;; f1gi. We have 0 �~qq 1 and 2 �~qq 1. We
also have 0 �~qq 2, because there is no set in ~qq that contains 2 but not 0. Again, if j
does not belong to any set in ~qq, then i �~qq j is true for any i. Thus, we also have, say,
0 �~qq 4. Note that set value precedence degenerates to integer value precedence
when the cardinality of each set in the sequence is one, because in such case, t 2 qj

implies s =2 qj and s 2 qi implies t =2 qi.

4.1.1 Value Precedence and Indistinguishable Values

Value precedence can be used for breaking symmetries of indistinguishable values.
Given two indistinguishable values under some variables U in a CSP, we can break
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the symmetry of the values by maintaining value precedence for them. We have to
construct a sequence ~uu of U, and assume one value to be the antecedent and the
other to be the subsequent. Without loss of generality, we usually pick the smaller
value as antecedent. For example, suppose there are two indistinguishable values
f0; 1g under fx1; x2; x3g in a CSP M ¼ ðX;D;CÞ, where X ¼ fx0; . . . ; x4g is a set of
set variables. If ~xx 7!hf1; 2g; f0; 2g; f0; 1g; f1; 2g; ;i is a solution of M, where
~xx ¼ hx0; . . . ; x4i, then ~xx7!hf1; 2g; f1; 2g; f0; 1g; f0; 2g; ;i should be another solution
of M. We can let ~uu ¼ hx1; x2; x3i and add the constraint 0 �~uu 1 on variables x1, x2,
and x3 to M to break the symmetry. Thus,~xx 7!hf1; 2g; f0; 2g; f0; 1g; f1; 2g; ;i remains
a solution, but its symmetrical counterpart ~xx7!hf1; 2g; f1; 2g; f0; 1g; f0; 2g; ;i would
now be rejected because 0 �~uu 1 is false.

In general, there can be more than two indistinguishable values in a CSP. The
following theorem states that we can always use the value precedence v0 �~uu . . . �~uu
vk�1 to completely break the symmetries of a set of indistinguishable values V ¼
fv0; . . . ; vk�1g under U, where ~uu is a sequence of U. For example, if V ¼ f0; 1; 2; 3g,
then we can maintain 0 �~uu 1 �~uu 2 �~uu 3.

Theorem 9 Given a set of indistinguishable values fv0; . . . ; vk�1g under U, in each
equivalence class of solutions induced by the symmetries, there is exactly one solution
satisfying the value precedence v0 �~uu . . . �~uu vk�1, where ~uu is a sequence of the
variables in U.

Proof: Given a solution in an equivalence class, for 0 � i < k� 1 and
i < j � k� 1, if vi �~uu vj is false, we swap the occurrences of vi and vj in the
solution to obtain another one with vi �~uu vj satisfied. After iterating a value for i, we
have maintained the value precedence v0 �~uu . . . �~uu vi. Hence, after all, we construct
a solution with v0 �~uu . . . �~uu vk�1, and swapping the occurrences of any two values in
fv0; . . . ; vk�1g would violate this value precedence.

When tackling both variable symmetries and symmetries of indistinguishable
values simultaneously in a CSP, we have to ensure that the two corresponding
sets of symmetry breaking constraints are consistent [21]. For example, we have
a CSP M ¼ ððfx; yg;DÞ; fx 6¼ ygÞ, where DðxÞ ¼ DðyÞ ¼ f1; 2g. CSP M has (1) the
variable symmetry � such that �ðhx; yiÞ ¼ hy; xi, and (2) values 1 and 2 are indis-
tinguishable. To break symmetry (1), we can use the constraint x � y (which is a
degenerated lexicographic ordering); whereas 2 �hx;yi 1 can break symmetry (2).
These two constraints result in no solution, which is undesirable. The following
theorem shows when maintaining s �~uu t is consistent with variable symmetry
breaking constraints.

Theorem 10 Let X be the set of variables of a CSP M, and ~xx ¼ hx0; . . . ; xn�1i
and~uu be sequences of variables in X and U � X respectively. Suppose � is a variable
symmetry in M and s and t are any two integer indistinguishable values under U. The
value precedence constraint s �~uu t (resp. t �~uu s) is consistent with the variable sym-
metry breaking constraint ~xx�lex �ð~xxÞ (resp. �ð~xxÞ �lex d~xx) if

– s < t (resp. t < s) and
– ~uu is a subsequence of~xx, i.e.,~uu can be formed by deleting some elements from~xx.
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Furthermore, if ~xx is a sequence of set variables, then the �set ordering should be
used to compare two sets p and q instead of the � ordering to compare two
numbers, where p �set q if and only if (1) q ¼ ;, or (2) minðpÞ < minðqÞ, or (3)
minðpÞ ¼ minðqÞ ^ p n fminðpÞg �set q n fminðqÞg.

Proof: We prove the case of s �~uu t and ~xx�lex �ð~xxÞ only since the case of t �~uu s
and �ð~xxÞ�lex~xx is analogous. In each equivalence class of solutions induced by the
variable symmetry �, the symmetry breaking constraint ~xx�lex �ð~xxÞ keeps the
lexicographically smaller solution with respect to the sequence ~xx. If s < t, s �~uu t
also keeps the lexicographically smaller solution with respect to the sequence ~uu
in each equivalence class of solutions induced by the indistinguishable values. If ~uu
is a subsequence of~xx, then a lexicographic smaller solution with respect to~uu is also a
lexicographic smaller one with respect to ~xx. Hence, s �~uu t is consistent with
~xx�lex�ð~xxÞ if s < t and ~uu is a subsequence of ~xx.

The �set ordering should be used to compare two sets p and q, since both
orderings �set for sets and � for numbers are equivalent to lexicographic order-
ing �lex on the Boolean (or occurrence) representations of sets and numbers
respectively.

According to Theorem 10, x � y and 1 �hx;yi 2 are consistent, resulting in a single
solution hx; yi7!h1; 2i. Similarly, y � x and 2 �hx;yi 1 are consistent, resulting in a
single solution hx; yi7!h2; 1i.

The definition of the �set ordering, similar to but different from that of multiset
ordering [25], suggests that ; is the largest element in the ordering, and the ordering
degenerates to � for numbers when the cardinalities of the two sets are 1. For
example, f1; 2g �set f1; 3; 4g �set f1; 3g.

This �set ordering on two sets has the property that it is equivalent to
lexicographic ordering �lex on the Boolean representations of the two sets. Take
the ordering f1; 2g �set f1; 3; 4g �set f1; 3g as an example. Suppse we are recording
the occurrences of values 1 to 4. The Boolean representations of the sets f1; 2g,
f1; 3; 4g, and f1; 3g are h1; 1; 0; 0i, h1; 0; 1; 1i, and h1; 0; 1; 0i respectively. We can see
that h1; 1; 0; 0i�lexh1; 0; 1; 1i�lexh1; 0; 1; 0i. This property is in parallel to the �
ordering on numbers stated in Lemma 3.

4.1.2 Constraints for Maintaining Value Precedence

Constraints to enforce value precedence s �~xx t for a sequence of constrained
variables ~xx can be constructed straightforwardly from its declarative meaning. In
subsequent discussions, we assume that s 6¼ t and the sequence ~xx contains different
variables, i.e., the same variable cannot occur more than once in ~xx. Suppose ~xx is a
sequence of integer variables. Since s must precede t, x0, the first variable in~xx, must
not be assigned t. The constraints are then

1. x0 6¼ t and
2. xj ¼ t!

W
0�i< j xi ¼ s for 1 � j < n.

If ~xx is a sequence of set variables, then t must not be in x0 without being
accompanied by s. Hence, the constraints are

1. s 2 x0 _ t =2 x0 and
2. ðs =2 xj ^ t 2 xjÞ !

W
0�i< jðs 2 xi ^ t =2 xiÞ for 1 � j < n.

242 Constraints (2006) 11: 221–267



Note that for both integer and set variables, we need n constraints, which we
collectively call if-then value precedence constraints, to maintain value precedence.
Among the n constraints, one is a unary constraint, and the remaining n� 1 are if-
then constraints. The following theorem shows that for integer variables, GAC on
the conjunction of the n if-then value precedence constraints is equivalent to GAC
on each individual if-then value precedence constraint.

Theorem 11 Given an integer variable sequence ~xx, GAC on s �~xx t is equivalent to
GAC on each individual if-then value precedence constraint for integer variables.

Proof: Let c0 and cj be the constraints x0 6¼ t and xj ¼ t!
W

0�i< j xi ¼ s for 1 �
j < n respectively. GAC on s �~xx t is clearly no weaker than GAC on cj for 0 � j <
n individually. Conversely, suppose each cj for 0 � j < n is GAC individually but
s �~xx t is not GAC. That is, there exists an assignment such that any of its extensions
fails to satisfy s �~xx t. We show by induction that if such an assignment exists, then
s; t =2DðxjÞ for 0 � j < n.

As the base case, we have s; t =2Dðx0Þ because x0 7!s alone will satisfy s �~xx t and c0

is GAC. Given s; t =2DðxiÞ for 0 � i < j, xj 7!s alone will satisfy s �~xx t. Therefore,
in order to fail s �~xx t, we must have s =2DðxjÞ. Furthermore, since cj is GAC,V

1�i< j s; t =2DðxiÞ implies t =2DðxjÞ. Hence, by induction, we have
V

0�j< n s; t=2DðxjÞ.
However, all possible compound assignments ~xx 7!hu0; . . . ; un�1i with ui 2 DðxiÞ n
fs; tg are solutions of s �~xx t. Thus, s �~xx t is also GAC and therefore GAC on s �~xx t is
equivalent to GAC on cj for 1 � j < n individually. Í

For set variables, SBC on the conjunction of the n if-then value precedence con-
straints is equivalent to SBC on each individual if-then value precedence constraint.

Theorem 12 Given a set variable sequence ~xx, SBC on s �~xx t is equivalent to SBC on
each individual if-then value precedence constraint for set variables.

Proof: Let c0 and cj be the constraints s 2 x0 _ t =2 x0 and ðs =2 xj ^ t 2 xjÞ !W
0�i< jðs 2 xi ^ t =2 xiÞ for 1 � j < n respectively. SBC on s �~xx t is clearly no weaker

than SBC on cj for 0 � j < n individually. Conversely, suppose each cj for 0 � j < n
is SBC but s �~xx t is not SBC. That is, there exists either an assignment xi 7!RSðxiÞ or
xi 7!PSðxiÞ such that any of its extensions fails to satisfy s �~xx t. We show by induction
that if such an assignment exists, then ðs =2RSðxjÞ _ t 2 PSðxjÞÞ ^ ðs 2 RSðxjÞ _
t =2 PSðxjÞÞ for 0 � j < n.

As the base case, since s 2 RSðx0Þ ^ t =2 PSðx0Þ always satisfies s �~xx t, in order to
fail s �~xx t, we must have s =2RSðx0Þ _ t 2 PSðx0Þ. Also, since c0 is SBC, we have
s 2 RSðx0Þ _ t=2PSðx0Þ.

Given ðs =2RSðxiÞ _ t 2 PSðxiÞÞ ^ ðs 2 RSðxiÞ _ t =2 PSðxiÞÞ for 0� i < j, s 2 RSðxjÞ^
t =2 PSðxjÞ always satisfy s �~xx t. Therefore, we have s=2RSðxjÞ _ t 2 PSðxjÞ. Further-
more, since cj is SBC,

V
0�i< jððs =2 RSðxiÞ _ t 2 PSðxiÞÞ ^ ðs 2 RSðxiÞ _ t =2 PSðxiÞÞÞ

implies s 2 RSðxjÞ _ t =2 PSðxjÞ. Hence, by induction, we have
V

0�j< nððs =2 RSðxjÞ _
t 2 PSðxjÞÞ ^ ðs 2 RSðxjÞ_ t =2 PSðxjÞÞÞ. However, all possible compound assignments
~xx7!hu0; . . . ; un�1i with ðs =2 RSðxjÞ _ t 2 PSðxjÞÞ ^ ðs 2 RSðxjÞ _ t =2 PSðxjÞÞ for 0 �
j < n are solutions of s �~xx t. Thus, s �~xx t is also SBC and therefore SBC on s �~xx t is
equivalent to SBC on cj for 1 � j < n individually. Í
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4.2 Propagation Algorithms for Value Precedence

We develop two propagation algorithms IntValuePrecede and SetValuePrecede to
implement two global constraints for integer and set value precedence respectively.
Both global constraints use the same prototype ValuePrecedeð~xx; s; tÞ, meaning s �~xx t,
where~xx is a variable sequence and s and t are integer constants. GAC (resp. SBC) is
enforced on the integer (resp. set) value precedence constraint. The integer and set
versions of the propagation algorithms are similar. Their time complexity is linear to
the length of ~xx. Both of them use three pointers �, �, and � to point to different
indices of~xx, but the pointers have different meanings for the two versions. The two
algorithms are also similar to that of the lexicographic ordering global constraint
[26] in the sense that both maintain pointers running in opposite directions from the
two ends of variable sequences. On the other hand, they are different from those
of some other global constraints which are developed using automata constructions
[9, 13, 14]. In subsequent discussions, we assume the variable sequence ~xx ¼
hx0; . . . ; xn�1i to be a sequence of non-repeating variables and s and t to be distinct.

4.2.1 Integer Version

In IntValuePrecede, pointer � is the smallest index of~xx such that s is in the domain
of x�, i.e., s 2 Dðx�Þ and s =2DðxiÞ for 0 � i < �. If no variables in~xx have value s in
their domains, then we define � ¼ n. Pointer � is the second smallest index of~xx such
that s is in the domain of x�, i.e., s 2 Dðx�Þ and s =2DðxiÞ for � < i < �. If fewer
than two variables in~xx contain value s in their domains, then we define that � ¼ n.
Pointer � is the smallest index of ~xx such that x� is bound to t, i.e., Dðx�Þ ¼ ftg
and DðxiÞ 6¼ ftg for 0 � i < �. If no variables in ~xx are bound to t, then we define
that � ¼ n. During propagation, � and � must be increasingly updated, while �
must be decreasingly updated. For example, let ~xx ¼ hx0; x1; x2; x3i, s ¼ 1, and t ¼ 2.
Suppose Dðx0Þ ¼ f2; 3g, Dðx1Þ ¼ f1; 2; 3g, Dðx2Þ ¼ f2g, and Dðx3Þ ¼ f1; 3g. Then,
we have � ¼ 1, � ¼ 3, and � ¼ 2.

Recall the integer if-then value precedence constraints x0 6¼ t and xj ¼ t!W
0�i< j xi ¼ s for 1 � j < n. Pointer � tells that s =2DðxiÞ for 0 � i < �. Thus, we can

remove t from DðxiÞ for 0 � i � �. Our first pruning rule is that:

1. value t can be removed from the domains of the variables on or before position �
in ~xx.

In the above example, we have � ¼ 1. Therefore, we can remove value t ¼ 2 from
the domains of x0 and x1 as shown in Fig. 4(a).

Pointer � tells the smallest index of ~xx such that x� is bound to t. Therefore,
according to the if-then value precedence constraints, the constraint

W
0�i< � xi ¼ s

must be satisfied. Since s =2DðxiÞ for 0 � i < �,
W

0�i< � xi ¼ s can be refined toW
��i< � xi ¼ s. Furthermore, pointer � tells that s =2DðxiÞ for � < i < �. Therefore,

if � < �, then
W
��i< � xi ¼ s becomes x� ¼ s. Our second pruning rule is that:

2. if � < �, then x� can be bound to s.

Note that once x� is bound to s, s �~xx t is satisfied. In the above example, we have
� > � (3 > 2). Therefore, we can bound x� (x1) to 1, as shown in Fig. 4(b), and 1
must precede 2 in ~xx afterwards.
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The propagation algorithm IntValuePrecede, shown in Fig. 5, is based on the two
pruning rules just described. The variables alpha, beta, and gamma ensure correct
positions for the pointers �, �, and � respectively. Procedure initializeðÞ is called
when a value precedence constraint is posted. It finds initial values for the pointers
alpha, beta, and gamma. In the procedure, procedure updateAlphaðÞ is first invoked
to search the position for alpha, starting from position 0. During the search, the first
pruning rule is applied. We then search for a value for gamma. Since value t is
removed from DðxiÞ for 0 � i � alpha, gamma must be greater than alpha and the
position search for gamma starts from position alphaþ 1. Note that the second
pruning rule cannot be applied at this point because beta is not yet initialized. After
fixing gamma, procedure updateBetaðÞ is invoked to initialize beta. By definition,
beta > alpha. Therefore the search starts from position alphaþ 1. After fixing beta,
the second pruning rule can be applied.

Procedure propagateðiÞ in Fig. 5 is called whenever the domain of xi is modified.
If gamma < beta, then value precedence is already entailed and no more
propagation is needed. Otherwise, if i ¼ alpha and s=2DðxiÞ, then we have to update
alpha and beta. The search for new position for alpha starts from position beta,
because xbeta is the original second earliest variable that contains s in its domain.

Fig. 5 The IntValuePrecede propagation algorithm

Fig. 4 Illustrating the use of the pointers �, �, and � in IntValuePrecede
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Once s is removed from DðxalphaÞ, beta becomes the first potential value for
alpha. However, before the search, value t has to be removed from DðxiÞ for
alpha < i < beta. During the search, the first pruning rule is applied. Pointer beta is
updated after finding a new value for alpha. The search for new value for beta starts
from position alphaþ 1. The procedure updateBetaðÞ is called to update beta. In the
procedure, once beta is updated, the second pruning rule is applied to check whether
beta > gamma.

In procedure propagateðiÞ, if i ¼ beta and s =2DðxiÞ, then only beta has to be
updated. Hence, the procedure updateBetaðÞ is called to find a new value for beta
and to apply the second pruning rule.

Procedure checkGammaðiÞ in Fig. 5 serves to update gamma. It is called
whenever xi is bound. If i < gamma and xi is bound to t, then gamma is updated
to i, and the second pruning rule is applied to check whether beta > gamma. The
IntValuePrecede algorithm enforces GAC on s �~xx t.

Theorem 13 Given an integer variable sequence ~xx and integers s and t, the
IntValuePrecede algorithm triggers failure if s �~xx t is unsatisfiable; otherwise, the
algorithm prunes values from domains of variables in ~xx such that GAC on s �~xx t is
enforced and solutions of s �~xx t are preserved.

Proof: The proof makes use of the definitions of the pointers �, �, and �. The
pruning rules 1 and 2 implemented in IntValuePrecede ensure that all values
removed from the variable domains must not lead to solutions of s �~xx t. Therefore,
IntValuePrecede preserves the solutions of s �~xx t. To show that IntValuePrecede
enforces GAC on s �~xx t, consider the two cases of � < � and � < �. Pruning rule 2
implemented in IntValuePrecede has already ensured the satisfiability of s �~xx t for
the former case (by enforcing x� ¼ s). For the latter case, suppose there is an
assignment that cannot be extended to a solution of s �~xx t but is not removed by
IntValuePrecede. Since any extension with x� 7!s must be a solution of s �~xx t, and
x� 7!t is removed by pruning rule 1, the inconsistent assignment that cannot be
removed by IntValuePrecede must be x� 7!u, where u 2 Dðx�Þ n fs; tg. We show,
however, that x� 7!u can always be extended to a solution of s �~xx t. Since � < �,
variables x0; . . . ; x� are not yet bound to t. Also, by the definitions of � and �,
s=2DðxiÞ for 0 � i < � and i 6¼ �. Therefore DðxiÞ n fs; tg must be non-empty for
0 � i < � and i 6¼ �. Hence, we can extend x� 7!u by assigning any value other
than fs; tg to x0; . . . ; x��1 and x�þ1; . . . ; x��1, s to x�, and any value to x�þ1; . . . ; xn�1.
This extension must be a solution to s �~xx t. Thus, x� 7!u is consistent and
IntValuePrecede maintains GAC on s �~xx t. Í
4.2.2 Set Version

In SetValuePrecede, the meanings of the pointers �, �, and � are similar to those in
the integer version. Pointer � is the smallest index of~xx such that s is in the possible
set of x� and t is not in the required set of x�, i.e., s 2 PSðx�Þ ^ t =2 RSðx�Þ and
s =2 PSðxiÞ _ t 2 RSðxiÞ for 0 � i < �. If s =2 PSðxiÞ _ t 2 RSðxiÞ for 0 � i < n, then
we define � ¼ n. Pointer � is the second smallest index of ~xx such that s is in the
possible set of x� and t is not in the required set of x�, i.e., s 2 PSðx�Þ ^ t =2 RSðx�Þ
and s =2 PSðxiÞ _ t 2 RSðxiÞ for � < i < �. If � ¼ n or s =2 PSðxiÞ _ t 2 RSðxiÞ for
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� < i < n, then we define � ¼ n. Pointer � is the smallest index of ~xx such that s is
not in the possible set of x� and t is in the required set of x� , i.e., s =2 PSðx�Þ ^ t 2
RSðx�Þ and s 2 PSðxiÞ _ t =2 RSðxiÞ for 0 � i < �. The definition of � implies
s =2 x� ^ t 2 x� . If s 2 PSðxiÞ _ t =2 RSðxiÞ for all 0 � i < n, then we define � ¼ n.
As in the integer version, � and � must be updated increasingly, while � must be
updated decreasingly. Let ~xx ¼ hx0; x1; x2; x3i, s ¼ 1, and t ¼ 2. Suppose we have:

~xx x0 x1 x2 x3 x4

PSðxiÞ f2g f1; 2g f1; 2g f2; 3g f1g
RSðxiÞ ; f2g ; f2; 3g ;

Then, � ¼ 2, � ¼ 4, and � ¼ 3.
Pointer � tells that s =2 PSðxiÞ _ t 2 RSðxiÞ for 0 � i < �, which entails s =2 xi_

t 2 xi. Hence, according to the set if-then value precedence constraints s 2 x0 _ t =2 x0

and ðs =2 xj ^ t 2 xjÞ !
W

0�i< jðs 2 xi ^ t =2 xiÞ for 1 � j < n, the constraints s 2
xi _ t =2 xi for 0 � i � � must be satisfied. Since s 2 PSðx�Þ ^ t =2RSðx�Þ must be
true, s 2 x� _ t =2 x� is already consistent. Consequently, our first pruning rule for
SetValuePrecede is to maintain consistency on s 2 xi _ t =2 xi for 0 � i < �.

1. For 0 � i < �, if s is not in PSðxiÞ, then t can be removed from PSðxiÞ; otherwise,
s can be added to RSðxiÞ.

In the above example, value 1 is not in PSðx0Þ, so we can remove 2 from PSðx0Þ.
Value 2 is in PSðx1Þ; thus 1 is added to RSðx1Þ. The resulting domains are shown in
Fig. 6(a).

Pointer � tells that s =2 PSðx�Þ ^ t 2 RSðx�Þ, which entails s =2 x� ^ t 2 x� . According
to the if-then value precedence constraints,

W
0�i< �ðs 2 xi ^ t =2 xiÞ must be satisfied.

By the meaning of �, this constraint can be refined to
W
��i< �ðs 2 xi ^ t =2 xiÞ.

Furthermore, pointer � tells that s =2 xi _ t 2 xi must be satisfied for � < i < �.
Therefore, if � < �, then

W
��i< �ðs 2 xi ^ t =2 xiÞ becomes s 2 x� ^ t =2 x�. Our second

pruning rule for SetValuePrecede is that:

2. if � < �, then scan be added to RSðx�Þ and t can be removed from PSðx�Þ.

The constraint s �~xx t is satisfied once x� is proved to contain s but not t. In the above
example, 3 ¼ � < � ¼ 4. Therefore, 1 can be added to RSðx�Þ and 2 can be
removed from PSðx�Þ, as shown in Fig. 6(b).

The SetValuePrecede algorithm in Fig. 7, based on two pruning rules, contains
five procedures with the same names as and similar structures to IntValuePrecede.
Procedure initializeðÞ, called when ValuePrecedeð~xx; s; tÞ is posted, initializes alpha,

Fig. 6 Illustrating the use of the pointers �, �, and � in SetValuePrecede
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beta, and gamma. Procedure propagateðiÞ is called whenever DðxiÞ is modified, i.e.,
either PSðxiÞ or RSðxiÞ is modified. If gamma < beta, value precedence is already
entailed and no more propagation is needed. Otherwise, there are two different
cases. First, i ¼ alpha ^ ðs=2PSðxiÞ _ t 2 RSðxiÞÞ, alpha and beta have to be updated.
Second, i ¼ beta ^ ðs=2PSðxiÞ _ t 2 RSðxiÞÞ, only beta has to be updated. Afterward
checkGammaðiÞ is called to check if gamma needs update. This differs from the
integer version, where checkGammaðiÞ is called only when xi is bound, since, in the
set version, gamma may need update even when xi is not bound. The SetValue-
Precede algorithm enforces SBC on s �~xx t.

Theorem 14 Given a set variable sequence ~xx and integers s and t, the SetValue-
Precede algorithm triggers failure if s �~xx t is unsatisfiable; otherwise, the algorithm
prunes values from domains of variables in ~xx such that SBC on s �~xx t is enforced
and solutions of s �~xx t are preserved.

Proof: The proof makes use of the definitions of the pointers �, �, and �.
Pruning rules 1 and 2 implemented in SetValuePrecede ensure that all values
removed from the possible sets of variables must not lead to solutions of s �~xx t, and
all values added to the required sets of variables must occur in every solution of
s �~xx t. Therefore, SetValuePrecede preserves the solutions of s �~xx t. To show that
SetValuePrecede enforces SBC on s �~xx t, consider the two cases of � < � and

Fig. 7 The SetValuePrecede propagation algorithm
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� < �. Pruning 2 implemented in SetValuePrecede has already ensured the
satisfiability of s �~xx t for the former case (by enforcing s 2 x� ^ t =2 x�). For the
latter case, suppose there is a variable xi such that either xi 7!PSðxiÞ or xi 7!RSðxiÞ
cannot be extended to a solution of s �~xx t. That is, there is a value a in PSðxiÞ n
RSðxiÞ such that either s �~xx t ^ a 2 xi or s �~xx t ^ a =2 xi is unsatisfiable, but a is
neither removed from PSðxiÞ nor added to RSðxiÞ by SetValuePrecede. Since any
extension of x� 7!u� with s 2 u� ^ t =2 u� must be a solution of s �~xx t, in order to fail
either s �~xx t ^ a 2 xi or s �~xx t ^ a =2 xi, we must have s =2 u� _ t 2 u�. We show,
however, that it is always possible to construct solutions of s �~xx t with s =2u� _ t 2 u�.
By the definition of � and the assumption � < �, s 2 PSðxiÞ _ t =2 RSðxiÞ for
0 � i < �. Also, by the definitions of � and �, s =2 PSðxiÞ _ t 2 RSðxiÞ for 0 � i <
� and i 6¼ �. Hence, it is always possible to have valid assignments xi 7!ui with s; t 2
ui _ s; t =2 ui for 0 � i < � and i 6¼ �. The assignment x� 7!u� with s 2 u� ^ t =2 x� is
also valid since s 2 PSðx�Þ ^ t =2 RSðx�Þ. Now that we have the compound
assignment hx0; . . . ; x�i7!hu0; . . . ; u�i, where s; t 2 ui _ s; t =2 ui for 0 � i < � and
i 6¼ �, s =2 u� _ t 2 u�, and s 2 u� ^ t =2 x�. However, note that any extensions of this
compound assignment are solutions of s �~xx t. Therefore, it is impossible to fail
either s �~xx t ^ a 2 xi or s �~xx t ^ a =2 xi for any xi and a 2 PSðxiÞ n RSðxiÞ. Thus,
SetValuePrecede enforces SBC on s �~xx t. Í
4.3 Multiple Indistinguishable Values

In many circumstances, there are more than two indistinguishable values in the
same problem, but our global constraints can deal with only two such values at a
time. To break symmetries on a set of variables U induced by a set of indistinguishable
values V ¼ fv0; . . . ; vk�1g for k > 2, we can impose the ValuePrecedeðÞ constraints
using all pairs of values in V: vi �~uu vj for 0 � i < j � k� 1, where~uu is a sequence of
U. By transitivity of value precedence, however, an alternative is to impose
constraints using only adjacent pairs of values in V: vi �~uu viþ1 for 0 � i � k� 2.
Although achieving the same value precedence effect, the former approach can
theoretically achieve more propagation than the latter for both integer and set value
precedence. Following Debruyne and Bessiere, we define that enforcing a local
consistency LC on some constraints C1 is strictly stronger [19] than enforcing LC on
some constraints C2 if and only if (1) any domain reduction performed by the latter
can also be done by the former, and (2) there exists an assignment that can be pruned
by the former but not the latter.

Theorem 15 Given an integer variable sequence ~uu and a set of integer indistin-
guishable values V ¼ fv0; . . . ; vk�1g under U, enforcing GAC on each of vi �~uu vj for
0 � i < j � k� 1 is strictly stronger than enforcing GAC on each of vi �~uu viþ1 for
0 � i � k� 2.

Proof: The former is clearly as strong as the latter. To show strictness, sup-
pose ~xx ¼ hx0; . . . ; x4i is a sequence of integer variables X and V ¼ f0; 1; 2; 3g be a
set of indistinguishable values under X. Consider Dðx0Þ ¼ f0g, Dðx1Þ ¼ f0; 1g,
Dðx2Þ ¼ Dðx3Þ ¼ f0; 2g, and Dðx4Þ ¼ f3g. Each of the constraints 0 �~xx 1, 1 �~xx 2, and
2 �~xx 3 is GAC. However, the constraint 1 �~xx 3 is not GAC, since the assignment
x1 7!0 cannot be extended to a solution of 1 �~xx 3. Í
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Theorem 16 Given a set variable sequence ~uu and a set of integer indistinguishable
values V ¼ fv0; . . . ; vk�1g under U, enforcing SBC on each of vi �~uu vj for 0 � i <
j � k� 1 is strictly stronger than enforcing SBC on each of vi �~uu viþ1 for
0 � i � k� 2.

Proof: The former is clearly as strong as the latter. To show strictness, consider
the set variable sequence ~yy ¼ hy0; . . . ; y3i with PSðy0Þ ¼ f0g, PSðy1Þ ¼ f1g,
PSðy2Þ ¼ PSðy3Þ ¼ f1; 2g, RSðy0Þ ¼ RSðy1Þ ¼ RSðy2Þ ¼ ;, and RSðy3Þ ¼ f2g. Sup-
pose V ¼ f0; 1; 2g is a set of indistinguishable values under fy0; . . . ; y3g. Each of the
constraints 0 �~yy 1 and 1 �~yy 2g is SBC. However, the constraint 0 �~yy 2 is not SBC,
since y0 7!RSðy0Þ, i.e., y0 7!;, cannot be extended to a solution of 0 �~yy 2. Í

As we shall see in the experimental results, such difference in propagation level,
although theoretically possible, might not show up in practice. Furthermore, it is still
an open question whether enforcing GAC on each of vi �~uu vj for 1 � i < j � k
achieves GAC on the multiple value precedence v1 �~uu . . . �~uu vk as a whole.

5 Experiments

To demonstrate the feasibility and efficiency of the two proposals, we perform
experiments on various problems including graph coloring, the concert hall
scheduling problem, the SGP, and the Steiner triple system. All experiments are
all-solution search using the smallest-domain-first variable ordering heuristic, and
are run using ILOG Solver 4.4 [1] on a Sun Blade 1000 workstation with 2GB
memory. For models using the multiple viewpoints method, unless otherwise
specified, the extra viewpoint is solely used to express variable symmetry breaking
constraints that breaks the value symmetries in the primary viewpoint. Only
variables in the primary viewpoint are used as branching variables. We report and
compare the number of fails and CPU time for each instance of each model. In the
tables, the best number of fails and CPU time among the models for each instance
are highlighted in bold. A cell labeled with B-^ means execution does not terminate
in 2 hours of CPU time.

5.1 Graph Coloring

Given a graph and k colors, graph coloring is to color the vertices of the graph with
k colors such that the two vertices connected by each edge have different colors. A
CSP model of the problem is to use a variable xi for each vertex with domain
DXðxiÞ ¼ f1; . . . ; kg representing the colors. Using this aspect viewpoint VX , the
colors 1; . . . ; k are indistinguishable values. We build seven different models for this
problem to illustrate the effects of the proposals. The no-break model does not
break the symmetries of indistinguishable values, and the remaining models break
the symmetries in various ways. The if-then model uses if-then value precedence
constraints on adjacent pairs of indistinguishable values. The symmetries of
indistinguishable values in VX becomes variable symmetries in the 0/1 viewpoint
VZ. Each color j becomes a sequence of variables hz1;j; . . . ; zn;ji in this viewpoint,
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where n is the number of vertices in a graph. Flener et al. [21] suggested that the 0/1
viewpoint VZ can always be used to both model a problem and express symmetry
breaking constraints. We therefore build the all-bool model using this technique. It
solely uses VZ to express all the problem constraints as well as lexicographic
ordering constraints hz1;j; . . . ; zn;ji�lexhz1;jþ1; . . . ; zn;jþ1i for 1 � j < k to break the
symmetries. The int-bool model contains the problem constraints in VX , variable
symmetry breaking constraints in VZ which breaks the value symmetries in VX , and
channeling constraints connecting VX and VZ. The glb-adj and glb-all models use
adjacent-pair and all-pair postings of the value precedence global constraints
respectively, which are i �~xx iþ 1 for 1 � i < k and i �~xx j for 1 � i < j < k
respectively, where ~xx is a sequence of variables in X. The intboolþglbadj model is
the int-bool model plus the adjacent-pair postings of value precedence global
constraints. This model shows the combined use of both methods together. The
vertices of a graph are re-ordered with decreasing degree. As a result, for models
using variables in VX as branching variables, ties of the smallest-domain-first
variable ordering heuristic are broken by choosing a more constrained variable [12].
Another consequence is that in all-bool, which does not contain VX , variables with a
smaller vertex number is branched earlier in the search.

Table 1 shows the experimental results of solving various instances in the Second
DIMACS Challenge2 using the minimal number of colors (k�). In the results,
models that break the value symmetries (except all-bool) are generally more
efficient than no-break. The if-then model is sometimes less efficient than no-break,
despite the latter’s larger search space. The all-bool and no-break models are
incomparable. One is sometimes more efficient than the other and vice versa.
Models using global constraints are the fastest among all, confirming the efficiency
of our integer value precedence propagation algorithm. The glb-all model shows no
extra pruning over glb-adj, and is thus slightly less efficient due to the overhead in
maintaining additional constraints. The if-then model also has the same propagation
as glb-adj and glb-all, but execution is much slower because of the inefficient
propagation of if-then constraints. The int-bool model is slower than glb-adj and
glb-all, but more robust than no-break and if-then, which cannot solve myciel4.col
and le450_5b.col respectively. The intboolþglbadj model has the same propagation
as glb-adj. The running time of the former is worse than that of the latter, due to
the extra viewpoint used in the model.

Note that ILOG Solver does not enforce GAC on constraints of the form c1 ! c2

in general, where c1 and c2 are some constraints. Their propagation behavior is that
(1) propagation of c2 is triggered only after c1 is entailed, and (2) propagation of c1

is triggered only after :c2 is entailed. In our experiments, however, we empirically
show that GAC is enforced on the integer if-then value precedence constraints. as
seen from the same number of fails of if-then and glb-adj. This is probably due to
the specific form of the if-then value precedence constraints, in which the left hand
side is a unary assignment constraint, and the right hand side is a disjunction of
assignment constraints. These make the left hand side relatively easy be proved
true and the right hand side relatively easy be proved false, thus propagation of
the if-then constraint can be triggered earlier.

2 Available at http://mat.gsia.cmu.edu/COLOR/instances.html.
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5.2 Concert Hall Scheduling

A hall director receives n applications to use the k identical rooms of a concert hall.
Each application i specifies a period ½si; ei� and an offered price wi to use a room for
the whole period. The concert hall scheduling problem is to decide which
applications to accept in order to maximize the total income. Each accepted
application should be assigned the same room during its whole applied period.
Figure 8 shows an example with 2 rooms and 4 applications and an optimal
schedule. This problem is generalized from one in the Asia Regional Contest of
ACM/ICPC 2003, in which k ¼ 2,3 but is a special case of the temporal knapsack
problem [8], in which each application can request more than one room.

We use a variable xi for each application i with domain DXðxiÞ ¼ f1; . . . ; kþ 1g to
denote the room assigned to the application. The dummy value kþ 1 is to denote an
rejected application. Under this viewpoint, any two identical applications i and j
(i.e., si ¼ sj, ei ¼ ej, and wi ¼ wj) are symmetric and we can use the variable
symmetry breaking constraint xi � xj where i < j to break the symmetry. Moreover,
all domain values except the dummy value kþ 1 are indistinguishable values. This is
our only benchmark problem in which not all the domain values are indistinguish-
able. We build the no-break, if-then, all-bool, int-bool, glb-adj, glb-all, and
intbool+glbadj models, which have the same meaning as in graph coloring. Several
random instances are generated with 40 applications, 1 � si � ei � 100, and
10 � wi

ei�siþ1 � 100, where si, ei, and wi are uniformly distributed in their ranges,
and are solved as an optimization problem for the maximum total income with
different number of rooms k.

Table 2 shows the experimental results. Like graph coloring, models tackling the
indistinguishable values (i.e., if-then, int-bool, glb-adj, glb-all, and intboolþglbadj)
are generally more efficient than no-break, which is again generally more efficient
than all-bool. The glb-adj and glb-all models have the same number of fails;
execution time between them is negligible. Unlike graph coloring, int-bool is more
efficient than glb-adj and glb-all in most instances, but they are all much more
efficient than if-then. Actually, the different propagation behaviors between int-bool

and glb-adj (as well as glb-all) make the smallest-domain-first variable ordering
heuristic choose different variables to be assigned next during search. It seems the
heuristic fits more to int-bool than to glb-adj and glb-all so int-bool has a smaller
overall search tree. The intboolþglbadj model has the same propagation as glb-adj

but slower execution. We also tried solving an instance obtained from ACM/ICPC
2003 containing 1000 applications within 365 days. The glb-adj, glb-all, and int-bool

models can be solved in about 3.2 hours CPU time, while the other models do not
terminate after 6 hours execution.

Bartlett et al. [8] suggested a model, which uses one 0/1 variable for each
application to denote whether the application is accepted, for the temporal

3 See http://www.u-aizu.ac.jp/conference/ACM/problems/all.pdf.

Fig. 8 An instance of the con-
cert hall scheduling problem
with 2 rooms and 4 applica-
tions (left) and an optimal
solution (right)
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knapsack problem. Their model, which does not involve particular halls, is more
efficient than those used in our experiments. The main aim of our experiments,
however, is to evaluate symmetry breaking methods applied to CSPs with value
symmetries. The quality of models used in this problem is immaterial to us.

5.3 Social Golfer Problem

For the SGP, we build integer and set models in VG and VP respectively as two
bases and tackle the indistinguishable values in VG [symmetry (3)] and VP

[symmetry (1)] using different methods. We also test both the integer and set
versions of the value precedence propagation algorithms in this benchmark. Note
that the two sets of experiments should not be compared directly because (1) models
in the two sets have different problem constraints, and (2) different search variables
are used (integer and set variables).

5.3.1 Integer Model

In the integer model, symmetries (1) and (2) are variable symmetries, which can be
broken by row and column lexicographic ordering constraints. Note that the row
ordering constraints hgi;1; . . . ; gi;Wi�lexhgiþ1;1; . . . ; giþ1;Wi can be simplified to
hgi;1; gi;2i<lexhgiþ1;1; giþ1;2i, since two golfers can meet each other at most once.
Similarly, the column ordering constraints hg1;k; . . . ; gN ;ki�lexhg1;kþ1; . . . ; gN ;kþ1i can
also be simplified to hg1;k; . . . ; gGþ1;ki<lexhg1;kþ1; . . . ; gGþ1;kþ1i. These problem-
specific simplified constraints allows more propagation than the original ones, and
therefore are used in our experiments.

Using this basis, we build the int-set and int-bool models which use multiple
viewpoints and break the symmetries of indistinguishable values in VG as variable
symmetries in VP and VZ respectively. Note that in int-set, we add extra implied
constraints jpj;kj ¼ S for 1 � j � G and 1 � k � W, since they can increase
propagation on the symmetry breaking constraints in VP. We also build glb-adj

and glb-all that breaks the symmetries using global constraints. The all-bool model is
the same as the one used by Frisch et al. [26] except that we apply the same
simplification technique as above to simplify the row and column lexicographic
ordering constraints. Since there are two models int-bool and int-set using the
multiple viewpoints method, we correspondingly build two models intboolþglbadj
and intsetþglbadj using the combined method. Table 3 shows the experimental
results.

Again, glb-adj and glb-all are the fastest among all. The performance of int-set

and int-bool approaches that of the global constraints models. The glb-adj, glb-all,
int-set, and if-then models has the same number of fails. The int-bool model achieves
less propagation than them. Nevertheless, its performance is still generally much
better than if-then and all-bool. The int-set and int-bool models are incomparable.
The former is sometimes slightly slower than the latter, but in certain instances [e.g,
ð5; 5; 3Þ, ð5; 5; 4Þ, ð5; 5; 5Þ, and ð6; 6; 3Þ], the difference in number of fails between
them is so large that int-set shows its robustness and is significantly faster. Both
intboolþglbadj and intsetþglbadj again have the same propagation as glb-adj, but
they are slower in execution.
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5.3.2 Set Model

In the set model, symmetries (3) and (2) are variable symmetries. Barnier and
Brisset [7] suggested the constraints minðpj;kÞ < minðpjþ1;kÞ for 1 � j < G and 1 �
k � W and minðp1;k n f1gÞ < minðp1;kþ1 n f1gÞ for 1 � k < W for breaking the
symmetries respectively. These constraints are degenerated from the lexicographic
ordering constraints with the set ordering we propose and the problem constraints
that two variables pj;k and pj0;k for some j 6¼ j0 must be disjoint. Using this basis, we
again build the glb-adj and glb-all models, using our set value precedence
constraints, as well as the set-int and set-bool models that breaks the value
symmetries in VG as variable symmetries in VP and VZ respectively. Note that the
variable symmetry breaking constraints in VP of set-int are actually the same as the
row ordering constraints in the integer model described in previous subsection.
Therefore, the simplified constraints hgi;1; gi;2i<lexhgiþ1;1; giþ1;2i can be used instead.
Furthermore, since only variables of weeks 1 and 2 in VG are used for expressing
constraints, the remaining variables in VG (and the channeling constraints relating
them) are removed from the model so that only part of VG is connected with VP and
less overhead of channeling is incurred. Similarly, in set-bool, only variables of
weeks 1 and 2 in VZ are connected with VP. Note that whenW ¼ 2, there will be no
savings in the number of variables. This modeling trick is not applicable when using
global constraints, and is actually an advantage of using multiple viewpoints over
global constraints to break value symmetries.

The experimental results in Table 4 shows that set-int is the most efficient in
terms of both the number of fails and CPU time. It always has the smallest number
of fails due to the extra propagation of the simplified symmetry breaking
constraints. The removal of the unused variables in the second viewpoint also
reduces the overhead of channeling. The set-bool model achieves the same amount
of propagation as glb-adj. Their runtime are similar in many instances. In larger
instances (down in the table), glb-adj is more competitive than set-bool due to the
extra variables in the latter model. The models using global constraints still perform
much better than if-then and all-bool, confirming the efficiency of our set
propagation algorithm. Note that all-bool is slightly different from the one in the
previous subsection, because a different aspect priority (and hence scanning
sequence) is used to generate the variable symmetry breaking constraints in VZ.
The scanning sequence hgolfers;weeks; groupsi is used in all-bool previously, while
hweeks; groups; golfersi is used here. The glb-all model achieves more propagation
than glb-adj does in some instances. The difference in the number of fails, however,
is usually small, so the overhead of extra global constraints cannot be compensated.
An exception is the ð4; 4; 4Þ instance where glb-all has significantly fewer fails than
glb-adj, and all-bool is the best among all models. Actually, glb-all posts OðN 2Þ ¼
OðG 2S 2Þ more constraints than glb-adj. Hence, instances with more golfers
incur more overhead than those with fewer golfers. The setboolþglbadj and
setintþglbadj models have the same propagation as set-bool and set-int respective-
ly. Therefore, their execution is slightly longer due to the extra value precedence
constraints in the models.

Besides using the smallest-domain-first variable ordering heuristic, we also tried
using the default and static lexicographic variable ordering heuristic (i.e., always
choose the first unbound variable). We find that the number of fails of glb-adj and
glb-all are the same in all instances. It seems that the extra propagation of glb-all
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only occurs after we add values to the required set of a non-first unbound variable.
This shows that the theoretical possibility of extra propagation of glb-all over glb-adj
does not guarantee a pruning in search space. Indeed, the search states that lead to
extra propagation by glb-all must be reachable during search in order for an actual
pruning in practice.

5.4 Steiner Triple System

Let X ¼ f1; . . . ; vg, where v � 3. A Steiner triple system SðvÞ of order v is a set of
3-subset (unordered triples) of X such that every 2-subset of X occurs in exactly one
triple of SðvÞ. An example of Sð7Þ is ff1; 2; 3g; f1; 4; 5g; f1; 6; 7g; f2; 4; 6g; f2; 5; 7g;
f3; 4; 7g; f3; 5; 6gg. A Steiner triple system of order v exists if and only if v 

1; 3 ðmod 6Þ [33].

Finding Steiner triple systems of order v is a MAP with two aspects: the triples
and the set X. The problem can thus be modeled using an aspect viewpoint VB with
a set of set variables B ¼ fb1; . . . ; bng (where n ¼ vðv�1Þ

6 ) and PSðbiÞ ¼ f1; . . . ; vg. In
VB, the variable symmetries are that any two variables bi and bj can be exchanged.
They can be broken by the constraints minðbiÞ � minðbiþ1Þ and minðbiÞ ¼
minðbiþ1Þ ! minðbi n fminðbiÞgÞ � minðbiþ1 nminðbiþ1ÞgÞ for 1 � i < n (which are
the degenerated lexicographic variable symmetry breaking constraints). The values
in PSðbiÞ ¼ f1; . . . ; vg are indistinguishable values. Such value symmetries can be
broken by using global constraints (glb-adj and glb-all), channeling with the 0/1
viewpoint (set-bool), and channeling with the other aspect viewpoint VX with set
variables x1; . . . ; xv and PSðxjÞ ¼ f1; . . . ; ng (set-set). The symmetry breaking
constraints in VX are minðxjÞ � minðxjþ1Þ and minðxjÞ ¼ minðxjþ1Þ ! minðxj n
fminðxjÞgÞ � minðxjþ1 n fminðxjþ1ÞgÞ for 1 � j < n, which are similar to those in
VB. Since ILOG Solver does not provide a set minus constraint, in the experiments
we emulate the expression y n fminðyÞg using y0, where jy0j ¼ jyj � 1, minðyÞ =2 y0,
and y0 � y.

Experimental results in Table 5 show that setsetþglbadj achieves the best
results. It combines the benefits of set-set and glb-adj and achieves much more
propagation than either of them. For v ¼ 13, it is faster than set-set, the second
most efficient model, by an order of magnitude, while executions of the other
models does not terminate after 24 hours. This phenomenon is different from what
we observe in previous benchmarks, in which models using combined methods have
the same propagation as either methods. This is probably due to the special set
minus constraints used in VX ; they do not occur in previous benchmarks. This shows
that when symmetry breaking constraints in the second viewpoint involves set minus
constraints, the two methods need not be used alone. They can be used
simultaneously to obtain even more speedup.

6 Related Work

Symmetry breaking is an important line of research in the constraint community.
There are several main types of techniques in breaking symmetries in CSPs. In the
first approach, symmetry breaking constraints [43] are added to a CSP so as to
traverse fewer number of symmetrical regions during the search for solutions.
Crawford et al. [18] suggested a general scheme to add symmetry breaking
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predicates to satisfiability problems. Aloul et al. [3] improved this scheme by
constructing more efficient CNF representations of symmetry-breaking predicates.
The scheme by Crawford et al. can be extended to break variable symmetries in
CSPs by using lexicographic ordering constraints [13, 14, 26]. For each variable
symmetry � in a CSP, we add a lexicographic ordering constraint ~xx�lex�ð~xxÞ to the
CSP, where~xx is a sequence of variables in the CSP. Flener et al. [21] identified row
and column symmetries in 2-dimensional matrix models, which are commonly found
in many CSPs. Row and column symmetries are the variable symmetries that every
two rows and every two columns in a matrix of variables can be exchanged. Given
a matrix with n rows and m columns, row and column symmetries collectively
imply n!m! variable symmetries. Flener et al. [21] showed that adding constraints to
lexicographically order both the rows and the columns are always consistent,
although they do not necessarily break all the row and column symmetries. Bessiere
et al. [11] showed the intractability of breaking row and column symmetries
completely. Multiset ordering constraints [25] and allperm constraints [27] are also
available for breaking row and column symmetries in matrix models. Gent [28]
designed special constraints to break symmetries of indistinguishable values under
some integer variables. The constraints assume that all the domain values of the
variables are indistinguishable. It is not clear what consistency is enforced on the
constraints. Our value precedence constraints is applicable to both integer and set
variables, enforcing GAC and SBC respectively. They break symmetries of two
indistinguishable values, and can be posted multiple times to break symmetries of
multiple indistinguishable values.

The second approach is to break symmetries dynamically during search [4, 5, 20,
23, 31]. Search algorithms for solving CSPs are modified such that symmetric
states are pruned from the search tree as it is developed during execution. A re-
presentative of this approach is Symmetry Breaking During Search (SBDS) and
its variants [29, 31]. Upon a backtrack of the search, SBDS [31] adds a symmetry
breaking constraint for each symmetry in a CSP to remove all the states which
are symmetric to the one that causes the current backtrack. Backofen and Will
introduced Symmetry Excluding Search (SES) [4, 5], which is similar to but more
general than SBDS. SES allows a search tree to branch over arbitrary con-
straints instead of simple unary assignment constraints in SBDS. CSP symmetries
form symmetry groups; Gent et al. [29] incorporated GAP [2], a computational
group theory system, to SBDS such that large symmetry groups can be handled
efficiently.

Another representative of the second approach is called Symmetry Breaking via
Dominance Detection (SBDD) and its variants [6, 7, 20, 44, 46]. In SBDD [20],
whenever the search algorithm generates a new search node, we check whether it is
dominated by another node previously visited through some symmetries. If so, the
current search node can be pruned; otherwise it is processed normally. Unlike
SBDS, which uses compound assignments to determine what constraints are to be
added upon backtracking, SBDD uses the sets of variable domains at each search
node to represent a state in the search tree. A problem specific dominance checker
is needed to check whether one state is dominated by another previously visited
state. Barnier and Brisset [6, 7] proposed SBDD+, an improvement of SBDD. The
key idea of the improvement is a deep pruning technique which allows to prune
higher in the search tree whenever possible. Gent et al. [30] again used
computational group theory to extend SBDD. They also proposed a generic
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dominance checker, which avoids the need of implementing a specific checker in
SBDD for each problem by a constraint programmer.

It is possible to combine this dynamic approach those using symmetry breaking
constraints to tackle symmetries. Smith and Gent [48] showed how the use of
symmetry breaking constraints and SBDS can be combined to break row and
column symmetries in matrix models [21]. They also empirically compared several
different approximations to eliminating the symmetries and an exact method that
eliminates the symmetries completely for small matrices. Puget [45] showed how to
combine the use of lexicographic ordering constraints and SBDD for row and
column symmetries. He also presented a method that adds some lexicographic
ordering constraints during the search for solution. These constraints break the
symmetries that leave the current partial assignment unchanged.

The third approach to tackle symmetries in CSPs is to use the symmetries to
guide the search. Meseguer and Torras [39, 40] propose variable ordering heuristics
which select the variable leading to a search subspace with the largest number of
distinct states. They also propose a symmetric domain value pruning procedure
along the search based on nogood recording.

The fourth approach is to construct specialized search trees that does not contain
symmetries [47, 49]. Van Hentenryck et al. [49] studied three classes of CSPs for
which symmetry breaking is tractable. These CSP classes, featuring specific forms of
indistinguishable values,4 allow symmetry breaking to be performed in constant
time and space during search using dedicated search procedures. Roney-Dougal
et al. [47] generalized their idea and introduced GE-tree as a conceptual abstraction
in symmetry breaking. A GE-tree with symmetry group G is a search tree such that
(1) no search node of the tree is isomorphic (symmetrically equivalent) under G to
any other node and (2) given a complete assignment �, there is at least one leaf node
of the tree which lies in the orbit of �. Constructing and traversing a GE-tree breaks
all symmetries in a CSP, although it is difficult in general to do so for arbitrary
symmetries. Roney-Dougal et al. showed the tractability for the case of arbitrary
value symmetries by giving a polynomial time algorithm to construct GE-trees for
the case.

Constructing GE-trees for symmetries of some indistinguishable values fv1; . . . ; vkg
under U can be equivalent to maintaining the value precedence v1 �~uu . . . �~uu vk,
where ~uu is a sequence of the variables in U. Figure 9 shows a GE-tree for the
symmetries of indistinguishable values f1; 2; 3; 4g under U ¼ fx1; x2; x3; x4g, where
DðxiÞ ¼ f1; 2; 3; 4g for 1 � i � 4. In the tree, each level of nodes (except the leaf
level) represents a variable to be labeled. Each edge under a node represents a
domain value that is chosen in the labeling process. Therefore, a node can be thought
of as a compound assignment constructed by traversing from the root of the tree to
that node. The leaf nodes of the GE-tree represent the unique solutions under the
symmetries. This GE-tree tree can be constructed using a simple rule [49]: at each
node whose level corresponds to variable xi, suppose the node represents a compound
assignment �. We construct edges for the domain values of xi that have occurred in �,
collected in a set Vold, and exactly one edge for one new value that is not in Vold, i.e.,

4 Van Hentenryck et al. [49] used the term interchangeable values to denote indistinguishable
values.
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one value in DðxiÞ n Vold. For example, in Fig. 9, consider the node representing the
compound assignment � ¼ fx1 7!1; x2 7!2g, i.e., the rightmost node in level x3. Values
1 and 2 occur in �. Therefore, Vold ¼ f1; 2g and we construct edges labeled 1 and 2.
Furthermore, we construct eactly one edge whose value is in Dðx3Þ n Vold. In this
example, we choose the value 3 among values 3 and 4. Hence, we construct three
edges labeled 1, 2, and 3 for this node.

The solutions in the GE-tree are collected in Fig. 10. It can be seen that the
solutions are exactly the same as those of 1 �~uu 2 �~uu 3 �~uu 4, where~uu ¼ hx1; x2; x3; x4i.

Although GE-trees can be constructed tractably for arbitrary value symmetries,
we break symmetries of indistinguishable values fv0; . . . ; vk�1g using OðkÞ or Oðk2Þ
value precedence constraints, depending on the adjacent-pair or all-pair of postings.
Value precedence constraints can also be used to break such symmetries on set
variables, which is not defined for GE-trees.

7 Concluding Remarks

We conclude the paper by summarizing our contributions and giving discussions and
possible directions for future research.

7.1 Contributions

We have proposed two methods of using symmetry breaking constraints to break
value symmetries in CSPs. The contributions of our work can be summarized as
follows. First, we have introduced the framework of Multi-aspect Assignment
Problems (MAPs), and shown in general how to derive nþ 1 CSP viewpoints for a
MAP with n aspects. The viewpoints are called aspect viewpoints and 0/1 viewpoint.

Fig. 9 A GE-tree for the indistinguishable values f1;:::; 4g under fx1;:::; x4g

Fig. 10 Solutions of 1 �~uu 2 �~uu 3 �~uu 4, where ~uu ¼ hx1; x2; x3; x4i

Constraints (2006) 11: 221–267 263



Matrix models can then be built using these viewpoints. Many combinatorial
problems are instances of MAPs. Hence, our framework allows handy choices of
viewpoints for CSP modelers. Second, we have identified the conditions when value
symmetries in one aspect viewpoint of a MAP correspond to variable symmetries in
another (aspect or 0/1) viewpoint of the same MAP. While value symmetries
breaking constraints can be difficult to formulate and express, our work gives
possibilities of breaking value symmetries as variable symmetries in another
viewpoint with the aid of channeling constraints. Third, we have introduced the
notions of aspect priorities and scanning sequences. Using these notions, we have
established theorems to identify when symmetry breaking constraints in two
viewpoints, connected using channeling constraints, are consistent.

Fourth, we have introduced the notion of value precedence and shown how the
notion can be used to design constraints for breaking a common class of value
symmetries, namely the symmetries of indistinguishable values. Fifth, we have
presented two efficient propagation algorithms for implementing global constraints
on integer and set value precedence, enforcing GAC and SBC respectively. The
global constraints avoid the use of inefficient if-then constraints. Sixth, we have
given theoretical results to characterize several properties of our proposed
algorithms in different usage scenarios.

7.2 Discussion

Breaking value symmetries with symmetry breaking constraints is not an easy task.
We have proposed two methods to tackle this problem. On one hand, the multiple
viewpoints method is purely a modeling technique, involving no invention of
specialized propagation algorithms and no alteration to the underlying CSP solver.
The method can sometimes tackle arbitrary value symmetries. On the other hand,
we design and implement propagation algorithms for developing two global
constraints to maintain value precedence. Experimental results show that the two
proposed methods are always better than using if-then constraints. Using global
constraints is generally more efficient than the multiple viewpoints method, since
propagation algorithms are specially designed and no additional variables and
channeling constraints are required. The performance of the two methods is
reversed only in cases when special modeling tricks can be applied in the additional
viewpoint used by the multiple viewpoints method. This, however, does not imply
that the multiple viewpoints method is inferior. In fact, the strength of the method
lies in exactly the possibility of applying modeling tricks, which is less available to
the method of using global constraints in a single viewpoint. Therefore, both
methods have their own merits and are valuable to value symmetry breaking.
Actually, as we have shown in the Steiner triple system, the two proposed methods
do not compete but are complementary to each other. They can be used together;
the overall benefits are more than those of using either method alone.

7.3 Future Work

Our work proposes a study of using symmetry breaking constraints for value
symmetries in CSPs. There is scope for future work. First, Theorem 7, which states
the conditions when variable breaking constraints in two aspect viewpoints are
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consistent, is applicable to only variable symmetries corresponding to symmetries of
indistinguishable values in one of the aspect viewpoints. Theorem 6, which states the
consistency conditions of variable symmetry breaking constraints between an aspect
viewpoint and the 0/1 viewpoint, is applicable to arbitrary value symmetries. It
would be interesting to generalize Theorem 7 to cover arbitrary value symmetries
also.

Second, we have shown in Theorem 16 that GAC on integer value precedence on
all pairs of indistinguishable values is strictly stronger than GAC on adjacent pairs
of indistinguishable values. However, in our benchmarks using the integer value
precedence constraint, models using adjacent-pair and all-pair postings always
achieve the same number of fails. It is worthwhile to reason about this phenomenon.
Third, the value precedence global constraints can be extended and generalized. For
example, a propagation algorithm for maintaining value precedence of multiple
values may be designed so that symmetries of multiple indistinguishable values can
be broken using only one global constraint. Besides, the antecedent and subsequent
in value precedence can be also integer variables instead of simply integer constants
in our current implementations, so that the generalized constraints have additional
usage besides symmetry breaking. Fourth, our current implementations of the value
precedence global constraints enforce GAC and SBC respectively. It would be
interesting to design propagation algorithms that enforce other local consistencies,
such as bounds consistency for integer value precedence.

Fifth, we have identified and designed constraints to break the symmetries of
indistinguishable values. It is possible to do the same for other classes of value
symmetries, or even arbitrary symmetries. Since using constraints for breaking
symmetries does not involve modifying the underlying CSP solver, such work make
symmetry breaking techniques more accessible to CSP modelers. Sixth, in the
benchmark of Steiner triple systems, we have demonstrated that the model using
both value precedence constraints and the multiple viewpoint approach achieves the
best results. A promising future work is to investigate combining different methods
of breaking symmetries.
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