
Global Constraints for Integer and Set
Value Precedence

Y.C. Law and J.H.M. Lee

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
{yclaw, jlee}@cse.cuhk.edu.hk

Abstract. The paper introduces value precedence on integer and set
sequences. A useful application of the notion is in breaking symmetries
of indistinguishable values, an important class of symmetries in prac-
tice. Although value precedence can be expressed straightforwardly us-
ing if-then constraints in existing constraint programming systems, the
resulting formulation is inefficient both in terms of size and runtime. We
present two propagation algorithms for implementing global constraints
on value precedence in the integer and set domains. Besides conducting
experiments to verify the feasibility and efficiency of our proposal, we
characterize also the propagation level attained by various usages of the
global constraints as well as the conditions when the constraints can be
used consistently with other types of symmetry breaking constraints.

1 Introduction

Symmetry is a beauty in nature, but a curse to solving algorithms of constraint
satisfaction problems (CSPs). This paper concerns an important class of sym-
metries, namely those induced by indistinguishable values, examples of which in-
clude colors in graph coloring problems and personnels of the same rank in many
rostering problems. We introduce the notion of value precedence on sequences,
and explain how imposing value precedence on a sequence of constrained vari-
ables can break symmetries of indistinguishable values in both integer and set
domains.

The value precedence condition on a sequence of variables is easy to express
using if-then constraints, but such a formulation is inefficient both in terms
of number of constraints and propagation efficiency. We propose linear time
propagation algorithms for maintaining value precedence as the basis of efficient
implementation of two global constraints on integer and set variable sequences
respectively. Experimental results on three benchmarks confirm the efficiency of
our proposal. In addition, we give theoretical results to (a) ensure consistent use
of the constraint with other symmetry breaking constraints and (b) characterize
the consistency level attained by various usages of the global constraints.

Interchangeable values [5] can be exchanged for a single variable without af-
fecting the satisfaction of constraints, while indistinguishable values in a solution



assignment can be swapped to form another solution of the same problem. Gent
[9] designs a special constraint which assumes that all the domain values of a
set of variables are indistinguishable and breaks the symmetries among them.
Our proposed constraint, however, breaks the symmetry of two indistinguishable
values. Multiple constraints have to be used to tackle a set of indistinguishable
values. This allows breaking symmetries where only part of the domain values of
the variables are indistinguishable. Frisch et al. [6, 8] present global constraints
for lexicographic ordering and multiset ordering on two sequences of variables,
which are useful in breaking row and column symmetries in matrix models [4].

2 Background

A CSP is a triple (X, D, C), where X = {x0, . . . , xn−1} is a set of variables, D
is a function that maps each x ∈ X to its associated domain D(x), giving the
set of possible values for x, and C is a set of constraints. There are two common
classes of variables in CSPs. A constrained integer variable (or simply integer
variable) [11] x has an integer domain, i.e., D(x) is an integer set. A constrained
set variable (or simply set variable) [11] x has a set domain, i.e., each element in
the domain is a set. In most implementations, the domain of a set variable x is
represented by two sets. The possible set PS(x) contains elements that belong to
at least one of the possible values of x. The required set RS(x) contains elements
that belong to all the possible values of x. By definition, RS(x) ⊆ PS(x). Domain
reduction of a set variable x is done by removing values from PS(x) and adding
values to RS(x). If a value being removed from PS(x) is in RS(x), then a fail is
triggered. Similarly, adding a value to RS(x) which is not in PS(x) also triggers
a fail. When PS(x) = RS(x), the set variable is bound to its required set.

An assignment x 7→ a means that variable x ∈ X of a CSP is mapped
to the value a ∈ D(x). A compound assignment 〈xi1 , . . . , xik

〉 7→ 〈a1, . . . , ak〉
denotes the k assignments xij 7→ aj for 1 ≤ j ≤ k. Note the requirement that no
variables can be assigned more than once in a compound assignment. A complete
assignment is a compound assignment for all variables in a CSP. A solution of
a CSP (X, D, C) is a complete assignment making all constraints in C true.

An extension of an assignment x 7→ a for a variable x in a constraint c is
a compound assignment that includes x 7→ a. A constraint c is generalized arc
consistent (GAC) [13] if and only if every assignment x 7→ a for each variable
x in c, where a ∈ D(x), can be extended to a solution of c. GAC is prohibitive
to enforce on constraints involving set variables. Instead, set bounds consistency
[10] is typically enforced on these constraints. A constraint c on set variables is
set bounds consistent [10] (SBC) if and only if the PS(x) and RS(x) of each set
variable x in c can be extended to a solution of c.

3 Integer and Set Value Precedence

In this section, we define value precedence for integer and set sequences, and give
its use for symmetry breaking and methods for maintaining such a constraint.



Value precedence of s over t in an integer sequence x = 〈x0, . . . , xn−1〉 means
if there exists j such that xj = t, then there must exist i < j such that xi = s.
We say that value s is an antecedent while value t is a subsequent, and that the
antecedent s precedes the subsequent t in x, written as s ≺x t. For example, the
sequence x = 〈0, 2, 2, 1, 0, 1〉 implies 0 ≺x 1, 0 ≺x 2, and 2 ≺x 1. Note that if
a value j does not appear in x, then i ≺x j is true for any i. In the previous
example, 0 ≺x 3 and 4 ≺x 3 are thus also true. Note that value precedence is
transitive: if i ≺x j and j ≺x k, then i ≺x k.

The notion of value precedence can be extended to sequences of sets, where
antecedents and subsequents are elements of the sets in the sequence. Value
precedence of s over t in a sequence x of sets means that if there exists j such
that s /∈ xj and t ∈ xj , then there must exist i < j such that s ∈ xi and t /∈ xi.
For example, consider the sequence x = 〈{0, 2}, {0, 1}, ∅, {1}〉. We have 0 ≺x 1
and 2 ≺x 1. We also have 0 ≺x 2, because there is no set in x that contains 2
but not 0. Again, if j does not belong to any set in x, then i ≺x j is true for
any i. Thus, we also have, say, 0 ≺x 4.

3.1 Application of Value Precedence

Value precedence can be used for breaking symmetries of indistinguishable val-
ues. Two values s and t are indistinguishable [2, 9] under a subset of variables
U ⊆ X of a CSP P if and only if for each solution of P , swapping occur-
rences of s and t in the assigned values of the variables in U obtains another
solution of P . For example, let x = 〈x0, . . . , x4〉 and u = 〈x1, x2, x3〉 be se-
quences of X and U respectively. Suppose x 7→ 〈{1, 2}, {0, 2}, {0, 1}, {1, 2}, ∅〉 is
a solution of P , and values 0 and 1 are indistinguishable under U . Then, swap-
ping the occurrences of 0 and 1 in the assignments of U in the solution obtains
x 7→ 〈{1, 2}, {1, 2}, {0, 1}, {0, 2}, ∅〉, which should be another solution of P .

Given two indistinguishable values under U in a CSP, we can break the
symmetry of the values by maintaining value precedence for them. We have to
construct a sequence u of U , and assume one value to be the antecedent and
the other to be the subsequent. Without loss of generality, we usually pick the
smaller value as antecedent. In the previous example, we have x = 〈x0, . . . , x4〉
and u = 〈x1, x2, x3〉. The symmetry of the indistinguishable values 0 and 1
under U can be broken by maintaining the constraint 0 ≺u 1 on variables x1,
x2, and x3 in u. Thus, x 7→ 〈{1, 2}, {0, 2}, {0, 1}, {1, 2}, ∅〉 remains a solution,
but its symmetrical counterpart x 7→ 〈{1, 2}, {1, 2}, {0, 1}, {0, 2}, ∅〉 would now
be rejected because 0 ≺u 1 is false.

Sometimes there can be more than two indistinguishable values in a CSP.
Suppose V = {v0, . . . , vk−1} is a set of mutually indistinguishable values for
variables in U . To break the symmetries induced by V , we can impose an arbi-
trary value precedence vi0 ≺u · · · ≺u vik−1 on the values in V for u, where u is
a sequence of U . Suppose V = {0, 1, 2, 3}. We can maintain 0 ≺u 1 ≺u 2 ≺u 3.

Besides symmetries of indistinguishable values, a CSP can have other types
of symmetries. A variable symmetry of a CSP, for example, is a bijective map-
ping σ from the set of variables X = {x0, . . . , xn−1} of the CSP to itself,



σ : X → X, such that for each solution x 7→ 〈v0, . . . , vn−1〉 of the CSP
where x = 〈x0, . . . , xn−1〉, there exists another solution 〈σ(x0), . . . , σ(xn−1)〉 7→
〈v0, . . . , vn−1〉 for the CSP. Variable symmetries can be broken by expressing
lexicographic ordering constraints x ≤lex 〈σ(x0), . . . , σ(xn−1)〉 for each vari-
able symmetry σ in the CSP [3].1 When tackling both variable symmetries
and symmetries of indistinguishable values simultaneously in a CSP, we have
to ensure that the two corresponding sets of symmetry breaking constraints
are consistent. For example, we have a CSP P = ({x, y}, D, {x 6= y}), where
D(x) = D(y) = {1, 2}. P has (a) the variable symmetry σ such that σ(x) = y
and σ(y) = x, and (b) values 1 and 2 are indistinguishable. To break symmetry
(a), we can use the constraint x ≤ y (which is a degenerated lexicographic order-
ing); whereas 2 ≺〈x,y〉 1 can break symmetry (b). These two constraints result
in no solution, which is undesirable.

Two sets of symmetry breaking constraints are consistent [4] if and only if at
least one element in each symmetry class of assignments, defined by the compo-
sition of the symmetries under consideration, satisfies both sets of constraints.
The following theorem shows when maintaining s ≺u t is consistent with variable
symmetry breaking constraints.

Theorem 1. Let X be the set of variables of a CSP, and x and u be sequences
of X and U ⊆ X respectively. Suppose in the CSP, Cvar is the set of symmetry
breaking constraints x ≤lex 〈σ(x0), . . . , σ(xn−1)〉 (resp. 〈σ(x0), . . . , σ(xn−1)〉 ≤lex

x) for some variable symmetries σ, and s and t are any two integer indistin-
guishable values under U . Maintaining s ≺u t (resp. t ≺u s) is consistent with
Cvar if s < t (resp. t < s) and u is a subsequence of x, i.e., u can be formed by
deleting some elements from x.

According to Theorem 1, x ≤ y and 1 ≺〈x,y〉 2 (or y ≤ x and 2 ≺〈x,y〉 1) are
consistent, resulting in a single solution 〈x, y〉 7→ 〈1, 2〉 (or 〈x, y〉 7→ 〈2, 1〉).

In order for Theorem 1 to apply also to set variables, we need to define an
ordering for sets. One possible definition, which is similar to that of multiset
ordering [8], is as follows. A set x is smaller than or equal to another set y,
written as x ≤set y, if and only if (1) y = ∅, or (2) min(x) < min(y), or (3)
min(x) = min(y) → (x \ {min(x)} ≤set y \ {min(y)}). Note that ∅ is the largest
element in the ordering. For example, {1, 2} ≤set {1, 3, 4} ≤set {1, 3}. Using this
ordering, lexicographic ordering of set sequences becomes possible.

3.2 Constraints for Maintaining Value Precedence

Constraints to enforce value precedence s ≺x t for a sequence of constrained
variables x can be constructed straightforwardly from its declarative meaning.
Suppose x is a sequence of integer variables. Since s must precede t, x0, the first
variable in x, must not be assigned t. The constraints are then
1 Sometimes the lexicographic ordering constraints can be simplified to contain fewer

variables. An example is the row ordering and column ordering constraints for row
and column symmetries [4].



1. x0 6= t and
2. xj = t → ∨

0≤i<j xi = s for 1 ≤ j < n.

If x is a sequence of set variables, then t must not be in x0 without being
accompanied by s. Hence, the constraints are

1. s ∈ x0 ∨ t /∈ x0 and
2. (s /∈ xj ∧ t ∈ xj) →

∨
0≤i<j(s ∈ xi ∧ t /∈ xi) for 1 ≤ j < n.

Note that for both integer and set variables, we need n constraints, which we col-
lectively call if-then value precedence constraints, to maintain value precedence.
Among the n constraints, one is a unary constraint, and the remaining n − 1
are if-then constraints. The following theorem shows that for integer (resp. set)
variables, GAC (resp. SBC) on the conjunction of the n if-then value precedence
constraints is equivalent to GAC (resp. SBC) on each individual if-then value
precedence constraint.

Theorem 2. Given an integer (resp. set) variable sequence x. GAC (resp. SBC)
on s ≺x t is equivalent to GAC (resp. SBC) on each individual if-then value
precedence constraint for integer (resp. set) variables.

4 Propagation Algorithms for Value Precedence

We develop two value precedence global constraints for maintaining value prece-
dence, one for integer variables and the other for set variables, in ILOG Solver
4.4 [11]. Both constraints use the same prototype V aluePrecede(x, s, t), mean-
ing s ≺x t, where x is a variable sequence. Note that s and t are integer con-
stants. In particular, GAC (resp. SBC) is enforced on the integer (resp. set)
value precedence constraint. The integer and set versions of the propagation al-
gorithms, namely IntValuePrecede and SetValuePrecede respectively, are
similar. Their complexity is linear to the length of the variable sequence. Both of
them make use of three pointers, namely α, β, and γ, which point to different in-
dices of the sequence x, but the pointers have different meanings for the integer
and set versions. The two algorithms are also similar to that of the lexicographic
ordering global constraint [6] in the sense that both maintain pointers running
in opposite directions from the two ends of variable sequences. In subsequent
discussions, we assume the variable sequence x = 〈x0, . . . , xn−1〉.

4.1 Integer Version

In IntValuePrecede, pointer α is the smallest index of x such that s is in the
domain of xα, i.e., s ∈ D(xα) and s /∈ D(xi) for 0 ≤ i < α. If no variables in
x have value s in their domains, then we define that α = n. Pointer β is the
second smallest index of x such that s is in the domain of xβ , i.e., s ∈ D(xβ)
and s /∈ D(xi) for α < i < β. If no or only one variable in x contain value s in
their domains, then we define that β = n. Pointer γ is the smallest index of x
such that xγ is bound to t, i.e., D(xγ) = {t} and D(xi) 6= {t} for 0 ≤ i < γ. If



no variables in x are bound to t, then we define that γ = n. During propagation,
α and β must be increasingly updated, while γ must be decreasingly updated.
For example, let x = 〈x0, x1, x2, x3〉, s = 1, and t = 2. Suppose we have:

x x0 x1 x2 x3

D(xi) {2, 3} {1, 2, 3} {2} {1, 3}
Then, we have α = 1, β = 3, and γ = 2.

Recall that the integer if-then value precedence constraints are x0 6= t and
xj = t → ∨

0≤i<j xi = s for 1 ≤ j < n. Pointer α tells that xi 6= s for 0 ≤ i < α.
Hence, we must have xi 6= t for 0 ≤ i ≤ α. Our first pruning rule is that:

1. value t can be removed from the domains of the variables before or at position
α in x.

In the above example, we have α = 1. Therefore, we can remove value 2 from
the domains of x0 and x1 as shown in Fig. 1(a).

x x0 x1 x2 x3

D(xi) {3} {1, 3} {2} {1, 3}
↑ α ↑ γ ↑ β
(a)

x x0 x1 x2 x3

D(xi) {3} {1} {2} {1, 3}
↑ α ↑ γ ↑ β
(b)

Fig. 1. Illustrating the use of the pointers α, β, and γ in IntValuePrecede

Pointer γ tells the smallest index of x such that xγ is bound to t. Therefore,
according to the if-then value precedence constraints,

∨
0≤i<γ xi = s must be

satisfied. Since xi 6= s for 0 ≤ i < α,
∨

0≤i<γ xi = s can be refined to
∨

α≤i<γ xi =
s. Furthermore, pointer β tells that xi 6= s for α < i < β. Therefore, if γ < β,
then

∨
α≤i<γ xi = s becomes xα = s. Our second pruning rule is that:

2. if γ < β, then xα can be bound to s.

Note that once xα is bound to s, s ≺x t is satisfied. In the above example, we
have 3 = β > γ = 2. Therefore, we can bound x1 (xα) to 1, as shown in Fig. 1(b),
and 1 must precede 2 in x afterwards.

The propagation algorithm IntValuePrecede, shown in Fig. 2, is based on
the two pruning rules just described. Procedure initialize() is called when a
value precedence constraint is posted. It finds initial values for the pointers α, β,
and γ. In the procedure, we first search the position for α, starting from position
0. During the search, the first pruning rule is applied. After that, we search a
value for γ. Since value t is removed from D(xi) for 0 ≤ i ≤ α, γ must be greater
than α and the position search for γ can start from position α + 1. Note that
the second pruning rule cannot be applied at this point because pointer β is not
yet initialized. After fixing γ, procedure updateBeta() is invoked to find a value
for β. By definition, β must be greater than α. Therefore the search starts from
position α + 1. After fixing β, the second pruning rule can be applied.



procedure initialize()
α := 0;
while α < n ∧ s /∈ D(xα) do D(xα) := D(xα) \ {t}; α := α + 1 endwhile
β := α; γ := α;
if α < n then

D(xα) := D(xα) \ {t};
repeat γ := γ + 1 until γ = n ∨D(xγ) = {t};
updateBeta()

endif

procedure propagate(i)
if β ≤ γ then

if i = α ∧ s /∈ D(xi) then
α := α + 1;
while α < β do D(xα) := D(xα) \ {t}; α := α + 1 endwhile
while α < n ∧ s /∈ D(xα) do D(xα) := D(xα) \ {t}; α := α + 1 endwhile
if α < n then D(xα) := D(xα) \ {t} endif
β := α;
if α < n then updateBeta() endif

else if i = β ∧ s /∈ D(xi) then
updateBeta()

endif
endif

procedure updateBeta()
repeat β := β + 1 until β = n ∨ s ∈ D(xβ);
if β > γ then D(xα) := D(xα) ∩ {s} endif

procedure checkGamma(i)
if β < γ ∧ i < γ ∧D(xi) = {t} then

γ := i;
if β > i then D(xα) := D(xα) ∩ {s} endif

endif

Fig. 2. The IntValuePrecede propagation algorithm

Procedure propagate(i) in Fig. 2 is called whenever the domain of xi is mod-
ified. If γ < β, then value precedence is already maintained and we can skip the
propagation process. Otherwise, if i = α and s /∈ D(xi), then pointers α and β
have to be updated. The search for new position for α starts from position β,
because xβ is the original second earliest variable that contains s in its domain.
Once value s is removed from D(xα), β becomes the first potential value for α.
However, before the search, value t has to be removed from D(xi) for α < i < β.
During the search, the first pruning rule is applied. Pointer β is updated after
finding a new value for α. The search for new value for β starts from position
α+1. The procedure updateBeta() is called to update β. In the procedure, once
β is updated, the second pruning rule is applied to check whether β > γ.

In procedure propagate(i), if i = β and s /∈ D(xi), then only pointer β has
to be updated. Hence, the procedure updateBeta() is called to find a new value
for β and to apply the second pruning rule.



We need a procedure to update γ also. Procedure checkGamma(i) in Fig. 2
is called whenever xi is bound to a value. If i < γ and xi is bound to t, then γ
is updated to i, and the second pruning rule is applied to check whether β > γ.
The IntValuePrecede algorithm enforces GAC on s ≺x t.

Theorem 3. Given an integer variable sequence x and integers s and t. The
IntValuePrecede algorithm triggers failure if s ≺x t is unsatisfiable; otherwise,
the algorithm prunes values from domains of variables in x such that GAC on
s ≺x t is enforced and solutions of s ≺x t are preserved.

4.2 Set Version

In SetValuePrecede, the meanings of the pointers α, β, and γ are different
from those in the integer version. Pointer α is the smallest index of x such
that s is in the possible set of xα and t is not in the required set of xα, i.e.,
s ∈ PS(xα) ∧ t /∈ RS(xα) and s /∈ PS(xi) ∨ t ∈ RS(xi) for 0 ≤ i < α. If
s /∈ PS(xi) ∨ t ∈ RS(xi) for 0 ≤ i < n, then we define that α = n. Pointer β is
the second smallest index of x such that s is in the possible set of xβ and t is not in
the required set of xβ , i.e., s ∈ PS(xβ)∧t /∈ RS(xβ) and s /∈ PS(xi)∨t ∈ RS(xi)
for α < i < β. If α = n or s /∈ PS(xi)∨ t ∈ RS(xi) for α < i < n, then we define
that β = n. Pointer γ is the smallest index of x such that s is not in the possible
set of xγ and t is in the required set of xγ , i.e., s /∈ PS(xγ) ∧ t ∈ RS(xγ) and
s ∈ PS(xi)∨t /∈ RS(xi) for 0 ≤ i < γ. The definition of γ implies s /∈ xγ∧t ∈ xγ .
If s ∈ PS(xi)∨ t /∈ RS(xi) for all 0 ≤ i < n, then we define that γ = n. As in the
integer version, α and β must be updated increasingly, while γ must be updated
decreasingly. Let x = 〈x0, x1, x2, x3〉, s = 1, and t = 2. Suppose we have:

x x0 x1 x2 x3 x4

PS(xi) {2, 3} {1, 2} {1, 2, 3} {2, 3} {1, 2}
RS(xi) ∅ {2} {3} {2, 3} ∅

Then, we have α = 2, β = 4, and γ = 3.
Pointer α tells that s /∈ xi ∨ t ∈ xi for 0 ≤ i < α. Hence, according to the

set if-then value precedence constraints s ∈ x0 ∨ t /∈ x0 and (s /∈ xj ∧ t ∈ xj) →∨
0≤i<j(s ∈ xi ∧ t /∈ xi) for 1 ≤ j < n, the constraints s ∈ xi ∨ t /∈ xi for

0 ≤ i ≤ α must be satisfied. Since s ∈ PS(xα) ∧ t /∈ RS(xα) must be true.
Therefore s ∈ xα ∨ t /∈ xα is already consistent. Consequently, our first pruning
rule for SetValuePrecede is to maintain consistency on s ∈ xi ∨ t /∈ xi for
0 ≤ i < α.

1. For 0 ≤ i < α, if s is not in PS(xi), then t can be removed from PS(xi);
otherwise, s can be added to RS(xi).

In the above example, value 1 is not in PS(x0) so that we can remove 2 from
PS(x0). Value 2 is in PS(x1); thus 1 is added to RS(x1). The resulting domains
are shown in Fig. 3(a).

Pointer γ tells that s /∈ xγ ∧ t ∈ xγ . According to the if-then value prece-
dence constraints, the constraint

∨
0≤i<γ(s ∈ xi ∧ t /∈ xi) must be satisfied. By



x x0 x1 x2 x3 x4

PS(xi) {3} {1, 2} {1, 2, 3} {2, 3} {1, 2}
RS(xi) ∅ {1, 2} {3} {2, 3} ∅

↑ α ↑ γ ↑ β
(a)

x x0 x1 x2 x3 x4

PS(xi) {3} {1, 2} {1, 3} {2, 3} {1, 2}
RS(xi) ∅ {1, 2} {1, 3} {2, 3} ∅

↑ α ↑ γ ↑ β
(b)

Fig. 3. Illustrating the use of the pointers α, β, and γ in SetValuePrecede

the meaning of α, this constraint can be refined to
∨

α≤i<γ(s ∈ xi ∧ t /∈ xi).
Furthermore, pointer β tells that s /∈ xi ∨ t ∈ xi for α < i < β. Therefore, if
γ < β, then

∨
α≤i<γ(s ∈ xi ∧ t /∈ xi) becomes s ∈ xα ∧ t /∈ xα. Our second

pruning rule for SetValuePrecede is that:

2. if γ < β, then s can be added to RS(xα) and t can be removed from PS(xα).

The constraint s ≺x t is satisfied once xα is proved to contain s but not t. In
the above example, we have 3 = γ < β = 4. Therefore, value 1 can be added to
RS(xα) and 2 can be removed from PS(xα), as shown in Fig. 3(b).

Like IntValuePrecede, the SetValuePrecede algorithm in Fig. 4 is based
on two pruning rules. It contains four procedures with the same name as the
integer version, and with similar structures also. Procedure initialize() is called
when V aluePrecede(x, s, t) is posted. It initializes the pointers α, β, and γ.
The two pruning rules are applied during initialization. Procedure propagate(i)
is called whenever the domain of variable xi is modified, i.e., either PS(xi) or
RS(xi) is modified. If γ < β, value precedence is already maintained and no
propagation is needed. Otherwise, there are two different cases. In the first case,
i = α ∧ (s /∈ PS(xi) ∨ t ∈ RS(xi)), pointers α and β have to be updated.
In the second case, i = β ∧ (s /∈ PS(xi) ∨ t ∈ RS(xi)), only pointer β has
to be updated. After these two cases, procedure checkGamma(i) is called to
check whether pointer γ has to be updated. This is different from the integer
version, where checkGamma(i) is called only when xi is bound to a value. This
is because, in the set version, pointer γ may need update even when xi is not
bound. The SetValuePrecede algorithm enforces SBC on s ≺x t.

Theorem 4. Given a set variable sequence x and integers s and t. The Set-
ValuePrecede algorithm triggers failure if s ≺x t is unsatisfiable; otherwise,
the algorithm prunes values from domains of variables in x such that SBC on
s ≺x t is enforced and solutions of s ≺x t are preserved.

5 Multiple Indistinguishable Values

In many circumstances, there are more than two indistinguishable values in
the same problem, but our global constraints can deal with only two such
values at a time. To break symmetries on a set of variables U induced by a
set of indistinguishable values V = {v0, . . . , vk−1} for k > 2, we can impose
the V aluePrecede() constraints using all pairs of values in V : vi ≺u vj for



procedure initialize()
α := 0;
while α < n ∧ (s /∈ PS(xα) ∨ t ∈ RS(xα)) do

if s /∈ PS(xα) then PS(xα) := PS(xα) \ {t} else RS(xα) := RS(xα) ∪ {s} endif
α := α + 1

endwhile
β := α; γ := α;
if α < n then

repeat γ := γ + 1 until γ = n ∨ (s /∈ PS(xγ) ∧ t ∈ RS(xγ));
updateBeta()

endif

procedure propagate(i)
if β ≤ γ then

if i = α ∧ (s /∈ PS(xi) ∨ t ∈ RS(xi)) then
if s /∈ PS(xi) then PS(xi) := PS(xi) \ {t} else RS(xi) := RS(xi) ∪ {s} endif
α := α + 1;
while α < β do

if s /∈ PS(xα) then PS(xα) := PS(xα) \ {t} else RS(xα) := RS(xα)∪ {s} endif
α := α + 1

endwhile
while α < n ∧ (s /∈ PS(xα) ∨ t ∈ RS(xα)) do

if s /∈ PS(xα) then PS(xα) := PS(xα) \ {t} else RS(xα) := RS(xα)∪ {s} endif
α := α + 1

endwhile
β := α;
if α < n then updateBeta() endif

else if i = β ∧ (s /∈ PS(xi) ∨ t ∈ RS(xi)) then
updateBeta()

endif
checkGamma(i)

endif

procedure updateBeta()
repeat β := β + 1 until β = n ∨ (s ∈ PS(xβ) ∧ t /∈ RS(xβ));
if β > γ then PS(xα) := PS(xα) \ {t}; RS(xα) := RS(xα) ∪ {s} endif

procedure checkGamma(i)
if β < γ ∧ i < γ ∧ s /∈ PS(xi) ∧ t ∈ RS(xi) then

γ := i;
if β > i then PS(xα) := PS(xα) \ {t}; RS(xα) := RS(xα) ∪ {s} endif

endif

Fig. 4. The SetValuePrecede propagation algorithm

0 ≤ i < j ≤ k − 1, where u is a sequence of U . By transitivity of value prece-
dence, however, an alternative is to impose constraints using only adjacent pairs
of values in V : vi ≺u vi+1 for 0 ≤ i ≤ k − 2. Although achieving the same value
precedence effect, the two approaches differ in the level of propagation.

Theorem 5. Given an integer (resp. set) variable sequence u, and a set of
integer indistinguishable values V = {v0, . . . , vk−1} under U . GAC (resp. SBC)



on vi ≺u vj for 0 ≤ i < j ≤ k − 1 is strictly stronger than GAC (resp. SBC) on
vi ≺u vi+1 for 0 ≤ i ≤ k − 2.

For example, consider the variable sequence x = 〈x0, . . . , x3〉 with D(x0) =
{0, 3}, D(x1) = {1, 3}, D(x2) = {1, 2, 3}, and D(x3) = {2}. Suppose V =
{0, 1, 2} is a set of indistinguishable values under {x0, . . . , x3}. The constraints
{0 ≺x 1, 1 ≺x 2} are GAC with respect to the current variable domains, but the
constraints {0 ≺x 1, 1 ≺x 2, 0 ≺x 2} are not, since x0 7→ 3 cannot be extended to
a solution. Suppose y = 〈y0, . . . , y3〉 is a sequence of set variables with PS(y0) =
{0}, PS(y1) = {1}, PS(y2) = PS(y3) = {1, 2}, RS(y0) = RS(y1) = RS(y2) = ∅,
and RS(y3) = {2}. The constraints {0 ≺y 1, 1 ≺y 2} are SBC with respect to
the variable domains, but {0 ≺y 1, 1 ≺y 2, 0 ≺y 2} are not, since y0 7→ RS(y0),
i.e., y0 7→ ∅, cannot be extended to a solution.

As we shall see in the experimental results, such difference in propagation
level, although theoretically possible, might not show up often in practice.

6 Experiments

To demonstrate the feasibility of our proposal, we test our implementations on
the Schur’s lemma and the social golfer problem. The experiments aim to com-
pare (a) the effect of all-pair and adjacent-pair posting of the global constraints
and (b) our global constraints against the use of if-then value precedence con-
straints. We report also the results of another of our recently developed approach
to maintain value precedence using multiple viewpoints and channeling [12].

All the experiments are run using ILOG Solver 4.4 [11] on a Sun Blade 1000
workstation with 2GB memory. We report the number of fails and CPU time
for each instance of each model. The best number of fails and CPU time among
the models for each instance are highlighted in bold.

6.1 Schur’s Lemma

Schur’s lemma, “prob015” in CSPLib,2 is the problem of putting n balls labeled
{1, . . . , n} into three boxes such that for any triple of balls (x, y, z) with x+ y =
z, not all are in the same box. This problem has a solution if n < 14. We
experiment with a variant of this problem, where the triple (x, y, z) must consist
of distinct values to relax the unsatisfiability condition. To model the problem
into CSPs, we use variables x = 〈x1, . . . , xn〉 all with domain {1, 2, 3}, where
the variables and domain values represent the balls and the boxes respectively.
In this representation, the domain values 1, 2, and 3 are indistinguishable, and
we can use the value precedence constraint to break the symmetries. In order to
increase the difficulty of the problem, we “glue” two copies of the same instance
together to form a larger instance. Suppose P = (X,DX , CX) is a Schur’s lemma
problem. We replicate a copy of P and systematically replace all variables in
X by variables in Y such that X ∩ Y = ∅, yielding P ′ = (Y, DY , CY ) which
2 Available at http://www.csplib.org.



Table 1. Experimental Results for the Schur’s Lemma

adj-pair all-pair if-then int-bool int-set
n fails time fails time fails time fails time fails time

7 130 0.11 130 0.11 130 0.18 449 0.24 2232 0.57
8 811 0.52 811 0.54 811 0.91 1489 1.04 5478 2.4
9 8506 1.87 8506 1.97 8506 3.57 9733 3.64 17093 8.4

10 38373 6.13 38373 6.4 38373 12.81 40541 11.76 53663 27.68
11 141150 16.33 141150 17.23 141150 36.65 144546 30.73 165152 73.4
12 419979 35.42 419979 37.73 419979 87.46 424828 65.53 454876 159.41
13 942128 65.93 942128 70.28 942128 174.42 948450 119.92 987858 295.08

is semantically equivalent to P . We try to solve (X ∪ Y, D,CX ∪ CY ), where
D(x) = DX(x) for x ∈ X and D(y) = DY (y) for y ∈ Y . This gluing operation
doubles the number of variables and constraints, and introduces also a variable
symmetry σ such that σ(xi) = yi and σ(yi) = xi. This variable symmetry can
be broken by the constraint x ≤lex y as ensured by Theorem 1, where x and y
are sequences of X and Y respectively. We test this problem on five models. The
experimental results of searching for all solutions are summarized in Table 1. The
first and second models use value precedence constraints on adjacent pairs (adj-
pair) and all pairs (all-pair) of the values respectively. The third model (if-then)
uses the if-then constraints on adjacent pairs of values. The fourth (int-bool) and
fifth (int-set) models use multiple viewpoints and channeling constraints [12].

Models using global constraints are substantially more efficient than the other
approaches. The all-pair and adj-pair models achieve the same pruning, which
is shared also by the if-then model. Therefore, the all-pair model is slightly
slower since it has to process more value precedence constraints. Results of the
channeling approach (int-bool and int-set) are provided for reference purposes
only, since the approach relies on purely modeling techniques and no invention of
new propagation algorithms. Its advantage is simplicity of and readiness for use
in existing constraint programming systems. Although the channeling approach
achieves less propagation, it is more efficient than the if-then model.

We have also experimented on Flener et al.’s version of Schur’s lemma [4].
Our global constraints’ results are more efficient than those of Gent reported by
Flener et al. [4].

6.2 Social Golfer Problem

The social golfer problem, “prob010” in CSPLib, is to find a w-week schedule of
g groups, each containing s golfers, such that no two golfers can play together
more than once. The total number of golfers is n = g×s. We denote an instance
of the problem as (g, s, w). The problem is highly symmetric [1]:

1. Players can be permuted among the n! combinations.
2. Weeks of schedule can be exchanged.
3. Groups can be exchanged inside weeks.

In the following, we describe an integer and a set model for the problem, so as
to test both the integer and the set versions of the global constraints.



Table 2. Experimental Results for the Social Golfer Problem, using Integer Variables

adj-pair all-pair if-then int-bool int-set
g, s, w fails time fails time fails time fails time fails time

5,3,5 26429 4.26 26429 4.69 26429 10.92 26577 5.6 26429 8.66
5,3,7 8235 1.94 8235 2.14 8235 5.95 8435 2.68 8235 4.22
5,4,3 51314 13.63 51314 14.66 51314 44.32 51733 17.33 51314 28.28
5,4,4 1127237 351.07 1127237 377.52 1127237 1118.24 1132576 444.62 1127237 728.64
6,2,11 54 0.02 54 0.03 54 0.07 54 0.04 54 0.06
6,3,5 1141372 321.97 1141372 364.2 1141372 919.49 1145472 418.08 1141372 634.68
6,4,3 2226446 651.88 2226446 725.96 2226446 2592.27 2249286 812.3 2226446 1332.83
7,2,13 1039 0.3 1039 0.37 1039 1.08 1081 0.48 1039 0.61
7,3,4 351 0.09 351 0.11 351 0.36 358 0.13 351 0.19
7,4,3 1093376 368.07 1093376 423.14 1093376 1873.08 1116598 454.44 1093376 770.46
7,5,2 48794 22.83 48794 25.64 48794 152.57 50257 27.81 48794 49.56
8,3,5 785865 249.1 785865 302.19 785865 1073.7 791800 321.13 785865 510.85
8,4,9 17 0.09 17 0.09 17 0.73 18 0.11 17 0.17
8,5,2 71463 38.04 71463 43.46 71463 321.33 74679 45.22 71463 82.24
8,8,9 19 0.3 19 0.35 19 3.92 19 0.36 19 0.61
9,5,2 9686 6.35 9686 7.27 9686 71.65 10248 7.51 9686 13.74

Integer Model. One way to model the social golfer problem is to use variables
gi,k for each golfer i in week k with 0 ≤ i < n and 0 ≤ k < w. The domain of
the variables D(gi,k) = {0, . . . , g − 1} contains the group numbers that golfer i
can play in week k.

In this integer model, symmetries 1 and 2 are variable symmetries, and they
can be broken by row ordering and column ordering constraints [4]. Note that
these constraints do not completely break the compositions of the row and col-
umn symmetries. There are methods [7, 8] to introduce extra constraints to break
more of them but they are out of the scope of this paper. Symmetry 3 is an ex-
ample of symmetries of indistinguishable values. Therefore we can express value
precedence constraints to break the symmetries. Theorem 1 ensures the safe
posting of both types of symmetry breaking constraints.

Table 2 shows the experimental results of solving for the first solution of vari-
ous instances using different models respectively. The results are similar to those
for the Schur’s lemma. Models using global constraints are the fastest among all,
confirming the efficiency of our integer propagation algorithm. Again, the all-
pair model shows no advantage in pruning over the adj-pair model, and is thus
slightly less efficient due to the overhead in maintaining additional constraints.
The if-then model, achieving the same amount of propagation as the global con-
straint approach, performs the worst in runtime among all models. Note that the
performance of int-bool model approaches that of the global constraint models.

Set Model. Another way to model the social golfer problem is to use variables
pj,k for each group j in week k with 0 ≤ j < g and 0 ≤ k < w. Since a group in
a week can contain multiple golfers, the variables pj,k are set variables and their
domains are represented by the possible set PS(pj,k) = {0, . . . , n− 1}, which is
the set of golfers.



Table 3. Experimental Results for the Social Golfer Problem, using Set Variables

no-break adj-pair all-pair if-then set-bool set-int
g, s, w fails time fails time fails time fails time fails time fails time

5,3,5 62 0.03 38 0.02 38 0.02 38 0.26 38 0.04 38 0.04
5,3,7 716851 313.66 716827 329.71 716827 446.65 - - 716827 496.82 716827 480.04
5,4,3 2602 0.21 107 0.02 107 0.04 107 0.22 107 0.04 107 0.03
5,4,4 2886 0.37 391 0.07 391 0.13 391 0.93 391 0.13 391 0.13
6,2,11 66 0.12 66 0.13 66 0.15 66 2.39 66 0.17 66 0.16
6,3,5 51 0.04 51 0.03 51 0.05 51 0.44 51 0.06 51 0.05
6,4,3 20652 1.89 1011 0.13 1011 0.32 1011 2.1 1011 0.31 1011 0.28
7,2,13 672 0.66 672 0.65 672 0.72 672 34.07 672 0.79 672 0.74
7,3,4 30 0.02 23 0.03 23 0.03 23 0.36 23 0.04 23 0.03
7,4,3 35860 3.85 2827 0.38 2827 1.25 2827 6.58 2827 1 2827 0.91
7,5,2 - - 10503 0.93 10503 5.11 10503 15.48 10503 2.91 10503 2.38
8,3,5 32216 5.85 32192 6.34 32192 13.58 32192 102.18 32192 12.03 32192 11.64
8,4,9 - - - - - - - - - - - -
8,5,2 - - 20519 2.04 20519 15.81 20519 47.09 20519 6.63 20519 5.67
8,8,9 64 0.42 64 0.44 64 1.94 64 35.95 64 0.76 64 0.68
9,5,2 - - 4021 0.49 4021 4.25 4021 15.06 4021 1.64 4021 1.49

In this model, symmetries 2 and 3 are variable symmetries, and they can be
broken by constraints min(pj,k) < min(pj+1,k) for 0 ≤ j ≤ g − 2 and 0 ≤ k < w
and min(p0,k \ {0}) < min(p0,k+1 \ {0}) for 0 ≤ k ≤ w − 2 respectively [1].
These constraints are the result of simplifying the corresponding lexicographic
ordering constraints for breaking the variable symmetries. Symmetry 1 becomes
symmetries of indistinguishable values {0, . . . , n − 1}, which can be tackled by
value precedence constraints. Again, Theorem 1 ensures the consistency of the
two sets of symmetry breaking constraints.

Table 3 summarizes the experimental results of solving for the first solution
of various problem instances using various models. A cell labeled with “-” means
that the search does not terminate in one hour of CPU time. In this experiment,
we report also the result of a model (no-break) with no indistinguishable value
symmetry breaking constraints, since there are instances with few symmetries to
break (as indicated by the number of fails) during the search for the first solution.
In those cases, the no-break model edges the performance of the adj-pair and
all-pair models, but the good news is that the margin is small. This shows that
our global constraint implementations incur low overhead. In the cases with
substantial pruning of search space by symmetry breaking, the adj-pair and all-
pair models perform substantially better in terms of percentage speedup than
the other models although the timings are small in general. In this experiment,
all models with symmetry breaking achieve the same propagation.

7 Conclusion

The contributions of our work are three-fold. First, the notion of value prece-
dence is introduced. We show how the notion can be used to design constraints
for breaking symmetries of indistinguishable values. Second, we present linear



time propagation algorithms for implementing global constraints on value prece-
dence. Experiments are conducted to verify the efficiency of our proposal. Results
confirm that our implementations incur little overhead and are robust. Third,
we give theoretical results to characterize the exact behavior of our proposed
algorithms in different usage scenarios.

An interesting line of future research is to generalize the value precedence
constraints. First, the antecedent and subsequent can be also constrained integer
variables instead of just integer constants. Second, Theorem 5 ensures that more
propagation can be achieved if we can maintain value precedence on an arbitrary
non-singleton set of values simultaneously.

Acknowledgments

We thank the anonymous referees for their constructive comments which help
improve the quality of the paper. We also acknowledge The University of York
for providing the source of the lexicographic ordering global constraint for our
reference. The work described in this paper was substantially supported by a
grant from the Research Grants Council of the Hong Kong Special Administra-
tive Region (Project no. CUHK4219/04E).

References

1. N. Barnier and P. Brisset. Solving the Kirkman’s schoolgirl problem in a few
seconds. In Proceedings of CP-02, pages 477–491, 2002.

2. B. Benhamou. Study of symmetry in constraint satisfaction problems. In Proceed-
ings of PPCP-94, 1994.

3. J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates
for search problems. In Proceedings of KR-96, pages 148–159, 1996.

4. P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetries in matrix models. In Proceedings of CP-02,
pages 462–476, 2002.

5. E. C. Freuder. Eliminating interchangeable values in constraint satisfaction prob-
lems. In Proceedings of AAAI-91, pages 227–233, 1991.

6. A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Global constraints
for lexicographical orderings. In Proceedings of CP-02, pages 93–108, 2002.

7. A. M. Frisch, C. Jefferson, and I. Miguel. Constraints for breaking more row and
column symmetries. In Proceedings of CP-03, pages 318–332, 2003.

8. A. M. Frisch, I. Miguel, Z. Kiziltan, B. Hnich, and T. Walsh. Multiset ordering
constraints. In Proceedings of IJCAI-03, pages 221–226, 2003.

9. I.P. Gent. A symmetry breaking constraint for indistinguishable values. In Pro-
ceedings of SymCon-01, 2001.

10. C. Gervet. Interval propagation to reason about sets: Definition and implementa-
tion of a practical language. Constraints, 1(3):191–244, 1997.

11. ILOG. ILOG Solver 4.4 Reference Manual, 1999.
12. Y. C. Law and J. H. M. Lee. Breaking value symmetries in matrix models using

channeling constraints. Technical report, The Chinese Univ. of Hong Kong, 2004.
13. R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings of ECAI-88,

pages 651–656, 1988.


