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Abstract 
Guided Complete Search (GCS) is a generic framework for 
combining and coordinating a tree search solver and a 
secondary solver to yield a complete and efficient CSP 
solver. The primary solver of GCS is systematic tree search 
augmented with constraint propagation algorithm, which is 
used to maintain the completeness of the GCS solver. The 
secondary solver of GCS can either be a complete or 
incomplete solver, which mainly produces guidance to the 
primary solver for solution searching by providing value 
ordering suggestions. In this paper, we describe our newly 
defined GCS/Simplex solver, which incorporates Simplex 
method into the GCS framework. To demonstrate the 
efficiency, we apply the GCS/Simplex to the nurse rostering 
problem, and its general form, namely, cardinality matrix 
problem. The nurse rostering problem is one of the most 
difficult scheduling problems in artificial intelligence and 
operations research. And the cardinality matrix problem is 
the underlying structure of several real-life problems such as 
rostering, scheduling and time-tabling problem. Both are 
shown to be computational intractable. Experimental results 
show that the GCS/Simplex solver is efficient in solving this 
kind of scheduling problems in terms of both computation 
time and number of fails. 

Introduction 
Solver collaboration is crucial in constraint satisfaction 
problem (CSP) research. Recently, it draws attention in 
combining different solvers yields a more efficient hybrid 
solver for CSPs. Many examples have been reported in the 
literature. (Lee et al. 1996) propose that derivations in 
constraint logic programming could be guided by GENET 
(Wang and Tsang 1991), a stochastic search based solver 
for binary CSPs. Their approach consists of employing a 
GENET solver at each choice point. Before the sub-trees 
rooted at the choice point are explored, the GENET solver 
is invoked to solve to provide guidance to search. (Hooker 
et al. 1999) proposed mixed logic/linear programming 
(MLLP) that makes use of conditionals to link discrete and 
continuous elements of the problem, and brings the idea of 
integration of a checker with a solver. (Gomes et al. 2002) 
proposed randomized backtrack search which employs 
linear programming. In our previous work, Guided 
Complete Search (GCS) has been formulated for solving 

hard CSP instances (Fung et al. 2004). GCS is a generic 
hybrid scheme, which parameterized by a secondary solver. 
In GCS, guidance for the tree search based solver in the 
form of value ordering suggestions are generated 
automatically by the secondary solver, without specific 
prior design or domain knowledge. The main idea of GCS 
is that the operations of a tree search based solver are 
coordinated with those of another solver, which maintain 
the soundness and completeness of the whole hybrid 
scheme. The value commitments made by the tree search 
based solver and the results of constraint propagation 
(Mackworth 1977) help the secondary solver to reduce the 
problem size in order to speed up the whole search process.  
 In this paper, we instantiate the GCS with the Simplex 
method (Wolsey 1998), obtaining a new GCS/Simplex 
hybrid solver. The Simplex method is an efficient iterative 
algorithm to solve linear programming problems (LP), 
which achieves low average case complexity. The problem 
domain handled by Simplex is in the real domain, and the 
constraints are linear. Therefore, we need to transform the 
original CSP into a LP for the Simplex in order to enable 
collaboration between these two different types of solvers. 
The results of constraint propagation greatly reduce the 
computation overhead in solving the linear relaxation of 
CSP, while the fractional solution generated by Simplex 
can guide the tree search towards a complete solution. 
GCS/Simplex is a general CSP solver, it able to solve 
certain hard problem instances. To demonstrate the 
efficiency of this solvers combination, we apply the 
GCS/Simplex solver to the nurse rostering problem (Cheng 
et al. 1997) and its general form, namely, cardinality matrix 
problem (Regin and Gomes 2004). The nurse rostering 
problem is one of the most difficult scheduling problems in 
artificial intelligence and operations research. In general, it 
consists of cardinality constraints and some of the user-
defined constraints for prohibiting a specific shift pattern to 
appear. The search space of the problem is usually large 
and the problem structure is complex. Hence the problem 
becomes extremely difficult to solve by a general CSP 
solver when domain-specific heuristics is not given. The 
problem is computational intractable. Various approaches 
have been proposed to solve the problem. (Aickelin and 
White 2004) employ evolutionary algorithm approaches, 
which is sensitive to the parameters setting and the chose of 
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crossover operator. Therefore, performance can be greatly 
affected by the combination of parameters. (Wong and 
Chun to appear) propose a problem-specific approach for 
solving this particular problem, which is a tree search based 
CSP solver incorporating meta-level reasoning and 
probability-based ordering heuristics with JSolver (Chun 
1999). (Thornton and Sattar 1997) propose a special 
integer programming (IP) model, which combines two IP 
models, and introduces problem decomposition heuristic to 
compute a feasible solution for the problem. Besides the 
nurse rostering problem, we describe benchmarking results 
on solving cardinality matrix problem, which is a 
generalization of nurse rostering problem. It is also the 
underlying structure of several real-life problems such as 
rostering, scheduling, time-tabling and so on. These are 
hard computational problems given their inherent 
combinatorial structure. The GCS/Simplex solver has been 
shown efficient in solving this kind of combinatorial 
problem in terms of computation time and number of fails, 
which outperform a classical CSP solver and a mixed 
integer programming (MIP) solver. 
 The paper is organized as follows. We describe the 
background of CSP in the next section. And we present the 
Guided Complete Search (GCS) and the proposed 
GCS/Simplex solver in the third section. In the fourth 
section, we describe the nurse rostering problem as well as 
the cardinality matrix problem, and report the experimental 
results. We give a conclusion in the last section.  

Constraint Satisfaction Problem 
A Constraint satisfaction problem is a tuple , ,X D C  
(Mackworth 1977), where 1{ , , }nX x x= …  is a finite set of 
n variables, 1{ , , }nD d d= …  is a set of variable domains, 
and 1{ , , }mC c c= …  is a finite set of m constraints over the 
variables in X. Each domain id D∈ , 1 i n≤ ≤ , is a finite 
and discrete set of constants, and each constraint ic C∈ , 
1 i m≤ ≤ , is a relation over a finite subset of X. An 
assignment 1 1, , n nA x a x a= � … � is an n-tuple where 

i ia d∈ , 1 i n≤ ≤ . An assignment A is a solution to a 
constraint satisfaction problem if and only if all constraints 
in C are satisfied by A after replacing every occurrence of 
variable ix  by ia . It is required that the satisfiability of 
each constraint be decidable. To find a solution to a CSP is 
a well-known NP-complete problem. 
 A common approach for solving CSP is to employ a tree 
search method. Many commercially available CSP solvers, 
such as CHIP (Dincbas et al. 1988), ILOG Solver (ILOG 
2003) and JSolver (Chun 1999), are based on this approach. 
The search is performed in depth-first search from left to 
right fashion. Failure is detected at each node (or choice 
point) of the search tree. In the case of a failure, the search 
will continue at the next available node. We call such 
process as a backtracking. Many techniques have been 
proposed to improve the efficiency of tree search 
approaches, which can be classified into three main 
categories. First, variable-ordering heuristics aim to select 
appropriate variable to be instantiate at each choice point, 

so that the size of the search tree might be reduced by 
earlier failures. On the other hand, value-ordering 
heuristics aim at identifying and trying the most promising 
values first at each choice point, so that a first solution can 
hopefully be found earlier. Finally, constraint propagation, 
such as node- and arc-consistency algorithms (Mackworth 
1977), can be employed at each choice point to reduce the 
size of the variable domains, and thus also the size of the 
search tree as some of the branches are pruned in the 
process. Among these techniques, applying value-ordering 
heuristics is common and important to speed up the 
searching process, which can guide the search to reach a 
first solution opportunistically. However, it is difficult to 
know what value-ordering heuristics are suitable for 
different problems, as the effectiveness of value-ordering 
heuristics is problem-dependent. One of the ideas of the 
GCS framework is to automate value-ordering procedure. 

Guided Complete Search  
In a nutshell, GCS is a hybrid scheme for combining two 
solvers, a primary and a secondary solver. It coordinates 
the collaboration of the primary complete tree search-based 
solver (TS) and a secondary solver in order to produce a 
complete and efficient CSP solver. Each solver approaches 
solutions in different way. Therefore, insightful information 
can be discovered in different aspects as that the two 
solvers can help each other. From the viewpoint of TS, the 
secondary solver acts as an “oracle” that generates 
heuristics for value ordering. Meanwhile, TS narrows the 
search space for the secondary solver by constraint 
propagation after each value commitment. The information 
exchange operations improve the performance for both 
solvers in the framework. As a result, a more efficient 
hybrid solver can be obtained. We can instantiate the GCS 
scheme by incorporating different solver as a secondary 
solver. We gave GCS/X to denote that the GCS instance 
incorporates a solver X.  

The Framework 
A general framework of GCS is shown in Figure 1. The 
interface function the_secondary_solver_returns connects the 
two solvers, which either returns a solution A, a failure 
(“⊥”), or an unknown. The return of unknown in the 
secondary solver usually refers to the case of reaching a 
pre-set resource limit. In such a case the secondary solver 
should demonstrate a favor of values of some variables.  
Hence, val_suggestion_from_the_secondary_solver is called, and 
then the variable labeling procedure proceeds in TS. 
Eventually, a solution can be found either by the TS solver 
or by the secondary solver. The cost of employing the 
secondary solver to obtain a promising value for a variable 
might be expensive. A cost-reducing version of GCS is 
described in our previous work (Fung et al. 2004), which 
provides flexibility for different degree of integration. One 
example is that, the tree search seeks for value suggestion 
when deep backtrack performs. 
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 The search tree built from the GCS framework is 
basically a search tree of canonical complete tree search. 
The only difference locates at the variable labeling 
procedure, which is guided by the results returned by the 
function the_secondary_solver_returns. The secondary solver 
acts as the value ordering heuristics function to determine 
which value to instantiate next. Provided the function 
the_secondary_solver_returns always returns within a finite 
period of time, the GCS framework is sound and complete.  

The Secondary Solver: Simplex method 
The GCS/Simplex employs Simplex method (Wolsey 1998) 
as secondary solver in GCS. The Simplex method is an 
iterative procedure for LP. It solves a system of linear 
equations in each of its steps and terminates when either the 
optimum or solution infeasibility is reached. Intrinsically, 
the Simplex method solves optimization problems. 
However, for solving CSPs, objective function will not be 
presented. In addition, linear relaxation is needed in order 
to apply Simplex method for integer problem, which is a 
common approach in integer programming (IP). Similarly, 
a linear relaxation model of the original CSP is required in 
GCS/Simplex. We transform a CSP into a 0-1 LP, which 
the set of 0-1 variables b B∈  in the LP are bounded by 
0 1b≤ ≤ . In a nutshell, the problem transformation is to 
map each value in a variable domain of the CSP into a 
corresponding 0-1 variable in the LP. For example, a 
variable x  with domain {0,1,2}  in CSP, there is a set of 
corresponding 0-1 variables 0, 1, 2{ }b b b in LP. And, each 
constraint in CSP is transformed into linear form in LP. 

Constraint Linearization 
After creating a set of 0-1 variables B in the LP model, the 
key point is how to transform a set of constraints in CSP 
into a set of linear constraints. We present three types of 
widely used constraint in this section, including illegal, 
alldifferent, and cardinality constraint. Besides, we need to 
model the intrinsic requirement for each variable in CSP, in 
which each variable can only take one value at a time, as a 
linear constraint. We represent the requirement in LP with 
the equation, 1j di ijb

∀ ∈
=∑ , for 1,2,...,i n= . This so-called 

single-value constraint is essential in the GCS/Simplex 
framework for each problem.  
 The Illegal constraint (Wang and Tsang 1991) is a 
generic constraint in CSP. It is specified by a set of 
incompatible variables assignments. Suppose a constraint c 
involves m variables 1{ ,..., }mx x , with an incompatible 
tuple ( )1,..., ma a , we add one linear inequity 

1 1i

m
iai b m

=

≤ −∑ , where i ia d∈ , to the LP model. It 
achieves the same effect as the original constraint by 
prohibiting the participating variables from taking 
corresponding values in an incompatible tuple 
simultaneously. In general, any type of constraints can be 
modeled as illegal constraint, but the resulting model 
becomes too bulky for representing all incompatible tuples 
in a problem. Therefore, it is used for modeling 
complicated constraint, such as pattern constraint that is 
discussed in the next section. 
 The alldifferent constraint (Hoeve 2001) is present in 
most commercial constraint programming systems. It has 
been widely applied in many real-life problems, due to the 
special constraint semantic and the desirable pruning power. 
The constraint states that all involving variables must be 
pair-wisely different, which defines ( )1,..., malldifferent x x  
= 1{( ,..., ) | ,  for }m i i i ja a a d a a i j∈ ≠ ≠ . We express the 

constraint as, 1 1m
iji b

=

≤∑  for all ij d∈ . 
 The cardinality constraint (Hentenryck rt al. 1992) is 
defined over a set of variables 1{ ,..., }mx x , and specified by 
two integer values n and v. It states that the number of 
variables instantiating to a value v must be within a given 
range specified by n. The atmost, atleast, and exactly 
constraint are instances of the cardinality constraint. For 
example, the 1( ,{ ,..., }, )matmost n x x v  constraint specifies 
that at most n variables in 1{ ,..., }mx x  is allowed to take the 
value v. This type of constraint commonly occurs in 
rostering, scheduling and time-tabling problems to restrict 
the allocating resources. We represent the atmost, atleast, 
and exactly constraint with 1

m
ivi b n

=

≤∑ , 1
m

ivi b n
=

≥∑ , 

1
m

ivi b n
=

=∑  respectively. Recently, a generalization of 
cardinality constraint is presented (Regin 1996), namely, 
Global Cardinality Constraint (GCC), which handles a 
bunch of cardinality constraints.  

GCS( , ,X D C ) { 
 , ,X D C′  = constraint_propagation( , ,X D C ); 
 if ( [ ]d d D d′∃ ∈ → = ∅ ) return ⊥ ; 
 if ( [ | | 1]d d D d′∀ ∈ → = )  

return { | 1, 2, , }
i i

x s i n=� … , where { }
i i

d s= ; 

 update_the_secondary_solver( , ,X D C′ ); 
 R = the_secondary_solver_returns(); 
 if (R = A) return A; 
 if (R = ⊥ ) return ⊥ ; 
 i = var_ordering_heuristics (X); 
 repeat { 
  a = val_suggestion_from_the_secondary_solver(i); 
  update_the_secondary_solver( , , { }

i
X D C x a′ ∪ = ); 

  if (the_secondary_solver_returns() = A) return A; 
  if (not the_secondary_solver_returns() = ⊥ ) { 
   A = GCS( , , { }

i
X D C x a′ ∪ = ); 

   if ( A ≠⊥ ) return A; 
  } 
  \ { }

i i
d d a= ; 

 } until 
i

d = ∅ ; 
 return ⊥ ; 
} 
Figure 1. A framework of GCS solvers for CSPs 
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Interaction between GCS and Simplex 
In order to connect the two models, we have to maintain 
the following constraints during the search process, for 

1,2,...,i n=  and all ij d∈ : 

1i ijx j b= ⇔ =  

0i ijx j b≠ ⇔ =  
(3.1)

where ix X∈  is a variable of the CSP, and ijb B∈  is a 
variable of the LP. According to (3.1), an assignment 

ix j�  can be made when the corresponding 0-1 variable 

ijb is bounded to “1”, or ijb is strictly greater than 0. 
Similarly, if a domain value j of ix  is removed, the 
corresponding variable ijb is set to “0”. A domain value j of 

ix  can also be removed, if ijb is strictly less than 1. The 
Simplex method is applied to the linear relaxation of the 
original CSP, when the function the_secondary_solver_returns is 
invoked, to compute a solution. If the solution is integral, 
then it returns the complete solution. Otherwise, it suggests 
a value j to TS for a particular variable ix , which the 
corresponding 0-1 variable ijb  has a fractional value, when 
the function val_suggestion_from_the_secondary_solver is invoked. 

An Illustrative Example 
We use an N-Queen problem to illustrate how the 
GCS/Simplex works, and also to demonstrate the guiding 
power by the Simplex method. A comparison between a 
tree search based CSP solver and GCS/Simplex has been 
made in terms of number of fails, which is a common 
measure for evaluating the efficiency of value ordering 
heuristic. The less fails occurs, the more accurate guidance.  
 An N-Queen is the problem of placing n queens on a 
n n×  chessboard so that no queens can take on one another. 
A queen attacks another queen when both of them are 
placed on the same row, column or main diagonals. (Hoeve 
2001) suggests a CSP model for this problem by using the 
alldifferent constraint, in which a variable ix  represents 
column 1,2, ,i n= … , which ranges over row 1 to n. This 
means that, in every column i, a queen is placed in the 

-thix  row. The constraints are expressed as follows, 
 

1( ,..., )nalldifferent x x  (3.2)

1 2( 1, 2,..., )nalldifferent x x x n− − −  (3.3)

1 2( 1, 2,..., )nalldifferent x x x n+ + +  (3.4)
{1,2,..., } for 1ix n i n∈ ≤ ≤   

 
 And, the LP model can be obtained by the 
aforementioned alldifferent constraint linearization and the 
single-value constraint, which shows as following, 

1

1   for 1,2,...
n

ij
j

b i n
=

= =∑  (3.5)

1

1   for 1,2,...,
n

ij
i

b j n
=

≤ =∑  (3.6)

1   for 1,.., 2 3,  
i

i
b Y

b i n Y B
+

+

∈

≤ = − ⊆∑  (3.7)

1   for 1,.., 2 3,  
i

i
b Y

b i n Y B
−

−

∈

≤ = − ⊆∑  (3.8)

, for , 1,2,...ijb B i j n∈ =   
 
where iY +  and iY − is a set of 0-1 variables that rely on the i-
th positive and negative main diagonal of the chessboard 
respectively. The constraint (3.5) is the single-value 
constraint; (3.2) and (3.6) represent no queens are allowed 
to occur in the same row; (3.3) and (3.7), and (3.4) and (3.8) 
represent no queens can be put on the same positive and 
negative main diagonals of the chessboard respectively. 
 We have applied ILOG solver 6.0 (ILOG 2003) and 
GCS/Simplex solver on a set of N-Queen problem 
instances ranging from 4n =  to 100. The GCS/Simplex is 
able to solve all instances in the experiment. The results of 
the number of fails are shown in Figure 2. It is obvious that 
the GCS/Simplex is superior to ILOG solver in terms of 
number of fails. In many cases, the GCS/Simplex achieve 
zero fails that means no backtrack occurs during the search, 
which also indicates the search is guided to a solution 
accurately. Similar results can be obtained from another 
famous CSP benchmark, such as quasi-group completion 
problem (Gomes and Shmoys 2002). A more 
comprehensive evaluation is discussed in the next section. 

Figure 2. ILOG Solver vs. GCS/Simplex on N-Queen  

Nurse Rostering Problem  
Nurse Rostering is a task of deciding when a nurse should 
report to work each day in order to fulfill the predicted 
workforce demand in a hospital ward. This demand may 
vary from shift to shift and from day to day. Besides 
fulfilling the demand, a rostering system must also ensure 
that each nurse is assigned enough work per week and that 
each nurse should get adequate rest between shifts. This 
specific issue was discussed in the past studies (Cheng et al. 
1997). The specifications of the problem vary from 
hospitals and the user requirements, but the problem 
structure is similar. A typical nurse rostering problem 
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specification can also be found in (Cheng et al. 1997), 
which is a case study in the Tang Shiu Kin Hospital of 
Hong Kong. The nurse rostering problem is well-known 
difficult in artificial intelligence and operations research. 

Problem Descriptions 
For a general nurse rostering problem, four essential shift 
types are taken into consideration: morning-shift (A), 
afternoon-shift (P), night-shift (N), and day-off (DO). Note 
that some special type of shifts might be available in 
practice; refer to (Cheng et al. 1997). The constraints for 
making a working roster can be divided into three 
categories: daily constraint, weekly constraint, and shift 
pattern constraint. A working roster example is shown in 
Figure 3. It consists of three types of table. The upper-left 
one shows the shift for each nurse for one week. The 
bottom table is a tally of the total number of nurses 
working different shifts each day. This table is used to 
verify if the daily work demand is sufficiently met. The 
right-hand-side table is a tally of the total number of shifts 
worked by each nurse for one week. This table is used to 
check if enough work is assigned to each nurse. 
 

Figure 3. A working roster example 
 
 A daily constraint defines the demand for nurses per 
shift per day, which is depicted in the bottom table of 
Figure 3. This constraint can be modelled by an exactly 
constraint that described in the previous section. For 
example, on Sunday, there should be exactly 3 nurses in the 
morning and afternoon, and 2 nurses at night. On Monday, 
Tuesday, Thursday, and Friday, there should be exactly 5 
nurses in the morning, 3 in the afternoon, and 2 during 
night. On Wednesday, there should be exactly 6 nurses in 
the morning, 4 in the afternoon, and 2 during overnight. 
Saturday is like Sunday, but with 1 additional nurse in the 
morning. A weekly constraint defines the expected work 
from each nurse within the week, which is depicted in the 
right-hand-side table of Figure 3. The following is an 
example of weekly constraints for the nurse, John. He can 
work at most 4 morning shifts per week. He should work at 
least 1 afternoon shift per week. He should work at least 1 
night shift per week. He should get at least 1 day of rest per 
week. A shift pattern constraint defines desirable shift 
assignment sequences for a nurse. Typically, a nurse after 
working a night shift who should be given a day off, or 

should continue to work on another night shift. Therefore, 
the constraint prohibits the shift pattern N-A or N-P to be 
assigned for a nurse for two consecutive days. 

CSP Model 
We model the nurse rostering problem as a CSP, which is 
based on the format of a working roster shown in Figure 3, 
in the viewpoint of allocating shifts to nurses. A variable 
represents a shift on a day-of-week for a nurse with a 
domain {0,...,3}, which represents shift type DO, A, P, and 
N respectively. Each row in the roster consists of 7 
variables, which holds the shifts assigned to a nurse in a 
scheduled week, i.e. there are totally 84 variables are 
created for a twelve-nurse hospital ward. The daily and 
weekly constraint can be simply modeled by cardinality 
constraint, while the shift pattern constraint can be modeled 
by illegal constraint in the CSP model. The corresponding 
linear relaxation model can be transformed from the CSP 
model in the same way as show in the N-Queen example. 

Experimental Results 
A GCS/Simplex solver is implemented with an ILOG 
Solver 6.0 (ILOG 2003) and a COIN-OR LP solver (CLP). 
Experiments are conducted on the selected test cases from 
(Wong and Chun to appear), which are shown extremely 
difficult to solve. A comparison between ILOG Solver, 
GCS/Simplex, and a COIN-OR Branch-and-Cut solver 
(CBC) is shown in Table 1. Note that the Simplex engine in 
CBC is the same as the one in GCS/Simplex, and CLP and 
CBC are available online at http://www.coin-or.org. The 
solvers have been executed on a Sun Enterprise E4500 
UNIX workstation, and the execution time limit is 2 hours. 
 The GCS/Simplex solver is superior to both ILOG solver 
and the MIP solver in terms of computation time and 
number of fails. ILOG Solver cannot find a solution or 
proof the problem unsatisfiability within the time limit in 
this experiment; while the GCS/Simplex solver solves all 
problem instances less than a second, which outperforms 
the MIP solver by an order of magnitude.  

 Runtime (sec) Number of fails 
 ILOG GCS/Simplex CBC ILOG GCS/Simplex CBC 

Test Case 3 > 7200 0.53 9.92 --- 0 n/a 
Test Case 4 > 7200 0.72 7.9 --- 0 n/a 
Test Case 7 > 7200 < 0.01 0.12 --- 0 n/a 

Table 1. Results on nurse rostering problems 

The Cardinality Matrix Problem 
To further demonstrate the efficiency of GCS/Simplex, we 
use the cardinality matrix problem introduced in (Regin 
and Gomes 2004). It is the underlying structure of several 
real-life problems such as rostering, scheduling, and time-
tabling problem. The problem consists of a m n×  matrix of 
integer variables ijX  for 1 i m≤ ≤  and 1 j n≤ ≤ . There is 
a global cardinality constraint on each row and column of 
the matrix to restrict the occurrences of a value in a set of 
variables. The problem is computational intractable. We 
propose a n n×  cardinality matrix problem as a benchmark 

Name Sun Mon Tue Wed Thu Fri Sat A P N DO
John N DO A A A P A 4 1 1 1
Kate A N DO P P A A 3 2 1 1
Tom DO A P A A A N 4 1 1 1
Susan A A N N DO P A 3 1 2 1
Jan P P A P A N DO 2 3 1 1
Nancy P P A P N DO A 2 3 1 1
Linda DO A A P A N DO 3 1 1 2
David DO A P A P A N 3 2 1 1
Jerry P A P A N DO P 2 3 1 1
Amy N DO A A P A P 3 2 1 1
Mary DO P N N DO P P 0 3 2 2
Bill A N DO A A A DO 4 0 1 1

A 3 5 5 6 5 5 4
P 3 3 3 4 3 3 3
N 2 2 2 2 2 2 2
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in this experiment. The domain of each variables ranging 
from 0 to ⎣ ⎦/ 2n . The problem requires each value in the 
domain has to be appeared at least once but no more than 
twice on each row and column. 
 The results are shown in Table 2. It is obvious that the 
hard instances appear from 12n =  onwards. The ILOG 
solver solves the instances from 2n =  to 11 efficiently. 
However, it shows difficult in solving those large instances 
for 14n ≥ . The GCS/Simplex solver solves all instances in 
a reasonable time. Besides, the results of number of fails 
are noticeable, no backtrack occurs during the 
GCS/Simplex search. It indicates that the Simplex method 
guides the search effectively. 

 Runtime (sec) Number of fails 
 ILOG GCS/Simplex CBC ILOG GCS/Simplex CBC

N = 2  < 0.01  < 0.01 0.02 0 0 n/a 
N = 3  < 0.01  < 0.01 0.01 0 0 n/a 
N = 4 0.01 0.02 0.03 0 0 n/a 
N = 5 0.01 0.03 0.04 0 0 n/a 
N = 6 0.01 0.11 0.17 0 0 n/a 
N = 7 0.02 0.26 1.67 0 0 n/a 
N = 8 0.03 0.53 15.94 3 0 n/a 
N = 9 0.01 1.1 22.25 6 0 n/a 
N = 10 0.03 2.98 118.1 9 0 n/a 
N = 11 0.03 4.47 193.63 1 0 n/a 
N = 12 27.04 12.67 764.76 89956 0 n/a 
N = 13 0.09 14.45 1465.45 33 0 n/a 
N = 14 > 7200 48.63 3078.07 --- 0 n/a 
N = 15 11.19 62.49 4295.56 28440 0 n/a 
N = 16 > 7200 140.33 7028.04 --- 0 n/a 
N = 17 163.95 166.75 > 7200 371837 0 n/a 
N = 18 > 7200 356.65 > 7200 --- 0 n/a 
N = 19 > 7200 442.77 > 7200 --- 0 n/a 
N = 20 > 7200 813.01 > 7200 --- 0 n/a 
N = 21 > 7200 1085.93 > 7200 --- 0 n/a 
N = 22 > 7200 1980.1 > 7200 --- 0 n/a 
N = 23 > 7200 2416.65 > 7200 --- 0 n/a 
N = 24 > 7200 4260.76 > 7200 --- 0 n/a 
N = 25 > 7200 5509.57 > 7200 --- 0 n/a 

Table 2. Results on the cardinality matrix problem 

Concluding Remarks 
This paper presents a newly defined GCS/Simplex solver, 
which incorporates Simplex method into the guided 
complete search framework. In order to illustrate the 
efficiency of the GCS/Simplex solver for solving hard CSP 
instances, we apply the GCS/Simplex to nurse rostering 
problem and cardinality matrix problem. It is one of the 
hardest problems in artificial intelligence and operations 
research. In most of the cases in the experiment, the 
GCS/Simplex achieve zero backtrack that indicates the 
guidance provided by the Simplex method is promising and 
directs the search toward a solution. Experimental evidence 
shows that GCS/Simplex is able to solve certain hard 
problems without specific prior design or domain 
knowledge, which outperforms a tree search based CSP 
solver and a mixed integer programming solver. 
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