Symmetry Breaking Constraints for Value Symmetries in Constraint Satisfaction

Y. C. Law • J. H. M. Lee

C Springer Science + Business Media, LLC 2006

Abstract

Constraint satisfaction problems (CSPs) sometimes contain both variable symmetries and value symmetries, causing adverse effects on CSP solvers based on tree search. As a remedy, symmetry breaking constraints are commonly used. While variable symmetry breaking constraints can be expressed easily and propagated efficiently using lexicographic ordering, value symmetry breaking constraints are often difficult to formulate. In this paper, we propose two methods of using symmetry breaking constraints to tackle value symmetries. First, we show theoretically when value symmetries in one CSP correspond to variable symmetries in another CSP of the same problem. We also show when variable symmetry breaking constraints in the two CSPs, combined using channeling constraints, are consistent. Such results allow us to tackle value symmetries efficiently using additional CSP variables and channeling constraints. Second, we introduce value precedence, a notion which can be used to break a common class of value symmetries, namely symmetries of indistinguishable values. While value precedence can be expressed using inefficient if-then constraints in existing CSP solvers, we propose efficient propagation algorithms for implementing global value precedence constraints. We also characterize several theoretical properties of the value precedence constraints. Extensive experiments are conducted to verify the feasibility and efficiency of the two proposals.

Keywords Symmetry breaking • Value symmetries • Constraint satisfaction

1 Introduction

Many real life problems can be modeled as constraint satisfaction problems (CSPs), which is defined by Mackworth [38] as follows:

We are given a set of variables, a domain of possible values for each variable, and a conjunction of constraints. Each constraint is a relation defined over a subset of the variables, limiting the combination of values that the variables in

[^0]this subset can take. The goal is to find a consistent assignment of values from the domains to the variables so that all the constraints are satisfied simultaneously.

A CSP often exhibit some symmetries, which are mappings that preserve satisfiability of the CSP. They are a curse of CSP solving algorithms based on tree search, since symmetrically equivalent states in the search tree can be explored more than once. One main approach of symmetry breaking is to add symmetry breaking constraints [43] to a CSP before search, so that some symmetrical equivalent solutions are removed in the reformulated CSP.

There are two common types of CSP symmetries, namely variable symmetries and value symmetries. Crawford et al. [18] suggested that we can always break variable symmetries using lexicographic ordering constraints. In addition, efficient propagation algorithms $[13,14,21]$ exist for maintaining lexicographic ordering. As a result, variable symmetry breaking constraints can be expressed relatively easily and executed efficiently in existing constraint programming systems. However, there are no general methods to date to formulate symmetry breaking constraints for value symmetries in CSPs. In this paper, we propose two methods to remedy this difficulty.

The first method makes uses of multiple viewpoints and channeling constraints [15] to break value symmetries in matrix models [21], which are CSPs with variables indexed and organized into matrices. Flener et al. [21] suggested that it is possible to transform an $(n-1)$-dimensional matrix with variable and value symmetries into an n-dimensional matrix of $0 / 1$ variables that contains only variable symmetries. Symmetry breaking constraints are then expressed in the n-dimensional matrix to break the symmetries of the problem. We formalize this idea by theoretically showing that value symmetries in a matrix model always correspond to variable symmetries in the $0 / 1$ viewpoint. We also generalize the idea to characterize the conditions when value symmetries in one matrix model correspond to variable symmetries in another non-0/1 matrix model of the same problem. We then give the conditions when variable symmetry breaking constraints in two matrix models of the same problem, when combined using channeling constraints, are consistent. Such results enable us to break value symmetries in one viewpoint using variable symmetry breaking constraints in another.

In the second method, we identify an important class of value symmetries, namely symmetries of indistinguishable values [10, 28], an example of which is the colors in graph coloring problems. We introduce a notion called value precedence and explain how imposing value precedence on a sequence of CSP variables can break symmetries of indistinguishable values in both integer and set domains. Although the value precedence condition on a sequence of variables is easy to express using if-then constraints in many existing constraint programming systems, such a formulation is inefficient both in terms of number of constraints and propagation efficiency. We propose two efficient propagation algorithms for implementing value precedence global constraints on integer and set variable sequences respectively. We also study several theoretical properties of the proposed value precedence constraints.

This paper, a revised and extended version of the work by Law and Lee [36, 37] and Law [35], is organized as follows. Section 2 provides background to the paper.

We formally define the concept of CSPs and two common types of CSP symmetries, namely variable and value symmetries. Section 3 presents how to break value symmetries in matrix models using multiple viewpoints and channeling constraints. Section 4 introduces our other method that breaks symmetries of indistinguishable values using value precedence. Section 5 presents experimental results using the two proposals and Section 6 presents a brief review of the related work in symmetry breaking. Section 7 summarizes our contributions, and gives discussions and possible directions for future research.

2 Background

This section provides background to the paper. We provide the definitions of various CSP related concepts and defines two common types of CSP symmetries, namely variable and value symmetries. We give also common existing methods of breaking such types of symmetries.

2.1 Constraint Satisfaction Problems

A viewpoint is a pair (X, D), where X is a set of variables, and D is a function that maps each $x \in X$ to its associated domain, giving the set of possible values for x. There are two common classes of variables in CSPs. An integer variable [1] x has an integer domain, i.e., $D(x)$ is a finite integer set. A set variable $[1,32] x$ has a set domain; each element in the domain is a finite integer set. In most implementations, the domain of a set variable x is represented by two sets. The possible set $P S(x)$ contains elements that belong to at least one of the possible values of the variable. The required set $R S(x)$ contains elements that belong to all the possible values of the variable. By definition, $R S(x) \subseteq P S(x)$. The domain of x is then represented as $D(x)=\{a \mid R S(x) \subseteq a \subseteq P S(x)\}$. Domain reduction of a set variable x is done by removing values from $P S(x)$ and adding values to $R S(x)$. If a value being removed from $P S(x)$ is in $R S(x)$, a fail is triggered. Adding a value to $R S(x)$ which is not in $P S(x)$ also triggers a fail. When $P S(x)=R S(x)$, the set variable is bound. For ease of description, we abuse terminology by defining the possible set $P S(x)$ of an integer variable x to be $D(x)$.

An assignment $x \mapsto a$ in (X, D) means variable $x \in X$ is mapped to the value $a \in D(x)$. A compound assignment is a set of assignments in which no variables can be assigned more than once. We overload the \mapsto operator such that $\left\langle x_{i_{1}}, \ldots, x_{i_{k}}\right\rangle \mapsto\left\langle a_{1}, \ldots, a_{k}\right\rangle$ means the compound assignment $\left\{x_{i_{j} \mapsto a_{j}} \mid 1 \leq j \leq k\right\}$. A complete assignment is a compound assignment for all variables in a CSP.

A constraint in a viewpoint V places restrictions on a subset of variables in V, limiting the combination of values that these variables can take. A CSP model M (or simply model or $C S P$) of a problem P is a pair (V, C), where $V=(X, D)$ is a viewpoint of P and C is a set of constraints in V for P. Besides using (V, C), we also use the triple (X, D, C) to denote M, i.e., $M=(V, C)=(X, D, C)$. A solution of a CSP M is a complete assignment that satisfies all the constraints in C. The set of all solutions of M is denoted by $\operatorname{sol}(M)$.

In order to reason with integer and set variables uniformly, we introduce the notion of decisions which are analogous to assignments. A decision $x \triangleright b$ in (X, D)
means variable $x \in X$ is mapped to the value $b \in P S(x)$. It has different meanings depending on the class of variable x. If x is an integer variable, $x \triangleright b$ simply means $x \mapsto b$. If x is a set variable, $x \triangleright b$ means b is added to the required set $R S(x)$ of x, i.e., $b \in x$. A compound decision is a set of decisions. Decisions are different from assignments in that multiple decisions are allowed for a set variable, while multiple assignments are not allowed for any variable. For example, if x is an integer variable, then $\theta=\{x \triangleright 1, x \triangleright 2\}$ is not a valid compound decision. However, if x is a set variable, then θ is a valid compound decision, meaning $\{1,2\} \subseteq x$. A compound decision has a scope indicating the set of assigned variables. For example, for integer variable x and set variables y and z, the compound decision $\{x \triangleright 1, y \triangleright 1, y \triangleright 2\}$ with scope $\{x, y, z\}$ means the compound assignment $\{x \mapsto 1, y \mapsto\{1,2\}, z \mapsto \emptyset\}$. With the same scope U, compound assignments and compound decisions have a $1-1$ correspondence. Therefore, we use compound decisions as well as complete assignments to represent solutions of a CSP interchangeably whenever necessary. We overload the \triangleright operator such that $\left\langle x_{i_{1}}, \ldots, x_{i_{k}}\right\rangle \triangleright\left\langle a_{1}, \ldots, a_{k}\right\rangle$ means the compound decision $\left\{x_{i j} \triangleright a_{j} \mid 1 \leq j \leq k\right\}$.

An extension of an assignment $x \mapsto a$ is a compound assignment that includes $x \mapsto a$. A constraint c is generalized arc consistent (GAC) [41] if and only if for each variable x in c and $a \in D(x), x \mapsto a$ can be extended to a solution of c. Generalized arc consistency (GAC) is prohibitive to enforce on constraints involving set variables. Instead, set bounds consistency (SBC) is typically enforced. A constraint c on set variables is set bounds consistent (SBC) [32] if and only if for each set variable x in c, both $x \mapsto P S(x)$ and $x \mapsto R S(x)$ can be extended to solutions of c. That is, for each set variable x in c and $a \in P S(x) \backslash R S(x)$, both $c \wedge a \in x$ and $c \wedge a \notin x$ are satisfiable.

2.2 Symmetries

In this subsection, we define two types of symmetries, namely variable symmetries and value symmetries. We illustrate existing methods for breaking such symmetries using the social golfer problem as a running example.

The social golfer problem (SGP), "prob010" in CSPLib, ${ }^{1}$ is to find a \mathcal{W}-week schedule of \mathcal{G} groups, each containing \mathcal{S} golfers, such that no two golfers can play together more than once. There are totally $\mathcal{N}=\mathcal{G} \times \mathcal{S}$ golfers. We denote each instance of the problem by $(\mathcal{G}, \mathcal{S}, \mathcal{W})$. The SGP is highly symmetric [20]:

1. players can be permuted among the \mathcal{N} ! combinations,
2. weeks of schedule can be exchanged, and
3. groups can be exchanged inside weeks.

One way to model the problem into a CSP uses the viewpoint $V_{G}=\left(G, D_{G}\right)$ which contains an integer variable $g_{i, k}$ for each golfer i in week k with $1 \leq i \leq \mathcal{N}$ and $1 \leq k \leq \mathcal{W}$. The variable domain $D_{G}\left(g_{i, k}\right)=\{1, \ldots, \mathcal{G}\}$ contain the group numbers that golfer i can play in week k. This model M_{G} is a matrix model [21], since G forms a 2-dimensional matrix of variables. Figure 1(a) gives a solution of the $(3,2,3)$ instance.

[^1]| week $^{\text {golfer }}$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 2 | 2 | 3 | 3 |
| 2 | 1 | 2 | 1 | 3 | 2 | 3 |
| 3 | 1 | 2 | 2 | 3 | 3 | 1 |

(a) V_{G}

golfer $^{\text {group }}$	1	2	3
1	$\{1,2,3\}$	\emptyset	\emptyset
2	$\{1\}$	$\{2,3\}$	\emptyset
3	$\{2\}$	$\{1,3\}$	\emptyset
4	\emptyset	$\{1\}$	$\{2,3\}$
5	\emptyset	$\{2\}$	$\{1,3\}$
6	$\{3\}$	\emptyset	$\{1,2\}$
$(\mathrm{c}) V_{W}$			

group $^{\text {week }}$	1	2	3
1	$\{1,2\}$	$\{1,3\}$	$\{1,6\}$
2	$\{3,4\}$	$\{2,5\}$	$\{2,3\}$
3	$\{5,6\}$	$\{4,6\}$	$\{4,5\}$
(b) V_{P}			

week		1	,		2	2			3	
golfer ${ }^{\text {group }}$		12	3	31	12	23	3	1	23	
1		10	0	1	10	0	01	1	00	0
2		10	0	0	1	10	00	01	10	0
3		01	0	1	10	0	0	01	10	0
4		O 1	0	0	0	0 1	1	0	0	1
5		00	1	0	01	10	0	0	01	1
6		00	1	0	00	01	11	10	0	
(d) V_{Z}										

Fig. 1 Four equivalent solutions of $(3,2,3)$ in V_{G}, V_{P}, V_{W}, and V_{Z} respectively

2.2.1 Variable Symmetries

A variable symmetry of a CSP $M=(X, D, C)$ is a solution-preserving bijective mapping from the set of variables X to itself, $\sigma: X \rightarrow X$. Given a bijective mapping $\sigma: X \rightarrow X$, we overload σ to act on a sequence of variables $\vec{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ such that $\sigma(\vec{x})=\left\langle\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right\rangle$, and also on a compound decision θ such that $\sigma(\theta)=$ $\{\sigma(x) \triangleright a \mid(x \triangleright a) \in \theta\}$. A variable symmetry σ requires that

$$
\theta \in \operatorname{sol}(M) \Longleftrightarrow \sigma(\theta) \in \operatorname{sol}(M)
$$

Symmetry (1) of the SGP is an example of variable symmetries in V_{G}. Consider the solution in Fig. 1(a), we can exchange the variables of golfers 1 and 2 to obtain another solution with $\left\langle g_{1,1}, g_{1,2}, g_{1,3}\right\rangle \triangleright\langle 1,2,2\rangle$ and $\left\langle g_{2,1}, g_{2,2}, g_{2,3}\right\rangle \triangleright\langle 1,1,1\rangle$. Hence, we have the bijective mapping σ as the identity mapping except $\sigma\left(\left\langle g_{1, k}, g_{2, k}\right\rangle\right)=$ $\left\langle g_{2, k}, g_{1, k}\right\rangle$ for $1 \leq k \leq 3$.

Symmetry (2) is another example of variable symmetries in V_{G}. In Fig. 1(a), we can exchange the variables of weeks 1 and 2 to obtain another solution with $\left\langle g_{1,1}, \ldots, g_{6,1}\right\rangle \triangleright\langle 1,2,1,3,2,3\rangle$ and $\left\langle g_{1,2}, \ldots, g_{6,2}\right\rangle \triangleright\langle 1,1,2,2,3,3\rangle$. Hence, we have another bijective mapping σ^{\prime} which is the identity mapping except $\sigma^{\prime}\left(\left\langle g_{i, 1}, g_{i, 2}\right\rangle\right)=$ $\left\langle g_{i, 2}, g_{i, 1}\right\rangle$ for $1 \leq i \leq 6$.

Variable symmetries can be broken using lexicographic ordering [26]. A sequence $\vec{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is lexicographically smaller than or equal to another sequence $\vec{y}=\left\langle y_{1}, \ldots, y_{n}\right\rangle$, written as $\vec{x} \leq_{\text {lex }} \vec{y}$ or $\vec{y} \geq_{\text {lex }} \vec{x}$, if and only if

$$
x_{1} \leq y_{1} \text { and }\left(\bigwedge_{1 \leq i^{\prime}<i} x_{i^{\prime}}=y_{i^{\prime}}\right) \rightarrow x_{i} \leq y_{i} \text { for } 1<i \leq n .
$$

The sequence \vec{x} is lexicographically smaller than \vec{y}, written as $\vec{x}<_{\text {lex }} \vec{y}$ or $\vec{y}>_{\text {lex }} \vec{x}$, if and only if $\vec{x} \leq_{l e x} \vec{y}$ and $\vec{x} \neq \vec{y}$.

In general, a variable symmetry σ can be broken by the lexicographic ordering constraint [18]

$$
\vec{x} \leq_{l e x} \sigma(\vec{x}),
$$

where \vec{x} is a sequence of the variables in the CSP. Using a constraint for each variable symmetry σ, all symmetrical solutions in each equivalence class except the lexicographically smallest one, with respect to the sequence \vec{x}, would be removed. Sometimes, these constraints can be simplified [34] to contain fewer variables. An example is the row ordering and column ordering constraints for row and column symmetries [21]. For example, symmetry (1) of the SGP can be broken by the row ordering constraints $\left\langle g_{i, 1}, \ldots, g_{i, \mathcal{W}}\right\rangle \leq_{l e x}\left\langle g_{i+1,1}, \ldots, g_{i+1, \mathcal{W}}\right\rangle$ for $1 \leq i<\mathcal{N}$. Similarly, we can break symmetry (2) in V_{G} by the column ordering constraints $\left\langle g_{1, k}, \ldots, g_{\mathcal{N}, k}\right\rangle \leq_{l e x}\left\langle g_{1, k+1}, \ldots, g_{\mathcal{N}, k+\infty}\right\rangle$ for $1 \leq k<\mathcal{W}$. Bessiere et al. [11] showed the intractability of breaking row and column symmetries completely. These row ordering and column ordering constraints are only a subset of all the variable symmetry breaking constraints. They do not necessarily break all the compositions of the row and column symmetries [21]. There are methods to introduce extra constraints to break more [27] but they are out of the scope of this paper, which focuses on value symmetries.

2.2.2 Value Symmetries

A value symmetry under a subset $U \subseteq X$ of the variables of a CSP $M=(X, D, C)$, where $P S(x)=P S\left(x^{\prime}\right)$ for all $x, x^{\prime} \in U$, is a solution-preserving bijective mapping on the possible set of the variables in $U, \tau: P S(x) \rightarrow P S(x)$ where $x \in U$. Given a bijective mapping $\tau: \mathbb{Z} \rightarrow \mathbb{Z}$, we overload τ to act also on a variable subset and a compound decision θ such that $\tau(U, \theta)=\{x \triangleright \tau(a) \mid(x \triangleright a) \in \theta \wedge x \in U\} \cup\{x \triangleright a \mid(x \triangleright$ $a) \in \theta \wedge x \notin U\}$, which is a compound decision such that for each decision $(x \triangleright a) \in \theta$, $x \triangleright \tau(a)$ is in $\tau(U, \theta)$ if U contains the variable x, and $x \triangleright a$ is in $\tau(U, \theta)$ if U does not contain x. A value symmetry τ under U requires that

$$
\theta \in \operatorname{sol}(M) \Longleftrightarrow \tau(U, \theta) \in \operatorname{sol}(M)
$$

If U is a set of integer variables, τ is called an integer value symmetry. If U is a set of set variables, τ is called a set value symmetry.

Value symmetry is similar to but more general than value interchangeability [24]. Interchangeable values can be exchanged for a single variable without affecting the satisfiability of constraints, while a value symmetry is under a set of variables and can be applied to a solution to form another solution of the same CSP. For example, a value a for a variable x is fully interchangeable [24] with a value b for x if and only if there is an integer value symmetry τ under $\{x\}$ such that τ is the identity mapping except $\tau(a)=b$ and $\tau(b)=a$.

Symmetry (3) in the SGP is an example of integer value symmetries in V_{G}. Consider the solution in Fig. 1(a). We can permute the values assigned to the set of variables $U=\left\{g_{1,1}, \ldots, g_{6,1}\right\} \subseteq G$ from 1 to 2 , from 2 to 3 , and from 3 to 1 to obtain another solution with $\left\langle g_{1,1}, \ldots, g_{6,1}\right\rangle \triangleright\langle 2,2,3,3,1,1\rangle$. Thus, we have a value symmetry τ under U with $\tau(1)=2, \tau(2)=3$, and $\tau(3)=1$.

Value symmetry breaking constraints are difficult to express in general, since we do not know beforehand which variable will be assigned which value. Value symmetries are usually handled by pre-assigning the affected variables as far as possible with some values without loss of generality. However, these pre-assignments, which must be extensible to solutions, cannot break all value symmetries in
general. For example, in the SGP, without loss of generality, we can always have the pre-assignments

$$
\begin{aligned}
& \left\langle g_{1,1}, \ldots, g_{\mathcal{N}, 1}\right\rangle \triangleright\langle\underbrace{1, \ldots, 1}_{\mathcal{S}}, \ldots, \underbrace{\mathcal{G}, \ldots, \mathcal{G}}_{\mathcal{S}}\rangle \text { and } \\
& \quad\left\langle g_{1, k}, \ldots, g_{\mathcal{S}, k}\right\rangle \triangleright\langle 1, \ldots, \mathcal{S}\rangle \quad \text { for } k>1 .
\end{aligned}
$$

The former breaks the value symmetries for week 1 . The latter breaks the value symmetries of values 1 to \mathcal{S} from week 2 and so on, but those of values $\mathcal{S}+1$ to \mathcal{G} remains intact. Therefore, the larger $\mathcal{G}-\mathcal{S}$, the fewer value symmetries can be broken by the pre-assignments.

Symmetries of indistinguishable values [10, 28] is a special class of value symmetries. A set of values $\left\{v_{1}, \ldots, v_{k}\right\}$ is indistinguishable under $U=\left\{x_{1}, \ldots, x_{n}\right\}$ if the values imply k ! value symmetries τ under U, where $\left\langle\tau\left(v_{1}\right), \ldots, \tau\left(v_{k}\right)\right\rangle$ is a permutation of $\left\langle v_{1}, \ldots, v_{k}\right\rangle$. In the SGP, our previous example of value symmetry τ under $U=\left\{g_{1,1}, \ldots, g_{6,1}\right\}$ has the mapping $\tau(1)=2, \tau(2)=3$, and $\tau(3)=1$. Actually, the groups $\{1,2,3\}$ are indistinguishable values under U, implying $3!=6$ value symmetries under U, which are the six permutations of $\langle 1,2,3\rangle$. The value symmetry τ is one of the six permutations.

3 Breaking Value Symmetries with Channeling

In this section, we introduce the method of breaking value symmetries using multiple viewpoints and channeling constraints. Our method is applicable to multiaspect assignment problems (MAPs), which can be naturally formulated into various matrix models [21]. In the following, we first describe MAPs, and a general method to derive $n+1$ viewpoints for modeling a MAP with n aspects as matrix models. We then show theoretically when a value symmetry in a CSP (V, C) corresponds to a variable symmetry in another $\operatorname{CSP}\left(V^{\prime}, C^{\prime}\right)$ modeling the same problem. We also show when variable symmetry breaking constraints in two viewpoints V and V^{\prime}, connected with channeling constraints [15], are consistent. Using these results, we can tackle value symmetries in (V, C) by expressing variable symmetry breaking constraints using another viewpoint V^{\prime} and connecting V and V^{\prime} using channeling constraints.

3.1 Multi-aspect Assignment Problems

In the SGP, there are three aspects, corresponding to the sets of golfers, weeks, and groups respectively. Solving the problem is to find a set of tuples of the form (aGolfer, aWeek, aGroup) that satisfies the problem requirements. The SGP is an instance of multi-aspect assignment problems (MAPs). A MAP consists of n aspects, each of which corresponds to a set of objects of the problem. Without loss of generality, we define the set of objects of the i-th aspect as $\operatorname{Obj}(i)=\left\{1, \ldots, k_{i}\right\}$, where k_{i} is the number of objects in aspect i. For example, we can use $\operatorname{Obj}(1)=\{1, \ldots, \mathcal{N}\}, \operatorname{Obj}(2)=\{1, \ldots, \mathcal{W}\}$, and $\operatorname{Obj}(3)=\{1, \ldots, \mathcal{G}\}$ to denote the set of all golfers, weeks, and groups respectively in the SGP. Solving a MAP is to find a solution set of tuples $S \subseteq \operatorname{Obj}(1) \times \ldots \times \operatorname{Obj}(n)$, i.e., a relation among the n aspects, that satisfies the problem constraints. For example, the tuple $(1,2,3)$ in a solution set of the SGP means that golfer 1 plays in group 3 in week 2 . Note that a
multi-aspect assignment problem is different from a multidimensional assignment problem [42], which is an optimization problem subject to some constraints in particular forms. Many real life problems, such as combinatorial, configuration, scheduling, design, and assignment problems, are MAPs. As we shall see, MAPs can readily be formulated into matrix models [21, 22], which are CSPs in which the variables can be indexed and organized into one or more matrices.

3.2 Viewpoints for Modeling MAPs

A matrix can be multi-dimensional. We also use the array notation in addition to the subscript notation to denote the matrix variables in the following discussions for easier reading. In the following, we describe two types of viewpoints for modeling MAPs, namely the aspect viewpoints and $0 / 1$ viewpoint.

3.2.1 Aspect Viewpoints

Given a MAP with n aspects, we can always choose any $n-1$ aspects as matrix indices to form a matrix of variables and the remaining aspect to form the variable domains. For $1 \leq s \leq n$, let

$$
X_{s}=\left\{x_{s}\left[i_{1}\right] \cdots\left[i_{s-1}\right]\left[i_{s+1}\right] \cdots\left[i_{n}\right] \mid \bigwedge_{1 \leq k \leq n, k \neq s} i_{k} \in \operatorname{Obj}(k)\right\}
$$

be the matrix of variables using all but the s-th aspect as indices. The variable domains correspond to the objects in the s-th aspect, i.e.,

$$
P S\left(x_{s}\left[i_{1}\right] \cdots\left[i_{s-1}\right]\left[i_{s+1}\right] \cdots\left[i_{n}\right]\right)=\operatorname{Obj}(s) .
$$

For easier reading, we use the notation $x\left[i_{1} \cdots i_{n} \backslash i_{s}\right]$ in subsequent discussions to denote the variable $x_{s}\left[i_{1}\right] \cdots\left[i_{s-1}\right]\left[i_{s+1}\right] \cdots\left[i_{n}\right]$. If the MAP allows only exactly one decision for each variable in X_{s}, then X_{s} is a set of integer variables. Otherwise, X_{s} is a set of set variables. Hence, we can derive n different aspect viewpoints $V_{1}=\left(X_{1}, D_{1}\right), \ldots, V_{n}=\left(X_{n}, D_{n}\right)$ for a MAP. The subscript k in $V_{k}=\left(X_{k}, D_{k}\right)$ denotes the aspect corresponding to the domains in V_{k}. The variables between any two aspect viewpoints V_{s} and $V_{t}(s \neq t)$ can be related by the channeling constraints [15]

$$
x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s} \Longleftrightarrow x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] \triangleright i_{t} \text { for } \bigwedge_{1 \leq k \leq n} i_{k} \in \operatorname{Obj}(k) .
$$

They collectively induce a channeling function

$$
f_{s, t}\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right)=x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] \triangleright i_{t}
$$

from decisions in V_{s} to those in V_{t}, for $\bigwedge_{1 \leq k \leq n} i_{k} \in \operatorname{Obj}(k)$. The reverse channeling function $f_{t, s}$ is simply $f_{s, t}^{-1}$. Note that $f_{s, t}^{-1}$ always exists. This can be seen from the channeling constraints that the sets of all possible decisions in V_{s} and V_{t} have a oneone mapping.

In the SGP, $V_{G}=\left(G, D_{G}\right)$ is an aspect viewpoint using the golfers and weeks to form the variables, and sets of groups to form the domain. The other two aspect viewpoints are $V_{P}=\left(P, D_{P}\right)$ and $V_{W}=\left(W, D_{W}\right)$. Viewpoint V_{P} uses the groups and weeks to form the variables, and sets of golfers to form the domain. Viewpoint V_{W}
uses the golfers and groups to form the variables, and sets of weeks to form the domain. Since a group in a particular week can contain multiple golfers, the variables $p_{j, k} \in P$ are set variables with $P S\left(p_{j, k}\right)=\{1, \ldots, \mathcal{N}\}$. Similarly, a golfer can have the same group number for multiple weeks, the variables $w_{i, j} \in W$ are also set variables with $P S\left(w_{i, j}\right)=\{1, \ldots, \mathcal{W}\}$. Figure 1(a)-(c) show the same solution of $(3,2,3)$ expressed in V_{G}, V_{P}, and V_{W} respectively. The channeling constraints between V_{G} and V_{P} are $g_{i, k} \triangleright j \Longleftrightarrow p_{j, k} \triangleright i$, the ones between V_{G} and V_{W} are $g_{i, k} \triangleright j \Longleftrightarrow w_{i, j} \triangleright k$, and the ones between V_{P} and V_{W} are $p_{j, k} \triangleright i \Longleftrightarrow w_{i, j} \triangleright k$, for $1 \leq i \leq \mathcal{N}, 1 \leq j \leq \mathcal{G}$, and $1 \leq k \leq \mathcal{W}$.

3.2.2 0/1 Viewpoint

Besides the aspect viewpoints, we can use all n aspects of a MAP to form an n dimensional matrix of $0 / 1$ variables

$$
Z=\left\{z\left[i_{1}\right] \cdots\left[i_{n}\right] \mid \bigwedge_{1 \leq k \leq n} i_{k} \in \operatorname{Obj}\left(i_{k}\right)\right\} .
$$

Each variable $z\left[i_{1}\right] \cdots\left[i_{n}\right] \in Z$ denotes whether the tuple $\left(i_{1}, \ldots, i_{n}\right)$ is in a solution of the MAP. Hence, $D_{Z}\left(z\left[i_{1}\right] \cdots\left[i_{n}\right]\right)=\{0,1\}$, giving us the $0 / 1$ viewpoint $V_{Z}=\left(Z, D_{Z}\right)$. For $1 \leq s \leq n$, the channeling constraints [15] between aspect viewpoint V_{s} and $0 / 1$ viewpoint V_{Z} are

$$
x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s} \Longleftrightarrow z\left[i_{1}\right] \cdots\left[i_{n}\right] \triangleright 1 \text { for } \bigwedge_{1 \leq k \leq n} i_{k} \in \operatorname{Obj}(k) .
$$

They collectively induce a channeling function

$$
f_{s, Z}\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right)=z\left[i_{1}\right] \cdots\left[i_{n}\right] \triangleright 1
$$

from decisions in V_{s} to only those of the form " $z\left[i_{1}\right] \cdots\left[i_{n}\right] \triangleright 1$ " in V_{Z}, for $\bigwedge_{1 \leq k \leq n} i_{k} \in$ $\operatorname{Obj}(k)$ (since the channeling constraints never generate decisions of the form " $z\left[i_{1}\right] \cdots\left[i_{n}\right] \triangleright 0$ "). Again, $f_{Z, s}$ is $f_{s, Z}^{-1}$, which always exists because $f_{s, Z}$ is a one-one mapping. In the SGP, V_{Z} contains variables $z_{i, k, j}$ for each golfer i, week k, and group j with $D_{Z}\left(z_{i, k, j}\right)=\{0,1\}$. Figure $1(\mathrm{~d})$ shows the same solution as those in Fig. 1(a)-(c), but expressed in V_{Z}. The channeling constraints between V_{Z} and, say, V_{G}, are $g_{i, k} \triangleright j \Longleftrightarrow z_{i, k, j} \triangleright 1$ for $1 \leq i \leq \mathcal{N}, 1 \leq k \leq \mathcal{W}$, and $1 \leq j \leq \mathcal{G}$.

3.3 From Value Symmetries to Variable Symmetries

In the rest of the section, we suppose $M_{s}=\left(V_{s}, C_{s}\right), M_{t}=\left(V_{t}, C_{t}\right)$, and $M_{Z}=$ $\left(V_{Z}, C_{Z}\right)$ are CSP models for the same MAP with n aspects, where $V_{s}=\left(X_{s}, D_{s}\right)$ and $V_{t}=\left(X_{t}, D_{t}\right)$ are aspect viewpoints, and $V_{Z}=\left(Z, D_{Z}\right)$ is the $0 / 1$ viewpoint.

3.3.1 From Aspect Viewpoint to 0/1 Viewpoint

Flener et al. [21] suggested that value symmetries in a matrix model can be broken as variable symmetries in the $0 / 1$ viewpoint. The following theorem formally describes this idea and shows that a value symmetry τ in M_{s} always corresponds to a variable symmetry σ in M_{Z}.

Theorem 1 Given a value symmetry τ under $U_{s} \subseteq X_{s}$, we have

$$
\sigma\left(f_{s, Z}(\theta)\right)=f_{s, Z}\left(\tau\left(U_{s}, \theta\right)\right)
$$

for all $\theta \in \operatorname{sol}\left(M_{s}\right)$, where

$$
\sigma\left(z\left[i_{1}\right] \cdots\left[i_{n}\right]\right)=\left\{\begin{array}{l}
z\left[i_{1}\right] \cdots\left[i_{s-1}\right]\left[\tau\left(i_{s}\right)\right]\left[i_{s+1}\right] \cdots\left[i_{n}\right] \\
\text { if } x_{s}\left[i_{1}\right] \cdots\left[i_{s-1}\right]\left[i_{s+1}\right] \cdots\left[i_{n}\right] \in U_{s} \\
z\left[i_{1}\right] \cdots\left[i_{n}\right] \\
\text { otherwise }
\end{array}\right.
$$

In addition, σ is a variable symmetry in M_{Z} corresponding to τ in M_{s}.
Proof: Let $\theta \in \operatorname{sol}\left(M_{s}\right)$.

$$
\begin{aligned}
\tau\left(U_{s}, \theta\right)= & \left\{x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s} \mid\right. \\
& \left.\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \notin U_{s}\right\} \\
& \cup\left\{x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright \tau\left(i_{s}\right) \mid\right. \\
& \left.\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \in U_{s}\right\} \\
f_{s, Z}\left(\tau\left(U_{s}, \theta\right)\right)= & \left\{z \left(\underline{M_{1}}\left(i_{s}\right)\right.\right. \\
& \left(x\left[i_{1} \cdots i_{n}\right] \triangleright 1 \mid\right. \\
& \left.\left.\cup\left\{z\left[i_{1}\right] \cdots\left[i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge x\left[i_{s}\right)\right]\left[i_{s+1}\right] \cdots\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \notin U_{s}\right\} \\
& \left.\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \in U_{s}\right\} \\
f_{s, Z}(\theta)= & \left\{z\left[i_{1}\right] \cdots\left[i_{n}\right] \triangleright 1 \mid\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta\right\} \\
= & \left\{z\left[i_{1}\right] \cdots\left[i_{n}\right] \triangleright 1 \mid\right. \\
& \left.\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \notin U_{s}\right\} \\
& \cup\left\{z\left[i_{1}\right] \cdots\left[i_{n}\right] \triangleright 1 \mid\right. \\
\sigma\left(f_{s, Z}(\theta)\right)= & \left.\left.\left\{z\left[i_{1}\right] \cdots\left[i_{n}\right] i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \in U_{s}\right\} \\
& \left.\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \notin U_{s}\right\} \\
& \cup\left\{z\left[i_{1}\right] \cdots\left[i_{s-1}\right]\left[\tau\left(i_{s}\right)\right]\left[i_{s+1}\right] \cdots\left[i_{n}\right] \triangleright 1 \mid\right. \\
= & f_{s, Z}\left(x\left[\tau\left(U_{s}, \theta\right)\right)\right.
\end{aligned}
$$

Note that $f_{s, Z}(\theta)$ and $f_{s, Z}\left(\tau\left(U_{s}, \theta\right)\right)$ do not consist of all decisions for solutions of M_{Z}, since $f_{s, Z}$ only generates decisions of the form " $z\left[i_{1}\right] \cdots\left[i_{n}\right] \triangleright 1$." But they can be complemented to include decisions with value 0 for all other variables in Z to make them solutions of M_{Z}. So, σ is a solution preserving bijective mapping. Hence, a variable symmetry in M_{Z} corresponds to the value symmetry τ in M_{s}.

For each solution θ of M_{s}, since τ is a value symmetry under $U_{s}, \tau\left(U_{s}, \theta\right)$ is also a solution of M_{s}. Theorem 1 states that when both θ and $\tau\left(U_{s}, \theta\right)$ are transformed to V_{Z} via the channeling function $f_{s, Z}$, obtaining $f_{s, Z}(\theta)$ and $f_{s, Z}\left(\tau\left(U_{s}, \theta\right)\right.$), we can always find a bijective mapping σ such that $\sigma\left(f_{s, Z}(\theta)\right)=f_{s, Z}\left(\tau\left(U_{s}, \theta\right)\right)$. Since σ transforms solutions to solutions, it is a variable symmetry corresponding to τ.

In the SGP, the value symmetry τ under $U=\left\{g_{1,1}, \ldots, g_{6,1}\right\}$ with $\tau(1)=2$, $\tau(2)=3$, and $\tau(3)=1$ corresponds to the variable symmetry σ in V_{Z} where σ is the identity except $\sigma\left(z_{i, 1,1}\right)=z_{i, 1,2}, \sigma\left(z_{i, 1,2}\right)=z_{i, 1,3}$, and $\sigma\left(z_{i, 1,3}\right)=z_{i, 1,1}$ for $1 \leq i \leq 6$.

3.3.2 From Aspect Viewpoint to Aspect Viewpoint

The previous theorem states that a value symmetry τ in M_{s} always corresponds to a variable symmetry in M_{Z}. However, we find that τ does not always correspond to a variable symmetry in M_{t} of aspect viewpoint V_{t}. The following theorem states the conditions when this correspondence occurs.

Theorem 2 Given a value symmetry τ under $U_{s} \subseteq X_{s}$, if

1. there exists $O b j^{\prime}(k) \subseteq O b j(k)$ for $1 \leq k \leq n$ and $k \neq s$ such that $U_{s}=\left\{x\left[i_{1} \cdots i_{n} \backslash i_{s}\right]\right.$ $\left.\mid \bigwedge_{1 \leq k \leq n, k \neq s} i_{k} \in \operatorname{Obj}^{\prime}(k)\right\}$, and
2. $\quad O b j^{\prime}(t)=O b j(t)$,
then there is a mapping $\sigma: X_{t} \rightarrow X_{t}$ such that $\sigma\left(f_{s, t}(\theta)\right)=f_{s, t}\left(\tau\left(U_{s}, \theta\right)\right)$ for all $\theta \in \operatorname{sol}\left(M_{s}\right)$, where

$$
\sigma\left(x\left[i_{1} \cdots i_{n} \backslash i_{t}\right]\right)= \begin{cases}x\left[i_{1}^{\prime} \cdots i_{n}^{\prime} \backslash i_{t}^{\prime}\right] & \text { if } \bigwedge_{1 \leq k \leq n, k \neq s, k \neq t} i_{k} \in \text { Obj }^{\prime}(k) \\ x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] & \text { otherwise } .\end{cases}
$$

In the mapping, $i_{j}^{\prime}=i_{j}$ for $j \in\{1, \ldots, n\} \backslash\{s, t\}$ and $i_{s}^{\prime}=\tau\left(i_{s}\right)$. In addition, σ is a variable symmetry in M_{t} corresponding to τ in M_{s}.

Proof: Without loss of generality, we assume $s<t$ in the proof. Let $\theta \in \operatorname{sol}\left(M_{s}\right)$ and $B=\bigwedge_{1 \leq k \leq n, k \neq s, k \neq t} i_{k} \in \operatorname{Obj}^{\prime}(k)$. If $U_{s}=\left\{x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \mid \bigwedge_{1 \leq k \leq n, k \neq s} i_{k} \in O b j^{\prime}(k)\right.$ $\subseteq \operatorname{Obj}(k)\}$, then

$$
\begin{aligned}
& \tau\left(U_{s}, \theta\right)=\left\{x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s} \mid\right. \\
&\left.\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge \neg\left(B \wedge i_{t} \in O b j^{\prime}(t)\right)\right\} \\
& \cup\left\{x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright \tau\left(i_{s}\right) \mid\right. \\
& \in\left.\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge B \wedge i_{t} \in O b j^{\prime}(t)\right\} \\
& f_{s, t}\left(\tau\left(M_{s}\right)\right. \\
&\left(\tau\left(U_{s}, \theta\right)\right)= \\
& f_{s, t}\left(\left\{x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s} \mid\right.\right. \\
&\left.\left.\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge \neg\left(B \wedge i_{t} \in O b j^{\prime}(t)\right)\right\}\right) \\
& f_{s, t}\left(\left\{x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright \tau\left(i_{s}\right) \mid\right.\right. \\
&=\left.\left.\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge B \wedge i_{t} \in O b j^{\prime}(t)\right\}\right) \\
&\left(x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] \triangleright i_{t} \mid\right. \\
&\left.\cup\left\{i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge \neg\left(B \wedge i_{1}\right] \cdots\left[i_{s-1}\right]\left[\tau\left(i_{s}\right)\right]\left[i_{s+1}\right] \cdots\left[i_{t-1}\right]\left[i_{t+1}\right] \cdots\left[j_{n}\right] \triangleright i_{t} \mid \\
&\left.\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge B \wedge i_{t} \in O b j^{\prime}(t)\right\} \\
& \in \operatorname{sol}\left(M_{t}\right)
\end{aligned}
$$

If $O b j^{\prime}(t)=O b j(t)$, then $i_{t} \in O b j^{\prime}(t) \Longleftrightarrow i_{t} \in \operatorname{Obj}(t)$, which is always true. Hence,

$$
\begin{aligned}
f_{s, t}\left(\tau\left(U_{s}, \theta\right)\right)= & \left\{x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] \triangleright i_{t} \mid\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge \neg B\right\} \\
& \cup\left\{x_{t}\left[i_{1}\right] \cdots\left[i_{s-1}\right]\left[\tau\left(i_{s}\right)\right]\left[i_{s+1}\right] \cdots\left[i_{t-1}\right]\left[i_{t+1}\right] \cdots\left[t_{n}\right] \triangleright i_{t} \mid\right. \\
& \left.\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge B\right\}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
f_{s, t}(\theta)= & \left\{x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] \triangleright i_{t} \mid\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta\right\} \\
= & \left\{x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] \triangleright i_{t} \mid\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge \neg B\right\} \\
& \cup\left\{x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] \triangleright i_{t} \mid\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge B\right\} \\
\in & \operatorname{sol}\left(M_{s}\right) \\
\sigma\left(f_{s, t}(\theta)\right)= & \sigma\left(\left\{x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] \triangleright i_{t} \mid\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge \neg B\right\}\right) \\
& \cup \sigma\left(\left\{x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] \triangleright i_{t} \mid\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge B\right\}\right) \\
= & \left\{x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] \triangleright i_{t} \mid\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge \neg B\right\} \\
& \cup\left\{\cup x_{t}\left[i_{1}\right] \cdots\left[i_{s-1}\right]\left[\tau\left(i_{s}\right)\right]\left[i_{s+1}\right] \cdots\left[i_{t-1}\right]\left[i_{t+1}\right] \cdots\left[i_{n}\right] \triangleright i_{t} \mid\right. \\
& \left.\quad\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \triangleright i_{s}\right) \in \theta \wedge B\right\} \\
= & f_{s, t}\left(\tau\left(U_{s}, \theta\right)\right)
\end{aligned}
$$

The bijective mapping σ preserves solutions in V_{t}. Hence, it is a variable symmetry in V_{t} and corresponds to the value symmetry τ in V_{s}.

Theorem 2 shows that given a value symmetry τ under U_{s} in V_{s}, we can find a solution-preserving bijective mapping σ for variables in M_{t} (i.e., a variable symmetry in V_{t}) under two sufficient conditions. First, the variable subset U_{s} cannot be arbitrarily chosen. We need to ensure that $\operatorname{Obj}^{\prime}(k) \subseteq \operatorname{Obj}(k)$ for $1 \leq k \leq n$ and $k \neq s$, i.e., the set of variable indices in U_{s} has to be the Cartesian product of a subset $\operatorname{Obj}^{\prime}(k)$ of the objects $\operatorname{Obj}(k)$ in each aspect k except s. Second, $\operatorname{Obj}^{\prime}(t)=\operatorname{Obj}(t)$, i.e., $O b j^{\prime}(t)$ must contain all the objects in aspect t, which corresponds to the domains in V_{t}.

We illustrate the two conditions in Theorem 2 using the $(3,2,3)$ instance of the SGP. Let the golfers, weeks, and groups be the first, second, and third aspect respectively, giving $\operatorname{Obj}(1)=\{1, \ldots, 6\}$ and $\operatorname{Obj}(2)=\operatorname{Obj}(3)=\{1,2,3\}$. In V_{G}, any value symmetry is under all the golfers in one week. For example, the value symmetry $\tau(1)=2, \tau(2)=3$, and $\tau(3)=1$ is under $U=\left\{g_{1,1}, \ldots, g_{6,1}\right\}=\left\{g_{i, k} \mid(i, k) \in\right.$ $\left.O b j^{\prime}(1) \times O b j^{\prime}(2) \wedge O b j^{\prime}(1)=\{1, \ldots, 6\} \wedge O b j^{\prime}(2)=\{1\}\right\}$, i.e., the set of all golfers in week 1. This satisfies condition (1) in Theorem 2. Consider V_{P} as the secondary viewpoint, which uses aspect 1 (golfers) to form the domains. Condition (2) is also satisfied because $\operatorname{Obj}^{\prime}(1)=\operatorname{Obj}(1)=\{1, \ldots, 6\}$, i.e., $O b j^{\prime}(1)$ contains all the golfers. Therefore, τ corresponds to a variable symmetry σ in V_{P}, with $\sigma\left(\left\langle p_{1,1}, p_{2,1}, p_{3,1}\right\rangle\right)=\left\langle p_{2,1}, p_{3,1}, p_{1,1}\right\rangle$. On the other hand, consider V_{W} as the secondary viewpoint, which uses aspect 2 (weeks) to form the domains, $\operatorname{Obj}^{\prime}(2)=\{1\} \neq \operatorname{Obj}(2)=\{1,2,3\}$. Hence, condition (2) is not satisfied. In this case, τ does not correspond to any variable symmetry in V_{W}. Figure 2 shows the solution in V_{W} after applying τ to the solution in Fig. 1(a). No variable symmetries can transform the solution in Fig. 1(c) to the one in Fig. 2.

3.4 Symmetry Breaking Constraints in Two Viewpoints

Recall that variable symmetry breaking constraints are easier to express than value symmetry breaking constraints. By Theorems 1 and 2, value symmetries in a matrix model (V, C) can correspond to variable symmetries in another matrix model $\left(V^{\prime}, C^{\prime}\right)$ of the same MAP. We can thus break the value symmetries in (V, C) by

Fig. 2 Another solution of $(3,2,3)$ expressed in V_{W}

golfer $^{\text {group }}$	1	2	3
1	$\{2,3\}$	$\{1\}$	\emptyset
2	\emptyset	$\{1,2,3\}$	\emptyset
3	$\{2\}$	$\{3\}$	$\{1\}$
4	\emptyset	\emptyset	$\{1,2,3\}$
5	$\{1\}$	$\{2\}$	$\{3\}$
6	$\{1,3\}$	\emptyset	$\{2\}$

combining (V, C) and $\left(V^{\prime}, C^{\prime} \cup C_{s}\right)$ using channeling constraints [15], where C_{s} is the set of variable symmetry breaking constraints in V^{\prime} for breaking the value symmetries in V. Since (V, C) and $\left(V^{\prime}, C^{\prime}\right)$ are models for the same MAP, C^{\prime} is logically redundant with respect to C and the channeling constraints. Hence, we can drop any of the constraints in C^{\prime} when we connect V and V^{\prime}. However, combining mutually redundant models with channeling constraints increases constraint propagation [15]. Therefore, a possible way is to drop only constraints in C^{\prime} which are propagation redundant $[16,17]$ so that there would not be less propagation, but this is outside the scope of the paper. Note that if we drop all the constraints in C^{\prime}, then only (V, C) and $\left(V^{\prime}, C_{s}\right)$ are combined, and V^{\prime} is solely used for expressing the variable symmetry breaking constraints for the value symmetries in V. Variable symmetries in (V, C), if they exist, can be tackled by variable symmetry breaking constraints in V as well. Now that both variable and value symmetries can be tackled by symmetry breaking constraints and channeling constraints, we enjoy the best of both worlds.

An important issue of such symmetry breaking technique is the consistency of the symmetry breaking constraints in the two viewpoints V and V^{\prime}. Two sets of symmetry breaking constraints are consistent [21] if and only if at least one element in each symmetry class of assignments, defined by the compositions of the symmetries under consideration, satisfies both sets of constraints. In row and column symmetries, Flener et al. [21] showed that the row ordering constraints and the column ordering constraints are consistent symmetry breaking constraints. In our multiple viewpoint method, we would also want to show that symmetry breaking constraints in two viewpoints can be made consistent. In the following, we give first an example of inconsistent symmetry breaking constraints in two viewpoints, and then theoretical results on how to avoid such inconsistency problem.

3.4.1 Inconsistent Symmetry Breaking Constraints in Two Viewpoints

The quasigroup existence problem (QEP), "prob003" in CSPLib, is to find an $\mathcal{N} \times$ \mathcal{N} matrix consisting of numbers 1 to \mathcal{N} with no rows and no columns containing the same number more than once. We consider the variant of the problem (QEP^{*}) which further restricts the main ("southeast") diagonal of the matrix to contain the same number. Figure 3(a) shows all the six solutions of order $3 \mathrm{QEP}^{*}$ (i.e., $\mathcal{N}=3$). The QEP^{*} is a MAP with three aspects, namely the rows, columns, and numbers. Aspect viewpoint $V_{N}=\left(N, D_{N}\right)$ uses the rows and columns as indices to form the variables $n_{i, j} \in N$ and the numbers to form the domains $D_{N}\left(n_{i, j}\right)=\{1, \ldots, \mathcal{N}\}$.

(b) V_{R}

Fig. 3 All solutions of order $3 \mathrm{QEP}^{*}$, expressed in V_{N} and V_{R} respectively
In the QEP^{*}, consider the symmetries of (1) the 180° rotation, and (2) the permutation of the numbers in the matrix. Symmetry (1) implies a variable symmetry σ in V_{N}, with $\sigma\left(n_{i, j}\right)=n_{n+1-i, n+1-j}$ for $1 \leq i, j \leq \mathcal{N}$. For order $3 \mathrm{QEP}^{*}$, we have:

$$
\begin{array}{llllllllll}
\hline n_{i, j} & n_{1,1} & n_{1,2} & n_{1,3} & n_{2,1} & n_{2,2} & n_{2,3} & n_{3,1} & n_{3,2} & n_{3,3} \\
\hline \sigma\left(n_{i, j}\right) & n_{3,3} & n_{3,2} & n_{3,1} & n_{2,3} & n_{2,2} & n_{2,1} & n_{1,3} & n_{1,2} & n_{1,1} \\
\hline
\end{array}
$$

Symmetry (2) implies that $\{1, \ldots, \mathcal{N}\}$ are indistinguishable values under N in V_{N}.
Consider a sequence $\vec{h}=\left\langle h_{1}, \ldots, h_{|N|}\right\rangle$ of variables in N. In other words, $h_{i} \in N$ for $1 \leq i \leq|N|=\mathcal{N}^{2}$. Symmetry (1) can be broken by symmetry breaking constraint $\vec{h} \leq_{\text {lex }} \sigma(\vec{h})$. Although we can form \mathcal{N} ! possible variable sequences from N, two common ways of flattening a matrix into sequences are the row-by-row and column-by-column traversals, giving

$$
\begin{aligned}
& \vec{h}_{r}=\left\langle n_{1,1}, n_{1,2}, n_{1,3}, n_{2,1}, n_{2,2}, n_{2,3}, n_{3,1}, n_{3,2}, n_{3,3}\right\rangle \text { and } \\
& \vec{h}_{c}=\left\langle n_{1,1}, n_{2,1}, n_{3,1}, n_{1,2}, n_{2,2}, n_{3,2}, n_{1,3}, n_{2,3}, n_{3,3}\right\rangle
\end{aligned}
$$

respectively for order $3 \mathrm{QEP}^{*}$. The corresponding symmetry breaking constraints for τ are

$$
\left.\left.\begin{array}{l}
\vec{h}_{r} \leq l e x\left\langle n_{3,3}, n_{3,2}, n_{3,1}, \ldots, n_{1,3}, n_{1,2}, n_{1,1}\right\rangle \text { and } \\
\vec{h}_{c} \leq l e x
\end{array} n_{3,3}, n_{2,3}, n_{1,3}, \ldots, n_{3,1}, n_{2,1}, n_{1,1}\right\rangle\right) ~ l
$$

respectively. Note that in order $3 \mathrm{QEP}^{*}, n_{1,1}=n_{3,3}$. Also, $n_{1,2} \neq n_{3,2}$ and $n_{2,1} \neq n_{2,3}$. Therefore, the two constraints can be simplified to $n_{1,2}<n_{3,2}$ and $n_{2,1}<n_{2,3}$ respectively, which accept different solutions. Solutions θ_{2}, θ_{4}, and θ_{6} in Fig. 3(a) satisfy the former constraint, while θ_{1}, θ_{3}, and θ_{5} satisfy the latter.

By Theorem 2, the value symmetries in V_{N} become variable symmetries in $V_{R}=\left(R, D_{R}\right)$, the aspect viewpoint using the numbers and columns to form the variables $r_{k, j} \in R$ and rows to form the domains $D_{R}\left(r_{k, j}\right)=\{1, \ldots, \mathcal{N}\}$. Both the row-by-row and column-by-column traversals of the matrix of variables in R generate, after simplifications [34], the same symmetry breaking constraints $\left\langle r_{k, 1}, \ldots, r_{k, \mathcal{N}}\right\rangle \leq_{l e x}$ $\left\langle r_{k+1,1}, \ldots, r_{k+1, \mathcal{N}}\right\rangle$, or equivalently $r_{k, 1}<r_{k+1,1}$, for $1 \leq k<\mathcal{N}$. Figure 3(b) shows the same six solutions as in Fig. 3(a), but expressed in V_{R}. In the figure, solution θ_{i}^{\prime} corresponds to solution θ_{i} in Fig. 3(a) and the rows of the matrices θ_{i}^{\prime} correspond to the number aspect. Only θ_{1}^{\prime} satisfies $r_{k, 1}<r_{k+1,1}$, but θ_{1} violates the variable
symmetry breaking constraint $n_{1,2}<n_{3,2}$. Therefore there are no solutions satisfying $r_{k, 1}<r_{k+1,1}$ and $n_{1,2}<n_{3,2}$ simultaneously, and hence they are inconsistent symmetry breaking constraints. On the other hand, θ_{1} satisfies both $r_{k, 1}<r_{k+1,1}$ and $n_{2,1}<n_{2,3}$ simultaneously. As we shall see, the latter pair of symmetry breaking constraints are consistent.

3.4.2 Aspect Priorities, Scanning Sequences, and Selections

We first define several notions which are useful to address the consistency issue for variable symmetry breaking constraints in two viewpoints. In a symmetry breaking constraint $\vec{h} \leq_{l e x} \sigma(\vec{h})$ for a variable symmetry σ in an aspect viewpoint V_{s}, \vec{h} is a sequence of variables in X_{s}, i.e., \vec{h} is an arbitrary linearization of the matrix to a single dimensional sequence. Given $\left|X_{s}\right|$ variables, there are $\left|X_{s}\right|$! possible combinations of variable sequences for X_{s}, and different sequences may generate different variable symmetry breaking constraints in V_{s}. The QEP* is an example. In the following, we restrict our attention to only the variable sequences generated by aspect priorities. An aspect priority in an aspect viewpoint V_{s} is a sequence of aspects which is a permutation of $\{1, \ldots, n\} \backslash\{s\}$. It is a permutation of all the aspects corresponding to the variable indices in V_{s}. Similarly, an aspect priority in the $0 / 1$ viewpoint V_{Z} is a sequence of aspects which is a permutation of $\{1, \ldots, n\}$. For example, in the SGP, 〈golfer, week〉 and \langle week, golfer \rangle are aspect priorities in V_{G} and \langle golfer, week, group \rangle is an aspect priority in V_{Z}.

An aspect priority defines a scanning sequence of the variables in a viewpoint. A scanning sequence of an aspect priority $\left\langle k_{1}, \ldots, k_{n-1}\right\rangle$ of V_{s}, denoted by $\operatorname{sseq}\left(\left\langle k_{1}, \ldots, k_{n-1}\right\rangle\right)$, is a sequence $\left\langle h_{1}, \ldots, h_{\left|X_{s}\right|}\right\rangle$ of X_{s} such that $h_{a} \equiv x\left[i_{1} \cdots i_{n} \backslash i_{s}\right]$, where

$$
a=1+\sum_{1 \leq l<n}\left(\left(i_{k_{l}}-1\right) \times \prod_{l<m<n}\left|\operatorname{Obj}\left(k_{m}\right)\right|\right) .
$$

A scanning sequence in a viewpoint is an aspect-by-aspect traversal of the matrix of variables in the viewpoint. There are $n-1$ aspects in an aspect priority in V_{s}, so there are $(n-1)$! possible aspect priorities in V_{s}, and hence the same number of possible scanning sequences for the variables in V_{s}.

For example, there are three aspects in the QEP* (i.e., $n=3$), giving $a=$ $\left(i_{k_{1}}-1\right) \times\left|\operatorname{Obj}\left(k_{2}\right)\right|+i_{k_{2}}$ for aspect viewpoint V_{N}. Let aspects 1,2 , and 3 be the rows, columns, and numbers respectively. In order $3 \mathrm{QEP}^{*},|\operatorname{Obj}(1)|=|\operatorname{Obj}(2)|=$ $|\operatorname{Obj}(3)|=3$. On the one hand, the aspect priority $\langle 1,2\rangle$ (\langle row, column \rangle) thus gives $h_{(i-1) \times 3+j} \equiv n_{i, j}$, giving the scanning sequence

$$
\vec{h}_{r}=\left\langle n_{1,1}, n_{1,2}, n_{1,3}, n_{2,1}, n_{2,2}, n_{2,3}, n_{3,1}, n_{3,2}, n_{3,3}\right\rangle .
$$

On the other hand, the aspect priority $\langle 2,1\rangle(\langle$ column, row $\rangle)$ gives $h_{(j-1) \times 3+i} \equiv n_{i, j}$, giving the scanning sequence

$$
\vec{h}_{c}=\left\langle n_{1,1}, n_{2,1}, n_{3,1}, n_{1,2}, n_{2,2}, n_{3,2}, n_{1,3}, n_{2,3}, n_{3,3}\right\rangle .
$$

Note that the sequences \vec{h}_{r} and \vec{h}_{c} correspond to the row-by-row and column-bycolumn traversals of the matrix in V_{N} respectively.

The previous definition of scanning sequence is applicable to aspect viewpoints. We can define scanning sequences of aspect priorities in the $0 / 1$ viewpoint similarly.

A scanning sequence $\operatorname{sseq}\left(\left\langle k_{1}, \ldots, k_{n}\right\rangle\right)$ of an aspect priority $\left\langle k_{1}, \ldots, k_{n}\right\rangle$ of V_{Z} is a sequence $\left\langle h_{1}, \ldots, h_{|Z|}\right\rangle$ of Z such that $h_{a} \equiv z\left[i_{1}\right] \cdots\left[i_{n}\right]$, where

$$
a=1+\sum_{1 \leq l \leq n}\left(\left(i_{k_{l}}-1\right) \times \prod_{l<m \leq n}\left|O b j\left(k_{m}\right)\right|\right)
$$

There are n ! possible aspect priorities and scanning sequences in V_{Z}.
Selection of a sequence \vec{h} under a variable set U, $\operatorname{select}(\vec{h}, U)$, is a subsequence of \vec{h} retaining only the variables in U. For example, in order $3 \mathrm{QEP}^{*}$, selection of \vec{h}_{r} under $U=\left\{n_{1,1}, n_{2,1}, n_{3,1}\right\}$ is $\operatorname{select}\left(\vec{h}_{r}, U\right)=\left\langle n_{1,1}, n_{2,1}, n_{3,1}\right\rangle$. Similarly, select $\left(\vec{h}_{r},\left\{n_{1,2}, n_{2,2}, n_{3,2}\right\}\right)=\left\langle n_{1,2}, n_{2,2}, n_{3,2}\right\rangle$.

3.4.3 Generating Consistent Symmetry Breaking Constraints

Before giving theorems to specify the conditions when symmetry breaking constraints in two viewpoints are consistent, we give two lemmas to state the ordering relationship between variables in aspect viewpoints and $0 / 1$ viewpoint.

Lemma 3 Given two variables $x\left[i_{1} \cdots i_{n} \backslash i_{s}\right]$ and $x\left[j_{1} \cdots j_{n} \backslash j_{s}\right]$ in V_{s} and channeling function $f_{s, Z}$, we have

$$
x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \leq x\left[j_{1} \cdots j_{n} \backslash j_{s}\right] \Longleftrightarrow \vec{z}_{1} \geq l e x \vec{z}_{2}
$$

where

$$
\begin{aligned}
& \vec{z}_{1}=\left\langle z\left[i_{1}\right] \cdots\left[i_{s-1}\right][1]\left[i_{s+1}\right] \cdots\left[i_{n}\right], \ldots, z\left[i_{1}\right] \cdots\left[i_{s-1}\right][|O b j(s)|]\left[i_{s+1}\right] \cdots\left[i_{n}\right]\right\rangle \text { and } \\
& \vec{z}_{2}=\left\langle z\left[j_{1}\right] \cdots\left[j_{s-1}\right][1]\left[j_{s+1}\right] \cdots\left[j_{n}\right], \ldots, z\left[j_{1}\right] \cdots\left[j_{s-1}\right][|O b j(s)|]\left[j_{s+1}\right] \cdots\left[j_{n}\right]\right\rangle .
\end{aligned}
$$

Proof: By $f_{s, Z}$, a compound decision of \vec{z}_{1} is of the form $\vec{z}_{1} \triangleright\langle 0, \ldots, 0,1,0, \ldots, 0\rangle$ (i.e., only one " 1 " and the rest are all " 0 "), and similarly for \vec{z}_{2}. When $x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \leq x\left[j_{1} \cdots j_{n} \backslash j_{s}\right]$, it means the " 1 " in \vec{z}_{1} would never occur to the right of the " 1 " in \vec{z}_{2}, which means $\vec{z}_{1} \geq_{\text {lex }} \vec{z}_{2}$. The opposite is also true.

The lemma states that two variables $x\left[i_{1} \cdots i_{n} \backslash i_{s}\right]$ and $x\left[j_{1} \cdots j_{n} \backslash j_{s}\right]$ in V_{s} are in non-decreasing order if and only if their corresponding sequences of variables \vec{z}_{1} and \vec{z}_{2} in V_{Z} are in non-increasing lexicographic order, and vice versa. For example, consider a MAP with three aspects and $|\operatorname{Obj}(s)|=3$. When $\left\langle x_{s}[i], x_{s}[j]\right\rangle \triangleright\langle 1,2\rangle$, i.e., $x_{s}[i] \leq x_{s}[j]$, we have $\langle z[i][1], z[i][2], z[i][3]\rangle \triangleright\langle 1,0,0\rangle$ and $\langle z[j][1], z[j][2], z[j][3]\rangle \triangleright\langle 0,1,0\rangle$, i.e., $\langle z[i][1], z[i][2], z[i][3]\rangle \geq{ }_{l e x}\langle z[j][1], z[j][2], z[j][3]\rangle$.

Lemma 3 can be generalized to sequences of variables in V_{s} instead of only single variables.

Lemma 4 Given two sequences \vec{h} and \vec{h}^{\prime} of variables in V_{s} of equal length, and channeling function $f_{s, Z}$, we have

$$
\vec{h} \leq_{l e x} \vec{h}^{\prime} \Longleftrightarrow \vec{z} \geq_{l e x} \vec{z}^{\prime}
$$

where \vec{z} and \vec{z}^{\prime} are respectively formed by replacing each variable $x\left[i_{1} \cdots i_{n} \backslash i_{s}\right]$ in \vec{h} and \vec{h}^{\prime} with

$$
z\left[i_{1}\right] \cdots\left[i_{s-1}\right][1]\left[i_{s+1}\right] \cdots\left[i_{n}\right], \ldots, z\left[i_{1}\right] \cdots\left[i_{s-1}\right][|\operatorname{Obj}(s)|]\left[i_{s+1}\right] \cdots\left[i_{n}\right] .
$$

Proof: Direct consequence of Lemma 3 extended to sequences of variables in V_{s} instead of two variables $x\left[i_{1} \cdots i_{n} \backslash i_{s}\right]$ and $x\left[j_{1} \cdots j_{n} \backslash j_{s}\right]$.

We also recall the proposition by Crawford et al. [18] which states the consistency of variable symmetry breaking constraints in $0 / 1$ viewpoint using lexicographic ordering.

Proposition 5 [18] Let M_{Z} be a CSP model in $0 / 1$ viewpoint $V_{Z}=\left(Z, D_{Z}\right)$ and \vec{h} be a sequence of variables in Z. Then the constraints

$$
\vec{h} \leq_{l e x} \sigma(\vec{h})
$$

for each variable symmetry σ in M_{Z} are satisfied only by the lexicographically smallest solution in each equivalence class of solutions. Hence, the constraints are consistent for M_{Z}.

Using Lemmas 3 and 4 and Proposition 5, we can state sufficient conditions for consistent symmetry breaking constraints in two viewpoints. We start with the issue between an aspect viewpoint V_{s} and the $0 / 1$ viewpoint V_{Z}. The following theorem applies to any value symmetries.

Theorem 6 Let:

- σ be a variable symmetry in V_{s};
- $\quad \sigma^{\prime}$ be a variable symmetry in V_{Z} corresponding to a value symmetry in V_{s};
- $\vec{k}=\left\langle k_{1}, \ldots, k_{n-1}\right\rangle$ be an aspect priority in V_{s}; and
- $\vec{x}_{s}=\operatorname{sseq}(\vec{k})$ and \vec{z} be sequences of variables in X_{s} and Z respectively. If

$$
\vec{z}=\operatorname{sseq}\left(\left\langle k_{1}, \ldots, k_{n-1}, s\right\rangle\right),
$$

then symmetry breaking constraints $\vec{x}_{s} \leq_{\text {lex }} \sigma\left(\vec{x}_{s}\right)$ for σ and $\sigma^{\prime}(\vec{z}) \leq_{\text {lex }} \vec{z}$ for σ^{\prime} are consistent.

Proof: Let $\sigma\left(x\left[i_{1} \cdots i_{n} \backslash i_{s}\right]\right)=x\left[j_{1} \cdots j_{n} \backslash j_{s}\right]$. The variable symmetry σ in V_{s} corresponds to another variable symmetry σ_{z} in V_{Z} where $\sigma_{z}\left(z\left[i_{1}\right] \cdots\left[i_{n}\right]\right)=$ $z\left[j_{1}\right] \cdots\left[j_{s-1}\right]\left[i_{s}\right]\left[j_{s+1}\right] \cdots\left[j_{n}\right]$ for $\bigwedge_{1 \leq k \leq n} i_{k} \in \operatorname{Obj}(k)$. When $\vec{z}=\operatorname{sseq}\left(\left\langle k_{1}, \ldots, k_{n-1}, s\right\rangle\right)$, \vec{z} can be constructed from \vec{x}_{s} by substituting each variable $x\left[i_{1} \cdots i_{n} \backslash i_{s}\right]$ in \vec{x}_{s} with

$$
z\left[i_{1}\right] \cdots\left[i_{s-1}\right][1]\left[i_{s+1}\right] \cdots\left[i_{n}\right], \ldots, z\left[i_{1}\right] \cdots\left[i_{s-1}\right][|\operatorname{Obj}(s)|]\left[i_{s+1}\right] \cdots\left[i_{n}\right] .
$$

By Lemma 4, $\vec{x}_{s} \leq_{\text {lex }} \sigma\left(\vec{x}_{s}\right) \Longleftrightarrow \vec{z} \geq{ }_{l e x} \sigma_{z}(\vec{z})$. By Proposition 5, $\vec{z} \geq$ lex $\sigma_{z}(\vec{z})$ and $\vec{z} \geq$ lex $\sigma^{\prime}(\vec{z})$ are consistent, and hence so do $\vec{x}_{s} \leq l e x ~ \sigma\left(\vec{x}_{s}\right)$ and $\vec{z} \geq{ }_{l e x} \sigma^{\prime}(\vec{z})$.

To maintain consistency between the variable symmetry breaking constraints for σ in V_{s} and σ^{\prime} in V_{Z}, Theorem 6 requires that the scanning sequence $\operatorname{sseq}\left(\left\langle k_{1}, \ldots, k_{n-1}, s\right\rangle\right)$ in V_{Z} is used. That means the aspect priority in V_{Z} is the sequence $\left\langle k_{1}, \ldots, k_{n-1}\right\rangle$ followed by s in the last position. Furthermore, the lexicographic order in V_{Z} is reverse of that in V_{s}. This is because by Lemma 4, a smallerthan order in V_{s} corresponds to a greater-than order in V_{Z}, and vice versa.

In the SGP, Theorem 6 ensures that the variable symmetry breaking constraints $\left\langle z_{1, k, j}, \ldots, z_{\mathcal{N}, k, j}\right\rangle \geq_{l e x}\left\langle z_{1, k, j+1}, \ldots, z_{\mathcal{N}, k, j+1}\right\rangle$ for $1 \leq j<\mathcal{G}$ and $1 \leq k \leq \mathcal{W}$ in V_{Z} break
the value symmetries in V_{G}, and are consistent with those variable symmetry breaking constraints in V_{G}.

The condition when variable symmetries in V_{t}, corresponding to value symmetries in V_{s}, can be broken consistently with the variable symmetries in V_{s} is more difficult to specify. In the $0 / 1$ viewpoint V_{Z}, there is one more aspect in the variable indices than V_{s}. We can simply add an aspect to an aspect priority in V_{s} to form an aspect priority in V_{t}. Aspect viewpoints V_{s} and V_{t}, however, have the same number of aspects as variable indices. We cannot use the same technique to form aspect priorities. Instead, we consider the special class of value symmetries, the symmetries of indistinguishable values, which have a special form of symmetry breaking constraints in V_{t} to allow us to specify the consistency condition.

Theorem 7 Let:

- $\quad \sigma$ be a variable symmetry in V_{s};
- τ be a value symmetry of two indistinguishable values a and b (where $a<b)$ under $U_{s}=\left\{x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \mid \bigwedge_{1 \leq k \leq n, k \neq s} i_{k} \in \operatorname{Obj}^{\prime}(k) \subseteq O b j(k)\right\}$ in V_{s} with $O b j^{\prime}(t)=O b j(t) ;$
- $\vec{k}=\left\langle k_{1}, \ldots, k_{n-2}\right\rangle$ be a permutation of $\{1, \ldots, n\} \backslash\{s, t\} ;$ and
- \vec{q} be any aspect priority in V_{t} formed by inserting sinto \vec{k} (i.e., \vec{q} is a permutation of $\{1, \ldots, n\} \backslash\{t\}$ and \vec{k} is a subsequence of $\vec{q})$. If

$$
\vec{h}=\operatorname{sseq}\left(\left\langle k_{1}, \ldots, k_{n-2}, t\right\rangle\right),
$$

then symmetry breaking constraints $\vec{h} \leq_{l e x} \sigma(\vec{h})$ for σ and $\vec{h}_{a}^{\prime} \leq_{l e x} \vec{h}_{b}^{\prime}$ for σ^{\prime} are consistent, where σ^{\prime} is the variable symmetry in V_{t} corresponding to the value symmetry τ in $V_{s}, \vec{h}_{j}^{\prime}=\operatorname{select}\left(\operatorname{sseq}(\vec{q}), U_{j}^{\prime}\right)$ for $j \in\{a, b\}$, and $U_{j}^{\prime}=$ $\left\{x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] \mid i_{s}=j \wedge \bigwedge_{1 \leq k \leq n, k \neq s, k \neq t} i_{k} \in \operatorname{Obj}^{\prime}(k)\right\}$.

Proof: By Theorem 1, the value symmetry τ in V_{s} corresponds to a variable symmetry $\sigma^{\prime \prime}$ in V_{Z}, where

$$
\sigma^{\prime \prime}\left(z\left[i_{1}\right] \cdots\left[i_{n}\right]\right)=\left\{\begin{array}{l}
z\left[i_{1}\right] \cdots\left[i_{s-1}\right][b]\left[i_{s+1}\right] \cdots\left[i_{n}\right] \text { if } i_{s}=a \wedge \bigwedge_{1 \leq k \leq n, k \neq s} i_{k} \in O b j^{\prime}(k) \\
z\left[i_{1}\right] \cdots\left[i_{s-1}\right][a]\left[i_{s+1}\right] \cdots\left[i_{n}\right] \text { if } i_{s}=b \wedge \bigwedge_{1 \leq k \leq n, k \neq s} i_{k} \in O b j^{\prime}(k) \\
z\left[i_{1}\right] \cdots\left[i_{n}\right] \quad \text { otherwise }
\end{array}\right.
$$

If $\vec{h}=\operatorname{sseq}\left(\left\langle k_{1}, \ldots, k_{n-2}, t\right\rangle\right)$, then by Theorem $6, \vec{h} \leq_{l e x} \sigma(\vec{h})$ is consistent with $\vec{z} \geq{ }_{\text {lex }} \sigma^{\prime \prime}(\vec{z})$, where $\vec{z}=\operatorname{sseq}\left(\left\langle k_{1}, \ldots, k_{n-2}, t, s\right\rangle\right)$. From the definition of $\sigma^{\prime \prime}$, we can see that $\vec{z} \geq{ }_{\text {lex }} \sigma^{\prime \prime}(\vec{z})$ can be simplified to

$$
\begin{equation*}
\operatorname{select}\left(\vec{z}, U_{a}^{\prime \prime}\right) \geq \text { lex } \operatorname{select}\left(\vec{z}, U_{b}^{\prime \prime}\right) \tag{1}
\end{equation*}
$$

where $U_{j}^{\prime \prime}=\left\{z\left[i_{1}\right] \cdots\left[i_{n}\right] \mid i_{s}=j \wedge \bigwedge_{1 \leq k \leq n, k \neq s} i_{k} \in O b j^{\prime}(k)\right\}$ for $j \in\{a, b\}$. Note that the indices i_{s} of all variables in $U_{j}^{\prime \prime}$ are fixed to j (i.e., either a or b). Therefore, for any aspect priority \vec{w} in V_{Z} formed by inserting s into $\left\langle k_{1}, \ldots, k_{n-2}, t\right\rangle$, $\operatorname{select}\left(\operatorname{seg}(\vec{w}), U_{j}^{\prime \prime}\right) \equiv \operatorname{select}\left(\vec{z}, U_{j}^{\prime \prime}\right)$ is always true. Hence, constraint (1) is now equivalent to

$$
\begin{equation*}
\operatorname{select}\left(\operatorname{sseq}(\vec{w}), U_{a}^{\prime \prime}\right) \geq_{l e x} \operatorname{select}\left(\operatorname{sseq}(\vec{w}), U_{b}^{\prime \prime}\right) \tag{2}
\end{equation*}
$$

In particular, consider $\vec{w}=\left\langle q_{1}, \ldots, q_{n-1}, t\right\rangle$. Recall that $\vec{q}=\left\langle q_{1}, \ldots, q_{n-1}\right\rangle$ is an aspect priority in V_{t} formed by inserting s into $\left\langle k_{1}, \ldots, k_{n-2}\right\rangle$. By Lemma 4, constraint (2) is equivalent to

$$
\begin{equation*}
\operatorname{select}\left(\operatorname{sseq}(\vec{q}), U_{a}^{\prime}\right) \leq_{\text {lex }} \operatorname{select}\left(\operatorname{sseq}(\vec{q}), U_{b}^{\prime}\right) \tag{3}
\end{equation*}
$$

where $U_{j_{\vec{\prime}}^{\prime}}^{\prime}=\left\{x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] \mid i_{s}=j \wedge \bigwedge_{1 \leq k \leq n, k \neq s} i_{k} \in O b j^{\prime}(k)\right\}$ for $j \in\{a, b\}$. Constraint $\vec{h} \leq_{\text {lex }} \sigma(\vec{h})$ is consistent with $\vec{z} \geq_{\text {lex }} \sigma^{\prime \prime}(\vec{z})$, which is equivalent to constraint (3), therefore $\vec{h} \leq_{l e x} \sigma(\vec{h})$ is consistent with constraint (3).

Suppose a symmetry of two indistinguishable values in V_{s} corresponds to a variable symmetry in V_{t}, and we lexicographically order the variables in V_{t} corresponding to the indistinguishable values (i.e., $\vec{h}_{a}^{\prime} \leq_{l e x} \vec{h}_{b}^{\prime}$ in the theorem). Theorem 7 states that when generating the variable symmetry breaking constraints in V_{s}, aspect t (corresponding to the domain in V_{t}) must be least prioritized in the aspect priority in V_{s}. In such case, consistency between the symmetry breaking constraints in V_{s} and V_{t} are guaranteed.

Theorem 7 is applicable to symmetries of two indistinguishable values. It can be generalized to handle multiple indistinguishable values.

Corollary 8 Let:

- $\quad \sigma$ be a variable symmetry in V_{s};
- $\left\{v_{1}, \ldots, v_{m}\right\}$ be a set of indistinguishable values (where $v_{1}<\ldots<v_{m}$) under $U_{s}=\left\{x\left[i_{1} \cdots i_{n} \backslash i_{s}\right] \mid \bigwedge_{1 \leq k \leq n, k \neq s} i_{k} \in \operatorname{Obj}^{\prime}(k) \subseteq \operatorname{Obj}(k)\right\}$ in V_{s} with $\operatorname{Obj}^{\prime}(t)=$ $\operatorname{Obj}(t)$;
- $\vec{k}=\left\langle k_{1}, \ldots, k_{n-2}\right\rangle$ be a permutation of $\{1, \ldots, n\} \backslash\{s, t\} ;$ and
- \vec{q} be any aspect priority in V_{t} formed by inserting sinto \vec{k} (i.e., \vec{q} is a permutation of $\{1, \ldots, n\} \backslash\{t\}$ and \vec{k} is a subsequence of $\vec{q})$.

If

$$
\vec{h}=\operatorname{sseq}\left(\left\langle k_{1}, \ldots, k_{n-2}, t\right\rangle\right),
$$

then symmetry breaking constraints $\vec{h} \leq_{\text {lex }} \sigma(\vec{h})$ for σ and $\vec{h}_{1}^{\prime} \leq_{\text {lex }} \ldots \leq_{\text {lex }} \vec{h}_{m}^{\prime}$ for the symmetries of indistinguishable values are consistent, where $\vec{h}_{j}^{\prime}=\operatorname{select}\left(\operatorname{sseq}(\vec{q}), U_{j}^{\prime}\right)$ for $1 \leq j \leq m$ and $U_{j}^{\prime}=\left\{x\left[i_{1} \cdots i_{n} \backslash i_{t}\right] \mid i_{s}=j \wedge \bigwedge_{1 \leq k \leq n, k \neq s, k \neq t} i_{k} \in O j^{\prime}(k)\right\}$.

Proof: Direct consequence of Theorem 7 for all pairs of indistinguishable values.

For the QEP* example in Section 3.4.1, the symmetry breaking constraint, say, $\left\langle r_{1,1}, \ldots, r_{1, \mathcal{N}}\right\rangle \leq_{l e x}\left\langle r_{2,1}, \ldots, r_{2, \mathcal{N}}\right\rangle$, in V_{R} corresponds to the constraint $\vec{h}_{a} \leq_{l e x} \vec{h}_{b}$ in the theorem. There are two possible aspect priorities $\langle 2,3\rangle$ and $\langle 3,2\rangle$ in V_{R}, which means \langle column, number \rangle and \langle number, column \rangle respectively. The variable sequence $\left\langle r_{1,1}, \ldots, r_{1, \mathcal{N}}\right\rangle$ is the selection of the scanning sequence of both aspect priorities with index value 1 in aspect 3 (numbers), i.e., $\left\langle r_{1,1}, \ldots, r_{1, \mathcal{N}}\right\rangle=\operatorname{select}\left(\operatorname{sseq}(\langle 2,3\rangle), U^{\prime}\right)=$ $\operatorname{select}\left(\operatorname{sseq}(\langle 3,2\rangle), U^{\prime}\right)$ where $U^{\prime}=\left\{r_{1,1}, \ldots, r_{1, \mathcal{N}}\right\}$. Similarly for $\left\langle r_{2,1}, \ldots, r_{2, \mathcal{N}}\right\rangle$. Therefore, according to Theorem 7 , the variable symmetry breaking constraints in V_{N} must be generated using the scanning sequence of the aspect priority $\langle 2,1\rangle$, i.e., aspect 1 (rows) must be least prioritized, to maintain consistency between the symmetry breaking constraints in V_{N} and V_{R}. The variable symmetry breaking constraint $n_{2,1}<n_{2,3}$ is generated using the scanning sequence of the aspect priority $\langle 2,1\rangle$. Thus, it is consistent with the symmetry breaking constraints in V_{R}.

Consider again the value symmetries in V_{G} of the SGP. By Theorem 2, they correspond to variable symmetries in V_{P}. Theorem 7 and Corollary 8 ensure that the symmetry breaking constraints $\min \left(p_{j, k}\right)<\min \left(p_{j+1, k}\right)$ for $1 \leq j<\mathcal{G}$ and $1 \leq k \leq \mathcal{W}$ in V_{P} (the degenerated lexicographic ordering constraints for set variables) breaks the value symmetries in V_{G}. These constraints are consistent with the row and column lexicographic ordering constraints in V_{G}, which are the simplification results of those generated by both aspect priorities \langle golfer, week \rangle and \langle week, golfer \rangle in V_{G}. The solution in Fig. 1(a) satisfies both types of symmetry breaking constraints.

4 Value Precedence Constraints

The method discussed in the previous section makes use of existing modeling techniques; no new algorithms have to be designed. In this section, we propose another method which tackles an important and common class of value symmetries, namely symmetries of indistinguishable values. This method requires designing new propagation algorithms. In the following, we introduce the notion of value precedence on integer and set sequences and show how the notion can be used to break symmetries of indistinguishable values. Two propagation algorithms for implementing integer and set value precedence global constraints are presented. We also study some theoretical properties attained by various usages of the global constraints.

4.1 Integer and Set Value Precedence

Value precedence of s over t in an integer sequence $\vec{q}=\left\langle q_{0}, \ldots, q_{n-1}\right\rangle$ means that if there exists j such that $q_{j}=t$, then there must exist $i<j$ such that $q_{i}=s$. We say that value s is an antecedent while value t is a subsequent, and that the antecedent s precedes the subsequent t in \vec{q}, written as $s \prec_{\vec{q}} t$. For example, the sequence $\vec{q}=$ $\langle 0,2,2,1,0,1\rangle$ implies $0 \prec_{\vec{q}} 1,0 \prec_{\vec{q}} 2$, and $2 \prec_{\vec{q}} 1$. Note that if a value j does not appear in \vec{q}, then $i \prec_{\vec{q}} j$ is true for any i. In the previous example, $0 \prec_{\vec{q}} 3$ and $4 \prec_{\vec{q}} 3$ are thus also true. Note also that value precedence is transitive: if $i \prec_{\vec{q}} j$ and $j \prec_{\vec{q}} k$, then $i \prec_{\vec{q}} k$.

The notion of value precedence can be extended to sequences of sets, where antecedents and subsequents are elements of the sets in the sequence. Value precedence of s over t in a sequence \vec{q} of sets means that if there exists j such that $s \notin q_{j}$ and $t \in q_{j}$, then there must exist $i<j$ such that $s \in q_{i}$ and $t \notin q_{i}$. For example, consider the sequence $\vec{q}=\langle\{0,2\},\{0,1\}, \emptyset,\{1\}\rangle$. We have $0 \prec_{\vec{q}} 1$ and $2 \prec_{\vec{q}} 1$. We also have $0 \prec_{\vec{q}} 2$, because there is no set in \vec{q} that contains 2 but not 0 . Again, if j does not belong to any set in \vec{q}, then $i \prec_{\vec{q}} j$ is true for any i. Thus, we also have, say, $0 \prec_{\vec{q}} 4$. Note that set value precedence degenerates to integer value precedence when the cardinality of each set in the sequence is one, because in such case, $t \in q_{j}$ implies $s \notin q_{j}$ and $s \in q_{i}$ implies $t \notin q_{i}$.

4.1.1 Value Precedence and Indistinguishable Values

Value precedence can be used for breaking symmetries of indistinguishable values. Given two indistinguishable values under some variables U in a CSP, we can break
the symmetry of the values by maintaining value precedence for them. We have to construct a sequence \vec{u} of U, and assume one value to be the antecedent and the other to be the subsequent. Without loss of generality, we usually pick the smaller value as antecedent. For example, suppose there are two indistinguishable values $\{0,1\}$ under $\left\{x_{1}, x_{2}, x_{3}\right\}$ in a CSP $M=(X, D, C)$, where $X=\left\{x_{0}, \ldots, x_{4}\right\}$ is a set of set variables. If $\vec{x} \mapsto\langle\{1,2\},\{0,2\},\{0,1\},\{1,2\}, \emptyset\rangle$ is a solution of M, where $\vec{x}=\left\langle x_{0}, \ldots, x_{4}\right\rangle$, then $\vec{x} \mapsto\langle\{1,2\},\{1,2\},\{0,1\},\{0,2\}, \emptyset\rangle$ should be another solution of M. We can let $\vec{u}=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ and add the constraint $0 \prec_{\vec{u}} 1$ on variables x_{1}, x_{2}, and x_{3} to M to break the symmetry. Thus, $\vec{x} \mapsto\langle\{1,2\},\{0,2\},\{0,1\},\{1,2\}, \emptyset\rangle$ remains a solution, but its symmetrical counterpart $\vec{x} \mapsto\langle\{1,2\},\{1,2\},\{0,1\},\{0,2\}, \emptyset\rangle$ would now be rejected because $0 \prec_{\vec{u}} 1$ is false.

In general, there can be more than two indistinguishable values in a CSP. The following theorem states that we can always use the value precedence $v_{0} \prec_{\vec{u}} \ldots \prec_{\vec{u}}$ v_{k-1} to completely break the symmetries of a set of indistinguishable values $V=$ $\left\{v_{0}, \ldots, v_{k-1}\right\}$ under U, where \vec{u} is a sequence of U. For example, if $V=\{0,1,2,3\}$, then we can maintain $0 \prec_{\vec{u}} 1 \prec_{\vec{u}} 2 \prec_{\vec{u}} 3$.

Theorem 9 Given a set of indistinguishable values $\left\{v_{0}, \ldots, v_{k-1}\right\}$ under U, in each equivalence class of solutions induced by the symmetries, there is exactly one solution satisfying the value precedence $v_{0} \prec_{\vec{u}} \ldots \prec_{\vec{u}} v_{k-1}$, where \vec{u} is a sequence of the variables in U.

Proof: Given a solution in an equivalence class, for $0 \leq i<k-1$ and $i<j \leq k-1$, if $v_{i} \prec_{\vec{u}} v_{j}$ is false, we swap the occurrences of v_{i} and v_{j} in the solution to obtain another one with $v_{i} \prec_{\vec{u}} v_{j}$ satisfied. After iterating a value for i, we have maintained the value precedence $v_{0} \prec_{\vec{u}} \ldots \prec_{\vec{u}} v_{i}$. Hence, after all, we construct a solution with $v_{0} \prec_{\vec{u}} \ldots \prec_{\vec{u}} v_{k-1}$, and swapping the occurrences of any two values in $\left\{v_{0}, \ldots, v_{k-1}\right\}$ would violate this value precedence.

When tackling both variable symmetries and symmetries of indistinguishable values simultaneously in a CSP, we have to ensure that the two corresponding sets of symmetry breaking constraints are consistent [21]. For example, we have a CSP $M=((\{x, y\}, D),\{x \neq y\})$, where $D(x)=D(y)=\{1,2\}$. CSP M has (1) the variable symmetry σ such that $\sigma(\langle x, y\rangle)=\langle y, x\rangle$, and (2) values 1 and 2 are indistinguishable. To break symmetry (1), we can use the constraint $x \leq y$ (which is a degenerated lexicographic ordering); whereas $2 \prec_{\langle x, y\rangle} 1$ can break symmetry (2). These two constraints result in no solution, which is undesirable. The following theorem shows when maintaining $s \prec_{\vec{u}} t$ is consistent with variable symmetry breaking constraints.

Theorem 10 Let X be the set of variables of a CSP M, and $\vec{x}=\left\langle x_{0}, \ldots, x_{n-1}\right\rangle$ and \vec{u} be sequences of variables in X and $U \subseteq X$ respectively. Suppose σ is a variable symmetry in M and s and t are any two integer indistinguishable values under U. The value precedence constraint $s \prec_{\vec{u}} t$ (resp. $t \prec_{\vec{u}} s$) is consistent with the variable symmetry breaking constraint $\vec{x} \leq_{\text {lex }} \sigma(\vec{x})\left(\right.$ resp. $\left.\sigma(\vec{x}) \leq_{\text {lex }} d \vec{x}\right)$ if
$-\quad s<t$ (resp. $t<s$) and

- \vec{u} is a subsequence of \vec{x}, i.e., \vec{u} can be formed by deleting some elements from \vec{x}.

Furthermore, if \vec{x} is a sequence of set variables, then the $\leq_{\text {set }}$ ordering should be used to compare two sets p and q instead of the \leq ordering to compare two numbers, where $p \leq_{\text {set }} q$ if and only if (1) $q=\emptyset$, or (2) $\min (p)<\min (q)$, or (3) $\min (p)=\min (q) \wedge p \backslash\{\min (p)\} \leq_{\text {set }} q \backslash\{\min (q)\}$.

Proof: We prove the case of $s \prec_{\vec{u}} t$ and $\vec{x} \leq_{l e x} \sigma(\vec{x})$ only since the case of $t \prec_{\vec{u}} s$ and $\sigma(\vec{x}) \leq_{l e x} \vec{x}$ is analogous. In each equivalence class of solutions induced by the variable symmetry σ, the symmetry breaking constraint $\vec{x} \leq_{l e x} \sigma(\vec{x})$ keeps the lexicographically smaller solution with respect to the sequence \vec{x}. If $s<t, s \prec_{\vec{u}} t$ also keeps the lexicographically smaller solution with respect to the sequence \vec{u} in each equivalence class of solutions induced by the indistinguishable values. If \vec{u} is a subsequence of \vec{x}, then a lexicographic smaller solution with respect to \vec{u} is also a lexicographic smaller one with respect to \vec{x}. Hence, $s \prec_{\vec{u}} t$ is consistent with $\vec{x} \leq_{l e x} \sigma(\vec{x})$ if $s<t$ and \vec{u} is a subsequence of \vec{x}.

The $\leq_{\text {set }}$ ordering should be used to compare two sets p and q, since both orderings $\leq_{\text {set }}$ for sets and \leq for numbers are equivalent to lexicographic ordering $\geq_{\text {lex }}$ on the Boolean (or occurrence) representations of sets and numbers respectively.

According to Theorem 10, $x \leq y$ and $1 \prec_{\langle x, y\rangle} 2$ are consistent, resulting in a single solution $\langle x, y\rangle \mapsto\langle 1,2\rangle$. Similarly, $y \leq x$ and $2 \prec_{\langle x, y\rangle} 1$ are consistent, resulting in a single solution $\langle x, y\rangle \mapsto\langle 2,1\rangle$.

The definition of the $\leq_{\text {set }}$ ordering, similar to but different from that of multiset ordering [25], suggests that \emptyset is the largest element in the ordering, and the ordering degenerates to \leq for numbers when the cardinalities of the two sets are 1. For example, $\{1,2\} \leq_{\text {set }}\{1,3,4\} \leq_{\text {set }}\{1,3\}$.

This $\leq_{\text {set }}$ ordering on two sets has the property that it is equivalent to lexicographic ordering $\geq_{\text {lex }}$ on the Boolean representations of the two sets. Take the ordering $\{1,2\} \leq_{\text {set }}\{1,3,4\} \leq_{\text {set }}\{1,3\}$ as an example. Suppse we are recording the occurrences of values 1 to 4 . The Boolean representations of the sets $\{1,2\}$, $\{1,3,4\}$, and $\{1,3\}$ are $\langle 1,1,0,0\rangle,\langle 1,0,1,1\rangle$, and $\langle 1,0,1,0\rangle$ respectively. We can see that $\langle 1,1,0,0\rangle \geq_{\text {lex }}\langle 1,0,1,1\rangle \geq_{\text {lex }}\langle 1,0,1,0\rangle$. This property is in parallel to the \leq ordering on numbers stated in Lemma 3.

4.1.2 Constraints for Maintaining Value Precedence

Constraints to enforce value precedence $s \prec_{\vec{x}} t$ for a sequence of constrained variables \vec{x} can be constructed straightforwardly from its declarative meaning. In subsequent discussions, we assume that $s \neq t$ and the sequence \vec{x} contains different variables, i.e., the same variable cannot occur more than once in \vec{x}. Suppose \vec{x} is a sequence of integer variables. Since s must precede t, x_{0}, the first variable in \vec{x}, must not be assigned t. The constraints are then

1. $x_{0} \neq t$ and
2. $x_{j}=t \rightarrow \bigvee_{0 \leq i<j} x_{i}=s$ for $1 \leq j<n$.

If \vec{x} is a sequence of set variables, then t must not be in x_{0} without being accompanied by s. Hence, the constraints are

1. $s \in x_{0} \vee t \notin x_{0}$ and
2. $\left(s \notin x_{j} \wedge t \in x_{j}\right) \rightarrow \bigvee_{0 \leq i<j}\left(s \in x_{i} \wedge t \notin x_{i}\right)$ for $1 \leq j<n$.

Note that for both integer and set variables, we need n constraints, which we collectively call if-then value precedence constraints, to maintain value precedence. Among the n constraints, one is a unary constraint, and the remaining $n-1$ are ifthen constraints. The following theorem shows that for integer variables, GAC on the conjunction of the n if-then value precedence constraints is equivalent to GAC on each individual if-then value precedence constraint.

Theorem 11 Given an integer variable sequence $\vec{x}, G A C$ on $s \prec_{\vec{x}} t$ is equivalent to $G A C$ on each individual if-then value precedence constraint for integer variables.

Proof: Let c_{0} and c_{j} be the constraints $x_{0} \neq t$ and $x_{j}=t \rightarrow \bigvee_{0 \leq i<j} x_{i}=s$ for $1 \leq$ $j<n$ respectively. GAC on $s \prec_{\vec{x}} t$ is clearly no weaker than GAC on c_{j} for $0 \leq j<$ n individually. Conversely, suppose each c_{j} for $0 \leq j<n$ is GAC individually but $s \prec_{\vec{x}} t$ is not GAC. That is, there exists an assignment such that any of its extensions fails to satisfy $s \prec_{\vec{x}} t$. We show by induction that if such an assignment exists, then $s, t \notin D\left(x_{j}\right)$ for $0 \leq j<n$.

As the base case, we have $s, t \notin D\left(x_{0}\right)$ because $x_{0} \mapsto s$ alone will satisfy $s \prec_{\vec{x}} t$ and c_{0} is GAC. Given $s, t \notin D\left(x_{i}\right)$ for $0 \leq i<j, x_{j \mapsto s}$ alone will satisfy $s \prec_{\vec{x}}$. Therefore, in order to fail $s \prec_{\vec{x}} t$, we must have $s \notin D\left(x_{j}\right)$. Furthermore, since c_{j} is GAC, $\bigwedge_{1 \leq i<j} s, t \notin D\left(x_{i}\right)$ implies $t \notin D\left(x_{j}\right)$. Hence, by induction, we have $\bigwedge_{0 \leq j<n} s, t \notin D\left(x_{j}\right)$. However, all possible compound assignments $\vec{x} \mapsto\left\langle u_{0}, \ldots, u_{n-1}\right\rangle$ with $u_{i} \in D\left(x_{i}\right) \backslash$ $\{s, t\}$ are solutions of $s \prec_{\vec{x}} t$. Thus, $s \prec_{\vec{x}} t$ is also GAC and therefore GAC on $s \prec_{\vec{x}} t$ is equivalent to GAC on c_{j} for $1 \leq j<n$ individually.

For set variables, SBC on the conjunction of the n if-then value precedence constraints is equivalent to SBC on each individual if-then value precedence constraint.

Theorem 12 Given a set variable sequence $\vec{x}, S B C$ on $s \prec_{\vec{x}}$ t is equivalent to $S B C$ on each individual if-then value precedence constraint for set variables.

Proof: Let c_{0} and c_{j} be the constraints $s \in x_{0} \vee t \notin x_{0}$ and $\left(s \notin x_{j} \wedge t \in x_{j}\right) \rightarrow$ $\bigvee_{0 \leq i<j}\left(s \in x_{i} \wedge t \notin x_{i}\right)$ for $1 \leq j<n$ respectively. SBC on $s \prec_{\vec{x}} t$ is clearly no weaker than SBC on c_{j} for $0 \leq j<n$ individually. Conversely, suppose each c_{j} for $0 \leq j<n$ is SBC but $s \prec_{\vec{x}} t$ is not SBC. That is, there exists either an assignment $x_{i} \mapsto R S\left(x_{i}\right)$ or $x_{i} \mapsto P S\left(x_{i}\right)$ such that any of its extensions fails to satisfy $s \prec_{\vec{x}} t$. We show by induction that if such an assignment exists, then $\left(s \notin R S\left(x_{j}\right) \vee t \in P S\left(x_{j}\right)\right) \wedge\left(s \in R S\left(x_{j}\right) \vee\right.$ $t \notin P S\left(x_{j}\right)$) for $0 \leq j<n$.

As the base case, since $s \in R S\left(x_{0}\right) \wedge t \notin P S\left(x_{0}\right)$ always satisfies $s \prec_{\vec{x}} t$, in order to fail $s \prec_{\vec{x}} t$, we must have $s \notin R S\left(x_{0}\right) \vee t \in P S\left(x_{0}\right)$. Also, since c_{0} is SBC, we have $s \in R S\left(x_{0}\right) \vee t \notin P S\left(x_{0}\right)$.

Given $\left(s \notin R S\left(x_{i}\right) \vee t \in P S\left(x_{i}\right)\right) \wedge\left(s \in R S\left(x_{i}\right) \vee t \notin P S\left(x_{i}\right)\right)$ for $0 \leq i<j, s \in R S\left(x_{j}\right) \wedge$ $t \notin P S\left(x_{j}\right)$ always satisfy $s \prec_{\vec{x}} t$. Therefore, we have $s \notin R S\left(x_{j}\right) \vee t \in P S\left(x_{j}\right)$. Furthermore, since c_{j} is SBC, $\bigwedge_{0 \leq i<j}\left(\left(s \notin R S\left(x_{i}\right) \vee t \in P S\left(x_{i}\right)\right) \wedge\left(s \in R S\left(x_{i}\right) \vee t \notin P S\left(x_{i}\right)\right)\right)$ implies $s \in R S\left(x_{j}\right) \vee t \notin P S\left(x_{j}\right)$. Hence, by induction, we have $\bigwedge_{0 \leq j<n}\left(\left(s \notin R S\left(x_{j}\right) \vee\right.\right.$ $\left.\left.t \in P S\left(x_{j}\right)\right) \wedge\left(s \in R S\left(x_{j}\right) \vee t \notin P S\left(x_{j}\right)\right)\right)$. However, all possible compound assignments $\vec{x} \mapsto\left\langle u_{0}, \ldots, u_{n-1}\right\rangle$ with $\left(s \notin R S\left(x_{j}\right) \vee t \in P S\left(x_{j}\right)\right) \wedge\left(s \in R S\left(x_{j}\right) \vee t \notin P S\left(x_{j}\right)\right)$ for $0 \leq$ $j<n$ are solutions of $s \prec_{\vec{x}} t$. Thus, $s \prec_{\vec{x}} t$ is also SBC and therefore SBC on $s \prec_{\vec{x}} t$ is equivalent to SBC on c_{j} for $1 \leq j<n$ individually.

4.2 Propagation Algorithms for Value Precedence

We develop two propagation algorithms IntValuePrecede and SetValuePrecede to implement two global constraints for integer and set value precedence respectively. Both global constraints use the same prototype ValuePrecede (\vec{x}, s, t), meaning $s \prec_{\vec{x}} t$, where \vec{x} is a variable sequence and s and t are integer constants. GAC (resp. SBC) is enforced on the integer (resp. set) value precedence constraint. The integer and set versions of the propagation algorithms are similar. Their time complexity is linear to the length of \vec{x}. Both of them use three pointers α, β, and γ to point to different indices of \vec{x}, but the pointers have different meanings for the two versions. The two algorithms are also similar to that of the lexicographic ordering global constraint [26] in the sense that both maintain pointers running in opposite directions from the two ends of variable sequences. On the other hand, they are different from those of some other global constraints which are developed using automata constructions [$9,13,14]$. In subsequent discussions, we assume the variable sequence $\vec{x}=$ $\left\langle x_{0}, \ldots, x_{n-1}\right\rangle$ to be a sequence of non-repeating variables and s and t to be distinct.

4.2.1 Integer Version

In IntValuePrecede, pointer α is the smallest index of \vec{x} such that s is in the domain of x_{α}, i.e., $s \in D\left(x_{\alpha}\right)$ and $s \notin D\left(x_{i}\right)$ for $0 \leq i<\alpha$. If no variables in \vec{x} have value s in their domains, then we define $\alpha=n$. Pointer β is the second smallest index of \vec{x} such that s is in the domain of x_{β}, i.e., $s \in D\left(x_{\beta}\right)$ and $s \notin D\left(x_{i}\right)$ for $\alpha<i<\beta$. If fewer than two variables in \vec{x} contain value s in their domains, then we define that $\beta=n$. Pointer γ is the smallest index of \vec{x} such that x_{γ} is bound to t, i.e., $D\left(x_{\gamma}\right)=\{t\}$ and $D\left(x_{i}\right) \neq\{t\}$ for $0 \leq i<\gamma$. If no variables in \vec{x} are bound to t, then we define that $\gamma=n$. During propagation, α and β must be increasingly updated, while γ must be decreasingly updated. For example, let $\vec{x}=\left\langle x_{0}, x_{1}, x_{2}, x_{3}\right\rangle, s=1$, and $t=2$. Suppose $D\left(x_{0}\right)=\{2,3\}, D\left(x_{1}\right)=\{1,2,3\}, D\left(x_{2}\right)=\{2\}$, and $D\left(x_{3}\right)=\{1,3\}$. Then, we have $\alpha=1, \beta=3$, and $\gamma=2$.

Recall the integer if-then value precedence constraints $x_{0} \neq t$ and $x_{j}=t \rightarrow$ $\bigvee_{0 \leq i<j} x_{i}=s$ for $1 \leq j<n$. Pointer α tells that $s \notin D\left(x_{i}\right)$ for $0 \leq i<\alpha$. Thus, we can remove t from $D\left(x_{i}\right)$ for $0 \leq i \leq \alpha$. Our first pruning rule is that:

1. value t can be removed from the domains of the variables on or before position α in \vec{x}.

In the above example, we have $\alpha=1$. Therefore, we can remove value $t=2$ from the domains of x_{0} and x_{1} as shown in Fig. 4(a).

Pointer γ tells the smallest index of \vec{x} such that x_{γ} is bound to t. Therefore, according to the if-then value precedence constraints, the constraint $\bigvee_{0 \leq i<\gamma} x_{i}=s$ must be satisfied. Since $s \notin D\left(x_{i}\right)$ for $0 \leq i<\alpha, \bigvee_{0<i<\gamma} x_{i}=s$ can be refined to $\bigvee_{\alpha \leq i<\gamma} x_{i}=s$. Furthermore, pointer β tells that $s \notin D\left(x_{i}\right)$ for $\alpha<i<\beta$. Therefore, if $\gamma<\beta$, then $\bigvee_{\alpha \leq i<\gamma} x_{i}=s$ becomes $x_{\alpha}=s$. Our second pruning rule is that:
2. if $\gamma<\beta$, then x_{α} can be bound to s.

Note that once x_{α} is bound to $s, s \prec_{\vec{x}} t$ is satisfied. In the above example, we have $\beta>\gamma(3>2)$. Therefore, we can bound $x_{\alpha}\left(x_{1}\right)$ to 1 , as shown in Fig. 4(b), and 1 must precede 2 in \vec{x} afterwards.

\vec{x}	x_{0}	x_{1}	x_{2}	x_{3}
$D\left(x_{i}\right)$	$\{3\}$	$\{1,3\}$	$\{2\}$	$\{1,3\}$
		$\uparrow \alpha$	$\uparrow \gamma$	$\uparrow \beta$

(a)

\vec{x}	x_{0}	x_{1}	x_{2}	x_{3}
$D\left(x_{i}\right)$	$\{3\}$	$\{1\}$	$\{2\}$	$\{1,3\}$
		$\uparrow \alpha$	$\uparrow \gamma$	$\uparrow \beta$

(b)

Fig. 4 Illustrating the use of the pointers α, β, and γ in IntValuePrecede

The propagation algorithm IntValuePrecede, shown in Fig. 5, is based on the two pruning rules just described. The variables alpha, beta, and gamma ensure correct positions for the pointers α, β, and γ respectively. Procedure initialize() is called when a value precedence constraint is posted. It finds initial values for the pointers alpha, beta, and gamma. In the procedure, procedure updateAlpha() is first invoked to search the position for alpha, starting from position 0 . During the search, the first pruning rule is applied. We then search for a value for gamma. Since value t is removed from $D\left(x_{i}\right)$ for $0 \leq i \leq a l p h a$, gamma must be greater than alpha and the position search for gamma starts from position alpha +1 . Note that the second pruning rule cannot be applied at this point because beta is not yet initialized. After fixing gamma, procedure updateBeta() is invoked to initialize beta. By definition, beta $>a l p h a$. Therefore the search starts from position alpha +1 . After fixing beta, the second pruning rule can be applied.

Procedure propagate(i) in Fig. 5 is called whenever the domain of x_{i} is modified. If gamma < beta, then value precedence is already entailed and no more propagation is needed. Otherwise, if $i=\operatorname{alph} a$ and $s \notin D\left(x_{i}\right)$, then we have to update alpha and beta. The search for new position for alpha starts from position beta, because $x_{\text {beta }}$ is the original second earliest variable that contains s in its domain.

```
procedure initialize()
alpha \(:=0\);
updateAlpha();
beta \(:=\) alpha;
gamma \(:=\) alpha;
if alpha \(<n\) then
    repeat gamma \(:=\) gamma +1
    until gamma \(=n \vee D\left(x_{\text {gamme }}\right)=\{t\} ;\)
    updateBeta()
endif
procedure updateAlpha()
while alpha \(<n \wedge s \notin D\left(x_{\text {alpha }}\right)\)
    \(D\left(x_{\text {alpha }}\right):=D\left(x_{a l p h a}\right) \backslash\{t\} ;\)
    alpha \(:=\) alpha +1
endwhile
if alpha \(<n\) then
    \(D\left(x_{a l p h a}\right):=D\left(x_{a l p h a}\right) \backslash\{t\}\)
endif
procedure updateBeta()
repeat beta \(:=\) beta +1
until beta \(=n \vee s \in D\left(x_{\text {beta }}\right)\);
if beta \(>\) gamma then
    \(D\left(x_{\text {alpha }}\right):=D\left(x_{a l p h a}\right) \cap\{s\}\)
endif
```

```
procedure propagate \((i)\)
```

procedure propagate (i)
if beta \leq gamma then
if beta \leq gamma then
if $i=$ alph $a \wedge s \notin D\left(x_{i}\right)$ then
if $i=$ alph $a \wedge s \notin D\left(x_{i}\right)$ then
alpha $:=$ alph $a+1$;
alpha $:=$ alph $a+1$;
while alpha $<$ beta
while alpha $<$ beta
$D\left(x_{\text {alpha }}\right):=D\left(x_{\text {alpha }}\right) \backslash\{t\} ;$
$D\left(x_{\text {alpha }}\right):=D\left(x_{\text {alpha }}\right) \backslash\{t\} ;$
alpha $:=$ alpha +1
alpha $:=$ alpha +1
endwhile
endwhile
update Alpha();
update Alpha();
beta := alpha;
beta := alpha;
if alpha $<n$ then
if alpha $<n$ then
updateBeta()
updateBeta()
endif
endif
else if $i=$ beta $\wedge s \notin D\left(x_{i}\right)$ then
else if $i=$ beta $\wedge s \notin D\left(x_{i}\right)$ then
updateBeta()
updateBeta()
endif
endif
endif
endif
procedure checkGamma(i)
procedure checkGamma(i)
if beta $<$ gamma $\wedge i<$ gamma
if beta $<$ gamma $\wedge i<$ gamma
$\wedge D\left(x_{i}\right)=\{t\}$ then
$\wedge D\left(x_{i}\right)=\{t\}$ then
gamma $:=i$;
gamma $:=i$;
if beta $>i$ then
if beta $>i$ then
$D\left(x_{\text {alpha }}\right):=D\left(x_{a l p h a}\right) \cap\{s\}$
$D\left(x_{\text {alpha }}\right):=D\left(x_{a l p h a}\right) \cap\{s\}$
endif
endif

```
endif
```

```
endif
```

Fig. 5 The IntValuePrecede propagation algorithm

Once s is removed from $D\left(x_{\text {alpha }}\right)$, beta becomes the first potential value for alpha. However, before the search, value t has to be removed from $D\left(x_{i}\right)$ for alpha $<i<$ beta. During the search, the first pruning rule is applied. Pointer beta is updated after finding a new value for alpha. The search for new value for beta starts from position alpha +1 . The procedure updateBeta() is called to update beta. In the procedure, once beta is updated, the second pruning rule is applied to check whether beta $>$ gamma.

In procedure propagate (i), if $i=$ beta and $s \notin D\left(x_{i}\right)$, then only beta has to be updated. Hence, the procedure updateBeta() is called to find a new value for beta and to apply the second pruning rule.

Procedure checkGamma(i) in Fig. 5 serves to update gamma. It is called whenever x_{i} is bound. If $i<g a m m a$ and x_{i} is bound to t, then gamma is updated to i, and the second pruning rule is applied to check whether beta $>$ gamma. The IntValuePrecede algorithm enforces GAC on $s \prec_{\vec{x}} t$.

Theorem 13 Given an integer variable sequence \vec{x} and integers s and t, the IntValuePrecede algorithm triggers failure if $s \prec_{\vec{x}} t$ is unsatisfiable; otherwise, the algorithm prunes values from domains of variables in \vec{x} such that $G A C$ on $s \prec_{\vec{x}} t$ is enforced and solutions of $s \prec_{\vec{x}}$ t are preserved.

Proof: The proof makes use of the definitions of the pointers α, β, and γ. The pruning rules 1 and 2 implemented in IntValuePrecede ensure that all values removed from the variable domains must not lead to solutions of $s \prec_{\vec{x}} t$. Therefore, IntValuePrecede preserves the solutions of $s \prec_{\vec{x}} t$. To show that IntValuePrecede enforces GAC on $s \prec_{\vec{x}} t$, consider the two cases of $\gamma<\beta$ and $\beta<\gamma$. Pruning rule 2 implemented in IntValuePrecede has already ensured the satisfiability of $s \prec_{\vec{x}} t$ for the former case (by enforcing $x_{\alpha}=s$). For the latter case, suppose there is an assignment that cannot be extended to a solution of $s \prec_{\vec{x}} t$ but is not removed by IntValuePrecede. Since any extension with $x_{\alpha} \mapsto s$ must be a solution of $s \prec_{\vec{x}} t$, and $x_{\alpha} \mapsto t$ is removed by pruning rule 1 , the inconsistent assignment that cannot be removed by IntValuePrecede must be $x_{\alpha} \mapsto u$, where $u \in D\left(x_{\alpha}\right) \backslash\{s, t\}$. We show, however, that $x_{\alpha} \mapsto u$ can always be extended to a solution of $s \prec_{\vec{x}} t$. Since $\beta<\gamma$, variables x_{0}, \ldots, x_{β} are not yet bound to t. Also, by the definitions of α and β, $s \notin D\left(x_{i}\right)$ for $0 \leq i<\beta$ and $i \neq \alpha$. Therefore $D\left(x_{i}\right) \backslash\{s, t\}$ must be non-empty for $0 \leq i<\beta$ and $i \neq \alpha$. Hence, we can extend $x_{\alpha} \mapsto u$ by assigning any value other than $\{s, t\}$ to $x_{0}, \ldots, x_{\alpha-1}$ and $x_{\alpha+1}, \ldots, x_{\beta-1}, s$ to x_{β}, and any value to $x_{\beta+1}, \ldots, x_{n-1}$. This extension must be a solution to $s \prec_{\vec{x}} t$. Thus, $x_{\alpha} \mapsto u$ is consistent and IntValuePrecede maintains GAC on $s \prec_{\vec{x}} t$.

4.2.2 Set Version

In SetValuePrecede, the meanings of the pointers α, β, and γ are similar to those in the integer version. Pointer α is the smallest index of \vec{x} such that s is in the possible set of x_{α} and t is not in the required set of x_{α}, i.e., $s \in P S\left(x_{\alpha}\right) \wedge t \notin R S\left(x_{\alpha}\right)$ and $s \notin P S\left(x_{i}\right) \vee t \in R S\left(x_{i}\right)$ for $0 \leq i<\alpha$. If $s \notin P S\left(x_{i}\right) \vee t \in R S\left(x_{i}\right)$ for $0 \leq i<n$, then we define $\alpha=n$. Pointer β is the second smallest index of \vec{x} such that s is in the possible set of x_{β} and t is not in the required set of x_{β}, i.e., $s \in P S\left(x_{\beta}\right) \wedge t \notin R S\left(x_{\beta}\right)$ and $s \notin P S\left(x_{i}\right) \vee t \in R S\left(x_{i}\right)$ for $\alpha<i<\beta$. If $\alpha=n$ or $s \notin P S\left(x_{i}\right) \vee t \in R S\left(x_{i}\right)$ for
$\alpha<i<n$, then we define $\beta=n$. Pointer γ is the smallest index of \vec{x} such that s is not in the possible set of x_{γ} and t is in the required set of x_{γ}, i.e., $s \notin P S\left(x_{\gamma}\right) \wedge t \in$ $R S\left(x_{\gamma}\right)$ and $s \in P S\left(x_{i}\right) \vee t \notin R S\left(x_{i}\right)$ for $0 \leq i<\gamma$. The definition of γ implies $s \notin x_{\gamma} \wedge t \in x_{\gamma}$. If $s \in P S\left(x_{i}\right) \vee t \notin R S\left(x_{i}\right)$ for all $0 \leq i<n$, then we define $\gamma=n$. As in the integer version, α and β must be updated increasingly, while γ must be updated decreasingly. Let $\vec{x}=\left\langle x_{0}, x_{1}, x_{2}, x_{3}\right\rangle, s=1$, and $t=2$. Suppose we have:

\vec{x}	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}
$P S\left(x_{i}\right)$	$\{2\}$	$\{1,2\}$	$\{1,2\}$	$\{2,3\}$	$\{1\}$
$R S\left(x_{i}\right)$	\emptyset	$\{2\}$	\emptyset	$\{2,3\}$	\emptyset

Then, $\alpha=2, \beta=4$, and $\gamma=3$.
Pointer α tells that $s \notin P S\left(x_{i}\right) \vee t \in R S\left(x_{i}\right)$ for $0 \leq i<\alpha$, which entails $s \notin x_{i} \vee$ $t \in x_{i}$. Hence, according to the set if-then value precedence constraints $s \in x_{0} \vee t \notin x_{0}$ and $\left(s \notin x_{j} \wedge t \in x_{j}\right) \rightarrow \bigvee_{0 \leq i<j}\left(s \in x_{i} \wedge t \notin x_{i}\right)$ for $1 \leq j<n$, the constraints $s \in$ $x_{i} \vee t \notin x_{i}$ for $0 \leq i \leq \alpha$ must be satisfied. Since $s \in P S\left(x_{\alpha}\right) \wedge t \notin R S\left(x_{\alpha}\right)$ must be true, $s \in x_{\alpha} \vee t \notin x_{\alpha}$ is already consistent. Consequently, our first pruning rule for SetValuePrecede is to maintain consistency on $s \in x_{i} \vee t \notin x_{i}$ for $0 \leq i<\alpha$.

1. For $0 \leq i<\alpha$, if s is not in $\operatorname{PS}\left(x_{i}\right)$, then t can be removed from $\operatorname{PS}\left(x_{i}\right)$; otherwise, s can be added to $R S\left(x_{i}\right)$.

In the above example, value 1 is not in $P S\left(x_{0}\right)$, so we can remove 2 from $\operatorname{PS}\left(x_{0}\right)$. Value 2 is in $P S\left(x_{1}\right)$; thus 1 is added to $R S\left(x_{1}\right)$. The resulting domains are shown in Fig. 6(a).

Pointer γ tells that $s \notin P S\left(x_{\gamma}\right) \wedge t \in R S\left(x_{\gamma}\right)$, which entails $s \notin x_{\gamma} \wedge t \in x_{\gamma}$. According to the if-then value precedence constraints, $\bigvee_{0 \leq i<\gamma}\left(s \in x_{i} \wedge t \notin x_{i}\right)$ must be satisfied. By the meaning of α, this constraint can be refined to $\bigvee_{\alpha \leq i<\gamma}\left(s \in x_{i} \wedge t \notin x_{i}\right)$. Furthermore, pointer β tells that $s \notin x_{i} \vee t \in x_{i}$ must be satisfied for $\alpha<i<\beta$. Therefore, if $\gamma<\beta$, then $\bigvee_{\alpha \leq i<\gamma}\left(s \in x_{i} \wedge t \notin x_{i}\right)$ becomes $s \in x_{\alpha} \wedge t \notin x_{\alpha}$. Our second pruning rule for SetValuePrecede is that:
2. if $\gamma<\beta$, then scan be added to $R S\left(x_{\alpha}\right)$ and t can be removed from $P S\left(x_{\alpha}\right)$.

The constraint $s \prec_{\vec{x}} t$ is satisfied once x_{α} is proved to contain s but not t. In the above example, $3=\gamma<\beta=4$. Therefore, 1 can be added to $R S\left(x_{\alpha}\right)$ and 2 can be removed from $P S\left(x_{\alpha}\right)$, as shown in Fig. 6(b).

The SetValuePrecede algorithm in Fig. 7, based on two pruning rules, contains five procedures with the same names as and similar structures to IntValuePrecede. Procedure initialize (), called when ValuePrecede (\vec{x}, s, t) is posted, initializes alpha,

\vec{x}	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	\vec{x}	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}
$\overline{P S\left(x_{i}\right)}$,	\{1,2\}	$\{1,2\}$	\{2,3\}	\{1\}	$P S\left(x_{i}\right)$	\emptyset	\{1,2\}	\{1\}	\{2,3\}	\{1\}
$R S\left(x_{i}\right)$	\emptyset	\{1,2\}	a	\{2, 3 \}	\emptyset	$R S\left(x_{i}\right)$	\emptyset	\{1,2\}	\{1\}	$\{2,3\}$	0

Fig. 6 Illustrating the use of the pointers α, β, and γ in SetValuePrecede

```
procedure initialize()
alpha \(:=0\);
updateAlpha();
beta \(:=\) alpha;
gamma := alpha;
if alpha \(<n\) then
    repeat gamma \(:=\) gamma +1
    until gamma \(=n\)
    \(\vee\left(s \notin P S\left(x_{\text {gamma }}\right) \wedge t \in R S\left(x_{\text {gamma }}\right)\right) ;\)
    updateBeta ()
endif
procedure updateAlpha()
while alpha \(<n\)
        \(\wedge\left(s \notin P S\left(x_{\text {alpha }}\right) \vee t \in R S\left(x_{\text {alpha }}\right)\right)\)
    if \(s \notin P S\left(x_{\text {alpha }}\right)\) then
        \(P S\left(x_{\text {alpha }}\right):=P S\left(x_{a l p h a}\right) \backslash\{t\}\)
    else
            \(R S\left(x_{a l p h a}\right):=R S\left(x_{a l p h a}\right) \cup\{s\}\)
    endif
    alpha \(:=\) alpha +1
endwhile
procedure updateBeta()
repeat beta \(:=\) beta +1
until beta \(=n\)
        \(\vee\left(s \in P S\left(x_{\text {beta }}\right) \wedge t \notin R S\left(x_{\text {beta }}\right)\right) ;\)
if beta \(>\) gamma then
    \(P S\left(x_{a l p h a}\right):=P S\left(x_{a l p h a}\right) \backslash\{t\} ;\)
    \(R S\left(x_{a l p h a}\right):=R S\left(x_{a l p h a}\right) \cup\{s\}\)
endif
```

procedure propagate(i)

```
procedure propagate( \(i\) )
if beta \(\leq\) gamma then
if beta \(\leq\) gamma then
    if \(i=\) alpha
    if \(i=\) alpha
        \(\wedge\left(s \notin P S\left(x_{i}\right) \vee t \in R S\left(x_{i}\right)\right)\) then
        \(\wedge\left(s \notin P S\left(x_{i}\right) \vee t \in R S\left(x_{i}\right)\right)\) then
        repeat
        repeat
                if \(s \notin P S\left(x_{\text {alpha }}\right)\) then
                if \(s \notin P S\left(x_{\text {alpha }}\right)\) then
                    \(P S\left(x_{\text {alpha }}\right):=P S\left(x_{\text {alpha }}\right) \backslash\{t\}\)
                    \(P S\left(x_{\text {alpha }}\right):=P S\left(x_{\text {alpha }}\right) \backslash\{t\}\)
            else
            else
                        \(R S\left(x_{a l p h a}\right):=R S\left(x_{a l p h a}\right) \cup\{s\}\)
                        \(R S\left(x_{a l p h a}\right):=R S\left(x_{a l p h a}\right) \cup\{s\}\)
endif
endif
alpha \(:=\) alph \(a+1\)
alpha \(:=\) alph \(a+1\)
        until alpha \(\geq\) beta;
        until alpha \(\geq\) beta;
        updateAlpha();
        updateAlpha();
        beta:=alpa()
        beta:=alpa()
        if alpha<n then
        if alpha<n then
                updateBeta()
                updateBeta()
            endif
            endif
        else if \(i=\) beta
        else if \(i=\) beta
            \(\wedge\left(s \notin P S\left(x_{i}\right) \vee t \in R S\left(x_{i}\right)\right)\) then
            \(\wedge\left(s \notin P S\left(x_{i}\right) \vee t \in R S\left(x_{i}\right)\right)\) then
            updateBeta()
            updateBeta()
    endif
    endif
    checkGamma( \(i\) )
    checkGamma( \(i\) )
endif
endif
procedure checkGamma(i)
if beta \(<\) gamma \(\wedge i<\operatorname{gamm}\)
procedure checkGamma(i)
if beta \(<\) gamma \(\wedge i<\operatorname{gamm}\)
procedure checkGamma(i)
if beta \(<\) gamma \(\wedge i<\) gamma
procedure checkGamma(i)
if beta \(<\) gamma \(\wedge i<\) gamma
        \(\wedge s \notin P S\left(x_{i}\right) \wedge t \in R S\left(x_{i}\right)\) then
        \(\wedge s \notin P S\left(x_{i}\right) \wedge t \in R S\left(x_{i}\right)\) then
    gamma \(:=i\);
    gamma \(:=i\);
    if beta \(>i\) then
    if beta \(>i\) then
        \(P S\left(x_{a l p h a}\right):=P S\left(x_{a l p h a}\right) \backslash\{t\} ;\)
```

 \(P S\left(x_{a l p h a}\right):=P S\left(x_{a l p h a}\right) \backslash\{t\} ;\)
    ```
```

 beta \(:=\) alpha;
    ```
        beta \(:=\) alpha;
        \(R S\left(x_{a l p h a}\right):=R S\left(x_{\text {alpha }}\right) \cup\{s\}\)
        \(R S\left(x_{a l p h a}\right):=R S\left(x_{\text {alpha }}\right) \cup\{s\}\)
    endif
    endif
endif
```

endif

```

Fig. 7 The SetValuePrecede propagation algorithm
beta, and gamma. Procedure propagate \((i)\) is called whenever \(D\left(x_{i}\right)\) is modified, i.e., either \(P S\left(x_{i}\right)\) or \(R S\left(x_{i}\right)\) is modified. If gamma \(<\) beta, value precedence is already entailed and no more propagation is needed. Otherwise, there are two different cases. First, \(i=\) alpha \(\wedge\left(s \notin P S\left(x_{i}\right) \vee t \in R S\left(x_{i}\right)\right)\), alpha and beta have to be updated. Second, \(i=\) beta \(\wedge\left(s \notin P S\left(x_{i}\right) \vee t \in R S\left(x_{i}\right)\right)\), only beta has to be updated. Afterward checkGamma(i) is called to check if gamma needs update. This differs from the integer version, where checkGamma(i) is called only when \(x_{i}\) is bound, since, in the set version, gamma may need update even when \(x_{i}\) is not bound. The SetValuePrecede algorithm enforces SBC on \(s \prec_{\vec{x}} t\).

Theorem 14 Given a set variable sequence \(\vec{x}\) and integers \(s\) and \(t\), the SetValuePrecede algorithm triggers failure if \(s \prec_{\vec{x}} t\) is unsatisfiable; otherwise, the algorithm prunes values from domains of variables in \(\vec{x}\) such that \(S B C\) on \(s \prec_{\vec{x}}\) t is enforced and solutions of \(s \prec_{\vec{x}}\) t are preserved.

Proof: The proof makes use of the definitions of the pointers \(\alpha, \beta\), and \(\gamma\). Pruning rules 1 and 2 implemented in SetValuePrecede ensure that all values removed from the possible sets of variables must not lead to solutions of \(s \prec_{\vec{x}} t\), and all values added to the required sets of variables must occur in every solution of \(s \prec_{\vec{x}} t\). Therefore, SetValuePrecede preserves the solutions of \(s \prec_{\vec{x}} t\). To show that SetValuePrecede enforces SBC on \(s \prec_{\vec{x}} t\), consider the two cases of \(\gamma<\beta\) and
\(\beta<\gamma\). Pruning 2 implemented in SetValuePrecede has already ensured the satisfiability of \(s \prec_{\vec{x}} t\) for the former case (by enforcing \(s \in x_{\alpha} \wedge t \notin x_{\alpha}\) ). For the latter case, suppose there is a variable \(x_{i}\) such that either \(x_{i} \mapsto P S\left(x_{i}\right)\) or \(x_{i} \mapsto R S\left(x_{i}\right)\) cannot be extended to a solution of \(s \prec_{\vec{x}} t\). That is, there is a value \(a\) in \(\operatorname{PS}\left(x_{i}\right) \backslash\) \(R S\left(x_{i}\right)\) such that either \(s \prec_{\vec{x}} t \wedge a \in x_{i}\) or \(s \prec_{\vec{x}} t \wedge a \notin x_{i}\) is unsatisfiable, but \(a\) is neither removed from \(P S\left(x_{i}\right)\) nor added to \(R S\left(x_{i}\right)\) by SetValuePrecede. Since any extension of \(x_{\alpha} \mapsto u_{\alpha}\) with \(s \in u_{\alpha} \wedge t \notin u_{\alpha}\) must be a solution of \(s \prec_{\vec{x}} t\), in order to fail either \(s \prec_{\vec{x}} t \wedge a \in x_{i}\) or \(s \prec_{\vec{x}} t \wedge a \notin x_{i}\), we must have \(s \notin u_{\alpha} \vee t \in u_{\alpha}\). We show, however, that it is always possible to construct solutions of \(s \prec_{\vec{x}} t\) with \(s \notin u_{\alpha} \vee t \in u_{\alpha}\). By the definition of \(\gamma\) and the assumption \(\beta<\gamma, s \in P S\left(x_{i}\right) \vee t \notin R S\left(x_{i}\right)\) for \(0 \leq i<\beta\). Also, by the definitions of \(\alpha\) and \(\beta\), \(s \notin P S\left(x_{i}\right) \vee t \in R S\left(x_{i}\right)\) for \(0 \leq i<\) \(\beta\) and \(i \neq \alpha\). Hence, it is always possible to have valid assignments \(x_{i} \mapsto u_{i}\) with \(s, t \in\) \(u_{i} \vee s, t \notin u_{i}\) for \(0 \leq i<\beta\) and \(i \neq \alpha\). The assignment \(x_{\beta} \mapsto u_{\beta}\) with \(s \in u_{\beta} \wedge t \notin x_{\beta}\) is also valid since \(s \in P S\left(x_{\beta}\right) \wedge t \notin R S\left(x_{\beta}\right)\). Now that we have the compound assignment \(\left\langle x_{0}, \ldots, x_{\beta}\right\rangle \mapsto\left\langle u_{0}, \ldots, u_{\beta}\right\rangle\), where \(s, t \in u_{i} \vee s, t \notin u_{i}\) for \(0 \leq i<\beta\) and \(i \neq \alpha, s \notin u_{\alpha} \vee t \in u_{\alpha}\), and \(s \in u_{\beta} \wedge t \notin x_{\beta}\). However, note that any extensions of this compound assignment are solutions of \(s \prec_{\vec{x}}\). Therefore, it is impossible to fail either \(s \prec_{\vec{x}} t \wedge a \in x_{i}\) or \(s \prec_{\vec{x}} t \wedge a \notin x_{i}\) for any \(x_{i}\) and \(a \in P S\left(x_{i}\right) \backslash R S\left(x_{i}\right)\). Thus, SetValuePrecede enforces SBC on \(s \prec_{\vec{x}} t\).

\subsection*{4.3 Multiple Indistinguishable Values}

In many circumstances, there are more than two indistinguishable values in the same problem, but our global constraints can deal with only two such values at a time. To break symmetries on a set of variables \(U\) induced by a set of indistinguishable values \(V=\left\{v_{0}, \ldots, v_{k-1}\right\}\) for \(k>2\), we can impose the ValuePrecede() constraints using all pairs of values in \(V: v_{i} \prec_{\vec{u}} v_{j}\) for \(0 \leq i<j \leq k-1\), where \(\vec{u}\) is a sequence of \(U\). By transitivity of value precedence, however, an alternative is to impose constraints using only adjacent pairs of values in \(V: v_{i} \prec_{\vec{u}} v_{i+1}\) for \(0 \leq i \leq k-2\). Although achieving the same value precedence effect, the former approach can theoretically achieve more propagation than the latter for both integer and set value precedence. Following Debruyne and Bessiere, we define that enforcing a local consistency \(L C\) on some constraints \(C_{1}\) is strictly stronger [19] than enforcing \(L C\) on some constraints \(C_{2}\) if and only if (1) any domain reduction performed by the latter can also be done by the former, and (2) there exists an assignment that can be pruned by the former but not the latter.

Theorem 15 Given an integer variable sequence \(\vec{u}\) and a set of integer indistinguishable values \(V=\left\{v_{0}, \ldots, v_{k-1}\right\}\) under \(U\), enforcing \(G A C\) on each of \(v_{i} \prec_{\vec{u}} v_{j}\) for \(0 \leq i<j \leq k-1\) is strictly stronger than enforcing GAC on each of \(v_{i} \prec_{\vec{u}} v_{i+1}\) for \(0 \leq i \leq k-2\).

Proof: The former is clearly as strong as the latter. To show strictness, suppose \(\vec{x}=\left\langle x_{0}, \ldots, x_{4}\right\rangle\) is a sequence of integer variables \(X\) and \(V=\{0,1,2,3\}\) be a set of indistinguishable values under \(X\). Consider \(D\left(x_{0}\right)=\{0\}, D\left(x_{1}\right)=\{0,1\}\), \(D\left(x_{2}\right)=D\left(x_{3}\right)=\{0,2\}\), and \(D\left(x_{4}\right)=\{3\}\). Each of the constraints \(0 \prec_{\vec{x}} 1,1 \prec_{\vec{x}} 2\), and \(2 \prec_{\vec{x}} 3\) is GAC. However, the constraint \(1 \prec_{\vec{x}} 3\) is not GAC, since the assignment \(x_{1} \mapsto 0\) cannot be extended to a solution of \(1 \prec_{\vec{x}} 3\).

Theorem 16 Given a set variable sequence \(\vec{u}\) and a set of integer indistinguishable values \(V=\left\{v_{0}, \ldots, v_{k-1}\right\}\) under \(U\), enforcing \(S B C\) on each of \(v_{i} \prec_{\vec{u}} v_{j}\) for \(0 \leq i<\) \(j \leq k-1\) is strictly stronger than enforcing SBC on each of \(v_{i} \prec_{\vec{u}} v_{i+1}\) for \(0 \leq i \leq k-2\).

Proof: The former is clearly as strong as the latter. To show strictness, consider the set variable sequence \(\vec{y}=\left\langle y_{0}, \ldots, y_{3}\right\rangle\) with \(\operatorname{PS}\left(y_{0}\right)=\{0\}, \operatorname{PS}\left(y_{1}\right)=\{1\}\), \(P S\left(y_{2}\right)=P S\left(y_{3}\right)=\{1,2\}, R S\left(y_{0}\right)=R S\left(y_{1}\right)=R S\left(y_{2}\right)=\emptyset\), and \(R S\left(y_{3}\right)=\{2\}\). Suppose \(V=\{0,1,2\}\) is a set of indistinguishable values under \(\left\{y_{0}, \ldots, y_{3}\right\}\). Each of the constraints \(0 \prec_{\vec{y}} 1\) and \(\left.1 \prec_{\vec{y}} 2\right\}\) is SBC. However, the constraint \(0 \prec_{\vec{y}} 2\) is not SBC, since \(y_{0} \mapsto R S\left(y_{0}\right)\), i.e., \(y_{0} \mapsto \emptyset\), cannot be extended to a solution of \(0 \prec_{\vec{y}} 2\).

As we shall see in the experimental results, such difference in propagation level, although theoretically possible, might not show up in practice. Furthermore, it is still an open question whether enforcing GAC on each of \(v_{i} \prec_{\vec{u}} v_{j}\) for \(1 \leq i<j \leq k\) achieves GAC on the multiple value precedence \(v_{1} \prec_{\vec{u}} \ldots \prec_{\vec{u}} v_{k}\) as a whole.

\section*{5 Experiments}

To demonstrate the feasibility and efficiency of the two proposals, we perform experiments on various problems including graph coloring, the concert hall scheduling problem, the SGP, and the Steiner triple system. All experiments are all-solution search using the smallest-domain-first variable ordering heuristic, and are run using ILOG Solver 4.4 [1] on a Sun Blade 1000 workstation with 2GB memory. For models using the multiple viewpoints method, unless otherwise specified, the extra viewpoint is solely used to express variable symmetry breaking constraints that breaks the value symmetries in the primary viewpoint. Only variables in the primary viewpoint are used as branching variables. We report and compare the number of fails and CPU time for each instance of each model. In the tables, the best number of fails and CPU time among the models for each instance are highlighted in bold. A cell labeled with "-" means execution does not terminate in 2 hours of CPU time.

\subsection*{5.1 Graph Coloring}

Given a graph and \(k\) colors, graph coloring is to color the vertices of the graph with \(k\) colors such that the two vertices connected by each edge have different colors. A CSP model of the problem is to use a variable \(x_{i}\) for each vertex with domain \(D_{X}\left(x_{i}\right)=\{1, \ldots, k\}\) representing the colors. Using this aspect viewpoint \(V_{X}\), the colors \(1, \ldots, k\) are indistinguishable values. We build seven different models for this problem to illustrate the effects of the proposals. The no-break model does not break the symmetries of indistinguishable values, and the remaining models break the symmetries in various ways. The if-then model uses if-then value precedence constraints on adjacent pairs of indistinguishable values. The symmetries of indistinguishable values in \(V_{X}\) becomes variable symmetries in the \(0 / 1\) viewpoint \(V_{Z}\). Each color \(j\) becomes a sequence of variables \(\left\langle z_{1, j}, \ldots, z_{n, j}\right\rangle\) in this viewpoint,
where \(n\) is the number of vertices in a graph. Flener et al. [21] suggested that the \(0 / 1\) viewpoint \(V_{Z}\) can always be used to both model a problem and express symmetry breaking constraints. We therefore build the all-bool model using this technique. It solely uses \(V_{Z}\) to express all the problem constraints as well as lexicographic ordering constraints \(\left\langle z_{1, j}, \ldots, z_{n, j}\right\rangle \leq_{l e x}\left\langle z_{1, j+1}, \ldots, z_{n, j+1}\right\rangle\) for \(1 \leq j<k\) to break the symmetries. The int-bool model contains the problem constraints in \(V_{X}\), variable symmetry breaking constraints in \(V_{Z}\) which breaks the value symmetries in \(V_{X}\), and channeling constraints connecting \(V_{X}\) and \(V_{Z}\). The glb-adj and glb-all models use adjacent-pair and all-pair postings of the value precedence global constraints respectively, which are \(i \prec_{\vec{x}} i+1\) for \(1 \leq i<k\) and \(i \prec_{\vec{x}} j\) for \(1 \leq i<j<k\) respectively, where \(\vec{x}\) is a sequence of variables in \(X\). The intbool+glbadj model is the int-bool model plus the adjacent-pair postings of value precedence global constraints. This model shows the combined use of both methods together. The vertices of a graph are re-ordered with decreasing degree. As a result, for models using variables in \(V_{X}\) as branching variables, ties of the smallest-domain-first variable ordering heuristic are broken by choosing a more constrained variable [12]. Another consequence is that in all-bool, which does not contain \(V_{X}\), variables with a smaller vertex number is branched earlier in the search.

Table 1 shows the experimental results of solving various instances in the Second DIMACS Challenge \({ }^{2}\) using the minimal number of colors ( \(k^{*}\) ). In the results, models that break the value symmetries (except all-bool) are generally more efficient than no-break. The if-then model is sometimes less efficient than no-break, despite the latter's larger search space. The all-bool and no-break models are incomparable. One is sometimes more efficient than the other and vice versa. Models using global constraints are the fastest among all, confirming the efficiency of our integer value precedence propagation algorithm. The glb-all model shows no extra pruning over glb-adj, and is thus slightly less efficient due to the overhead in maintaining additional constraints. The if-then model also has the same propagation as glb-adj and glb-all, but execution is much slower because of the inefficient propagation of if-then constraints. The int-bool model is slower than glb-adj and glb-all, but more robust than no-break and if-then, which cannot solve myciel4.col and le450_5b.col respectively. The intbool+glbadj model has the same propagation as glb-adj. The running time of the former is worse than that of the latter, due to the extra viewpoint used in the model.

Note that ILOG Solver does not enforce GAC on constraints of the form \(c_{1} \rightarrow c_{2}\) in general, where \(c_{1}\) and \(c_{2}\) are some constraints. Their propagation behavior is that (1) propagation of \(c_{2}\) is triggered only after \(c_{1}\) is entailed, and (2) propagation of \(c_{1}\) is triggered only after \(\neg c_{2}\) is entailed. In our experiments, however, we empirically show that GAC is enforced on the integer if-then value precedence constraints. as seen from the same number of fails of if-then and glb-adj. This is probably due to the specific form of the if-then value precedence constraints, in which the left hand side is a unary assignment constraint, and the right hand side is a disjunction of assignment constraints. These make the left hand side relatively easy be proved true and the right hand side relatively easy be proved false, thus propagation of the if-then constraint can be triggered earlier.

\footnotetext{
\({ }^{2}\) Available at http://mat.gsia.cmu.edu/COLOR/instances.html.
}
Table 1 Experimental results for graph coloring
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instance} & \multirow[t]{2}{*}{\(k^{*}\)} & \multicolumn{2}{|l|}{no-break} & \multicolumn{2}{|l|}{if-then} & \multicolumn{2}{|l|}{all-bool} & \multicolumn{2}{|l|}{int-bool} & \multicolumn{2}{|l|}{glb-adj} & \multicolumn{2}{|l|}{glb-all} & \multicolumn{2}{|l|}{int-bool+glb-adj} \\
\hline & & Fails & Time \\
\hline le450_5a.col & 5 & 976680 & 273.69 & 5008 & 6644.34 & - & - & 20683 & 23.06 & 5008 & 2.35 & 5008 & 3.34 & 5008 & 8.3 \\
\hline le450_5b.col & 5 & 291840 & 94.76 & - & - & - & - & 18915 & 23.73 & 21172 & 8.81 & 21172 & 12.64 & 21172 & 29.36 \\
\hline le450_5c.col & 5 & 7440 & 9.09 & 223 & 512.76 & - & - & 169 & 0.44 & 223 & 0.28 & 223 & 0.36 & 223 & 0.72 \\
\hline le450_5d.col & 5 & 5160 & 8.76 & 344 & 661.68 & - & - & 289 & 0.93 & 344 & 0.37 & 344 & 0.47 & 344 & 0.97 \\
\hline queen5_5.col & 5 & 0 & 0.04 & 0 & 0.01 & 144 & 0.06 & 4 & 0.01 & 0 & 0 & 0 & 0 & 0 & 0.01 \\
\hline queen6_6.col & 7 & 17902080 & 1382.97 & 3630 & 13.25 & 411843 & 133.78 & 3669 & 0.85 & 3630 & 0.37 & 3630 & 0.58 & 3630 & 0.95 \\
\hline queen7_7.col & 7 & 7242480 & 850.31 & 1613 & 12.64 & 1647581 & 1089.32 & 1589 & 0.58 & 1613 & 0.24 & 1613 & 0.38 & 1613 & 0.65 \\
\hline myciel3.col & 4 & 0 & 0.11 & 0 & 0.03 & 23 & 0.01 & 16 & 0.01 & 0 & 0 & 0 & 0.01 & 0 & 0.01 \\
\hline myciel4.col & 5 & - & - & 22 & 5674.84 & 4436 & 453.3 & 58692 & 568.74 & 22 & 242.84 & 22 & 301.54 & 22 & 629.25 \\
\hline seatplan \({ }^{\text {a }}\) & 5 & 4200 & 86.94 & 35 & 6.37 & 16361 & 1.8 & 39 & 1.72 & 35 & 0.84 & 35 & 0.99 & 35 & 1.91 \\
\hline
\end{tabular}
\({ }^{a}\) The instance is not from DIMACS. It is a graph coloring variant which has an extra counting constraint to restrict the occurrences of the colors. See http:// home.chello.no/ ~dudley/\#section7.

Fig. 8 An instance of the concert hall scheduling problem with 2 rooms and 4 applications (left) and an optimal solution (right)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{lllll}
\(i\) & \(s_{i}\) & \(e_{i} w_{i}\) \\
\hline
\end{tabular} & time & 1 & 3 \\
\hline \(\begin{array}{llll}1 & 1 & 2 & 10 \\ 2 & 2 & 3 & 10\end{array}\) & room 1 & app 1 & app 3 \\
\hline \(\begin{array}{llll}2 & 2 & 3 & 10 \\ 3 & 3 & 3 & 10\end{array}\) & room 2 & & app 2 \\
\hline \(\begin{array}{lllll}4 & 1 & 3 & 10\end{array}\) & \multicolumn{3}{|c|}{Total income: 30} \\
\hline
\end{tabular}

\subsection*{5.2 Concert Hall Scheduling}

A hall director receives \(n\) applications to use the \(k\) identical rooms of a concert hall. Each application \(i\) specifies a period \(\left[s_{i}, e_{i}\right]\) and an offered price \(w_{i}\) to use a room for the whole period. The concert hall scheduling problem is to decide which applications to accept in order to maximize the total income. Each accepted application should be assigned the same room during its whole applied period. Figure 8 shows an example with 2 rooms and 4 applications and an optimal schedule. This problem is generalized from one in the Asia Regional Contest of ACM/ICPC 2003, in which \(k=2,{ }^{3}\) but is a special case of the temporal knapsack problem [8], in which each application can request more than one room.

We use a variable \(x_{i}\) for each application \(i\) with domain \(D_{X}\left(x_{i}\right)=\{1, \ldots, k+1\}\) to denote the room assigned to the application. The dummy value \(k+1\) is to denote an rejected application. Under this viewpoint, any two identical applications \(i\) and \(j\) (i.e., \(s_{i}=s_{j}, e_{i}=e_{j}\), and \(w_{i}=w_{j}\) ) are symmetric and we can use the variable symmetry breaking constraint \(x_{i} \leq x_{j}\) where \(i<j\) to break the symmetry. Moreover, all domain values except the dummy value \(k+1\) are indistinguishable values. This is our only benchmark problem in which not all the domain values are indistinguishable. We build the no-break, if-then, all-bool, int-bool, glb-adj, glb-all, and intbool + glbadj models, which have the same meaning as in graph coloring. Several random instances are generated with 40 applications, \(1 \leq s_{i} \leq e_{i} \leq 100\), and \(10 \leq \frac{w_{i}}{e_{i}-s_{i}+1} \leq 100\), where \(s_{i}, e_{i}\), and \(w_{i}\) are uniformly distributed in their ranges, and are solved as an optimization problem for the maximum total income with different number of rooms \(k\).

Table 2 shows the experimental results. Like graph coloring, models tackling the indistinguishable values (i.e., if-then, int-bool, glb-adj, glb-all, and intbool+glbadj) are generally more efficient than no-break, which is again generally more efficient than all-bool. The glb-adj and glb-all models have the same number of fails; execution time between them is negligible. Unlike graph coloring, int-bool is more efficient than glb-adj and glb-all in most instances, but they are all much more efficient than if-then. Actually, the different propagation behaviors between int-bool and glb-adj (as well as glb-all) make the smallest-domain-first variable ordering heuristic choose different variables to be assigned next during search. It seems the heuristic fits more to int-bool than to glb-adj and glb-all so int-bool has a smaller overall search tree. The intbool+glbadj model has the same propagation as glb-adj but slower execution. We also tried solving an instance obtained from ACM/ICPC 2003 containing 1000 applications within 365 days. The glb-adj, glb-all, and int-bool models can be solved in about 3.2 hours CPU time, while the other models do not terminate after 6 hours execution.

Bartlett et al. [8] suggested a model, which uses one \(0 / 1\) variable for each application to denote whether the application is accepted, for the temporal

\footnotetext{
\({ }^{3}\) See http://www.u-aizu.ac.jp/conference/ACM/problems/all.pdf.
}
Table 2 Experimental results for the concert hall scheduling problem
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instance} & \multirow[t]{2}{*}{\(k^{*}\)} & \multicolumn{2}{|l|}{no-break} & \multicolumn{2}{|l|}{if-then} & \multicolumn{2}{|l|}{all-bool} & \multicolumn{2}{|l|}{int-bool} & \multicolumn{2}{|l|}{glb-adj} & \multicolumn{2}{|l|}{glb-all} & \multicolumn{2}{|l|}{int-bool+glb-adj} \\
\hline & & Fail & Time \\
\hline inst1 & 2 & 7770 & 2.33 & 3928 & 2.58 & 8615 & 1.49 & 3928 & 1.32 & 3928 & 1.19 & 3928 & 1.19 & 3928 & 1.37 \\
\hline inst1 & 3 & 187089 & 59.34 & 58624 & 56.63 & 266788 & 48.81 & 44040 & 16.86 & 58624 & 20.42 & 58624 & 20.46 & 58624 & 24.63 \\
\hline inst1 & 4 & 3448725 & 1100.68 & 522716 & 673.77 & 4246755 & 762.93 & 374781 & 155.8 & 522716 & 186.89 & 522716 & 193.1 & 522716 & 235.93 \\
\hline inst1 & 5 & - & - & 4239414 & 6605.37 & - & - & 2636415 & 1152.41 & 4239414 & 1545.08 & 4239414 & 1600.23 & 4239414 & 2063.9 \\
\hline inst2 & 2 & 4273 & 1.12 & 2176 & 1.37 & 34206 & 4.28 & 2175 & 0.65 & 2176 & 0.57 & 2176 & 0.57 & 2176 & 0.69 \\
\hline inst2 & 3 & 39827 & 12.78 & 26888 & 26.11 & 2276645 & 310.12 & 10398 & 4.06 & 26888 & 9.01 & 26888 & 9.11 & 2688 & 11.22 \\
\hline inst2 & 4 & 416916 & 139.22 & 143492 & 192.83 & 48567736 & 6787.48 & 62033 & 26.3 & 143492 & 49.55 & 143492 & 51.53 & 143492 & 64.95 \\
\hline inst2 & 5 & 3988530 & 1368.41 & 1085772 & 1891.34 & - & - & 304979 & 134.9 & 1085772 & 371.37 & 1085772 & 391.02 & 1085772 & 515.35 \\
\hline inst3 & 2 & 5455 & 2.17 & 2752 & 1.93 & 11267 & 1.91 & 2753 & 1.17 & 2752 & 1.1 & 2752 & 1.1 & 2752 & 1.26 \\
\hline inst3 & 3 & 154517 & 57.78 & 66633 & 64.43 & 447431 & 80.7 & 33164 & 14.92 & 66633 & 26.02 & 66633 & 26.36 & 66633 & 32.09 \\
\hline inst3 & 4 & 3292195 & 1227.8 & 786525 & 998.99 & 894941 & 1588.94 & 301427 & 136.67 & 786525 & 317.28 & 786525 & 322.09 & 786525 & 399.08 \\
\hline inst3 & 5 & - & - & - & - & - & - & 2223074 & 1049.41 & 6880554 & 2833.06 & 6880554 & 2950.12 & 6880554 & 3685.6 \\
\hline inst4 & 2 & 161575 & 39.34 & 83163 & 47.84 & 297649 & 33.67 & 83164 & 23.27 & 83163 & 20.38 & 83163 & 20.38 & 83163 & 24.78 \\
\hline inst4 & 3 & 10851983 & 2528.77 & 3027166 & 2802.17 & 31956512 & 3914.99 & 2069561 & 605.59 & 3027166 & 738.45 & 3027166 & 731.08 & 3027166 & 953.92 \\
\hline inst5 & 2 & 6652 & 1.91 & 3336 & 2.22 & 11757 & 1.56 & 3336 & 1.1 & 3336 & 0.99 & 3336 & 0.99 & 3336 & 1.12 \\
\hline inst5 & 3 & 205487 & 57 & 49722 & 46.91 & 630171 & 82.47 & 47312 & 16.48 & 49722 & 15.45 & 49722 & 15.85 & 49722 & 18.46 \\
\hline inst5 & 4 & 4828319 & 1322.54 & 485948 & 585.31 & 17168657 & 2157.77 & 415504 & 150.39 & 485948 & 147.91 & 485948 & 153.68 & 485948 & 190 \\
\hline inst5 & 5 & - & - & 3983836 & 5771.1 & - & - & 2190385 & 841.43 & 3988836 & 1215.36 & 3983836 & 1290.53 & 3983836 & 1638.05 \\
\hline
\end{tabular}
knapsack problem. Their model, which does not involve particular halls, is more efficient than those used in our experiments. The main aim of our experiments, however, is to evaluate symmetry breaking methods applied to CSPs with value symmetries. The quality of models used in this problem is immaterial to us.

\subsection*{5.3 Social Golfer Problem}

For the SGP, we build integer and set models in \(V_{G}\) and \(V_{P}\) respectively as two bases and tackle the indistinguishable values in \(V_{G}\) [symmetry (3)] and \(V_{P}\) [symmetry (1)] using different methods. We also test both the integer and set versions of the value precedence propagation algorithms in this benchmark. Note that the two sets of experiments should not be compared directly because (1) models in the two sets have different problem constraints, and (2) different search variables are used (integer and set variables).

\subsection*{5.3.1 Integer Model}

In the integer model, symmetries (1) and (2) are variable symmetries, which can be broken by row and column lexicographic ordering constraints. Note that the row ordering constraints \(\left\langle g_{i, 1}, \ldots, g_{i, \mathcal{W}}\right\rangle \leq_{\text {lex }}\left\langle g_{i+1,1}, \ldots, g_{i+1, \mathcal{W}}\right\rangle\) can be simplified to \(\left\langle g_{i, 1}, g_{i, 2}\right\rangle<_{l e x}\left\langle g_{i+1,1}, g_{i+1,2}\right\rangle\), since two golfers can meet each other at most once. Similarly, the column ordering constraints \(\left\langle g_{1, k}, \ldots, g_{\mathcal{N}, k}\right\rangle \leq_{l e x}\left\langle g_{1, k+1}, \ldots, g_{\mathcal{N}, k+1}\right\rangle\) can also be simplified to \(\left\langle g_{1, k}, \ldots, g_{\mathcal{G}+1, k}\right\rangle<{ }_{l e x}\left\langle g_{1, k+1}, \ldots, g_{\mathcal{G}+1, k+1}\right\rangle\). These problemspecific simplified constraints allows more propagation than the original ones, and therefore are used in our experiments.

Using this basis, we build the int-set and int-bool models which use multiple viewpoints and break the symmetries of indistinguishable values in \(V_{G}\) as variable symmetries in \(V_{P}\) and \(V_{Z}\) respectively. Note that in int-set, we add extra implied constraints \(\left|p_{j, k}\right|=\mathcal{S}\) for \(1 \leq j \leq \mathcal{G}\) and \(1 \leq k \leq \mathcal{W}\), since they can increase propagation on the symmetry breaking constraints in \(V_{P}\). We also build glb-adj and glb-all that breaks the symmetries using global constraints. The all-bool model is the same as the one used by Frisch et al. [26] except that we apply the same simplification technique as above to simplify the row and column lexicographic ordering constraints. Since there are two models int-bool and int-set using the multiple viewpoints method, we correspondingly build two models intbool+glbadj and intset+glbadj using the combined method. Table 3 shows the experimental results.

Again, glb-adj and glb-all are the fastest among all. The performance of int-set and int-bool approaches that of the global constraints models. The glb-adj, glb-all, int-set, and if-then models has the same number of fails. The int-bool model achieves less propagation than them. Nevertheless, its performance is still generally much better than if-then and all-bool. The int-set and int-bool models are incomparable. The former is sometimes slightly slower than the latter, but in certain instances [e.g, \((5,5,3),(5,5,4),(5,5,5)\), and \((6,6,3)\) ], the difference in number of fails between them is so large that int-set shows its robustness and is significantly faster. Both intbool+glbadj and intset+glbadj again have the same propagation as glb-adj, but they are slower in execution.
Table 3 Experimental results for the SGP, using integer variables
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathcal{G}, \mathcal{S}, \mathcal{W}\)} & \multicolumn{2}{|l|}{if-then} & \multicolumn{2}{|l|}{all-bool} & \multicolumn{2}{|l|}{int-bool} & \multicolumn{2}{|l|}{int-set} & \multicolumn{2}{|l|}{glb-adj} & \multicolumn{2}{|l|}{glb-all} & \multicolumn{2}{|l|}{intbool+glbadj} & \multicolumn{2}{|l|}{intset+glbad} \\
\hline & Fail & Time \\
\hline 4,2,5 & 263 & 0.23 & 2998 & 0.59 & 307 & 0.23 & 263 & 0.29 & 263 & 0.15 & 263 & 0.17 & 263 & 0.26 & 263 & 0.32 \\
\hline 4,2,6 & 279 & 0.18 & 2598 & 0.51 & 333 & 0.18 & 279 & 0.24 & 279 & 0.13 & 279 & 0.13 & 279 & 0.2 & 279 & 0.26 \\
\hline 4,3,4 & 917 & 0.36 & 64027 & 12.43 & 1339 & 0.37 & 917 & 0.37 & 917 & 0.2 & 917 & 0.21 & 917 & 0.28 & 917 & 0.42 \\
\hline 5,2,3 & 675 & 1.39 & 18599 & 2.94 & 1327 & 1.12 & 675 & 1.39 & 675 & 0.77 & 675 & 0.82 & 675 & 1.22 & 675 & 1.56 \\
\hline 5,2,4 & 36804 & 74.03 & 527962 & 122.44 & 52543 & 57.9 & 36804 & 74.3 & 36804 & 40.33 & 36804 & 43.37 & 36804 & 63.36 & 36804 & 82.29 \\
\hline 5,2,5 & 758610 & 1400.16 & 9473196 & 2505.01 & 867791 & 1075.95 & 758610 & 1458.34 & 758610 & 767.03 & 758610 & 815.99 & 758610 & 1176.87 & 758610 & 1591.2 \\
\hline 5,2,6 & - & - & - & - & 6605552 & 6839.61 & - & - & 6083358 & 4835.11 & 6083358 & 5245.75 & - & - & - & - \\
\hline 5,2,8 & - & - & - & - & - & - & - & - & 19960565 & 6274.41 & 19960565 & 6852.93 & - & - & - & - \\
\hline 5,2,9 & 8325932 & 4326.68 & 14221361 & 5439.92 & 9166800 & 3210.56 & 8325932 & 4073.58 & 8325932 & 2076.84 & 8325932 & 2288.03 & 8325932 & 3351.6 & 8325932 & 4319.38 \\
\hline 5,3,3 & 207217 & 368.98 & 15624244 & 3450.06 & 213328 & 192.31 & 207217 & 269.96 & 207217 & 149.29 & 207217 & 156.01 & 207217 & 202.64 & 207217 & 280.75 \\
\hline 5,3,7 & - & - & - & - & 10019241 & 3821.9 & 10954130 & 6320.45 & 10954130 & 3117.3 & 10954130 & 3329.13 & 10954130 & 4460.46 & 10954130 & 6543.4 \\
\hline 5,4,3 & 126170 & 183.79 & - & - & 382664 & 183.63 & 126170 & 120.58 & 126170 & 66.95 & 126170 & 69.56 & 126170 & 85.9 & 126170 & 123.37 \\
\hline 5,4,4 & - & - & - & - & - & - & - & - & 13867877 & 4262.97 & 13867877 & 4437.77 & 13867877 & 5466.61 & - & - \\
\hline 5,4,5 & - & - & - & - & - & - & - & - & 14849892 & 4996.87 & 14849892 & 5228.43 & 14849892 & 6501.96 & - & - \\
\hline 5,5,3 & 42 & 1.94 & - & - & 21038 & 13.32 & 42 & 1.22 & 42 & 0.74 & 42 & 0.76 & 42 & 0.9 & 42 & 1.27 \\
\hline 5,5,4 & 9031 & 15.91 & - & - & 190084 & 93.7 & 9031 & 8.6 & 9031 & 5.01 & 9031 & 5.21 & 9031 & 6.29 & 9031 & 8.83 \\
\hline 5,5,5 & 1933 & 5.01 & - & - & 27746 & 14.26 & 1933 & 2.58 & 1933 & 1.44 & 1933 & 1.5 & 1933 & 1.84 & 1933 & 2.63 \\
\hline 5,5,6 & 237 & 0.88 & - & - & 1776 & 1.26 & 237 & 0.45 & 237 & 0.26 & 237 & 0.26 & 237 & 0.3 & 237 & 0.46 \\
\hline 6,2,3 & 39059 & 140.87 & 1329681 & 257.18 & 110529 & 95.63 & 39059 & 119.85 & 39059 & 65.41 & 39059 & 71.03 & 39059 & 93.94 & 39059 & 124.48 \\
\hline 6,3,2 & 10 & 2.83 & 713811 & 233.86 & 202 & 1.17 & 10 & 1.69 & 10 & 0.89 & 10 & 0.96 & 10 & 1.2 & 10 & 1.74 \\
\hline 6,4,2 & 377 & 3.69 & - & - & 1981 & 1.88 & 377 & 1.8 & 377 & 0.98 & 377 & 1.04 & 377 & 1.24 & 377 & 1.86 \\
\hline 6,5,2 & 1226 & 3.99 & - & - & 2240 & 1.44 & 1226 & 1.57 & 1226 & 0.8 & 1226 & 0.86 & 1226 & 1.01 & 1226 & 1.6 \\
\hline 6,6,3 & 20917 & 3300.59 & - & - & - & - & 20917 & 1528.85 & 20917 & 953.23 & 20917 & 981.05 & 20917 & 1108.77 & 20917 & 1558.92 \\
\hline 7,2,2 & 6 & 1.07 & 59576 & 11 & 844 & 0.63 & 6 & 0.71 & 6 & 0.38 & 6 & 0.43 & 6 & 0.55 & 6 & 0.75 \\
\hline 7,3,2 & 180 & 189.85 & - & - & 7504 & 63.26 & 180 & 91.5 & 180 & 48.29 & 180 & 52.73 & 180 & 64.62 & 180 & 94.96 \\
\hline 7,4,2 & 60747 & 1234.79 & - & - & 66985 & 332.42 & 60747 & 506.17 & 60747 & 269.54 & 60747 & 293.39 & 60747 & 342.27 & 60747 & 519.28 \\
\hline 7,5,2 & 46007 & 365.82 & - & - & 131666 & 145.86 & 46007 & 123.71 & 46007 & 69.03 & 46007 & 74.05 & 46007 & 83.49 & 46007 & 126.07 \\
\hline 7,6,2 & 16447 & 128.48 & - & - & 29485 & 31.18 & 16447 & 36.46 & 16447 & 18.18 & 16447 & 19.15 & 16447 & 21.22 & 16447 & 37.09 \\
\hline 7,7,2 & 66 & 1.79 & - & - & 348 & 0.58 & 66 & 0.26 & 66 & 0.14 & 66 & 0.14 & 66 & 0.14 & 66 & 0.26 \\
\hline
\end{tabular}

\section*{5．3．2 Set Model}

In the set model，symmetries（3）and（2）are variable symmetries．Barnier and Brisset［7］suggested the constraints \(\min \left(p_{j, k}\right)<\min \left(p_{j+1, k}\right)\) for \(1 \leq j<\mathcal{G}\) and \(1 \leq\) \(k \leq \mathcal{W}\) and \(\min \left(p_{1, k} \backslash\{1\}\right)<\min \left(p_{1, k+1} \backslash\{1\}\right)\) for \(1 \leq k<\mathcal{W}\) for breaking the symmetries respectively．These constraints are degenerated from the lexicographic ordering constraints with the set ordering we propose and the problem constraints that two variables \(p_{j, k}\) and \(p_{j^{\prime}, k}\) for some \(j \neq j^{\prime}\) must be disjoint．Using this basis，we again build the glb－adj and glb－all models，using our set value precedence constraints，as well as the set－int and set－bool models that breaks the value symmetries in \(V_{G}\) as variable symmetries in \(V_{P}\) and \(V_{Z}\) respectively．Note that the variable symmetry breaking constraints in \(V_{P}\) of set－int are actually the same as the row ordering constraints in the integer model described in previous subsection． Therefore，the simplified constraints \(\left\langle g_{i, 1}, g_{i, 2}\right\rangle<_{l e x}\left\langle g_{i+1,1}, g_{i+1,2}\right\rangle\) can be used instead． Furthermore，since only variables of weeks 1 and 2 in \(V_{G}\) are used for expressing constraints，the remaining variables in \(V_{G}\)（and the channeling constraints relating them）are removed from the model so that only part of \(V_{G}\) is connected with \(V_{P}\) and less overhead of channeling is incurred．Similarly，in set－bool，only variables of weeks 1 and 2 in \(V_{Z}\) are connected with \(V_{P}\) ．Note that when \(\mathcal{W}=2\) ，there will be no savings in the number of variables．This modeling trick is not applicable when using global constraints，and is actually an advantage of using multiple viewpoints over global constraints to break value symmetries．

The experimental results in Table 4 shows that set－int is the most efficient in terms of both the number of fails and CPU time．It always has the smallest number of fails due to the extra propagation of the simplified symmetry breaking constraints．The removal of the unused variables in the second viewpoint also reduces the overhead of channeling．The set－bool model achieves the same amount of propagation as glb－adj．Their runtime are similar in many instances．In larger instances（down in the table），glb－adj is more competitive than set－bool due to the extra variables in the latter model．The models using global constraints still perform much better than if－then and all－bool，confirming the efficiency of our set propagation algorithm．Note that all－bool is slightly different from the one in the previous subsection，because a different aspect priority（and hence scanning sequence）is used to generate the variable symmetry breaking constraints in \(V_{Z}\) ． The scanning sequence \(\langle\) golfers，weeks，groups〉 is used in all－bool previously，while〈weeks，groups，golfers〉 is used here．The glb－all model achieves more propagation than glb－adj does in some instances．The difference in the number of fails，however， is usually small，so the overhead of extra global constraints cannot be compensated． An exception is the \((4,4,4)\) instance where glb－all has significantly fewer fails than glb－adj，and all－bool is the best among all models．Actually，glb－all posts \(O\left(\mathcal{N}^{2}\right)=\) \(\mathcal{O}\left(\mathcal{G}^{2} \mathcal{S}^{2}\right)\) more constraints than glb－adj．Hence，instances with more golfers incur more overhead than those with fewer golfers．The setbool＋glbadj and setint＋glbadj models have the same propagation as set－bool and set－int respective－ ly．Therefore，their execution is slightly longer due to the extra value precedence constraints in the models．

Besides using the smallest－domain－first variable ordering heuristic，we also tried using the default and static lexicographic variable ordering heuristic（i．e．，always choose the first unbound variable）．We find that the number of fails of glb－adj and glb －all are the same in all instances．It seems that the extra propagation of glb－all
Table 4 Experimental results for the SGP, using set variables
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathcal{G}, \mathcal{S}, \mathcal{W}\)} & \multicolumn{2}{|l|}{if-then} & \multicolumn{2}{|l|}{all-bool} & \multicolumn{2}{|l|}{set-bool} & \multicolumn{2}{|l|}{set-int} & \multicolumn{2}{|l|}{glb-adj} & \multicolumn{2}{|l|}{glb-all} & \multicolumn{2}{|l|}{setbool+glbadj} & \multicolumn{2}{|l|}{setint+glbadj} \\
\hline & Fail & Time \\
\hline 4,2,4 & 318 & 0.86 & 3935 & 0.4 & 318 & 0.2 & 266 & 0.19 & 318 & 0.2 & 314 & 0.2 & 318 & 0.22 & 266 & 0.21 \\
\hline 4,2,5 & 921 & 3.08 & 18391 & 1.81 & 921 & 0.53 & 884 & 0.52 & 921 & 0.54 & 919 & 0.58 & 921 & 0.54 & 884 & 0.55 \\
\hline 4,2,6 & 736 & 3.5 & 36012 & 3.45 & 736 & 0.51 & 721 & 0.51 & 736 & 0.52 & 736 & 0.55 & 736 & 0.51 & 721 & 0.52 \\
\hline 4,2,7 & 100 & 1.12 & 41516 & 4.09 & 100 & 0.16 & 97 & 0.15 & 100 & 0.15 & 100 & 0.15 & 100 & 0.16 & 97 & 0.16 \\
\hline 4,3,4 & 5910 & 11.87 & 9453 & 1.26 & 5910 & 1.37 & 3222 & 0.81 & 5910 & 1.03 & 5026 & 1.15 & 5910 & 1.53 & 3222 & 0.93 \\
\hline 4,4,4 & 518890 & 2187.98 & 376 & 0.08 & 518890 & 176.96 & 15759 & 8.11 & 518890 & 123.1 & 42993 & 13.33 & 518890 & 213.04 & 15759 & 9.45 \\
\hline 4,4,5 & 15760 & 98.1 & 410 & 0.12 & 15760 & 7.97 & 7510 & 5.63 & 15760 & 6.05 & 14900 & 7.8 & 15760 & 9.22 & 7510 & 6.41 \\
\hline 5,2,3 & 556 & 6.35 & 20017 & 2.84 & 556 & 1.08 & 521 & 1.07 & 556 & 1.11 & 556 & 1.3 & 556 & 1.14 & 521 & 1.13 \\
\hline 5,2,4 & 95109 & 420.14 & 1896414 & 258.64 & 95109 & 78.35 & 95063 & 78.46 & 95109 & 81.55 & 95109 & 92.18 & 95109 & 82.59 & 95063 & 84.03 \\
\hline 5,2,5 & - & - & - & - & 2555004 & 1961.6 & 2554588 & 1956.71 & 2555004 & 2003.41 & 2554992 & 2240.45 & 2555004 & 2070.47 & 2554588 & 2066.8 \\
\hline 5,2,9 & - & - & - & - & 3895074 & 6853.2 & 3895064 & 6841.59 & 3895074 & 6770.87 & 3895074 & 7046.1 & 3895074 & 7125.63 & 3895064 & 7130.65 \\
\hline 5,3,3 & 491937 & 1094.32 & 1505051 & 339.5 & 491937 & 139.99 & 491452 & 140.06 & 491937 & 150 & 491937 & 223.17 & 491937 & 156.72 & 491452 & 156.68 \\
\hline 5,4,3 & 694740 & 1149.42 & 1570961 & 377.43 & 694740 & 106.16 & 658755 & 98.23 & 694740 & 112.66 & 694740 & 225.64 & 694740 & 123.68 & 658755 & 113.93 \\
\hline 5,4,4 & - & - & - & - & 31481057 & 4953.67 & 30802587 & 4770.94 & 31481057 & 5307.77 & - & - & 31481057 & 5540.36 & 30802587 & 5338.92 \\
\hline 5,5,3 & 8229 & 25.33 & 9391 & 2.95 & 8229 & 2.24 & 1418 & 0.46 & 8229 & 1.37 & 8229 & 3.56 & 8229 & 2.62 & 1418 & 0.53 \\
\hline 5,5,4 & 155999 & 902.96 & 92589 & 25.51 & 155999 & 45.43 & 13009 & 2.1 & 155999 & 26.73 & 155999 & 63.39 & 155999 & 51.89 & 13009 & 2.36 \\
\hline 6,2,3 & 19920 & 822.96 & 1667863 & 271.14 & 19920 & 85.96 & 19659 & 85.81 & 19920 & 88.93 & 19920 & 113.9 & 19920 & 89.24 & 19659 & 88.41 \\
\hline 6,3,2 & 8823 & 12.62 & 17630 & 2.73 & 8823 & 2.68 & 30 & 1.16 & 8823 & 1.11 & 8823 & 2.24 & 8823 & 2.91 & 30 & 1.3 \\
\hline 6,4,2 & 22407 & 27.55 & 27675 & 4.19 & 22407 & 5.17 & 45 & 0.99 & 22407 & 2.01 & 22407 & 6.02 & 22407 & 5.91 & 45 & 1.11 \\
\hline 6,5,2 & 7090 & 8.16 & 5592 & 0.84 & 7090 & 1.72 & 60 & 0.1 & 7090 & 0.6 & 7090 & 2.73 & 7090 & 2.03 & 60 & 0.13 \\
\hline 6,6,3 & - & - & 10260789 & 3992.7 & 1719940 & 490.77 & 1521747 & 414.16 & 1719940 & 524.14 & 1719940 & 2843.57 & 1719940 & 583.25 & 1521747 & 490.32 \\
\hline 7,2,2 & 1276 & 5.27 & 9599 & 1.47 & 1276 & 0.97 & 21 & 0.69 & 1276 & 0.44 & 1276 & 0.65 & 1276 & 1.03 & 21 & 0.75 \\
\hline 7,3,2 & 314043 & 864.12 & 654575 & 131.16 & 314043 & 119.13 & 42 & 58.94 & 314043 & 47.97 & 314043 & 102.6 & 314043 & 130.19 & 42 & 65.7 \\
\hline 7,4,2 & - & - & 4488705 & 869.09 & 3318328 & 928.12 & 63 & 236.73 & 3318328 & 344.75 & 3318328 & 1183.69 & 3318328 & 1053.34 & 63 & 261.7 \\
\hline 7,5,2 & 1887614 & 3789.96 & 1835104 & 348.14 & 1887614 & 497.93 & 84 & 42.98 & 1887614 & 174.48 & 1887614 & 938.25 & 1887614 & 585.95 & 84 & 47.78 \\
\hline 7,6,2 & 117713 & 220.28 & 81421 & 14.57 & 117713 & 35.48 & 105 & 0.53 & 117713 & 10.84 & 117713 & 88.77 & 117713 & 42.21 & 105 & 0.61 \\
\hline 7,7,2 & 397 & 5.43 & 1493 & 0.8 & 397 & 0.45 & 308 & 0.7 & 397 & 0.15 & 397 & 1.25 & 397 & 0.58 & 308 & 0.86 \\
\hline
\end{tabular}
only occurs after we add values to the required set of a non-first unbound variable. This shows that the theoretical possibility of extra propagation of glb-all over glb-adj does not guarantee a pruning in search space. Indeed, the search states that lead to extra propagation by glb-all must be reachable during search in order for an actual pruning in practice.

\subsection*{5.4 Steiner Triple System}

Let \(X=\{1, \ldots, v\}\), where \(v \geq 3\). A Steiner triple system \(S(v)\) of order \(v\) is a set of 3-subset (unordered triples) of \(X\) such that every 2-subset of \(X\) occurs in exactly one triple of \(S(v)\). An example of \(S(7)\) is \(\{\{1,2,3\},\{1,4,5\},\{1,6,7\},\{2,4,6\},\{2,5,7\}\), \(\{3,4,7\},\{3,5,6\}\}\). A Steiner triple system of order \(v\) exists if and only if \(v \equiv\) 1,3 \((\bmod 6)[33]\).

Finding Steiner triple systems of order \(v\) is a MAP with two aspects: the triples and the set \(X\). The problem can thus be modeled using an aspect viewpoint \(V_{B}\) with a set of set variables \(B=\left\{b_{1}, \ldots, b_{n}\right\}\) (where \(\left.n=\frac{v(v-1)}{6}\right)\) and \(P S\left(b_{i}\right)=\{1, \ldots, v\}\). In \(V_{B}\), the variable symmetries are that any two variables \(b_{i}\) and \(b_{j}\) can be exchanged. They can be broken by the constraints \(\min \left(b_{i}\right) \leq \min \left(b_{i+1}\right)\) and \(\min \left(b_{i}\right)=\) \(\left.\min \left(b_{i+1}\right) \rightarrow \min \left(b_{i} \backslash\left\{\min \left(b_{i}\right)\right\}\right) \leq \min \left(b_{i+1} \backslash \min \left(b_{i+1}\right)\right\}\right)\) for \(1 \leq i<n\) (which are the degenerated lexicographic variable symmetry breaking constraints). The values in \(P S\left(b_{i}\right)=\{1, \ldots, v\}\) are indistinguishable values. Such value symmetries can be broken by using global constraints (glb-adj and glb-all), channeling with the \(0 / 1\) viewpoint (set-bool), and channeling with the other aspect viewpoint \(V_{X}\) with set variables \(x_{1}, \ldots, x_{v}\) and \(P S\left(x_{j}\right)=\{1, \ldots, n\}\) (set-set). The symmetry breaking constraints in \(V_{X}\) are \(\min \left(x_{j}\right) \leq \min \left(x_{j+1}\right)\) and \(\min \left(x_{j}\right)=\min \left(x_{j+1}\right) \rightarrow \min \left(x_{j} \backslash\right.\) \(\left.\left\{\min \left(x_{j}\right)\right\}\right) \leq \min \left(x_{j+1} \backslash\left\{\min \left(x_{j+1}\right)\right\}\right)\) for \(1 \leq j<n\), which are similar to those in \(V_{B}\). Since ILOG Solver does not provide a set minus constraint, in the experiments we emulate the expression \(y \backslash\{\min (y)\}\) using \(y^{\prime}\), where \(\left|y^{\prime}\right|=|y|-1, \min (y) \notin y^{\prime}\), and \(y^{\prime} \subset y\).

Experimental results in Table 5 show that setset+glbadj achieves the best results. It combines the benefits of set-set and glb-adj and achieves much more propagation than either of them. For \(v=13\), it is faster than set-set, the second most efficient model, by an order of magnitude, while executions of the other models does not terminate after 24 hours. This phenomenon is different from what we observe in previous benchmarks, in which models using combined methods have the same propagation as either methods. This is probably due to the special set minus constraints used in \(V_{X}\); they do not occur in previous benchmarks. This shows that when symmetry breaking constraints in the second viewpoint involves set minus constraints, the two methods need not be used alone. They can be used simultaneously to obtain even more speedup.

\section*{6 Related Work}

Symmetry breaking is an important line of research in the constraint community. There are several main types of techniques in breaking symmetries in CSPs. In the first approach, symmetry breaking constraints [43] are added to a CSP so as to traverse fewer number of symmetrical regions during the search for solutions. Crawford et al. [18] suggested a general scheme to add symmetry breaking
Table 5 Experimental results for Steiner triple systems
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(v\)} & \multicolumn{2}{|l|}{if-then} & \multicolumn{2}{|l|}{all-bool} & \multicolumn{2}{|l|}{set-bool} & \multicolumn{2}{|l|}{set-set} & \multicolumn{2}{|l|}{glb-adj} & \multicolumn{2}{|l|}{glb-all} & \multicolumn{2}{|l|}{setset+glbadj} & \multicolumn{2}{|l|}{setbool+glbadj} \\
\hline & Fail & Time & Fail & Fime \\
\hline 7 & 82 & 0.02 & 29 & 0.01 & 75 & 0.01 & 12 & 0 & 82 & 0 & 82 & 0.01 & 12 & 0 & 75 & 0.01 \\
\hline 9 & 17236 & 6.58 & 10021 & 1.37 & 17092 & 2.43 & 500 & 0.09 & 17236 & 1.53 & 17236 & 1.77 & 153 & 0.03 & 17092 & 2.48 \\
\hline 13 & - & - & - & - & - & - & 34004314 & 15005.2 & - & - & - & - & 3935567 & 1738.24 & - & - \\
\hline
\end{tabular}
predicates to satisfiability problems. Aloul et al. [3] improved this scheme by constructing more efficient CNF representations of symmetry-breaking predicates. The scheme by Crawford et al. can be extended to break variable symmetries in CSPs by using lexicographic ordering constraints [13, 14, 26]. For each variable symmetry \(\sigma\) in a CSP, we add a lexicographic ordering constraint \(\vec{x} \leq_{l e x} \sigma(\vec{x})\) to the CSP, where \(\vec{x}\) is a sequence of variables in the CSP. Flener et al. [21] identified row and column symmetries in 2-dimensional matrix models, which are commonly found in many CSPs. Row and column symmetries are the variable symmetries that every two rows and every two columns in a matrix of variables can be exchanged. Given a matrix with \(n\) rows and \(m\) columns, row and column symmetries collectively imply \(n!m!\) variable symmetries. Flener et al. [21] showed that adding constraints to lexicographically order both the rows and the columns are always consistent, although they do not necessarily break all the row and column symmetries. Bessiere et al. [11] showed the intractability of breaking row and column symmetries completely. Multiset ordering constraints [25] and allperm constraints [27] are also available for breaking row and column symmetries in matrix models. Gent [28] designed special constraints to break symmetries of indistinguishable values under some integer variables. The constraints assume that all the domain values of the variables are indistinguishable. It is not clear what consistency is enforced on the constraints. Our value precedence constraints is applicable to both integer and set variables, enforcing GAC and SBC respectively. They break symmetries of two indistinguishable values, and can be posted multiple times to break symmetries of multiple indistinguishable values.

The second approach is to break symmetries dynamically during search [4, 5, 20, 23, 31]. Search algorithms for solving CSPs are modified such that symmetric states are pruned from the search tree as it is developed during execution. A representative of this approach is Symmetry Breaking During Search (SBDS) and its variants [29, 31]. Upon a backtrack of the search, SBDS [31] adds a symmetry breaking constraint for each symmetry in a CSP to remove all the states which are symmetric to the one that causes the current backtrack. Backofen and Will introduced Symmetry Excluding Search (SES) [4, 5], which is similar to but more general than SBDS. SES allows a search tree to branch over arbitrary constraints instead of simple unary assignment constraints in SBDS. CSP symmetries form symmetry groups; Gent et al. [29] incorporated GAP [2], a computational group theory system, to SBDS such that large symmetry groups can be handled efficiently.

Another representative of the second approach is called Symmetry Breaking via Dominance Detection (SBDD) and its variants [6, 7, 20, 44, 46]. In SBDD [20], whenever the search algorithm generates a new search node, we check whether it is dominated by another node previously visited through some symmetries. If so, the current search node can be pruned; otherwise it is processed normally. Unlike SBDS, which uses compound assignments to determine what constraints are to be added upon backtracking, SBDD uses the sets of variable domains at each search node to represent a state in the search tree. A problem specific dominance checker is needed to check whether one state is dominated by another previously visited state. Barnier and Brisset [6, 7] proposed SBDD+, an improvement of SBDD. The key idea of the improvement is a deep pruning technique which allows to prune higher in the search tree whenever possible. Gent et al. [30] again used computational group theory to extend SBDD. They also proposed a generic
dominance checker, which avoids the need of implementing a specific checker in SBDD for each problem by a constraint programmer.

It is possible to combine this dynamic approach those using symmetry breaking constraints to tackle symmetries. Smith and Gent [48] showed how the use of symmetry breaking constraints and SBDS can be combined to break row and column symmetries in matrix models [21]. They also empirically compared several different approximations to eliminating the symmetries and an exact method that eliminates the symmetries completely for small matrices. Puget [45] showed how to combine the use of lexicographic ordering constraints and SBDD for row and column symmetries. He also presented a method that adds some lexicographic ordering constraints during the search for solution. These constraints break the symmetries that leave the current partial assignment unchanged.

The third approach to tackle symmetries in CSPs is to use the symmetries to guide the search. Meseguer and Torras [39, 40] propose variable ordering heuristics which select the variable leading to a search subspace with the largest number of distinct states. They also propose a symmetric domain value pruning procedure along the search based on nogood recording.

The fourth approach is to construct specialized search trees that does not contain symmetries [47, 49]. Van Hentenryck et al. [49] studied three classes of CSPs for which symmetry breaking is tractable. These CSP classes, featuring specific forms of indistinguishable values, \({ }^{4}\) allow symmetry breaking to be performed in constant time and space during search using dedicated search procedures. Roney-Dougal et al. [47] generalized their idea and introduced GE-tree as a conceptual abstraction in symmetry breaking. A GE-tree with symmetry group \(G\) is a search tree such that (1) no search node of the tree is isomorphic (symmetrically equivalent) under \(G\) to any other node and (2) given a complete assignment \(\phi\), there is at least one leaf node of the tree which lies in the orbit of \(\phi\). Constructing and traversing a GE-tree breaks all symmetries in a CSP, although it is difficult in general to do so for arbitrary symmetries. Roney-Dougal et al. showed the tractability for the case of arbitrary value symmetries by giving a polynomial time algorithm to construct GE-trees for the case.

Constructing GE-trees for symmetries of some indistinguishable values \(\left\{v_{1}, \ldots, v_{k}\right\}\) under \(U\) can be equivalent to maintaining the value precedence \(v_{1} \prec_{\vec{u}} \ldots \prec_{\vec{u}} v_{k}\), where \(\vec{u}\) is a sequence of the variables in \(U\). Figure 9 shows a GE-tree for the symmetries of indistinguishable values \(\{1,2,3,4\}\) under \(U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\), where \(D\left(x_{i}\right)=\{1,2,3,4\}\) for \(1 \leq i \leq 4\). In the tree, each level of nodes (except the leaf level) represents a variable to be labeled. Each edge under a node represents a domain value that is chosen in the labeling process. Therefore, a node can be thought of as a compound assignment constructed by traversing from the root of the tree to that node. The leaf nodes of the GE-tree represent the unique solutions under the symmetries. This GE-tree tree can be constructed using a simple rule [49]: at each node whose level corresponds to variable \(x_{i}\), suppose the node represents a compound assignment \(\phi\). We construct edges for the domain values of \(x_{i}\) that have occurred in \(\phi\), collected in a set \(V_{\text {old }}\), and exactly one edge for one new value that is not in \(V_{\text {old }}\), i.e.,

\footnotetext{
\({ }^{4}\) Van Hentenryck et al. [49] used the term interchangeable values to denote indistinguishable values.
}


Fig. 9 A GE-tree for the indistinguishable values \(\{1, \ldots, 4\}\) under \(\left\{x_{1}, \ldots, x_{4}\right\}\)
one value in \(D\left(x_{i}\right) \backslash V_{\text {old }}\). For example, in Fig. 9, consider the node representing the compound assignment \(\phi=\left\{x_{1} \mapsto 1, x_{2} \mapsto 2\right\}\), i.e., the rightmost node in level \(x_{3}\). Values 1 and 2 occur in \(\phi\). Therefore, \(V_{\text {old }}=\{1,2\}\) and we construct edges labeled 1 and 2. Furthermore, we construct eactly one edge whose value is in \(D\left(x_{3}\right) \backslash V_{\text {old }}\). In this example, we choose the value 3 among values 3 and 4 . Hence, we construct three edges labeled 1,2 , and 3 for this node.

The solutions in the GE-tree are collected in Fig. 10. It can be seen that the solutions are exactly the same as those of \(1 \prec_{\vec{u}} 2 \prec_{\vec{u}} 3 \prec_{\vec{u}} 4\), where \(\vec{u}=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle\).

Although GE-trees can be constructed tractably for arbitrary value symmetries, we break symmetries of indistinguishable values \(\left\{v_{0}, \ldots, v_{k-1}\right\}\) using \(O(k)\) or \(O\left(k^{2}\right)\) value precedence constraints, depending on the adjacent-pair or all-pair of postings. Value precedence constraints can also be used to break such symmetries on set variables, which is not defined for GE-trees.

\section*{7 Concluding Remarks}

We conclude the paper by summarizing our contributions and giving discussions and possible directions for future research.

\subsection*{7.1 Contributions}

We have proposed two methods of using symmetry breaking constraints to break value symmetries in CSPs. The contributions of our work can be summarized as follows. First, we have introduced the framework of Multi-aspect Assignment Problems (MAPs), and shown in general how to derive \(n+1\) CSP viewpoints for a MAP with \(n\) aspects. The viewpoints are called aspect viewpoints and \(0 / 1\) viewpoint.


Fig. 10 Solutions of \(1 \prec_{\vec{u}} 2 \prec_{\vec{u}} 3 \prec_{\vec{u}} 4\), where \(\vec{u}=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle\)

Matrix models can then be built using these viewpoints. Many combinatorial problems are instances of MAPs. Hence, our framework allows handy choices of viewpoints for CSP modelers. Second, we have identified the conditions when value symmetries in one aspect viewpoint of a MAP correspond to variable symmetries in another (aspect or 0/1) viewpoint of the same MAP. While value symmetries breaking constraints can be difficult to formulate and express, our work gives possibilities of breaking value symmetries as variable symmetries in another viewpoint with the aid of channeling constraints. Third, we have introduced the notions of aspect priorities and scanning sequences. Using these notions, we have established theorems to identify when symmetry breaking constraints in two viewpoints, connected using channeling constraints, are consistent.

Fourth, we have introduced the notion of value precedence and shown how the notion can be used to design constraints for breaking a common class of value symmetries, namely the symmetries of indistinguishable values. Fifth, we have presented two efficient propagation algorithms for implementing global constraints on integer and set value precedence, enforcing GAC and SBC respectively. The global constraints avoid the use of inefficient if-then constraints. Sixth, we have given theoretical results to characterize several properties of our proposed algorithms in different usage scenarios.

\subsection*{7.2 Discussion}

Breaking value symmetries with symmetry breaking constraints is not an easy task. We have proposed two methods to tackle this problem. On one hand, the multiple viewpoints method is purely a modeling technique, involving no invention of specialized propagation algorithms and no alteration to the underlying CSP solver. The method can sometimes tackle arbitrary value symmetries. On the other hand, we design and implement propagation algorithms for developing two global constraints to maintain value precedence. Experimental results show that the two proposed methods are always better than using if-then constraints. Using global constraints is generally more efficient than the multiple viewpoints method, since propagation algorithms are specially designed and no additional variables and channeling constraints are required. The performance of the two methods is reversed only in cases when special modeling tricks can be applied in the additional viewpoint used by the multiple viewpoints method. This, however, does not imply that the multiple viewpoints method is inferior. In fact, the strength of the method lies in exactly the possibility of applying modeling tricks, which is less available to the method of using global constraints in a single viewpoint. Therefore, both methods have their own merits and are valuable to value symmetry breaking. Actually, as we have shown in the Steiner triple system, the two proposed methods do not compete but are complementary to each other. They can be used together; the overall benefits are more than those of using either method alone.

\subsection*{7.3 Future Work}

Our work proposes a study of using symmetry breaking constraints for value symmetries in CSPs. There is scope for future work. First, Theorem 7, which states the conditions when variable breaking constraints in two aspect viewpoints are
consistent, is applicable to only variable symmetries corresponding to symmetries of indistinguishable values in one of the aspect viewpoints. Theorem 6, which states the consistency conditions of variable symmetry breaking constraints between an aspect viewpoint and the \(0 / 1\) viewpoint, is applicable to arbitrary value symmetries. It would be interesting to generalize Theorem 7 to cover arbitrary value symmetries also.

Second, we have shown in Theorem 16 that GAC on integer value precedence on all pairs of indistinguishable values is strictly stronger than GAC on adjacent pairs of indistinguishable values. However, in our benchmarks using the integer value precedence constraint, models using adjacent-pair and all-pair postings always achieve the same number of fails. It is worthwhile to reason about this phenomenon. Third, the value precedence global constraints can be extended and generalized. For example, a propagation algorithm for maintaining value precedence of multiple values may be designed so that symmetries of multiple indistinguishable values can be broken using only one global constraint. Besides, the antecedent and subsequent in value precedence can be also integer variables instead of simply integer constants in our current implementations, so that the generalized constraints have additional usage besides symmetry breaking. Fourth, our current implementations of the value precedence global constraints enforce GAC and SBC respectively. It would be interesting to design propagation algorithms that enforce other local consistencies, such as bounds consistency for integer value precedence.

Fifth, we have identified and designed constraints to break the symmetries of indistinguishable values. It is possible to do the same for other classes of value symmetries, or even arbitrary symmetries. Since using constraints for breaking symmetries does not involve modifying the underlying CSP solver, such work make symmetry breaking techniques more accessible to CSP modelers. Sixth, in the benchmark of Steiner triple systems, we have demonstrated that the model using both value precedence constraints and the multiple viewpoint approach achieves the best results. A promising future work is to investigate combining different methods of breaking symmetries.

Acknowledgments We thank the anonymous referees from CP'04, SAC'05, and the Constraints journal for their constructive comments which help improve the quality of the paper. We also acknowledge The University of York for providing the source of the lexicographic ordering global constraints for our reference. The work described in this paper was substantially supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region (Project no. CUHK4131/05E and CUHK4219/04E).

\section*{References}
1. ILOG Solver 4.4 Reference Manual (1999).
2. GAP 4.4.5 Reference Manual (2005).
3. Aloul, F. A., Sakallah, K. A., \& Markov, I. L. (2003). Efficient symmetry breaking for boolean satisfiability. In Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 271-276.
4. Backofen, R., \& Will, S. (1999). Excluding symmetries in constraint-based search. In Proceedings of the 5th International Conference on Principles and Practice of Constraint Programming, pp. 73-87.
5. Backofen, R., \& Will, S. (2002). Excluding symmetries in constraint-based search. Constraints, 7, 333-349.
6. Barnier, N., \& Brisset, P. (2002). Solving the Kirkman's schoolgirl problem in a few seconds. In Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming, pp. 477-491.
7. Barnier, N., \& Brisset, P. (2005). Solving Kirkman's schoolgirl problem in a few seconds. Constraints, 10(1), 7-21.
8. Bartlett, M., Frisch, A. M., Hamadi, Y., Miguel, I., Tarim, S. A., \& Unsworth, C. (2005). The temporal knapsack problem and its solution. In Proceedings of the 2nd International Conference on Integration of \(A I\) and \(O R\) Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 34-48.
9. Beldiceanu, N., Carlsson, M., \& Petit, T. (2004). Deriving filtering algorithms from constraint checkers. In Proceedings of the 10th International Conference on Principles and Practice of Constraint Programming, pp. 107-122.
10. Benhamou, B. (1994). Study of symmetry in constraint satisfaction problems. In Proceedings of the 2nd Workshop on Principles and Practice of Constraint Programming.
11. Bessiere, C., Hebrard, E., Hnich, B., \& Walsh, T. (2004). The complexity of global constraints. In Proceedings of the 19th National Conference on Artificial Intelligence, pp. 112-117.
12. Brélaz, D. (1979). New methods to color the vertices of a graph. Communications of ACM, 22(4), 251-256.
13. Carlsson, M., \& Beldiceanu, N. (2002). Arc-consistency for a chain of lexicographic ordering constraints. Technical Report T2002-18, Swedish Institute of Computer Science.
14. Carlsson, M., \& Beldiceanu, N. (2002). Revisiting the lexicographic ordering constraint. Technical Report T2002-17, Swedish Institute of Computer Science.
15. Cheng, B.M.W., Choi, K.M.F., Lee, J.H.M., \& Wu, J.C.K. (1999). Increasing constraint propagation by redundant modeling: An experience report. Constraints, 4(2), 167-192.
16. Choi, C.W., Lee, J.H.M., \& Stuckey, P.J. (2003). Propagation redundancy in redundant modelling. In Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming, pp. 229-243.
17. Choi, C.W., Lee, J.H.M., \& Stuckey, P.J. (2006). Removing propagation redundant constraints in redundant modeling. ACM Transaction on Computational Logic. to appear.
18. Crawford, J., Ginsberg, M., Luks, E., \& Roy, A. (1996). Symmetry-breaking predicates for search problems. In Proceedings of the 5th International Conference on Principles of Knowledge Representation and Reasoning, pp. 148-159.
19. Debruyne, R., \& Bessiere, C. (1997). Some practicable filtering techniques for the constraint satisfaction problem. In Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 412-417.
20. Fahle, T., Schamberger, S., \& Sellmann, M. (2001). Symmetry breaking. In Proceedings of the 7th International Conference on Principles and Practice of Constraint Programming, pp. 93-107.
21. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., \& Walsh, T. (2002). Breaking row and column symmetries in matrix models. In Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming, pp. 462-476.
22. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., \& Walsh, T. (2001). Matrix modelling. In Proceedings of the Workshop on Modelling and Problem Formulation.
23. Focacci, F., \& Milano, M. (2001). Global cut framework for removing symmetries. In Proceedings of the 7th International Conference on Principles and Practice of Constraint Programming, pp. 77-92.
24. Freuder, E.C. (1991). Eliminating interchangeable values in constraint satisfaction problems. In Proceedings of the 9th National Conference on Artificial Intelligence, pp. 227-233.
25. Frisch, A., Miguel, I., Kiziltan, Z., Hnich, B., \& Walsh, T. (2003). Multiset ordering constraints. In Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 221-226.
26. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., \& Walsh, T. (2002). Global constraints for lexicographical orderings. In Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming, pp. 93-108.
27. Frisch, A.M., Jefferson, C., \& Miguel, I. (2003). Constraints for breaking more row and column symmetries. In Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming, pp. 318-332.
28. Gent, I.P. (2001). A symmetry breaking constraint for indistinguishable values. In Proceedings of the 1st International Workshop on Symmetry in Constraint Satisfaction Problems.
29. Gent, I.P., Harvey, W., \& Kelsey, T. (2002). Groups and constraints: Symmetry breaking during search. In Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming, pp. 415-430.
30. Gent, I.P., Harvey, W., Kelsey, T., \& Linton, S. (2003). Generic SBDD using computational group theory. In Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming, pp. 333-347.
31. Gent, I.P., \& Smith, B.M. (2000). Symmetry breaking during search in constraint programming. In Proceedings of the 14th European Conference on Artificial Intelligence, pp. 599-603.
32. Gervet, C. (1997). Interval propagation to reason about sets: Definition and implementation of a practical language. Constraints, 1(3), 191-244.
33. Kirkman, T.P. (1847). On a problem in combinatorics. Camb. Dublin Math. J. 2, 191-204.
34. Kiziltan, Z. (2004). Symmetry Breaking Ordering Constraints. PhD thesis, Uppsala universitet.
35. Law, Y.C. (2005). Using Constraints to Break Value Symmetries in Constraint Satisfaction Problems. PhD thesis, The Chinese University of Hong Kong.
36. Law, Y.C., \& Lee, J.H.M. (2004). Global constraints for integer and set value precedence. In Proceedings of the 10th International Conference on Principles and Practice of Constraint Programming, pp. 362-376.
37. Law, Y.C., \& Lee, J.H.M. (2005). Breaking value symmetries in matrix models using channeling constraints. In Proceedings of the 20th Annual ACM Symposium on Applied Computing, pp. 375-380.
38. Mackworth, A.K. (1977). Consistency in networks of relations. Artificial Intelligence, 8(1), 99118.
39. Meseguer, P., \& Torras, C. (1999). Solving strategies for highly-symmetric CSPs. In Proceedings of the 16th International Joint Conference on Artificial Intelligence, pp. 400-405.
40. Meseguer, P., \& Torras, C. (2001). Exploiting symmetries within constraint satisfaction search. Artificial Intelligence, 129(1-2), 133-163.
41. Mohr, R., \& Masini, G. (1988). Good old discrete relaxation. In Proceedings of the 8th European Conference on Artificial Intelligence, pp. 651-656.
42. Pierskalla, W.P. (1968). The multidimensional assignment problem. Operational Research, 16(2), 422-431.
43. Puget, J.-F. (1993). On the satisfiability of symmetrical constrained satisfaction problems. In Proceedings of the 7th International Symposium on Methodologies for Intelligent Systems, pp. 350-361.
44. Puget, J.-F. (2002). Symmetry breaking revisited. In Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming, pp. 446-461.
45. Puget, J.-F. (2003). Symmetry breaking using stabilizers. In Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming, pp. 585-599.
46. Puget, J.-F. (2005). Symmetry breaking revisited. Constraints, 10(1), 23-46.
47. Roney-Dougal, C.M., Gent, I.P., Kelsey, T., \& Linton, S. (2004). Tractable symmetry breaking using restricted search trees. In Proceedings of the 16th European Conference on Artificial Intelligence, pp. 211-215.
48. Smith, B.M., \& Gent, I.P. (2001). Reducing symmetry in matrix models: SBDS v. constraints. In Proceedings of the Workshop on Symmetry in Constraint Satisfaction Problems.
49. Van Hentenryck, P., Flener, P., Pearson, J., \& Agren, M. (2003). Tractable symmetry breaking for CSPs with interchangeable values. In Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 277-282.```


[^0]:    Y. C. Law ( $\boxtimes$ ) J. H. M. Lee

    Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
    e-mail: yclaw@cse.cuhk.edu.hk
    J. H. M. Lee
    e-mail: jlee@cse.cuhk.edu.hk

[^1]:    ${ }^{1}$ Available at http://www.csplib.org/.

