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ABSTRACT
Multi-aspect Assignment Problems (MAPs) can be natu-
rally formulated into various matrix models of Constraint
Satisfaction Problems (CSPs), which can contain both vari-
able and value symmetries, using different viewpoints. While
variable symmetry breaking constraints can be expressed
relatively easily and executed efficiently by enforcing lexico-
graphic ordering, value symmetry breaking constraints are
difficult to formulate. We show when value symmetries in
one viewpoint correspond to variable symmetries in another,
and when symmetry breaking constraints in two viewpoints
are consistent. Our results allow tackling value symmetries
efficiently using additional viewpoints and channeling con-
straints. Experiments on the social golfer problem and a
variant of the quasigroup existence problem confirm the ben-
efits of our proposal against conventional methods.
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1. INTRODUCTION
The social golfer problem (SGP), “prob010” in CSPLib,1

is to find a W-week schedule of G groups, each containing
S golfers, such that no two golfers can play together more
than once. There are totally N = G × S golfers. We denote
an instance of the problem as (G,S,W). There are three
aspects in the problem, corresponding to the sets of golfers,
weeks, and groups respectively. Solving the problem is to
find a set of tuples of the form (aGolfer, aWeek, aGroup)
that satisfies the problem requirements. The SGP is a Multi-
aspect Assignment Problem (MAP).2 A MAP consists of n

1Available at http://www.csplib.org/.
2A Multi-aspect Assignment Problem is different from a
Multidimensional Assignment Problem [11], which is an op-
timization problem subject to some constraints in particular
forms.
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aspects, each of which corresponds to a set of objects of the
problem. Without loss of generality, we define the set of
objects of the i-th aspect as Obj(i) = {1, . . . , ki}, where ki

is the number of objects in aspect i. For example, we can use
Obj(1), Obj(2), and Obj(3) to denote the set of all golfers,
weeks, and groups respectively in the SGP. Solving a MAP
is to find a solution set of tuples S ⊆ Obj(1) × . . .×Obj(n)
that satisfies the problem constraints. For example, a tuple
(1, 2, 3) in a solution set of the SGP means that golfer 1
plays in group 3 in week 2. Many real life problems, such as
timetabling and resource allocation, are MAPs, which can
readily be formulated into matrix models [5] of Constraint
Satisfaction Problems (CSPs) [10]. In a matrix model, the
CSP variables can be indexed and organized into matrices.

There are two common types of symmetries in CSPs,
namely variable and value symmetries. We observe that,
in matrix models, it is more difficult to express symme-
try breaking constraints for value symmetries than those
for variable symmetries. Our goal is to tackle value symme-
tries in matrix models using multiple viewpoints and chan-
neling constraints [1]. Flener et al. [5] suggest that it is
possible to transform an (n − 1)-dimensional matrix with
variable and value symmetries into an n-dimensional matrix
that only contains variable symmetries. Symmetry breaking
constraints are then expressed in the n-dimensional matrix
to break all kinds of symmetries of the problem. We for-
mally describe this idea by theoretically showing that value
symmetries in a matrix model always correspond to vari-
able symmetries in the 0/1 viewpoint. We describe a general
method to derive n+1 viewpoints for a MAP with n aspects.
We then generalize the idea to characterize the conditions
of when value symmetries in one viewpoint correspond to
variable symmetries in non-0/1 viewpoints. We also address
the consistency issue for symmetry breaking constraints in
multiple viewpoints. Such results enable us to break value
symmetries in one viewpoint using variable symmetry break-
ing constraints in another. We demonstrate the feasibility of
our proposal using both integer and set models of the SGP,
as well as a variant of the quasigroup existence problem. The
models contain both integer and set value symmetries, and
experimental results confirm the efficiency of our approach
in terms of number of fails and execution time.

2. BACKGROUND
A CSP viewpoint (or simply viewpoint) is a pair V =

(X, DX), where X = {x1, . . . , xn} is a set of variables, and
DX is a function that maps each x ∈ X to its associated do-



main DX(x), giving the set of possible values for x. There
are two common classes of variables in CSPs. An integer
variable [8] x has an integer domain, i.e., DX(x) is an in-
teger set. A set variable [8] x has a set domain, i.e., each
element in the domain is a set. In most implementations,
the domain of a set variable x is represented by two sets.
The possible set PS(x) contains elements that belong to at
least one of the possible values of the variable. The required
set RS(x) contains elements that belong to all the possible
values of the variable. For ease of description, we abuse ter-
minology by saying that the possible set PS(x) of an integer
variable x is DX(x).

A viewpoint V = (X, DX) defines the possible decisions
for variables in X. A decision x 7→ b in V means that
variable x ∈ X is mapped to the value b ∈ PS(x). It has
different meanings depending on the class of variable x. If
x is an integer variable, x 7→ b simply means x is assigned
the value b, i.e., x = b. If x is a set variable, x 7→ b means
that the value b is added to the required set of x, i.e., b ∈
x. Note that decisions are different from assignments in
that multiple decisions are allowed for a set variable, while
multiple assignments are not allowed for any variable. A
compound decision is a set of decisions {xi1 7→ a1, . . . , xik

7→
ak}, where {xi1 , . . . , xik

} ⊆ X. Note the requirement that
no integer variables can occur more than once in a compound
decision. The scope of a compound decision is a variable set
indicating the assigned variables. For example, for integer
variable x and set variables y and z, the compound decision
{x 7→ 1, y 7→ 1, y 7→ 2} with scope {x, y, z} means x = 1, y =
{1, 2}, and z = ∅. We overload the 7→ operator to represent
compound decisions such that 〈xi1 , . . . , xik

〉 7→ 〈a1, . . . , ak〉
means {xij

7→ aj | 1 ≤ j ≤ k}.
A constraint places restrictions on a subset of variables in

V , limiting the combination of values that these variables
can take. A CSP model M (or simply model) of a problem
P is a pair (V, C), where V is a viewpoint of P and C is a set
of constraints in V for P . A solution of (V, C) is a compound
decision in V with scope X satisfying all the constraints in
C. The set of all solutions of a CSP M is denoted as sol(M).

3. VARIABLE AND VALUE SYMMETRIES
In this section, we define two types of symmetries, namely

variable and value symmetries. We first describe the symme-
tries of the SGP [4]: (1) players can be permuted among the
N ! combinations, (2) weeks of schedule can be exchanged,
and (3) groups can be exchanged inside weeks.

One way to model the problem into a CSP uses the view-
point VG = (G, DG) which contains a variable gi,k for each
golfer i in week k with 1 ≤ i ≤ N and 1 ≤ k ≤ W. The
variable domains DG(gi,k) = {1, . . . ,G} contain the group
numbers that golfer i can play in week k. A model in VG is a
matrix model, since G forms a 2-dimensional matrix of vari-
ables. Figure 1(a) gives a solution of the (3, 2, 3) instance.

3.1 Variable Symmetries
A variable symmetry of a CSP M = ((X, DX), CX) is a

solution-preserving bijective mapping from the set of vari-
ables X to itself, σ : X → X. We overload the σ op-
erator to act also on a compound decision θ by defining
σ(θ) = {σ(x) 7→ a | (x 7→ a) ∈ θ}. A variable symmetry σ
requires that θ ∈ sol(M) ⇔ σ(θ) ∈ sol(M), where θ 6= σ(θ).

Symmetry (1) of the SGP is an example of variable sym-
metries in VG. Consider the solution in Figure 1(a), we can

week
golfer 1 2 3 4 5 6
1 1 1 2 2 3 3
2 1 2 1 3 2 3
3 1 2 2 3 3 1

(a)

group
week 1 2 3

1 {1, 2} {1, 3} {1, 6}
2 {3, 4} {2, 5} {2, 3}
3 {5, 6} {4, 6} {4, 5}

(b)

golfer
group 1 2 3
1 {1, 2, 3} ∅ ∅
2 {1} {2, 3} ∅
3 {2} {1, 3} ∅
4 ∅ {1} {2, 3}
5 ∅ {2} {2, 3}
6 {3} ∅ {1, 2}

(c)

Figure 1: Three Equivalent Solutions of (3, 2, 3) in

VG, VP , and VW Respectively

exchange the variables of golfers 1 and 2 to obtain another
solution with 〈g1,1, g1,2, g1,3〉 7→ 〈1, 2, 2〉 and 〈g2,1, g2,2, g2,3〉 7→
〈1, 1, 1〉. Hence, we have the bijective mapping σ as the
identity mapping except σ(g1,k) = g2,k and σ(g2,k) = g1,k

for 1 ≤ k ≤ 3. Similarly, symmetry (2) is another example
of variable symmetries in VG.

A variable symmetry σ can be broken by the lexicographic
ordering constraint [7] 〈x1, . . . , xn〉 ≤lex 〈σ(x1), . . . , σ(xn)〉
[3], where {x1, . . . , xn} is the set of variables in the CSP.
Sometimes, these constraints can be simplified to contain
fewer variables. An example is the row ordering and col-
umn ordering constraints for row and column symmetries
[5]. For example, symmetry (1) of the SGP can be bro-
ken by the row ordering constraints 〈gi,1, . . . , gi,W〉 ≤lex

〈gi+1,1, . . . , gi+1,W〉 for 1 ≤ i < N . Similarly, we can break
symmetry (2) in VG by the column ordering constraints
〈g1,k, . . . , gN ,k〉 ≤lex 〈g1,k+1, . . . , gN ,k+1〉 for 1 ≤ k < W.
Note that these constraints do not completely break the
compositions of the row and column symmetries [5].

3.2 Value Symmetries
A value symmetry [5] under a subset U ⊆ X of the vari-

ables of a CSP M = ((X, DX), CX), where PS(x) = PS(x′)
for all x, x′ ∈ U , is a solution-preserving bijective mapping
on the possible set of the variables in U , τ : PS(x) → PS(x)
where x ∈ U . We overload the τ operator to act also on a
compound decision θ by defining τ (U, θ) = {x 7→ τ (a) | (x 7→
a) ∈ θ ∧ x ∈ U} ∪ {x 7→ a | (x 7→ a) ∈ θ ∧ x /∈ U}. A value
symmetry τ under U requires that θ ∈ sol(M) ⇔ τ (U, θ) ∈
sol(M), where θ 6= τ (U, θ). If U is a set of integer (resp. set)
variables, τ is called an integer (resp. set) value symmetry.

Value symmetry is similar to value interchangeability [6].
Interchangeable values can be exchanged for a single vari-
able without affecting the satisfaction of constraints, while a
value symmetry can be applied to a solution to form another
solution of the same CSP.

Symmetry (3) in the SGP is an example of integer value
symmetries in VG. Consider the solution in Figure 1(a).
We can permute the values assigned to the set of variables
U = {g1,1, . . . , gn,1} ⊆ G from 1 to 2, from 2 to 3, and from
3 to 1 to obtain another solution with 〈g1,1, . . . , g6,1〉 7→
〈2, 2, 3, 3, 1, 1〉. Thus, we have a value symmetry τ under U
with τ (1) = 2, τ (2) = 3, and τ (3) = 1.

Value symmetry breaking constraints are difficult to ex-
press in general, since we do not know beforehand which
variable will be assigned which value. Value symmetries
are usually handled by pre-assigning the affected variables
as far as possible with some values without loss of gener-
ality. However, these pre-assignments, which must be ex-
tensible to solutions, cannot break all value symmetries in



general. For example, in the SGP, without loss of generality,
we can always have the pre-assignments 〈g1,1, . . . , gS,1〉 7→
〈1, . . . , 1〉, . . . , 〈g(G−1)S+1,1, . . . , gN ,1〉 7→ 〈G, . . . ,G〉 as well
as 〈g1,k, . . . , gS,k〉 7→ 〈1, . . . ,S〉 for k > 1. The former breaks
the value symmetries for week 1. The latter breaks the value
symmetries of values 1 to S from week 2 and so on, but those
of values S + 1 to G remains intact.

Symmetries of indistinguishable values is a special class
of value symmetries where expressing symmetry breaking
constraints is possible, albeit inefficiently. Symmetries of
a set of indistinguishable values {v1, . . . , vk} under U =
{x1, . . . , xn} implies k! − 1 value symmetries τ under U ,
where 〈τ (v1), . . . , τ (vk)〉 is a non-identity permutation of
〈v1, . . . , vk〉. Such symmetries can be broken by the symme-
try breaking constraints x1 6= vj and xi = vj →

W

1≤i′<i
xi′ =

vj−1 for 1 < i ≤ n and 1 < j ≤ k. In symmetry (3)
in VG of the SGP, the groups {1, . . . ,G} are indistinguish-
able values under variables in each week. Therefore, we can
express the symmetry breaking constraints g1,k 6= j and
gi,k = j →

W

1≤i′<i
gi′,k = j − 1 for 1 ≤ i ≤ N , 1 < j ≤ G,

and 1 ≤ k ≤ W to break the value symmetries in VG. These
if-then constraints are composed of disjunctions and are han-
dled inefficiently in many CSP solvers.

4. BREAKING VALUE SYMMETRIES BY
CHANNELING

In this section, we give results showing when a value sym-
metry in a CSP (V, C) corresponds to a variable symmetry
in another CSP (V ′, C′) modeling the same problem. Us-
ing these results, we can tackle value symmetries in (V, C)
by expressing variable symmetry breaking constraints in V ′

and then connecting the two viewpoints V and V ′ using
channeling constraints [1]. We also show how to generate
consistent symmetry breaking constraints in V and V ′. In
the following, we first describe a general method to derive
n + 1 viewpoints for MAPs with n aspects.

4.1 Viewpoints for Modeling MAPs
A matrix can be multi-dimensional. We also use the array

notation in addition to the subscript notation to denote the
matrix variables in the following discussions for easier read-
ing. Given a MAP with n aspects, we can always choose
any n − 1 aspects to form a matrix of variables [5] and the
remaining aspect to form the variable domains. For 1 ≤ s ≤
n, let Xs = {xs[i1] · · · [is−1][is+1] · · · [in] |

V

1≤k≤n,k 6=s
ik ∈

Obj(k)} be the matrix of variables using all but the s-th as-
pect as indices. The variable domains correspond to the ob-
jects in the s-th aspect, i.e., PS(xs[i1] · · · [is−1][is+1] · · · [in]) =
Obj(s). Integer variables can be used in Xs if the MAP only
allows exactly one decision for each variable in Xs. Other-
wise, set variables have to be used. Hence, we derive n differ-
ent aspect viewpoints V1 = (X1, DX1

), . . . , Vn = (Xn, DXn)
for a MAP. The subscript k in Vk = (Xk, DXk

) denotes
the aspect corresponding to the domain of Vk. The chan-
neling constraints [1] between any two aspect viewpoints
Vs and Vt (s 6= t) induce a channeling function fs,t(xs[i1]
· · · [is−1][is+1] · · · [in] 7→ is) = xt[i1] · · · [it−1][it+1] · · · [in] 7→
it from decisions in Vs to those in Vt, for

V

1≤k≤n
ik ∈

Obj(k). The reverse channeling function ft,s is simply f−1
s,t .

In the SGP, VG is an aspect viewpoint using the golfers
and weeks to form the variables, and groups to form the do-
main. The other two aspect viewpoints of the SGP are VP =

week 1 2 3

golfer
group 1 2 3 1 2 3 1 2 3
1 1 0 0 1 0 0 1 0 0
2 1 0 0 0 1 0 0 1 0
3 0 1 0 1 0 0 0 1 0
4 0 1 0 0 0 1 0 0 1
5 0 0 1 0 1 0 0 0 1
6 0 0 1 0 0 1 1 0 0

(a)

golfer
group 1 2 3
1 {2, 3} {1} ∅
2 ∅ {1, 2, 3} ∅
3 {2} {3} {1}
4 ∅ ∅ {1, 2, 3}
5 {1} {2} {3}
6 {1, 3} ∅ {2}

(b)

Figure 2: Two Solutions of (3, 2, 3), in VZ and VW

(P, DP ) and VW = (W, DW ). Viewpoint VP (resp. VW ) uses
the groups and weeks (resp. golfers and groups) to form
the variables, and golfers (resp. weeks) to form the domain.
The variables pj,k ∈ P and wi,j ∈ W are set variables with
PS(pj,k) = {1, . . . ,N} and PS(wi,j) = {1, . . . ,W} respec-
tively. Figures 1(a), 1(b), and 1(c) show the same solution,
expressed in VG, VP , and VW respectively. The channeling
constraints between VG and VP are gi,k 7→ j ⇔ pj,k 7→ i,
the ones between VG and VW are gi,k 7→ j ⇔ wi,j 7→ k, and
the ones between VP and VW are pj,k 7→ i ⇔ wi,j 7→ k, for
1 ≤ i ≤ N , 1 ≤ j ≤ G, and 1 ≤ k ≤ W.

Besides the aspect viewpoints, we can use all n aspects of
a MAP to form an n-dimensional matrix of variables Z =
{z[i1] · · · [in] |

V

1≤k≤n
ik ∈ Obj(ik)}. The variables in Z de-

note whether the tuple (i1, . . . , in) is in a solution. Hence,
DZ(z[i1] · · · [in]) = {0, 1}, giving us the 0/1 viewpoint VZ =
(Z, DZ). For 1 ≤ s ≤ n, the channeling constraints [1] be-
tween aspect viewpoint Vs and VZ induce a channeling func-
tion fs,Z(xs[i1] · · · [is−1][is+1] · · · [in] 7→ is) = z[i1] · · · [in] 7→
1 from decisions in Vs to only those of the form “z[i1] · · · [in] 7→
1” in VZ , for

V

1≤k≤n ik ∈ Obj(k) (since the channeling con-

straints never generate decisions of the form “z[i1] · · · [in] 7→
0”). Again, fZ,s is f−1

s,Z . In the SGP, VZ contains vari-
ables zi,k,j for each golfer i, week k, and group j with
DZ(zi,k,j) = {0, 1}. Figure 2(a) shows the same solution
as those in Figure 1, but expressed in VZ .

4.2 From Value Symmetries to Variable Sym-
metries

In the rest of the section, we suppose Ms = (Vs, Cs),
Mt = (Vt, Ct), and MZ = (VZ , CZ) are CSP models for
the same MAP with n aspects, where Vs = (Xs, DXs) and
Vt = (Xt, DXt ) are aspect viewpoints, and VZ = (Z, DZ) is
the 0/1 viewpoint.

Theorem 1. Given a value symmetry τ under Us ⊆ Xs.
If (1) there exists Obj′(k) ⊆ Obj(k) for 1 ≤ k ≤ n and k 6= s
such that Us = {xs[i1] · · · [is−1][is+1] · · · [in] |

V

1≤k≤n,k 6=s ik ∈

Obj′(k)}, and (2) Obj′(t) = Obj(t), then there is a mapping
σ with σ(fs,t(θ)) = fs,t(τ (Us, θ)) for all θ ∈ sol(Ms), where

σ(xt[i1] · · · [it−1][it+1] · · · [in]) =
(

xt[i1] · · · [is−1][τ (is)][is+1] · · · [in] if
V

1≤k≤n,
k 6=s,k 6=t

ik ∈ Obj′(k)

xt[i1] · · · [it−1][it+1] · · · [in] otherwise.

In addition, σ is a variable symmetry in Mt corresponding
to τ in Ms.

Theorem 1 shows that given a value symmetry τ under
Us in Vs, we can find a solution-preserving bijective map-
ping σ for variables in Mt (i.e., a variable symmetry in Vt)
under two conditions. First, the variable subset Us cannot
be arbitrarily chosen. The set of variable indices in Us has



to be the Cartesian product of a subset of the objects in
each aspect. Second, Obj′(t) must contain all the objects in
aspect t, which corresponds to the domains in Vt.

We illustrate Theorem 1 using the (3, 2, 3) instance of the
SGP. Let the golfers, weeks, and groups be the first, second,
and third aspect respectively. Hence, Obj(1) = {1, . . . , 6}
and Obj(2) = Obj(3) = {1, 2, 3}. In VG, any value symme-
try is under all the golfers in one week. For example, the
value symmetry τ (1) = 2, τ (2) = 3, and τ (3) = 1 is under
U = {g1,1, . . . , g6,1} = {gi,k | i ∈ Obj′(1) = Obj(1) ∧ k ∈
Obj′(2) = {1}}, the set of all golfers in week 1, which satis-
fies condition (1) in Theorem 1. Condition (2) is also satis-
fied because Obj′(1) = Obj(1). Therefore, τ corresponds to
a variable symmetry σ in VP , which uses aspect 1 (golfers)
to form the domains, with σ(p1,1) = p2,1, σ(p2,1) = p3,1, and
σ(p3,1) = p1,1. On the other hand, Obj′(2) = {1} 6= Obj(2).
Hence, τ does not correspond to any variable symmetry in
VW , which uses aspect 2 (weeks) to form the domains. Fig-
ure 2(b) shows the solution in VW after applying τ to the
solution in Figure 1(a). No variable symmetries can trans-
form the solution in Figure 1(c) to the one in Figure 2(b).

The previous theorem specifies the conditions when a value
symmetry in Ms corresponds to a variable symmetry in Mt.
The following theorem shows that a value symmetry τ in
Ms always correspond to a variable symmetry σ in MZ .

Theorem 2. Given a value symmetry τ under Us ⊆ Xs,
σ(fs,Z(θ)) = fs,Z(τ (Us, θ)) for all θ ∈ sol(Ms), where

σ(z[i1] · · · [in]) =

8

>

>

<

>

>

:

z[i1] · · · [is−1][τ (is)][is+1] · · · [in]
if xs[i1] · · · [is−1][is+1] · · · [in] ∈ Us

z[i1] · · · [in]
otherwise.

In addition, σ is a variable symmetry in MZ corresponding
to τ in Ms.

The value symmetry τ under U = {g1,1, . . . , g6,1} with
τ (1) = 2, τ (2) = 3, and τ (3) = 1 corresponds to the variable
symmetry σ in VZ where σ is the identity except σ(zi,1,1) =
zi,1,2, σ(zi,1,2) = zi,1,3, and σ(zi,1,3) = zi,1,1 for 1 ≤ i ≤ 6.

4.3 Symmetry Breaking Constraints in Two
Viewpoints

Recall that variable symmetry breaking constraints are
easier to express than value symmetry breaking constraints.
By Theorems 1 and 2, value symmetries in a CSP (V, C) can
correspond to variable symmetries in another CSP (V ′, C′).
We can thus break the value symmetries in (V, C) by com-
bining (V, C) and (V ′, C′ ∪Cs) using channeling constraints
[1], where Cs is the set of variable symmetry breaking con-
straints in V ′ for breaking the value symmetries in V . Since
(V, C) and (V ′, C′) are models for the same MAP, C ′ is
logically redundant with respect to C and the channeling
constraints. Hence, we can drop any of the constraints in
C′ when we connect V and V ′. However, combining mutu-
ally redundant models with channeling constraints increases
constraint propagation [1]. Therefore, a possible way is to
drop only constraints in C ′ which are propagation redun-
dant [2] so that there would not be less propagation. Note
that if we drop all the constraints in C ′, then only (V, C) and
(V ′, Cs) are combined, and V ′ is solely used for expressing
the variable symmetry breaking constraints for the value
symmetries in V . Variable symmetries in (V, C), if exist,
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Figure 3: All the Six Solutions of Order 3 QEP∗,

Expressed in VN and VR Respectively

can be tackled by variable symmetry breaking constraints
in V as well. Now that both variable and value symmetries
can now be tackled by symmetry breaking constraints and
channeling constraints, we enjoy the best of both worlds.

An important issue of such symmetry breaking technique
is the consistency of the symmetry breaking constraints in
the two viewpoints V and V ′. Two sets of constraints are
consistent [5] if and only if at least one element in each
symmetry class of assignments, defined by the compositions
of the symmetries under consideration, satisfies both sets
of constraints. In the following, we first give an example
of inconsistent symmetry breaking constraints in two view-
points, and then give theoretical results on how to avoid this
inconsistency problem.

The quasigroup existence problem (QEP), “prob003” in
CSPLib, is to find an N ×N matrix consisting of numbers
1 to N with no rows and no columns containing the same
number more than once. We consider the variant of the
problem (QEP∗) which further restricts the main (“south-
east”) diagonal of the matrix to contain the same number.
Both the QEP and QEP∗ are MAPs with three aspects,
namely the rows, columns, and numbers. Aspect viewpoint
VN = (N, DN ) uses the rows and columns to form the
variables ni,j ∈ N and the numbers to form the domains
DN (ni,j) = {1, . . . ,N}.

The QEP∗ contains four forms of symmetries. They are
(1) the 180◦ rotation, (2) reflection along the main diago-
nal, (3) reflection along the main skew (“northeast”) diago-
nal, and (4) the permutation of the numbers in the matrix.
Symmetry (1) implies a variable symmetry σ in VN , with
σ(ni,j) = nn+1−i,n+1−j for 1 ≤ i, j ≤ N . Symmetry (4)
implies N ! − 1 value symmetries τ under N in VN , where
〈τ (1), . . . , τ (N )〉 is a permutation of 〈1, . . . ,N〉.

Given a sequence 〈h1, . . . , h|N|〉 of N , symmetry (1) can be
broken by symmetry breaking constraint 〈h1, . . . , h|N|〉 ≤lex

〈σ(h1), . . . , σ(h|N|)〉. Although there are N ! possible se-
quences of N , two common ways of generating sequences of
a matrix are the row-by-row and column-by-column traver-

sals, giving ~hr = 〈n1,1, n1,2, n1,3, . . . , n3,1, n3,2, n3,3〉 and ~hc =
〈n1,1, n2,1, n3,1, . . . , n1,3, n2,3, n3,3〉 respectively for order 3
QEP∗ (i.e., N = 3). The corresponding symmetry breaking
constraints for τ , after simplifications, are n1,2 < n3,2 and
n2,1 < n2,3 respectively, which accept different solutions.
Figure 3(a) shows all the six solutions of order 3 QEP∗. So-
lutions M2, M4, and M6 satisfy the former constraint, while
M1, M3, and M5 satisfy the latter.

By Theorem 1, the value symmetries in VN become vari-
able symmetries in VR = (R, DR), the aspect viewpoint us-
ing the numbers and columns to form the variables rk,j ∈ R
and rows to form the domains DR(rk,j) = {1, . . . ,N}. Both



the row-by-row and column-by-column traversals of the ma-
trix of variables in R generates, after simplifications, the
same symmetry breaking constraints 〈rk,1, . . . , rk,N 〉 ≤lex

〈rk+1,1, . . . , rk+1,N 〉, or equivalently rk,1 < rk+1,1, for 1 ≤
k < N . Figure 3(b) shows the same six solutions as in Figure
3(a), but expressed in VR. Only M ′

1 satisfies rk,1 < rk+1,1,
but M1 violates the variable symmetry breaking constraint
n1,2 < n3,2. Therefore there are no solutions satisfying
rk,1 < rk+1,1 and n1,2 < n3,2 simultaneously, and hence they
are inconsistent symmetry breaking constraints. On the
other hand, M1 satisfies both rk,1 < rk+1,1 and n2,1 < n2,3

simultaneously. As we shall see, the last two symmetry
breaking constraints are consistent.

We first define several notions which are useful to address
the consistency issue for symmetry breaking constraints in

two viewpoints. In a symmetry breaking constraint ~h ≤lex

〈σ(h1), . . . , σ(h|Xs|)〉 for a variable symmetry σ in an aspect

viewpoint Vs, ~h is an arbitrary linearization of the matrix to
a single dimensional sequence. There are |Xs|! possible vari-
able sequences for Xs, and different sequences may generate
different variable symmetry breaking constraints in Vs. In
the following, we restrict our attention to only the variable
sequences generated by aspect priorities. An aspect priority
in Vs (resp. VZ) is a sequence of aspects which is a permuta-
tion of {1, . . . , n} \ {s} (resp. {1, . . . , n}). It defines a scan-
ning sequence of the variables Xs in Vs (resp. Z in VZ). A
scanning sequence of an aspect priority 〈k1, . . . , kn−1〉 of Vs,
denoted as sseq(〈k1, . . . , kn−1〉), is a sequence 〈h1, . . . , h|Xs|〉
of Xs such that hj ≡ xs[i1] · · · [is−1][is+1] · · · [in], where
j = 1 +

P

1≤l<n((ikl
− 1) ×

Q

l<m<n |Obj(km)|). Similarly,

a scanning sequence sseq(〈k1, . . . , kn〉) of an aspect prior-
ity 〈k1, . . . , kn〉 of VZ is a sequence 〈h1, . . . , h|Z|〉 of Z such
that hj ≡ z[i1] · · · [in], where j = 1 +

P

1≤l≤n
((ikl

− 1) ×
Q

l<m≤n
|Obj(km)|). A scanning sequence in Vs (resp. VZ) is

an aspect-by-aspect traversal of the matrix of variables in Vs

(resp. VZ). There are (n−1)! (resp. n!) possible aspect prior-
ities in Vs (resp. VZ), and hence the same number of possible
scanning sequences for the variables in Vs (resp. VZ).

The three aspects in the QEP∗ give j = (ik1
− 1) ×

|Obj(k2)|+ik2
. Let aspects 1, 2, and 3 be the rows, columns,

and numbers respectively. In order 3 QEP∗, |Obj(1)| =
|Obj(2)| = |Obj(3)| = 3. The two aspect priorities 〈1, 2〉

and 〈2, 1〉 in VN generates the scanning sequences ~hr =

〈n1,1, n1,2, n1,3, . . . , n3,1, n3,2, n3,3〉 and ~hc = 〈n1,1, n2,1, n3,1,
. . . , n1,3, n2,3, n3,3〉 respectively, which are the row-by-row
and column-by-column traversals of the matrix in VN . Se-

lection of a sequence ~h under a variable set U , select(~h, U),

is a subsequence of ~h retaining only the variables in U . For

example, select(~hr, {n1,1, n2,1, n3,1}) = 〈n1,1, n2,1, n3,1〉 and

select(~hr, {n1,2, n2,2, n3,2}) = 〈n1,2, n2,2, n3,2〉.
We are now ready to give a theorem to specify the condi-

tion when variable symmetries in Vt, corresponding to value
symmetries in Vs, can be broken consistently with the vari-
able symmetries in Vs. Note that the theorem applies to
symmetries of indistinguishable values in Vs.

Theorem 3. Let σ be a variable symmetry in Vs, σ′ be
a variable symmetry in Vt corresponding to the symmetry of
two indistinguishable values a and b (a < b) under Us in Vs,
~k = 〈k1, . . . , kn−2〉 be any permutation of {1, . . . , n} \ {s, t},
and ~q be any aspect priority in Vt formed by inserting s into
~k. If 〈h1, . . . , h|Xs|〉 = sseq(〈k1, . . . , kn−2, t〉), then sym-

metry breaking constraints 〈h1, . . . , h|Xs|〉 ≤lex 〈σ(h1), . . . ,

σ(h|Xs|)〉 for σ and ~h′
a ≤lex

~h′
b for σ′ are consistent, where

~hj = select(sseq(~q), U ′
j) for j ∈ {a, b} and U ′

j = {xt[i1] · · ·
[it−1][it+1] · · · [in]|is = j ∧xs[i1] · · · [is−1][is+1] · · · [in] ∈ Us}.

Suppose a symmetry of two indistinguishable values in V
corresponds to a variable symmetry in V ′. The above theo-
rem states that if we lexicographically order the variables in
V ′ corresponding to the indistinguishable values, then the
aspect corresponding to the domain values in V ′ (aspect t in
the theorem) must be least prioritized in V when generating
the variable symmetry breaking constraints in V to main-
tain consistency between the symmetry breaking constraints
in V and V ′.

For the previous QEP∗ example, the symmetry breaking
constraint, say, 〈r1,1, . . . , r1,N 〉 ≤lex 〈r2,1, . . . , r2,N 〉, in VR

corresponds to the constraint ~ha ≤lex
~hb in the theorem.

There are two possible aspect priorities 〈2, 3〉 and 〈3, 2〉 in
VR. The variable sequence 〈r1,1, . . . , r1,N 〉 is the selection of
the scanning sequence of both aspect priorities with index
value 1 in aspect 3 (the numbers), i.e., 〈r1,1, . . . , r1,N 〉 =
select(sseq(〈2, 3〉), U ′) = select(sseq(〈3, 2〉), U ′) where U ′ =
{r1,1, . . . , r1,N }. Similarly for 〈r2,1, . . . , r2,N 〉. Therefore,
according to Theorem 3, the variable symmetry breaking
constraints in VN must be generated using the scanning se-
quence of the aspect priority 〈2, 1〉, i.e., aspect 1 (the rows)
must be least prioritized, to maintain consistency between
the symmetry breaking constraints in VN and VR. The vari-
able symmetry breaking constraint n2,1 < n2,3 is generated
using the scanning sequence of the aspect priority 〈2, 1〉.
Therefore it is consistent with the symmetry breaking con-
straints in VR.

Consider again the value symmetries in VG of the SGP.
By Theorem 1, they correspond to variable symmetries in
VP . Theorem 3 ensures that the symmetry breaking con-
straints min pj,k < min pj+1,k for 1 ≤ j < G and 1 ≤ k ≤ W
in VP breaks the value symmetries in VG, and are consistent
with the row and column lexicographic ordering constraints
in VG, which are the simplification results of those generated
by both aspect priorities 〈golfer,week〉 and 〈week, golfer〉
in VG. The solution in Figure 1 satisfies both types of sym-
metry breaking constraints.

The consistency issue between an aspect viewpoint Vs and
the 0/1 viewpoint VZ is less complicated. Unlike Theorem 3,
which only applies to symmetries of indistinguishable values
in Vs, the following theorem applies to any value symmetries.

Theorem 4. Let σ be a variable symmetry in Vs, σ′ be
a variable symmetry in VZ corresponding to a value sym-

metry in Vs, and ~k = 〈k1, . . . , kn−1〉 be an aspect priority
in Vs. Symmetry breaking constraints 〈h1, . . . , h|Xs|〉 ≤lex

〈σ(h1), . . . , σ(h|Xs|)〉 for σ and 〈σ′(h′
1), . . . , σ

′(h′
|Z|)〉 ≤lex

〈h′
1, . . . , h

′
|Z|〉 for σ′ are consistent if (1) 〈h1, . . . , h|Xs|〉 =

sseq(~k) and (2) 〈h′
1, . . . , h

′
|Z|〉 = sseq(〈k1, . . . , kn−1, s〉).

To maintain consistency between the variable symmetry
breaking constraints for σ in Vs and σ′ in VZ , the scanning
sequence sseq(〈k1, . . . , kn−1, s〉) in VZ is used, i.e., the as-
pect priority 〈k1, . . . , kn−1〉 in Vs is retained in addition that
aspect s is least prioritized in VZ . Furthermore, the lexico-
graphic order in VZ is reverse of that in Vs. This is because a
smaller-than order in Vs corresponds to a greater-than order
in VZ , and vice versa.



In the SGP, Theorem 4 ensures that the variable symme-
try breaking constraints 〈z1,k,j+1, . . . , zN ,k,j+1〉 ≤lex 〈z1,k,j ,
. . . , zN ,k,j〉 for 1 ≤ j < G and 1 ≤ k ≤ W in VZ break
the value symmetries in VG, and are consistent with those
variable symmetry breaking constraints in VG.

5. EXPERIMENTS
We test our implementations on the SGP and QEP∗ to

demonstrate the feasibility of our proposal. The experi-
ments, run using ILOG Solver 4.4 [8] on a Sun Blade 1000
workstation with 2GB memory, aim to compare breaking
value symmetries using multiple viewpoints and channeling
constraints against using the if-then constraints for symme-
tries of indistinguishable values. We report the number of
fails and CPU time (in seconds), with the best of each among
the models for each instance highlighted in bold.

We build an integer model of the SGP in VG, in which the
row and column lexicographic ordering constraints in VG

(for symmetries (1) and (2)) are expressed. Using this ba-
sis, the int-bool and int-set models use multiple viewpoints
and break the value symmetries in VG (symmetry (3)) as
variable symmetries in VZ and VG respectively. We perform
extensive experiments using various instances and present
only those with significant runtimes. Table 1 shows the ex-
perimental results of solving for all solutions using different
models. A cell labeled with “-” means that the search does
not terminate in 2 hours of CPU time. The int-bool model
achieves less propagation than the if-then and int-set mod-
els do. However, its performance is much better than the
if-then model in most instances. The int-set model has the
same number of fails as the if-then model, but is generally
much faster due to the inefficient execution of the if-then
constraints. The int-set and int-bool models are incompa-
rable. The former is sometimes slightly slower than the lat-
ter, but in certain instances (e.g., (5, 5, 3), (5, 5, 4), (5, 5, 5),
(6, 6, 3), and etc.), the difference in number of fails between
them is so large that the int-set model shows its robustness
and is significantly faster.

Another approach to break value symmetries is to develop
global constraints for them. In particular, we develop global
constraints to maintain value precedence [9] which breaks
symmetries of indistinguishable values. We perform exper-
iments on models using the value precedence global con-
straints as well. It is not surprising that such models per-
form better than the int-bool and int-set models, because
specialized propagation algorithms are used to implement
the global constraints. The advantage of using multiple
viewpoints, however, is simplicity of and readiness for use in
existing constraint programming systems.

We also perform experiments on a set model of the SGP in
VP with the value symmetries broken as variable symmetries
in VG, as well as on an integer model of the QEP∗. We
obtain similar results as those in Table 1, but due to space
limitations, we skip the details.

6. CONCLUDING REMARKS
We show how value symmetries can be tackled effectively

and efficiently as variable symmetries with the help of mul-
tiple viewpoints and channeling constraints. An advantage
of our approach is that it is readily deployable in existing
constraint programming systems, without having to invent
and implement a specialized propagation algorithm, such as

Table 1: Experimental Results for the Social Golfer

Problem, using Integer Variables
int-bool int-set if-then

g, s,w fails time fails time fails time
5, 2, 4 52543 57.9 36804 74.3 36804 74.03
5, 2, 5 867791 1075.95 758610 1458.34 758610 1400.16
5, 2, 6 6605552 6839.61 - - - -
5, 2, 9 9166800 3210.56 8325932 4073.58 8325932 4326.68
5, 3, 3 213328 192.31 207217 269.96 207217 368.98
5, 3, 7 10019241 3821.9 10954130 6320.45 - -
5, 4, 3 382664 183.63 126170 120.58 126170 183.79
5, 5, 3 21038 13.32 42 1.22 42 1.94
5, 5, 4 190084 93.7 9031 8.6 9031 15.91
5, 5, 5 27746 14.26 1933 2.58 1933 5.01
5, 5, 6 1776 1.26 237 0.45 237 0.88
6, 2, 3 110529 95.63 39059 119.85 39059 140.87
6, 6, 3 - - 20917 1528.85 20917 3300.59
7, 3, 2 7504 63.26 180 91.5 180 189.85
7, 4, 2 66985 332.42 60747 506.17 60747 1234.79
7, 5, 2 131666 145.86 46007 123.71 46007 365.82
7, 6, 2 29485 31.18 16447 36.46 16447 128.48

the value precedence constraint [9].
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