
Incorporating Simplex Method into Guided Complete Search: An
Application to the Nurse Rostering Problem

Spencer K.L. Fung, Jimmy H.M. Lee, and Ho-fung Leung

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Sha Tin, Hong Kong, P.R. China
{sklfung, jlee, lhf}@cse.cuhk.edu.hk

Abstract
Guided Complete Search (GCS) is a generic framework for
combining and coordinating a tree search solver and a
secondary solver to yield a complete and efficient CSP
solver. The primary solver of GCS is systematic tree search
augmented with constraint propagation algorithm, which is
used to maintain the completeness of the GCS solver. The
secondary solver of GCS can either be a complete or
incomplete solver, which mainly produces guidance to the
primary solver for solution searching by providing value
ordering suggestions. In this paper, we describe our newly
defined GCS/Simplex solver, which incorporates Simplex
method into the GCS framework. To demonstrate the
efficiency, we apply the GCS/Simplex to the nurse rostering
problem, and its general form, namely, cardinality matrix
problem. The nurse rostering problem is one of the most
difficult scheduling problems in artificial intelligence and
operations research. And the cardinality matrix problem is
the underlying structure of several real-life problems such as
rostering, scheduling and time-tabling problem. Both are
shown to be computational intractable. Experimental results
show that the GCS/Simplex solver is efficient in solving this
kind of scheduling problems in terms of both computation
time and number of fails.

Introduction
Solver collaboration is crucial in constraint satisfaction
problem (CSP) research. Recently, it draws attention in
combining different solvers yields a more efficient hybrid
solver for CSPs. Many examples have been reported in the
literature. (Lee et al. 1996) propose that derivations in
constraint logic programming could be guided by GENET
(Wang and Tsang 1991), a stochastic search based solver
for binary CSPs. Their approach consists of employing a
GENET solver at each choice point. Before the sub-trees
rooted at the choice point are explored, the GENET solver
is invoked to solve to provide guidance to search. (Hooker
et al. 1999) proposed mixed logic/linear programming
(MLLP) that makes use of conditionals to link discrete and
continuous elements of the problem, and brings the idea of
integration of a checker with a solver. (Gomes et al. 2002)
proposed randomized backtrack search which employs
linear programming. In our previous work, Guided
Complete Search (GCS) has been formulated for solving

hard CSP instances (Fung et al. 2004). GCS is a generic
hybrid scheme, which parameterized by a secondary solver.
In GCS, guidance for the tree search based solver in the
form of value ordering suggestions are generated
automatically by the secondary solver, without specific
prior design or domain knowledge. The main idea of GCS
is that the operations of a tree search based solver are
coordinated with those of another solver, which maintain
the soundness and completeness of the whole hybrid
scheme. The value commitments made by the tree search
based solver and the results of constraint propagation
(Mackworth 1977) help the secondary solver to reduce the
problem size in order to speed up the whole search process.
 In this paper, we instantiate the GCS with the Simplex
method (Wolsey 1998), obtaining a new GCS/Simplex
hybrid solver. The Simplex method is an efficient iterative
algorithm to solve linear programming problems (LP),
which achieves low average case complexity. The problem
domain handled by Simplex is in the real domain, and the
constraints are linear. Therefore, we need to transform the
original CSP into a LP for the Simplex in order to enable
collaboration between these two different types of solvers.
The results of constraint propagation greatly reduce the
computation overhead in solving the linear relaxation of
CSP, while the fractional solution generated by Simplex
can guide the tree search towards a complete solution.
GCS/Simplex is a general CSP solver, it able to solve
certain hard problem instances. To demonstrate the
efficiency of this solvers combination, we apply the
GCS/Simplex solver to the nurse rostering problem (Cheng
et al. 1997) and its general form, namely, cardinality matrix
problem (Regin and Gomes 2004). The nurse rostering
problem is one of the most difficult scheduling problems in
artificial intelligence and operations research. In general, it
consists of cardinality constraints and some of the user-
defined constraints for prohibiting a specific shift pattern to
appear. The search space of the problem is usually large
and the problem structure is complex. Hence the problem
becomes extremely difficult to solve by a general CSP
solver when domain-specific heuristics is not given. The
problem is computational intractable. Various approaches
have been proposed to solve the problem. (Aickelin and
White 2004) employ evolutionary algorithm approaches,
which is sensitive to the parameters setting and the chose of

141

crossover operator. Therefore, performance can be greatly
affected by the combination of parameters. (Wong and
Chun to appear) propose a problem-specific approach for
solving this particular problem, which is a tree search based
CSP solver incorporating meta-level reasoning and
probability-based ordering heuristics with JSolver (Chun
1999). (Thornton and Sattar 1997) propose a special
integer programming (IP) model, which combines two IP
models, and introduces problem decomposition heuristic to
compute a feasible solution for the problem. Besides the
nurse rostering problem, we describe benchmarking results
on solving cardinality matrix problem, which is a
generalization of nurse rostering problem. It is also the
underlying structure of several real-life problems such as
rostering, scheduling, time-tabling and so on. These are
hard computational problems given their inherent
combinatorial structure. The GCS/Simplex solver has been
shown efficient in solving this kind of combinatorial
problem in terms of computation time and number of fails,
which outperform a classical CSP solver and a mixed
integer programming (MIP) solver.
 The paper is organized as follows. We describe the
background of CSP in the next section. And we present the
Guided Complete Search (GCS) and the proposed
GCS/Simplex solver in the third section. In the fourth
section, we describe the nurse rostering problem as well as
the cardinality matrix problem, and report the experimental
results. We give a conclusion in the last section.

Constraint Satisfaction Problem
A Constraint satisfaction problem is a tuple , ,X D C
(Mackworth 1977), where 1{ , , }nX x x= … is a finite set of
n variables, 1{ , , }nD d d= … is a set of variable domains,
and 1{ , , }mC c c= … is a finite set of m constraints over the
variables in X. Each domain id D∈ , 1 i n≤ ≤ , is a finite
and discrete set of constants, and each constraint ic C∈ ,
1 i m≤ ≤ , is a relation over a finite subset of X. An
assignment 1 1, , n nA x a x a= � … � is an n-tuple where

i ia d∈ , 1 i n≤ ≤ . An assignment A is a solution to a
constraint satisfaction problem if and only if all constraints
in C are satisfied by A after replacing every occurrence of
variable ix by ia . It is required that the satisfiability of
each constraint be decidable. To find a solution to a CSP is
a well-known NP-complete problem.
 A common approach for solving CSP is to employ a tree
search method. Many commercially available CSP solvers,
such as CHIP (Dincbas et al. 1988), ILOG Solver (ILOG
2003) and JSolver (Chun 1999), are based on this approach.
The search is performed in depth-first search from left to
right fashion. Failure is detected at each node (or choice
point) of the search tree. In the case of a failure, the search
will continue at the next available node. We call such
process as a backtracking. Many techniques have been
proposed to improve the efficiency of tree search
approaches, which can be classified into three main
categories. First, variable-ordering heuristics aim to select
appropriate variable to be instantiate at each choice point,

so that the size of the search tree might be reduced by
earlier failures. On the other hand, value-ordering
heuristics aim at identifying and trying the most promising
values first at each choice point, so that a first solution can
hopefully be found earlier. Finally, constraint propagation,
such as node- and arc-consistency algorithms (Mackworth
1977), can be employed at each choice point to reduce the
size of the variable domains, and thus also the size of the
search tree as some of the branches are pruned in the
process. Among these techniques, applying value-ordering
heuristics is common and important to speed up the
searching process, which can guide the search to reach a
first solution opportunistically. However, it is difficult to
know what value-ordering heuristics are suitable for
different problems, as the effectiveness of value-ordering
heuristics is problem-dependent. One of the ideas of the
GCS framework is to automate value-ordering procedure.

Guided Complete Search
In a nutshell, GCS is a hybrid scheme for combining two
solvers, a primary and a secondary solver. It coordinates
the collaboration of the primary complete tree search-based
solver (TS) and a secondary solver in order to produce a
complete and efficient CSP solver. Each solver approaches
solutions in different way. Therefore, insightful information
can be discovered in different aspects as that the two
solvers can help each other. From the viewpoint of TS, the
secondary solver acts as an “oracle” that generates
heuristics for value ordering. Meanwhile, TS narrows the
search space for the secondary solver by constraint
propagation after each value commitment. The information
exchange operations improve the performance for both
solvers in the framework. As a result, a more efficient
hybrid solver can be obtained. We can instantiate the GCS
scheme by incorporating different solver as a secondary
solver. We gave GCS/X to denote that the GCS instance
incorporates a solver X.

The Framework
A general framework of GCS is shown in Figure 1. The
interface function the_secondary_solver_returns connects the
two solvers, which either returns a solution A, a failure
(“⊥”), or an unknown. The return of unknown in the
secondary solver usually refers to the case of reaching a
pre-set resource limit. In such a case the secondary solver
should demonstrate a favor of values of some variables.
Hence, val_suggestion_from_the_secondary_solver is called, and
then the variable labeling procedure proceeds in TS.
Eventually, a solution can be found either by the TS solver
or by the secondary solver. The cost of employing the
secondary solver to obtain a promising value for a variable
might be expensive. A cost-reducing version of GCS is
described in our previous work (Fung et al. 2004), which
provides flexibility for different degree of integration. One
example is that, the tree search seeks for value suggestion
when deep backtrack performs.

142

 The search tree built from the GCS framework is
basically a search tree of canonical complete tree search.
The only difference locates at the variable labeling
procedure, which is guided by the results returned by the
function the_secondary_solver_returns. The secondary solver
acts as the value ordering heuristics function to determine
which value to instantiate next. Provided the function
the_secondary_solver_returns always returns within a finite
period of time, the GCS framework is sound and complete.

The Secondary Solver: Simplex method
The GCS/Simplex employs Simplex method (Wolsey 1998)
as secondary solver in GCS. The Simplex method is an
iterative procedure for LP. It solves a system of linear
equations in each of its steps and terminates when either the
optimum or solution infeasibility is reached. Intrinsically,
the Simplex method solves optimization problems.
However, for solving CSPs, objective function will not be
presented. In addition, linear relaxation is needed in order
to apply Simplex method for integer problem, which is a
common approach in integer programming (IP). Similarly,
a linear relaxation model of the original CSP is required in
GCS/Simplex. We transform a CSP into a 0-1 LP, which
the set of 0-1 variables b B∈ in the LP are bounded by
0 1b≤ ≤ . In a nutshell, the problem transformation is to
map each value in a variable domain of the CSP into a
corresponding 0-1 variable in the LP. For example, a
variable x with domain {0,1,2} in CSP, there is a set of
corresponding 0-1 variables 0, 1, 2{ }b b b in LP. And, each
constraint in CSP is transformed into linear form in LP.

Constraint Linearization
After creating a set of 0-1 variables B in the LP model, the
key point is how to transform a set of constraints in CSP
into a set of linear constraints. We present three types of
widely used constraint in this section, including illegal,
alldifferent, and cardinality constraint. Besides, we need to
model the intrinsic requirement for each variable in CSP, in
which each variable can only take one value at a time, as a
linear constraint. We represent the requirement in LP with
the equation, 1j di ijb

∀ ∈
=∑ , for 1,2,...,i n= . This so-called

single-value constraint is essential in the GCS/Simplex
framework for each problem.
 The Illegal constraint (Wang and Tsang 1991) is a
generic constraint in CSP. It is specified by a set of
incompatible variables assignments. Suppose a constraint c
involves m variables 1{ ,..., }mx x , with an incompatible
tuple ()1,..., ma a , we add one linear inequity

1 1i

m
iai b m

=

≤ −∑ , where i ia d∈ , to the LP model. It
achieves the same effect as the original constraint by
prohibiting the participating variables from taking
corresponding values in an incompatible tuple
simultaneously. In general, any type of constraints can be
modeled as illegal constraint, but the resulting model
becomes too bulky for representing all incompatible tuples
in a problem. Therefore, it is used for modeling
complicated constraint, such as pattern constraint that is
discussed in the next section.
 The alldifferent constraint (Hoeve 2001) is present in
most commercial constraint programming systems. It has
been widely applied in many real-life problems, due to the
special constraint semantic and the desirable pruning power.
The constraint states that all involving variables must be
pair-wisely different, which defines ()1,..., malldifferent x x
= 1{(,...,) | , for }m i i i ja a a d a a i j∈ ≠ ≠ . We express the

constraint as, 1 1m
iji b

=

≤∑ for all ij d∈ .
 The cardinality constraint (Hentenryck rt al. 1992) is
defined over a set of variables 1{ ,..., }mx x , and specified by
two integer values n and v. It states that the number of
variables instantiating to a value v must be within a given
range specified by n. The atmost, atleast, and exactly
constraint are instances of the cardinality constraint. For
example, the 1(,{ ,..., },)matmost n x x v constraint specifies
that at most n variables in 1{ ,..., }mx x is allowed to take the
value v. This type of constraint commonly occurs in
rostering, scheduling and time-tabling problems to restrict
the allocating resources. We represent the atmost, atleast,
and exactly constraint with 1

m
ivi b n

=

≤∑ , 1
m

ivi b n
=

≥∑ ,

1
m

ivi b n
=

=∑ respectively. Recently, a generalization of
cardinality constraint is presented (Regin 1996), namely,
Global Cardinality Constraint (GCC), which handles a
bunch of cardinality constraints.

GCS(, ,X D C) {
 , ,X D C′ = constraint_propagation(, ,X D C);
 if ([]d d D d′∃ ∈ → = ∅) return ⊥ ;
 if ([| | 1]d d D d′∀ ∈ → =)

return { | 1, 2, , }
i i

x s i n=� … , where { }
i i

d s= ;

 update_the_secondary_solver(, ,X D C′);
 R = the_secondary_solver_returns();
 if (R = A) return A;
 if (R = ⊥) return ⊥ ;
 i = var_ordering_heuristics (X);
 repeat {
 a = val_suggestion_from_the_secondary_solver(i);
 update_the_secondary_solver(, , { }

i
X D C x a′ ∪ =);

 if (the_secondary_solver_returns() = A) return A;
 if (not the_secondary_solver_returns() = ⊥) {
 A = GCS(, , { }

i
X D C x a′ ∪ =);

 if (A ≠⊥) return A;
 }
 \ { }

i i
d d a= ;

 } until
i

d = ∅ ;
 return ⊥ ;
}
Figure 1. A framework of GCS solvers for CSPs

143

Interaction between GCS and Simplex
In order to connect the two models, we have to maintain
the following constraints during the search process, for

1,2,...,i n= and all ij d∈ :

1i ijx j b= ⇔ =

0i ijx j b≠ ⇔ =
(3.1)

where ix X∈ is a variable of the CSP, and ijb B∈ is a
variable of the LP. According to (3.1), an assignment

ix j� can be made when the corresponding 0-1 variable

ijb is bounded to “1”, or ijb is strictly greater than 0.
Similarly, if a domain value j of ix is removed, the
corresponding variable ijb is set to “0”. A domain value j of

ix can also be removed, if ijb is strictly less than 1. The
Simplex method is applied to the linear relaxation of the
original CSP, when the function the_secondary_solver_returns is
invoked, to compute a solution. If the solution is integral,
then it returns the complete solution. Otherwise, it suggests
a value j to TS for a particular variable ix , which the
corresponding 0-1 variable ijb has a fractional value, when
the function val_suggestion_from_the_secondary_solver is invoked.

An Illustrative Example
We use an N-Queen problem to illustrate how the
GCS/Simplex works, and also to demonstrate the guiding
power by the Simplex method. A comparison between a
tree search based CSP solver and GCS/Simplex has been
made in terms of number of fails, which is a common
measure for evaluating the efficiency of value ordering
heuristic. The less fails occurs, the more accurate guidance.
 An N-Queen is the problem of placing n queens on a
n n× chessboard so that no queens can take on one another.
A queen attacks another queen when both of them are
placed on the same row, column or main diagonals. (Hoeve
2001) suggests a CSP model for this problem by using the
alldifferent constraint, in which a variable ix represents
column 1,2, ,i n= … , which ranges over row 1 to n. This
means that, in every column i, a queen is placed in the

-thix row. The constraints are expressed as follows,

1(,...,)nalldifferent x x (3.2)

1 2(1, 2,...,)nalldifferent x x x n− − − (3.3)

1 2(1, 2,...,)nalldifferent x x x n+ + + (3.4)
{1,2,..., } for 1ix n i n∈ ≤ ≤

 And, the LP model can be obtained by the
aforementioned alldifferent constraint linearization and the
single-value constraint, which shows as following,

1

1 for 1,2,...
n

ij
j

b i n
=

= =∑ (3.5)

1

1 for 1,2,...,
n

ij
i

b j n
=

≤ =∑ (3.6)

1 for 1,.., 2 3,
i

i
b Y

b i n Y B
+

+

∈

≤ = − ⊆∑ (3.7)

1 for 1,.., 2 3,
i

i
b Y

b i n Y B
−

−

∈

≤ = − ⊆∑ (3.8)

, for , 1,2,...ijb B i j n∈ =

where iY + and iY − is a set of 0-1 variables that rely on the i-
th positive and negative main diagonal of the chessboard
respectively. The constraint (3.5) is the single-value
constraint; (3.2) and (3.6) represent no queens are allowed
to occur in the same row; (3.3) and (3.7), and (3.4) and (3.8)
represent no queens can be put on the same positive and
negative main diagonals of the chessboard respectively.
 We have applied ILOG solver 6.0 (ILOG 2003) and
GCS/Simplex solver on a set of N-Queen problem
instances ranging from 4n = to 100. The GCS/Simplex is
able to solve all instances in the experiment. The results of
the number of fails are shown in Figure 2. It is obvious that
the GCS/Simplex is superior to ILOG solver in terms of
number of fails. In many cases, the GCS/Simplex achieve
zero fails that means no backtrack occurs during the search,
which also indicates the search is guided to a solution
accurately. Similar results can be obtained from another
famous CSP benchmark, such as quasi-group completion
problem (Gomes and Shmoys 2002). A more
comprehensive evaluation is discussed in the next section.

Figure 2. ILOG Solver vs. GCS/Simplex on N-Queen

Nurse Rostering Problem
Nurse Rostering is a task of deciding when a nurse should
report to work each day in order to fulfill the predicted
workforce demand in a hospital ward. This demand may
vary from shift to shift and from day to day. Besides
fulfilling the demand, a rostering system must also ensure
that each nurse is assigned enough work per week and that
each nurse should get adequate rest between shifts. This
specific issue was discussed in the past studies (Cheng et al.
1997). The specifications of the problem vary from
hospitals and the user requirements, but the problem
structure is similar. A typical nurse rostering problem

1

10

100

1000

10000

100000

1000000

10000000

100000000

4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100
(n)

N
um

be
r

of
 f

ai
ls

ILOG

GCS/Simplex

144

specification can also be found in (Cheng et al. 1997),
which is a case study in the Tang Shiu Kin Hospital of
Hong Kong. The nurse rostering problem is well-known
difficult in artificial intelligence and operations research.

Problem Descriptions
For a general nurse rostering problem, four essential shift
types are taken into consideration: morning-shift (A),
afternoon-shift (P), night-shift (N), and day-off (DO). Note
that some special type of shifts might be available in
practice; refer to (Cheng et al. 1997). The constraints for
making a working roster can be divided into three
categories: daily constraint, weekly constraint, and shift
pattern constraint. A working roster example is shown in
Figure 3. It consists of three types of table. The upper-left
one shows the shift for each nurse for one week. The
bottom table is a tally of the total number of nurses
working different shifts each day. This table is used to
verify if the daily work demand is sufficiently met. The
right-hand-side table is a tally of the total number of shifts
worked by each nurse for one week. This table is used to
check if enough work is assigned to each nurse.

Figure 3. A working roster example

 A daily constraint defines the demand for nurses per
shift per day, which is depicted in the bottom table of
Figure 3. This constraint can be modelled by an exactly
constraint that described in the previous section. For
example, on Sunday, there should be exactly 3 nurses in the
morning and afternoon, and 2 nurses at night. On Monday,
Tuesday, Thursday, and Friday, there should be exactly 5
nurses in the morning, 3 in the afternoon, and 2 during
night. On Wednesday, there should be exactly 6 nurses in
the morning, 4 in the afternoon, and 2 during overnight.
Saturday is like Sunday, but with 1 additional nurse in the
morning. A weekly constraint defines the expected work
from each nurse within the week, which is depicted in the
right-hand-side table of Figure 3. The following is an
example of weekly constraints for the nurse, John. He can
work at most 4 morning shifts per week. He should work at
least 1 afternoon shift per week. He should work at least 1
night shift per week. He should get at least 1 day of rest per
week. A shift pattern constraint defines desirable shift
assignment sequences for a nurse. Typically, a nurse after
working a night shift who should be given a day off, or

should continue to work on another night shift. Therefore,
the constraint prohibits the shift pattern N-A or N-P to be
assigned for a nurse for two consecutive days.

CSP Model
We model the nurse rostering problem as a CSP, which is
based on the format of a working roster shown in Figure 3,
in the viewpoint of allocating shifts to nurses. A variable
represents a shift on a day-of-week for a nurse with a
domain {0,...,3}, which represents shift type DO, A, P, and
N respectively. Each row in the roster consists of 7
variables, which holds the shifts assigned to a nurse in a
scheduled week, i.e. there are totally 84 variables are
created for a twelve-nurse hospital ward. The daily and
weekly constraint can be simply modeled by cardinality
constraint, while the shift pattern constraint can be modeled
by illegal constraint in the CSP model. The corresponding
linear relaxation model can be transformed from the CSP
model in the same way as show in the N-Queen example.

Experimental Results
A GCS/Simplex solver is implemented with an ILOG
Solver 6.0 (ILOG 2003) and a COIN-OR LP solver (CLP).
Experiments are conducted on the selected test cases from
(Wong and Chun to appear), which are shown extremely
difficult to solve. A comparison between ILOG Solver,
GCS/Simplex, and a COIN-OR Branch-and-Cut solver
(CBC) is shown in Table 1. Note that the Simplex engine in
CBC is the same as the one in GCS/Simplex, and CLP and
CBC are available online at http://www.coin-or.org. The
solvers have been executed on a Sun Enterprise E4500
UNIX workstation, and the execution time limit is 2 hours.
 The GCS/Simplex solver is superior to both ILOG solver
and the MIP solver in terms of computation time and
number of fails. ILOG Solver cannot find a solution or
proof the problem unsatisfiability within the time limit in
this experiment; while the GCS/Simplex solver solves all
problem instances less than a second, which outperforms
the MIP solver by an order of magnitude.

 Runtime (sec) Number of fails
 ILOG GCS/Simplex CBC ILOG GCS/Simplex CBC

Test Case 3 > 7200 0.53 9.92 --- 0 n/a
Test Case 4 > 7200 0.72 7.9 --- 0 n/a
Test Case 7 > 7200 < 0.01 0.12 --- 0 n/a

Table 1. Results on nurse rostering problems

The Cardinality Matrix Problem
To further demonstrate the efficiency of GCS/Simplex, we
use the cardinality matrix problem introduced in (Regin
and Gomes 2004). It is the underlying structure of several
real-life problems such as rostering, scheduling, and time-
tabling problem. The problem consists of a m n× matrix of
integer variables ijX for 1 i m≤ ≤ and 1 j n≤ ≤ . There is
a global cardinality constraint on each row and column of
the matrix to restrict the occurrences of a value in a set of
variables. The problem is computational intractable. We
propose a n n× cardinality matrix problem as a benchmark

Name Sun Mon Tue Wed Thu Fri Sat A P N DO
John N DO A A A P A 4 1 1 1
Kate A N DO P P A A 3 2 1 1
Tom DO A P A A A N 4 1 1 1
Susan A A N N DO P A 3 1 2 1
Jan P P A P A N DO 2 3 1 1
Nancy P P A P N DO A 2 3 1 1
Linda DO A A P A N DO 3 1 1 2
David DO A P A P A N 3 2 1 1
Jerry P A P A N DO P 2 3 1 1
Amy N DO A A P A P 3 2 1 1
Mary DO P N N DO P P 0 3 2 2
Bill A N DO A A A DO 4 0 1 1

A 3 5 5 6 5 5 4
P 3 3 3 4 3 3 3
N 2 2 2 2 2 2 2

145

in this experiment. The domain of each variables ranging
from 0 to ⎣ ⎦/ 2n . The problem requires each value in the
domain has to be appeared at least once but no more than
twice on each row and column.
 The results are shown in Table 2. It is obvious that the
hard instances appear from 12n = onwards. The ILOG
solver solves the instances from 2n = to 11 efficiently.
However, it shows difficult in solving those large instances
for 14n ≥ . The GCS/Simplex solver solves all instances in
a reasonable time. Besides, the results of number of fails
are noticeable, no backtrack occurs during the
GCS/Simplex search. It indicates that the Simplex method
guides the search effectively.

 Runtime (sec) Number of fails
 ILOG GCS/Simplex CBC ILOG GCS/Simplex CBC

N = 2 < 0.01 < 0.01 0.02 0 0 n/a
N = 3 < 0.01 < 0.01 0.01 0 0 n/a
N = 4 0.01 0.02 0.03 0 0 n/a
N = 5 0.01 0.03 0.04 0 0 n/a
N = 6 0.01 0.11 0.17 0 0 n/a
N = 7 0.02 0.26 1.67 0 0 n/a
N = 8 0.03 0.53 15.94 3 0 n/a
N = 9 0.01 1.1 22.25 6 0 n/a
N = 10 0.03 2.98 118.1 9 0 n/a
N = 11 0.03 4.47 193.63 1 0 n/a
N = 12 27.04 12.67 764.76 89956 0 n/a
N = 13 0.09 14.45 1465.45 33 0 n/a
N = 14 > 7200 48.63 3078.07 --- 0 n/a
N = 15 11.19 62.49 4295.56 28440 0 n/a
N = 16 > 7200 140.33 7028.04 --- 0 n/a
N = 17 163.95 166.75 > 7200 371837 0 n/a
N = 18 > 7200 356.65 > 7200 --- 0 n/a
N = 19 > 7200 442.77 > 7200 --- 0 n/a
N = 20 > 7200 813.01 > 7200 --- 0 n/a
N = 21 > 7200 1085.93 > 7200 --- 0 n/a
N = 22 > 7200 1980.1 > 7200 --- 0 n/a
N = 23 > 7200 2416.65 > 7200 --- 0 n/a
N = 24 > 7200 4260.76 > 7200 --- 0 n/a
N = 25 > 7200 5509.57 > 7200 --- 0 n/a

Table 2. Results on the cardinality matrix problem

Concluding Remarks
This paper presents a newly defined GCS/Simplex solver,
which incorporates Simplex method into the guided
complete search framework. In order to illustrate the
efficiency of the GCS/Simplex solver for solving hard CSP
instances, we apply the GCS/Simplex to nurse rostering
problem and cardinality matrix problem. It is one of the
hardest problems in artificial intelligence and operations
research. In most of the cases in the experiment, the
GCS/Simplex achieve zero backtrack that indicates the
guidance provided by the Simplex method is promising and
directs the search toward a solution. Experimental evidence
shows that GCS/Simplex is able to solve certain hard
problems without specific prior design or domain
knowledge, which outperforms a tree search based CSP
solver and a mixed integer programming solver.

Acknowledgements
The work described in this paper was partially supported
by a grant from the Research Grants Council of the Hong

Kong Special Administrative Region, China (Project No.
CUHK4211/01E).

References
Aickelin, U. and White, P. 2004. Building Better Nurse Scheduling
Algorithms. Annals of Operations Research 128:159-177.
Cheng, B.M.W., Lee, J.H.M. and Wu J.C.K. 1997. A Nurse Rostering
System Using Constraint Programming and Redundant Modeling. IEEE
Transactions on Information Technology in Biomedicine 1:44-54.
Chun, H.W. 1999. Constraint Programming in Java with JSolver. In
Proceedings of the First International Conference and Exhibition on The
Practical Application of Constraint Technologies and Logic
Programming.
Dincbas, M., Hentenryck, P. V., Simonis, H., Aggoun, A., Graf, T., and
Berthier, F. 1988. The Constraint Logic Programming Language CHIP. In
Proceedings of the Fifth Generation Computer Systems, 693-702.
Fung, S.K.L., Zheng, D.J., Leung, H.F., Lee, J.H.M. and Chun, H.W.
2004. A Framework for Guided Complete Search for Solving Constraint
Satisfaction Problems and Some of Its Instances. In Proceedings of the
16th IEEE International Conference on Tools with Artificial Intelligence.
Games, C.P. and Shmoys, D.2002. The promise of LP to boost CSP
techniques for combinatorial problems. In Proceedings of the Fourth
International Workshop on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimisation Problems.
Gomes, Carla P. and Shmoys, D. 2002. Completing quasigroups or latin
squares: A structured graph coloring problem. In Proceedings of the
Computational Symposium on Graph Coloring and Extensions.
Hentenryck Van Pascal, Simonis H. and Dincbas M. 1992. Constraint
Satisfaction using Constraint Logic Programming. Artificial Intelligence
58:113-159.
Hoeve, van W.J. 2001. The Alldifferent Constraint: A Survey. In
Proceedings of Sixth Annual Workshop of the ERCIM Working Group on
Constraints.
Hooker, J.N. and Osorio, M.A. 1999. Mixed logical-linear programming.
Discrete Applied Mathematics 96-97(1-3):395-442.
ILOG Inc., S. A., Gentilly, France. 2003. ILOG Solver 6.0, User Manual.
Lee, J.H.M., Leung, H.F., Stuckey, P.J., Tam, V.W.L., and Won, H.W.
1996. Using Stochastic Methods to Guide Search in CLP: a Preliminary
Report. In Proceedings of Asian Computing Science Conference, 43-52.
Mackworth, A. 1977. Consistency in networks of relations. Artificial
Intelligence, 8(1):99-118.
Regin, Jean-Charles 1996. Generalized arc consistency for global
cardinality constraint. In Proceedings of the 13th National Conference on
Artificial Intelligence.
Regin, Jean-Charles and Gomes, Carla P. 2004. The Cardinality Matrix
Constraint. In Proceedings of the 10th International Conference on
Principles and Practice of Constraint Programming, 572-587.
Thornton, J. R., and Sattar, A. 1997. Nurse Rostering and Integer
Programming Revisited. In Proceedings of International Conference on
Computational Intelligence and Multimedia Applications, 49-58.
Wang, C.J. and Tsang, E.P.K. 1991. Solving constraint satisfaction
problems using neural-networks. In Proceedings of the IEE Second
International Conference on Artificial Neural Networks, 295-299.
Wolsey, L.A. 1998. Integer programming.: John Wiley.
Wong, G.Y.C. and Chun, H.W. to appear. Constraint-based rostering
using meta-level reasoning and probability-based ordering. Engineering
Applications of Artificial Intelligence.
Regin, Jean-Charles 1996. Generalized arc consistency for global
cardinality constraint. In Proceedings of the 13th National Conference on
Artificial Intelligence.

146

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

