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Abstract

Set variables are ubiquitous in modeling (soft) con-
straint problems, but efforts on practical consistency al-
gorithms for Weighted Constraint Satisfaction Problems
(WCSPs) have only been on integer variables. We adapt
the classical notion of set bounds consistency for WC-
SPs, and propose efficient representation schemes for
set variables and common unary, binary, and ternary set
constraints, as well as cardinality constraints. Instead
of reasoning consistency on an entire set variable di-
rectly, we propose local consistency check at the set ele-
ment level, and demonstrate that this apparent “micro”-
management of consistency does imply set bounds con-
sistency at the variable level. In addition, we prove that
our framework captures classical CSPs with set vari-
ables, and degenerates to the classical case when the
weights in the problem contain only 0 and >. Last
but not least, we verify the feasibility and efficiency of
our proposal with a prototype implementation, the effi-
ciency of which is competitive against ILOG Solver on
classical problems and orders of magnitude better than
WCSP models using 0-1 variables to simulate set vari-
ables on soft problems.

Introduction

Many constraint problems can be modeled naturally using
set variables. This is no exception with weighted constraint
satisfaction problems (WCSPs). A set variable with n pos-
sible set elements has a domain of size 2n. Domain consis-
tency techniques (Larrosa 2002) developed for integer vari-
ables cannot be practically adapted for set variables since
these techniques require all elements of a variable domain
to be represented explicitly. Following Gervet (1997), we
propose efficient set bounds consistency techniques for set
variables which reason only on the bounds of the variables.

Constraints in WCSPs are cost functions, mapping tuples
to costs. Instead of specifying the cost functions at the tu-
ples (of set values) level, we devise a general scheme for
representing tuple costs according to costs associated with
the existence and inexistence of elements in the set values.
This scheme allows us to specify cost functions to all com-
mon set operations and constraints, and degenerates to clas-
sical CSPs with set variables when all costs are either 0 or
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>. Node, arc, hyper-arc, and cardinality consistency no-
tions and the associated enforcement algorithms are defined
for unary, binary, ternary, and cardinality constraints at the
set element level respectively. We show that these element
consistencies imply set bounds consistency (Gervet 1997;
Müller & Müller 1997; Hawkins, Lagoon, & Stuckey 2005)
generalized for WCSPs. We construct a prototype im-
plementation of our algorithms by modifying the ToolBar
WCSP solver (Bouveret et al. 2004). Experiments are
conducted to compare our implementation against ILOG
Solver (ILOG 2003) on classical set CSPs, and against 0-
1 variable emulation of set variables in ToolBar on softened
versions of the same classical benchmarks. Results confirm
that our implementation is more efficient than ILOG Solver
on classical problems and two orders of magnitude better
than WCSP models using 0-1 variable to simulate set vari-
ables on soft problems.

Background

A classical constraint satisfaction problem (CSP) is a tuple
P = (X ,D, C) where X is a finite set of variables, D is a
finite set of variable domains, and C is a finite set of con-
straints. A variable xi ∈ X can only be assigned with
a value from its variable domain D(xi) ∈ D. Each con-
straint Ci1,...,in

∈ C restricts the values taken by the vari-
ables xi1 , . . . , xin

simultaneously.
Gervet (1997) proposed a framework to handle set vari-

ables in classical CSP. The framework allows the specifi-
cation of common set constraints involving set operations:
union (∪), intersection (∩), difference (\), and set relations:
subset (⊆) and equality (=).

The domain of a set variable S is approximated by a set
interval. The set interval is specified by its upper bound and
lower bound. The upper bound contains all the set elements
that may be in the set value and the lower bound contains all
the set elements that must exist in the set value. The upper
bound and the lower bound are also called the possible set
PS(S) and the required set RS(S) respectively, which are
ordered by set inclusion: RS(S) ⊆ PS(S). The set inter-
val [RS(S), PS(S)] represents the set {A|RS(S) ⊆ A ⊆
PS(S)}. For example, the set interval [{a, b}, {a, b, c, d}]
represents the set: {{a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}}.
Constraint propagation is done on the set intervals by enforc-
ing set bounds consistency (Gervet 1997; Müller & Müller



1997; Hawkins, Lagoon, & Stuckey 2005).

Definition 1. A set variable S with set interval domain
[RS(S), PS(S)] is set bounds consistent w.r.t. a constraint
C if and only if RS(S) =

⋂

{v} ∧ PS(S) =
⋃

{v},∀v ∈
[RS(S), PS(S)] ∧ v satisfies C.

A weighted constraint satisfaction problem (WCSP) ex-
tends the CSP framework by associating costs to the tuples
of variable assignments. Each cost indicates the degree of
preference for the tuple. Costs are specified by the valuation
structure S = (E,⊕,�). E is the set of costs which is to-
tally ordered by �. The costs are combined by the operator
⊕. The maximum and minimum costs are denoted as > and
⊥ respectively.

A Weighted Constraint Satisfaction Problem (WCSP) is a
tuple P = (k,X ,D, C). X and D are the set of variables
and set of domains respectively. C is a set of cost func-
tions. The valuation structure is S(k) which denotes a triple
([0, 1, . . . , k],⊕,≥), where k ∈ [1, . . . ,∞]. The operator
⊕ is defined as a ⊕ b = min{k, a + b}. The set is totally
ordered by the standard order ≥. There is a zero-arity con-
straint which implies the global lower bound of the problem.

The cost V(t) of a tuple of variable assignment t can be
obtained by combining the costs for all constraints.

V(t) =
∑

Ci1...in
∈C,

{xi1
,...,xin}⊆var(t)

Ci1...in
(t ↓{xi1

,...,xin}) ⊕ C∅

The projection notation t ↓{xi1
,...,xin} means projecting t

on {xi1 , . . . , xin
}. If V(t) < >, the tuple t is said to be con-

sistent. There are some consistency notions and consistency
enforcing algorithms defined in WCSPs to reduce the search
space by local information. These includes the star node
consistency and arc consistency defined by Larrosa (2002).
In solving a WCSP, we are finding a complete consistent as-
signment with the minimum cost.

WCSPs with Set Variables
In WCSPs, if we model a set variable with the domain
containing all the possible set values, the time and space
complexity makes solution searching impractical. We ob-
serve that common set constraints only consider the exis-
tence state of each particular set element individually. For
example, the subset constraint Si ⊆ Sj restricts each possi-
ble element a among the set variables Si and Sj , such that
a ∈ Si → a ∈ Sj . As a result, we can refine set constraints
to consider the existence state of each set element for the sat-
isfiability in classical CSPs and also for the cost in WCSPs.

Soft Set Variables

A set variable S is associated with a domain of integer sets
and a universal set U where U =

⋃

D0(S) and D0(S) is the
initial domain of variable S. The domain of S is presented
by the cost of its existence and inexistence of each set ele-
ment. When we assign > to the existence (resp. inexistence)
of a set element, we prohibit the set variable to contain (resp.
remove) the set element. When the cost is less than >, we
allow the existence (resp. inexistence) of the set element.
The domain of a set variable is also its unary constraint.

Soft Set Constraints

Set constraints defined here consider the existence state of
each set element. This nature allows us to express the com-
mon soft set constraints which include element membership
(a ∈ Si, a /∈ Si), equality (Si = Sj), subset (Si ⊆ Sj),
union (Si ∪ Sj = Sk), intersection (Si ∩ Sj = Sk), differ-

ence1 (Si\Sj = Sk), and cardinality (|Si| = n, |Si| ≤ n,
|Si| ≥ n) where n is a constant.

In this paper, we focus on unary, binary, ternary, and car-
dinality constraints. These constraints enable us to express
the common set constraints listed above with set variables.
Since the performance of constraint propagation will de-
grade when the arity of a constraint is high, such kind of con-
straints is usually decomposed to some primitive low arity
constraints by introducing auxiliary variables (Cleary 1987;
Gervet 1997). For example, the constraint S1∩S2 ⊆ S3∪S4

can be decomposed to S1 ∩ S2 = A1, S3 ∪ S4 = A2 and
A1 ⊆ A2 with the introduction of two auxiliary set variables
A1 and A2. However, our definitions and algorithms do not
restrict the arity of the constraints theoretically.

Definition 2. An existence state of a set element a w.r.t. a set
value u is the boolean value of a ∈ u with possible values
true (t) and false (f ).

Since the cost of a constraint is determined by the exis-
tence states of the set elements, we decompose the cost of
the constraint by the corresponding element cost functions
to reflect this relation. An element cost function maps the
existence states {t, f} of a set element to an element cost.
The cost for the constraint is the sum of all the element costs
given from the set of refined element cost functions for that
constraint. This approach gives compact representation of
constraints. Figure 1 shows an example of 2 ∈ S1 ∧ 3 /∈ S2

and S1 ⊆ S2. A dotted rectangle represent a set variable.
Each oval in the rectangle is associated with a set element.
The two circles in the oval represent the existence states of
the set element and contains the corresponding unary costs.
The binary costs between two set variables are indicated on
the lines representing constraints.
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Figure 1: (a) 2 ∈ S1 ∧ 3 /∈ S2 (b) S1 ⊆ S2

The Zero-arity Constraint As in WCSPs, there is a zero-
arity constraint C∅ in the problem. The cost of the zero-arity
constraint can be interpreted as the global lower bound of the
problem. The problem contains no solutions when C∅ = >.

Unary Constraints A unary constraint Ci assigns costs
to assignments to variable Si (Ci : D(Si) → [0, . . . , k]).

1Complementation can be implemented using difference.



The corresponding unary element cost function, which as-
signs costs for the existence (t) and inexistence (f ) for
each set element a ∈ Ui w.r.t. set variable Si, is ϕ(i)/a :
{t, f} → [0, . . . , k]. The unary cost is decomposed as
Ci(u) =

∑

a∈Ui
ϕ(i)/a(a ∈ u).
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Figure 2: (a) An example WCSP (b) ENC and EAC

In the WCSP in Figure 2(a), for example, the cost of 2 ∈
S1 is 0 while that of 2 /∈ S1 is 3:

ϕ(1)/2(α) =

{

0 if α = t;
3 if α = f.

The cost C1({1, 2}) for the unary constraint C1 on {1, 2}
equals the sum of all the unary element costs:

C1({1, 2}) = ϕ(1)/1(t) ⊕ ϕ(1)/2(t) ⊕ ϕ(1)/3(f)

= 1 ⊕ 0 ⊕ 0 = 1

As in integer WCSPs, we assume there is a unary con-
straint for each set variable. The domain and unary con-
straint of a set variable is interchangeable. When Ci(u) =
>, the unary constraint prohibits the variable Si taking the
set value u; otherwise it allows such assignment with cost
Ci(u). As reasoning on each domain value for a set variable
is impractical, we focus on the bounds of a domain.

Definition 3. The domain bounds of a set variable Si is
[RS(Si), PS(Si)] such that ∀a ∈ RS(Si), ϕ(i)/a(f) ⊕
C∅ = > and ∀b ∈ PS(Si), ϕ(i)/b(t) ⊕ C∅ < >.

When ϕ(i)/a(t) ⊕ C∅ < >, the unary element cost func-
tion allows the existence of the set element a in the set Si

with the corresponding cost. Therefore the set element a
can exist in the set. When ϕ(i)/a(f) ⊕ C∅ = >, the unary
element cost function forbids the inexistence of the set el-
ement a, and the set element a must exist in the set. Ac-
cording to the unary constraint Ci in Figure 2(a), we have
PS(Si) = {1, 2} and RS(Si) = {2} since C∅ = 0 and
> = 3.

Binary Constraints A binary constraint Cij assigns costs
to assignments to variables Si and Sj (Cij : D(Si) ×
D(Sj) → [0, . . . , k]). The corresponding binary element
cost function, which assigns costs for the existence states
of a set element a ∈ Ui ∪ Uj for set variables Si and
Sj , is ϕ(i,j)/a : {t, f} × {t, f} → [0, . . . , k]. Since

Ui may not be equal to Uj , ∀α, β ∈ {t, f}, the binary
element cost function ϕ(i,j)/a(t, α) = >,∀a /∈ Ui and

ϕ(i,j)/a(β, t) = >,∀a /∈ Uj . The binary constraint of

the set variables Si and Sj can be refined as: Cij(u, v) =
∑

a∈Ui∪Uj
ϕ(i,j)/a(a ∈ u, a ∈ v).

Figure 2(a) shows the binary element costs among the set
elements of S1 and S2. The costs are indicated on the lines
linking the existence states of the elements in the two sets.
No line is drawn if the cost is 0. According to the figure, the
element cost for 1 in S1 and S2 is:

ϕ(1,2)/1(α, β) =

{

1 if α = t ∧ β = t;
3 if α = f ∧ β = t;
0 otherwise

The binary cost for S1 = {1, 2, 3} and S2 = {1, 3} is the
sum of all the binary element costs:

C12({1, 2, 3}, {1, 3})

= ϕ(1,2)/1(t, t) ⊕ ϕ(1,2)/2(t, f) ⊕ ϕ(1,2)/3(t, t)

= 1 ⊕ 1 ⊕ 0 = 2

Ternary Constraints A ternary constraint Cijk assigns
costs to assignments to variables Si, Sj and Sk (Cijk :
D(Si)×D(Sj)×D(Sk) → [0, . . . , k]). The corresponding
ternary element cost function, which assigns costs to the ex-
istence states of a set element a ∈ Ui ∪Uj ∪Uk for variables
Si, Sj and Sk, is ϕ(i,j,k)/a : {t, f} × {t, f} × {t, f} →
[0, . . . , k].

Similar to the case for the binary constraint, there may
be an element a ∈ Ui ∪ Uj ∪ Uk where a /∈ Ui. In
this case, all the ternary element cost functions taking a ∈
Si return > as the cost. This is also the same for vari-
ables Sj and Sk. The ternary constraint of the set vari-
ables Si, Sj and Sk can be refined as: Cijk(u, v, w) =
∑

a∈Ui∪Uj∪Uk
ϕ(i,j,k)/a(a ∈ u, a ∈ v, a ∈ w).

Cardinality Constraints A cardinality constraint C|i| as-
signs costs to assignments to a set variable Si accord-
ing to the cardinality of Si. It is decomposed as C|i| =
(Cost|i| ◦ Card) where Card : D(Si) → N ∪ {0} and

Cost|i| : N ∪ {0} → [0, . . . , k]. This constraint first maps

the assignment of the variable Si to its cardinality |Si| by
using Card. It then assigns costs to |Si| by Cost|i|.

Property 1. All constraints in our framework can be mod-
eled as hard constraints in WCSP with costs 0 and >.

Proof. Some examples are listed in Table 1 while the con-
struction is similar for the rest of set constraints.

Set Constraint Equivalent Cost Function

a ∈ Si ϕ(i)/a(α) =
{

> if α = f ;
⊥ otherwise.

Si ⊆ Sj ∀a ∈ Ui ∪ Uj , ϕ(i,j)/a(α, β) =
{

> if α = t ∧ β = f ;
⊥ otherwise.

Si ∪ Sj = Sk ∀a ∈ Ui ∪ Uj ∪ Uk, ϕ(i,j,k)/a(α, β, γ) =

{

> if (α = t ∨ β = t) ∧ γ = f ;
> if α = f ∧ β = f ∧ γ = t;
⊥ otherwise.

Si ∩ Sj = Sk ∀a ∈ Ui ∪ Uj ∪ Uk, ϕ(i,j,k)/a(α, β, γ) =

{

> if (α = f ∨ β = f) ∧ γ = t;
> if α = t ∧ β = t ∧ γ = f ;
⊥ otherwise.

Si\Sj = Sk ∀a ∈ Ui ∪ Uj ∪ Uk, ϕ(i,j,k)/a(α, β, γ) =







> if β = t ∧ γ = t;
> if α = t ∧ β = f ∧ γ = f ;
> if α = f ∧ β = f ∧ γ = t;
⊥ otherwise.

|Si| = m C|i| =
{

> if |Si| 6= m;
⊥ otherwise.

Table 1: Soft versions of some classical set constraints



Property 2. When a WCSP with set variables involves only
0 and > in the element costs, the WCSP can be transformed
into a problem with classical set constraints only.

Proof. Since constraints in a WCSP can be refined to cor-
responding element cost functions, this can be shown by
transforming every element cost function to a classical mem-
bership constraint. For each unary element cost function,
ϕ(i)/a(t) = > becomes a /∈ Si and ϕ(i)/a(f) = > becomes
a ∈ Si. The transformations for binary element cost func-
tions are listed below.

Cost Function Classical Constraint

ϕ(i,j)/a(t, t) = > a /∈ (Si ∩ Sj)
ϕ(i,j)/a(t, f) = > a /∈ (Si\Sj)
ϕ(i,j)/a(f, t) = > a /∈ (Sj\Si)
ϕ(i,j)/a(f, f) = > a ∈ (Si ∪ Sj)

The transformations for ternary element cost functions are
similar. For the cardinality constraints, we transform each n
such that Cost|i|(n) = > to |Si| 6= n as a classical con-
straint.

Theorem 1. WCSP with set variables subsumes CSP with
set variables.

Proof. This follows directly from Properties 1 and 2.

Consistency Notions

As we are dealing with element cost functions, local consis-
tency notions are defined at the element level. Element node
consistency, element arc consistency, and element hyper-arc
consistency are defined for the corresponding element cost
functions.

Definition 4. An existence state α of set element a is element
node consistent (ENC) w.r.t. unary constraint Ci if C∅ ⊕
ϕ(i)/a(α) < >. A set element is ENC if (1) all its possible
existence states are ENC w.r.t. unary constraint Ci and (2)
∃α ∈ {t, f} such that ϕ(i)/a(α) = ⊥. The existence state α
is a support for the set element a. The set variable is ENC
w.r.t. unary constraint Ci if every set element is ENC. The
problem is ENC if every set variable is ENC.

Definition 5. An existence state α of set element a is element
arc consistent (EAC) w.r.t. binary constraint Cij if ∃β ∈
{t, f} such that ϕ(i,j)/a(α, β) = ⊥. An existence state β is
a support of the existence state α. The set element is EAC
if all its possible existence states is EAC w.r.t. the binary
constraint Cij . A set variable is EAC if every set element
is EAC w.r.t. binary constraint Cij . The problem is EAC if
every set variable is EAC and ENC.

Definition 6. An existence state α of set element a is element
hyper-arc consistent (EHAC) w.r.t. ternary constraint Cijk if
∃β, γ ∈ {t, f} such that ϕ(i,j,k)/a(α, β, γ) = ⊥. Existence
states β and γ are supports of the existence state α. The set
element is EHAC if all its possible existence states is EHAC
w.r.t. ternary constraint Cijk. A set variable is EHAC if ev-
ery set element is EHAC w.r.t. ternary constraint Cijk. The
problem is EHAC if every set variable is EHAC and ENC.

For the cardinality constraint, we adopt a weighted car-
dinality consistency which maintains the maximum cardi-
nality interval inside the range [|RS(Si)|, |PS(Si)|] for the
corresponding set variable Si while removing the inconsis-
tent cardinality from the bounds.

Definition 7. The cardinality upper bound ub(|Si|) and
lower bound lb(|Si|) of a cardinality constraint C|i| are the
maximum and minimum cardinalities, respectively, such that
Cost|i| ⊕ C∅ < >.

Definition 8. A set variable Si is weighted cardinality
consistent (WCC) w.r.t. a cardinality constraint C|i| if (1)

the cardinality upper bound ub(|Si|) ≤ |PS(Si)| and
the cardinality lower bound lb(|Si|) ≥ |RS(Si)|, (2)
Cost|i|(lb(|Si|)) ⊕ C∅ < > and Cost|i|(ub(|Si|)) ⊕ C∅ <
>, and (3) ∃n such that lb(|Si|) ≤ n ≤ ub(|Si|) and
Cost|i|(n) = ⊥.

As in classical set CSPs, we do not reason about each
domain value in the set domain due to its high complexity.
Instead, we will enforce the consistency in the bounds of the
set domain. Since our constraints are refined to a set of el-
ement cost functions, we consider the cost for the existence
of each set element. In fact, this is equivalent to reasoning
on the bounds of set domains.

Definition 9. A set variable S is weighted set bounds con-
sistent (WSBC) w.r.t. a constraint C if RS(S) =

⋂

{u} ∧
PS(S) =

⋃

{u} where u ∈ [RS(S), PS(S)] and S = u
can be extended to a tuple t such that C(t) ⊕ C∅ < >.

Theorem 2. A set variable is WSBC w.r.t. unary constraint
Ci (or binary constraint Cij or ternary constraint Cijk) if it
is ENC (or EAC or EHAC).

Proof. By the definition of RS(S) and PS(S) for set vari-
able S, it is trivial that any set element in RS(S) must exist
and any set element not in PS(S) must not exist. The fol-
lowing proves that no extra elements can be put in RS(S)
or taken out from PS(S) when ENC (or EAC or EHAC) is
enforced.

For unary constraint, suppose ∃a /∈ RS(Si) such that
∀u ∈ D(Si), a /∈ u → C(u) ⊕ C∅ = >. When Si is ENC,
a /∈ RS(Si) implies C∅ ⊕ ϕ(i)/a(f) < >. We can always

construct a set value v for Si such that Ci(v) = 0. Now, we
set a /∈ Si and form new a set value w with cost ϕ(i)/a(f),
then Ci(w) ⊕ C∅ < > leads to contradiction. For binary
(or ternary) constraint, when Si is EAC (or EHAC) we can
find a support for the set value w′ for Si where a /∈ w′

with cost 0 w.r.t. the binary (ternary) constraint. Therefore,
a /∈ RS(Si).

On the other hand, suppose ∃a ∈ PS(Si) such that ∀u ∈
D(Si), a ∈ u → C(u) ⊕ C∅ = >. Since a ∈ PS(Si),
C∅ ⊕ ϕ(i)/a(t) < >. We can always construct a set value v
for Si such that Ci(v) = 0. Now we set a ∈ Si and form a
set value w with cost ϕ(i)/a(t), then Ci(w)⊕C∅ < > leads
to contradiction. Similar to the above case, we can find a
support for w′ for Si where a ∈ w′ with cost 0 w.r.t. the
binary (ternary) constraint. Therefore, a ∈ PS(Si).

Theorem 3. When a WCSP with set variables involves costs
0 and > only, WSBC = SBC.



Proof. By the definition of RS(S) and PS(S) for set vari-
able S, since ∀a ∈ RS(S), C∅ ⊕ ϕ(i)/a(f) = >, any

set value must contain element a. In addition, since ∀a /∈
PS(S), C∅ ⊕ϕ(i)/a(t) = >, any set value must not contain
a. According to Theorem 2, WSBC ensures that each set
element a ∈ PS(S)\RS(S) can be extended to form a set
value with cost C∅ ⊕ ϕ(i)/a(t) < >. Since there are costs 0

and > only, C∅ ⊕ ϕ(i)/a(t) = 0 which implies that the set
element a can be contained in the set value.

Procedure ReviseCardinality(i)1

lb(|Si|) := max(lb(|Si|), |RS(Si)|);2

ub(|Si|) := min(ub(|Si|), |PS(Si)|);3

while Cost|i|(lb(|Si|)) ⊕ C∅ = > do4

lb(|Si|) := lb(|Si|) + 1;5

while Cost|i|(ub(|Si|)) ⊕ C∅ = > do6

ub(|Si|) := ub(|Si|) − 1;7

if lb(|Si|) = ub(|Si|) then8

if lb(|Si|) = |RS(Si)| then9

for a ∈ PS(Si)\RS(Si) do push(Q,Si, a);10

PS(Si) := RS(Si);11

if ub(|Si|) = |PS(Si)| then12

for a ∈ PS(Si)\RS(Si) do push(Q,Si, a);13

RS(Si) := PS(Si);14

Function BoundsChanged(i, a) : Boolean15

change := false;16

if C∅ ⊕ ϕ(i)/a(t) = > then17

PS(Si) := PS(Si)\{a}; change := true;18

else if C∅ ⊕ ϕ(i)/a(f) = > then19

RS(Si) := RS(Si) ∪ {a}; change := true;20

if change then ReviseCardinality (i);21

return change;22

Procedure WSBC(X ,D, C)23

for Si ∈ X do for a ∈ Ui do push(Q,Si, a);24

while Q 6= ∅ do25

(Si, a) := pop(Q);26

FindUnarySupports (i, a);27

for Cij ∈ C do28

FindBinarySupports (i, j, a);29

if BoundsChanged (j, a) then30

Q := Q ∪ (xj , a);31

for Cijk ∈ C do32

FindTernarySupports (i, j, k, a);33

if BoundsChanged (j, a) then34

Q := Q ∪ (xj , a);35

if BoundsChanged (k, a) then36

Q := Q ∪ (xk, a);37

Algorithm 1: Enforcing WSBC

Enforcing Consistency

Consistencies can be enforced in a similar way as those
defined by Larrosa (2002). To enforce ENC, the cost
min{ϕ(i)/a(t), ϕ(i)/a(f)} is identified and added to the

global lower bound. At the same time, such unit of cost will
be subtracted from the unary element costs of a (ϕ(i)/a(t)
and ϕ(i)/a(f)). For the EAC and EHAC, we will find the
minimum cost for each existence state of a set element.
When the cost is identified, such cost will be added to the
unary cost of the corresponding existence state. At the same
time the related binary (resp. ternary) element costs will be
deducted by the same amount. This operation will be done in
FindUnarySupports, FindBinarySupports and
FindTernarySupports respectively.

For example, in Figure 2(a), the set element 1 of S1 is
not ENC. The minimum cost of the existence states is 1,
so 1 is sent to the global lower bound C∅ and each unary
element cost is decreased by 1. Also, the binary constraint
is not EAC because 1 ∈ S2 does not have a binary support.
The minimum cost among ϕ(1,2)/1(t, t) and ϕ(1,2)/1(f, t),
which is 1, is sent to the unary element cost of ϕ(2)/1(t).
Figure 2(b) shows the WCSP which is ENC and EAC.

For the cardinality consistency, it is required to enforce
whenever there is a change in the bounds of the domain.
This can be done by ReviseCardinality. In this pro-
cedure, the bounds of the cardinality constraint is first re-
vised to ensure the bounds are consistent. When the bounds
of cardinality are the same and it is equal to either the car-
dinality of PS(S) or RS(S), it will force the elements in
PS(S)\RS(S) to exist or not to exist in the set value ac-
cordingly. Algorithm 1 illustrates the process of maintaining
ENC, EAC, EHAC and WCC so as to enforce WSBC.

In WSBC, all the elements from the universal set
of each set variable are pushed to the queue. Sup-
pose there are n set variables with maximum num-
ber of elements e. There are ne elements in the
queue. For each element, there can be O(n) binary
constraints and O(n2) ternary constraints related to it.
Since each set element only has two existence states,
FindUnarySupports, FindBinarySupports and
FindTernarySupports take O(1) to scan for supports.
Each set element affect the bounds once when it is assigned
to exist or not exist in the set. The maximum queue size
is 2ne. The cardinality constraint is scanned once for the
whole iteration for each set variable, which has complexity
O(ne). The complexity is O(2ne(n+n2)+ne) = O(n3e).

Experimental Results

We modified ToolBar, a generic WCSP solver, to adopt set
variables and conducted experiments to verify the feasibil-
ity of our proposal. The comparison is made among our
prototype implementation, the original ToolBar and ILOG
Solver 6.0 (for classical cases only). While our implementa-
tion (labeled as TB-Set) and ILOG use set variables in mod-
eling, the problems are transformed to use 0-1 variables for
the original ToolBar (labeled as TB-01) to solve. The 0-1
versions of unary, binary and ternary constraints are similar
to the corresponding element cost functions. However, the
cardinality constraint on a set variable Si with |Ui| = n be-
comes an n-ary constraint which maps the existence states
of n set elements to the cost of its cardinality.

We experiment on the Steiner Triple System and the So-



cial Golfer Problem, which are well known set CSP bench-
marks. We solve for all solutions to make our results inde-
pendent of search heuristics. The problems are softened in
two ways. The first version Restricted is modified by assign-
ing unary cost randomly generated from 0 to 9 to each of the
unary element cost. The second version Relaxed is modi-
fied by replacing the cost > with a randomly generated cost
from 1 to >. The version Restricted reduces the search space
of the problem while Relaxed increases the search space. To
measure the runtime for these two versions, we generated 10
instances for each problem instance and report the average
runtime. The experiments were conducted on a Sun Blade
2500 (2 × 1.6GHz US-IIIi) machine with 2GB memory.

Steiner Triple System (CSPLib044)

This problem of order n is to find a set of n(n− 1)/6 triples
of distinct integer elements in {1, . . . , n} such that no two
triples have more than one common element.

Classical Restricted Relaxed

n ILOG TB-Set TB-01 TB-Set TB-01 TB-Set TB-01

6 0.10 0.05 1.64 0.05 1.68 0.21 2.84

7 31.52 16.84 - 5.40 263.51 46.17 -

Table 2: Runtime (in sec) for solving Steiner Triple System

The runtime of solving the problem for all solutions is
listed in Table 2 with ‘-’ indicating the program does not
stop in 600 seconds. Because of the long solving time for
the problem of order 9, we only focus on the problem up to
order 7. The results show that TB-Set is faster than ILOG
in solving the problem. When the problem is modeled with
0-1 variables, TB-01 requires longer time for solving. This
is because the existing consistency enforcing algorithms do
not perform well on the 0-1 variables. In addition, the 0-
1 representation of the cardinality constraints as non-binary
constraints further degrades the performance of TB-01.

The Social Golfer Problem (CSPLib010)

This problem is to schedule g groups of s golfers over w
weeks so that no two golfers play in the same group twice.

Classical Restricted Relaxed

g-s-w ILOG TB-Set TB-01 TB-Set TB-01 TB-Set TB-01

3-2-4 1.26 0.60 52.94 0.13 9.87 0.98 58.15

3-2-5 8.66 4.12 - 1.40 192.84 8.00 -

3-3-3 0.28 0.15 11.27 0.06 3.51 0.37 15.58

3-3-4 2.22 1.29 231.83 0.58 91.33 5.77 402.20

4-2-3 58.49 24.84 - 0.97 63.51 30.27 -

4-3-2 1.46 0.69 43.12 0.05 1.45 0.95 46.63

4-4-2 13.10 6.28 545.97 0.27 12.36 14.23 -

5-2-2 1.99 0.82 59.93 0.05 1.77 0.89 61.95

6-2-2 142.51 55.60 - 0.81 47.51 59.05 -

Table 3: Runtime (in sec) for solving Social Golfer Problem

Table 3 shows the results of solving the problem for all
solutions. The symbol ‘-’ indicates the program cannot stop
in 600 seconds. The results are consistent with the previ-
ous benchmark. When comparing the original ToolBar and
our modification for set variables, the runtime of TB-Set for
solving both the Restricted and Relaxed versions is two or-
ders of magnitude faster than TB-01. This verifies the feasi-
bility and performance of our proposal.

Conclusion and Future Work
Problems involving set variables are common. Set constraint
solving techniques are well studied in classical CSPs. The
integer WCSP framework can handle soft problems effi-
ciently on the integer domain. However, the current def-
initions for local consistency is impractical to process set
variables in WCSPs. We have proposed our definition of
set variables with some local consistency notions. Since the
satisfiability of common set constraints depends on the ex-
istence of set elements among the set variables in each con-
straint, we define and specify set variables and constraints
based on the (in)existence of set elements. We also define
weighted set bounds consistency and show how it can be en-
forced by maintaining local consistency at the element level.
On the other hand, we introduce the cardinality constraint
for set variables, which otherwise needs to be composed by
an n-ary constraint. Experiments show that our proposal
is two times faster than ILOG in solving most classical set
problems and two orders of magnitude faster than original
ToolBar in solving both classical and soft set problems.

Set-based WCSPs open up possibilities for future re-
search. Hawkins, Lagoon, & Stuckey (2005) show how set
variables in classical CSPs can be represented by reduced
ordered binary decision diagrams (ROBDDs), and give ef-
ficient algorithm to enforce domain consistency. It will be
interesting to study if the same principle can be extended
for WCSPs. Another research direction is to investigate
techniques for cardinality reasoning (Müller & Müller 1997;
Azevedo & Barahona 2000).
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