
A Framework for Guided Complete Search for Solving Constraint Satisfaction

Problems and Some of Its Instances

Spencer K.L. Fung,
†
 Denny J. Zheng,

†
 Ho-fung Leung,

†
 Jimmy H.M. Lee,

†
 and H.W. Chun

‡

†
Dept. of Computer Science and Engineering

The Chinese University of Hong Kong

Sha Tin, Hong Kong, P.R. China

{sklfung, jyzheng, lhf, jlee}@cse.cuhk.edu.hk

‡
Department of Computer Science

City University of Hong Kong

Kowloon, Hong Kong, P.R. China

andy.chun@cityu.edu.hk

Abstract

Systematic tree search augmented with constraint

propagation has been regarded as the de facto stan-

dard approach to solve constraint satisfaction prob-

lems (CSPs). The property of completeness of tree

search is superior to incomplete stochastic local

search, even though local search approach is more

efficient in general. Many heuristics techniques have

been developed to improve the efficiency of the tree

search approach. In this paper, we propose a frame-

work for combining and coordinating a complete tree

search solver and a different solver in order to pro-

duce a complete and efficient CSP solver. Four differ-

ent instances of the framework have been suggested,

which include combining complete tree search with

stochastic search, mathematical programming ap-

proach respectively. The experimental results show

that this highly integrated hybrid scheme greatly im-

prove the efficiency of constraint solving process in

terms of both computation time and number of back-

tracking.

1. Introduction

Research into Constraint Satisfaction Problems

(CSPs) [14] is an active research area in the realm of

artificial intelligence. CSPs find numerous practical

applications in the real life, including resource alloca-

tion [4], rostering [1], scheduling, timetabling [3], net-

work design [5] and so on. Different solvers for CSPs

have been proposed, which can be roughly divided into

two main categories. On the one hand, tree search

based solvers systematically explore virtually the whole

search space. These solvers, though relatively less effi-

cient, are complete in the sense that all solutions can

eventually be found. On the other hand, stochastic

solvers, such as artificial neural networks (ANNs) [18],

evolutionary algorithms (EAs) [16] and Genetic Algo-

rithms (GA) [17], are usually practically faster by or-

ders of magnitude, but they do not guarantee to find

any solutions even if solutions exist.

Heuristics is commonly employed to improve the ef-

ficiency of CSP solvers. For examples, value ordering

and variable ordering heuristics can often significantly

improve the efficiency of tree search based solvers.

Occasionally, domain specific heuristics, such as the

Least-Loaded Routing (LLR) strategy [5] for maximiz-

ing the network throughput, are sometimes available..

We observe that some solvers are able to demon-

strate obvious favor of particular values of some va-

riables in the process of searching for solutions, even

before any solution is found. These favored values of-

ten turn out to constitute (part of) the solutions even-

tually found. For example, when applying Genetic

Algorithms (GAs) to solve CSPs, it is almost always

the case that most members of the surviving population

favor particular values of the variables.

In this paper, we propose a hybrid scheme for solv-

ing CSPs. In the proposed scheme, the operations of a

tree search based solver are coordinated with those of

another solver that demonstrate favor for particular

value(s) of variables in the process of CSP solving. The

favored values are made use of by the tree search based

solver as value ordering heuristics. Meanwhile, value

commitments made by the tree search based solver, as

well as other information such as the results of con-

straint propagation, help the collaborating solver to

reduce the problem size. The hybrid solver as a whole

is a complete solver. Experiments show that, with a

suitable choice of the collaborating solver, this highly

integrated hybrid scheme greatly improve the efficien-

cy of constraint solving process.

Solver collaboration in solving CSPs has been re-

ported in the literature. In 1996 Lee et al. [13] pro-

posed that the derivation in constraint logic program-

ming (CLP) could be guided by GENET [18], a sto-

chastic search based solver for binary constraint satis-

faction problems. In a nutshell, their approach consists

of employing a GENET solver at each choice point.

Before the sub-trees rooted at the choice point are ex-

plored, the GENET solver is invoked to solve. Hooker

et al. [8,9,10] proposed MLLP that makes use of condi-

tionals to link discrete and continuous elements of the

problem, and brings the idea of integration of a checker

with a solver. Gomes et al. [6,7] proposed randomized

backtrack search which employs linear programming.

The paper is organized as follows. In the next sec-

tion, we describe the background of the CSPs. The

Guided Complete Search (GCS) framework is pre-

sented in section 3. After that, various GCS schemes

and experimental results are presented. Finally, we

conclude the paper and give the direction our future

work.

2. Background

The definition of constraint satisfaction problems

(CSP) and the incorporated search algorithm will be

described in this section.

2.1. Constraint Satisfaction Problems

A constraint satisfaction problem [14] is a three-

tuple , ,X D C , where
1

{ , , }
n

X x x= K is a finite set

of n variables,
1

{ , , }
n

D d d= K where
i

d is the domain

of variable
i

x , and
1

{ , , }
m

C c c= K a finite set of m

constraints over the variables in X. Each domain

i
d D∈ , 1 i n≤ ≤ , is a finite and discrete set of con-

stants, and each constraint
i

c C∈ , 1≤ i ≤ m, is a rela-

tion over a finite subset of X.

An assignment A of variables is an n-tuple

1 1
, ,

n n
A x a x a= a K a where

i i
a d∈ , 1 i n≤ ≤ .

An assignment A is a solution to a constraint satisfac-

tion problem if and only if all constraints in C are satis-

fied by A after replacing the occurrences of variable
i

x

by
i

a , that is,
iX iA c↓ ∈ , where

iXA ↓ denotes the as-

signment A projected to the subset Xi ⊆ X of variables

that appear in
i

c . It is required that the satisfiability of

each constraint be decidable. It is well known that find-

ing a solution to a CSP is an NP-complete problem.

2.2. Complete Search Methods for Solving

Constraint Satisfaction Problems

There are two main approaches to solving constraint

satisfaction problems. The traditional approach is to

employ a tree search method to find the solution(s) to a

CSP. The basic idea of tree search based approaches is

easy to understand. In a nutshell, we first select a vari-

able, and create a choice point on it so that the values

in its domain can be tried one after another. For each of

these values being tried, we select another variable and

create a new choice point on it. This process continues

until all variables are exhausted. In this way a search

tree is formed, with each of its leaves corresponding to

either a solution or a failure. In the case of a failure, the

search will continue at the next available node. We call

such a process as a backtracking. Figure 1 shows a

sample search tree for a simple CSP with three va-

riables
1

x ,
2

x and
3

x associated with domains

1
{1,2}d = ,

2
{2,3}d = and

3
{1,2,3}d = , and three

constraints
1 2

x x< ,
2 3

x x= and
1 3

1x x+ = . A tick in

the leaf indicates that a solution is found, and a cross

indicates a failure.

Many heuristics have been proposed to improve the

efficiency of tree search approaches, which can be clas-

sified into three main categories. First, variable-

ordering heuristics aim to select appropriate variable to

be instantiate at each choice point, so that the size of

the search tree might be reduced by earlier failures. On

the other hand, value-ordering heuristics aim to identify

and try the most promising values first at each choice

point, so that the first (or the next) solution can hope-

fully be found earlier. Finally, constraint propagation,

such as node- and arc-consistency algorithms [14], can

be employed at each choice point to reduce the sizes of

the variable domains, and thus also the size of the

search tree as some of the branches are pruned in the

process.

A general framework that incorporates these heuris-

tics is outlined in Figure 2. “⊥” indicates a failure.

Note that for clarity purpose we only show the solver

that finds the first solution. This framework is the basis

Figure 1Figure 1Figure 1Figure 1. . . . A search tree for the example CSPA search tree for the example CSPA search tree for the example CSPA search tree for the example CSP

3 2

√

X

X X X X X

1 3
2

1 3
2

1

3 2

2

x1

x2

x3

X √ X

1 3
2

of many commercially available tree search based

complete search solvers, such as CHIP [22], ILOG

Solver [12] and JSolver [2].

3. Guided Complete Search

Applying value-ordering heuristics is a common and

important approach to speed up constraint solving,

which can guide the constraint solver to reach the first

solution more directionally. However, it is difficult to

know what value-ordering heuristics is suitable for dif-

ferent problems, as the effectiveness of value-ordering

heuristics is domain-dependent, or sometimes even

problem-dependent. The min-conflicts [21] value-

ordering heuristics is one of the successful general

guidance for complete tree search.

In this section, the Guided Complete Search (GCS)

framework for solving CSPs is presented, which coor-

dinates the collaboration of complete tree search (TS)

and a collaborating solver in order to produce a com-

plete and efficient CSP solver. In the framework, from

the viewpoint of TS, the collaborating solver acts as an

“oracle” that generates heuristics for value ordering.

Meanwhile, TS narrows the search space for the colla-

borating solver by constraint propagation after each

value commitment. The information exchange opera-

tion improves the performance for both solvers in the

framework. As a result, a more efficient hybrid solver

can be obtained.

A general framework of Guided Complete Search

(GCS) is shown in Figure 3. The function

the_other_solver_returns() is actually an interface to

combine TS and the collaborating CSP solver (“the

other solver”), which returns a solution A, a failure

(“⊥”), or an unknown. Note that the situation of return-

ing unknown in the collaborating solver usually refers

to the case of reaching a pre-set resource limit, such as

time limit, maximum number of iterations, etc. In such

a case the collaborating solver should demonstrate a

favor of values of some variables. Hence, the function

val_suggestion_from_other_solver() is called, and the

variable labeling procedure proceeds in TS. Eventually,

solution can be found either in TS or in the collaborat-

ing solver.

The cost of employing the collaborating solver to

obtain a promising value for a variable might be expen-

sive. A possible way to reduce the cost is shown in

Figure 4. We modify the GCS algorithm to provide

flexibility for different degree of integration. The func-

tion need_suggestion() determines whether there is a

need to invoke the other solver, and the function up-

date_the_other_solver() can perform a partial update

(from “no-op” to full update) to the other solver in or-

GCS(X, D, C) {

 , ,X D C′ = constraint_propagation(, ,X D C);

 if ([]d d D d∃ ∈ → = ∅) return ⊥ ;

 if ([| | 1]d d D d∀ ∈ → =)

return { | 1, 2, , }=a K

i i
x s i n , where { }=

ix id s ;

 update_the_other_solver(, ,X D C′);

 R = the_other_solver_returns();

 if (R=A) return A;

 if (R= ⊥) return ⊥ ;

 v = var_ordering_heuristics (X);

 repeat {

 a = val_suggestion_from_other_solver();

 update_the_other_solver(, , { }X D C v a′ ∪ =);

 if (the_other_solver_returns()=A) return A;

 if (not the_other_solver_returns()= ⊥) {

 A=GCS(, , { }X D C v a′ ∪ =);

 if (≠⊥A) return A;

 }

 \ { }′ ′=v vD D a ;

 } until ′ = ∅vD ;

 return ⊥ ;

}

FigureFigureFigureFigure 3. A framework of 3. A framework of 3. A framework of 3. A framework of GCSGCSGCSGCS solvers for solvers for solvers for solvers for
CSPs, which findCSPs, which findCSPs, which findCSPs, which findssss the first solutionthe first solutionthe first solutionthe first solution

Solve(X, D, C) {

 , ,X D C′ = constraint_propagation(, ,X D C);

 if ([]d d D d∃ ∈ → = ∅) return ⊥ ;

 if ([| | 1]d d D d∀ ∈ → =)

return { | 1, 2, , }=a K

i i
x s i n , where { }=

ix id s ;

 v = var_ordering_heuristics(X);

 repeat {

 a = val_ordering_heuristics(′
vD);

 A=Solve(, , { }
i

X D C v a′ ∪ =);

 if (≠⊥A) return A;

 \ { }′ ′=v vD D a ;

 } until ′ = ∅vD ;

 return ⊥ ;

}

Figure 2. A general framework of tree search Figure 2. A general framework of tree search Figure 2. A general framework of tree search Figure 2. A general framework of tree search
based solvers for CSPs, which finds the first sbased solvers for CSPs, which finds the first sbased solvers for CSPs, which finds the first sbased solvers for CSPs, which finds the first so-o-o-o-
lllluuuutiontiontiontion

der to reduce the communication cost between solvers.

Intuitively, the tree search can seek suggestion for val-

ue selection whenever a deep backtrack occurs, which

implies the default value-order has not been successful

and has led to failure.

The search tree built from the GCS framework is

basically a search tree of canonical complete tree

search. The only difference locates at the variable labe-

ling procedure, which is guided by the results returned

by the function the_other_solver_returns(). The colla-

borating solver acts as the value ordering heuristics

function to determine which value to instantiate next.

Provided the function the_other_solver_returns() al-

ways returns within a finite period of time, the GCS

framework is sound and complete. This result is shown

in the following theorem.

Theorem 1. The GCS framework is sound and

complete if the function the_other_solver_returns()

always returns in a finite time period.

4. GCS Schemes

In this section, we first present various GCS

schemes and their performance figures. We use GCS/X

to denote the cooperation of TS and an X solver, and

GCS*/X refers to the cost-reducing version of GCS.

Note that we use smallest domain first variable-

ordering heuristics in all experiments.

4.1. GCS/LV

A Las Vegas (LV) method is a randomized algo-

rithm, which can be regarded as an incomplete CSP

solver. The idea of Las Vegas solver is simple. It ran-

domly takes sample points in the search space of a

problem and validates it. It always returns a correct

answer to the problem, but does not guarantee a solu-

tion to be found within a time limit. An outline of the

Las Vegas solver is shown in Figure 5. If the Las Vegas

solver returns unknown, the GCS/LV then asks for a

value suggestion by calling the function

val_suggestion_from_other_solver() for a particular

variable, and the LV_Solver returns the current value

of the corresponding variable.

Example: Latin Square

To demonstrate the performance of GCS/LV, we

built a prototype implementation with constraint pro-

gramming library JSolver [2] and JDK version 1.3.1 on

a Sun Blade 1000 UNIX workstation. The Latin square

problem is used to examine the algorithm. A Latin

square problem of order n is to find an ×n n matrix

that consists of n sets of the numbers 1 to n arranged in

such a way that no orthogonal (row or column) con-

tains the same number more than once. The results

shown in Table 1 are the median timing results and

number of fails in 20 runs and each run is limited to 15

minutes. A “---” indicates that the problem cannot be

solved within the time limit using the undergoing algo-

rithm. The bold figures are the best results among TS,

LV and GCS/LV.

LV_Solver(X, D, C) {

 while (not all constraints satisfied and not timeout) {

 Generate a random assignment

1 1

, ,
n n

A x a x a= a K a where
i i

a d∈ ;

 }

 if (all constraints satisfied)

return { | 1, 2, , }=a K

i i
x s i n where { }=

ix id s ;

 else

return unknown;

}

Figure 5. Figure 5. Figure 5. Figure 5. An outline of the Las Vegas SolverAn outline of the Las Vegas SolverAn outline of the Las Vegas SolverAn outline of the Las Vegas Solver

GCS*(X, D, C) {

 , ,X D C′ = constraint_propagation(, ,X D C);

 if ([]∃ ∈ → = ∅d d D d) return ⊥ ;

 if ([| | 1]d d D d∀ ∈ → =)

return { | 1, 2, , }=a K

i i
x s i n , where { }=

ix id s ;

 v = var_ordering_heuristics(X);

 repeat {

 if (need_suggestion())

 a = val_suggestion_from_other_solver()

 else

 a = val_ordering_heuristics(′
vD);

 update_the_other_solver(, , { }X D C v a′ ∪ =);

 R = the_other_solver_returns();

 if (R=A) return A;

 if (R≠ ⊥) {

 A=GCS*(, , { }X D C v a′ ∪ =);

 if (≠⊥A) return A;

 }

 \ { }′ ′=v vD D a ;

 } until ′ = ∅vD ;

 return ⊥ ;

}

Figure 4. A costFigure 4. A costFigure 4. A costFigure 4. A cost----reducing framework of reducing framework of reducing framework of reducing framework of GCSGCSGCSGCS
solvers for CSPs, which findsolvers for CSPs, which findsolvers for CSPs, which findsolvers for CSPs, which findssss the first solutionthe first solutionthe first solutionthe first solution

Surprisingly, in general, the GCS/LV algorithm out-

performs both TS and LV standalone execution in this

particular problem both in terms of runtime and num-

ber of fails. Besides, it is able to solve all problem in-

stances in this experiment, while the LV cannot.

 Runtime (sec) Number of fails

 TS LV GCS/LV TS LV GCS/LV

2 × 2 0.06 0.01 0.06 0 n/a 0

4 × 4 0.07 101.18 0.07 0 n/a 0

6 × 6 0.11 --- 0.11 0 n/a 0

8 × 8 0.23 --- 0.22 0 n/a 0

10 × 10 0.34 --- 0.32 1 n/a 0

12 × 12 0.75 --- 0.5 15 n/a 1

14 × 14 0.86 --- 0.58 20 n/a 0

16 × 16 1.11 --- 0.78 21 n/a 0

18 × 18 1.44 --- 1.12 34 n/a 2

20 × 20 7.62 --- 1.27 153 n/a 2

22 × 22 2.71 --- 1.51 86 n/a 1

24 × 24 2.59 --- 1.82 46 n/a 7

26 × 26 8.53 --- 2.13 314 n/a 2

28 × 28 61.94 --- 2.5 2003 n/a 8

30 × 30 4.7 --- 2.83 55 n/a 2

Table Table Table Table 1.1.1.1. Comparison among TS, Las Vegas Comparison among TS, Las Vegas Comparison among TS, Las Vegas Comparison among TS, Las Vegas
solver and GCS/LV on Latin Square problemssolver and GCS/LV on Latin Square problemssolver and GCS/LV on Latin Square problemssolver and GCS/LV on Latin Square problems

4.2. GCS/GA

The schema theory and building blocks hypothesis

[20] of Genetic Algorithms (GA) explain that key

building blocks are preserved from generation to gen-

eration during the genetic search. In GCS/GA, a build-

ing block of GA can be interpreted as a branch of sub-

tree in TS. In addition, the TS and GA processes share

the same problem context (variables, domains and con-

straints), therefore when the domain size is reduced by

constraint propagation in TS, it also narrows the search

space in GA. Basically, The GA solver in GCS/GA is

performing a canonical genetic algorithm procedure as

shown in Figure 6. Five essential components are spe-

cified in GCS/GA, they are: chromosome structure,

population initialization, fitness evaluation, chromo-

some alteration, and termination condition.

Chromosome Structure, Initialization and Fitness

Evaluation

In order to solve CSP with genetic algorithm, the

problem has to be encoded in the chromosome form.

The value of each variable xi ∈ X in the CSP is

represented by a gene in the GA, which is an element

of di. Each chromosome is a sequence of genes corres-

ponding to a valuation for all the variables. If X =

{x1,…,xn}, then a chromosome s1s2 … sn represents the

variable assignment, where si ∈ di.

A small size of population is initialized, for example

less than 20 chromosomes, in order to let the popula-

tion converge faster. Besides, for those bounded va-

riables, the corresponding genes are pre-set with a val-

ue assigned to the variable in TS, and randomly gener-

ate a value for the rest genes. Note that the generated

value must be in domain.

Solving CPSs can be rewritten as an optimization

problem that minimizes the number of constraint viola-

tions [16]. Thus, min-conflicts heuristics [21] can be

used to guide the generic search in GA_Solver.

Alteration and Termination

Crossover and mutation are the main genetic opera-

tors in GA_Solver. A simple n-point crossover is

adopted for the information swapping (local search), n

can be determined by the length of chromosome, say

n=5 for 50-gene chromosome. The mutation operator is

slightly different from the canonical one. It does not

mutate the gene that its corresponding variable has

been bounded. It is similar to the initialization proce-

dure.

One of the objectives of GA_Solver is to determine

which value for a particular variable is better (which

sub-tree potentially contains solution). Therefore, the

GA_Solver is terminated when a particular gene among

the population is converged, that means all genes in the

population which represent the same variable are equal

to same value. This termination criteria obey the prin-

ciple of survival-of-fittest, good genes are preserved

GA_Solver(X, D, C) {

0←t ;

initialize_new (P(t), Z, D);

evaluate (P(t), C); // conflicts counting

while (not Termination-condition) {

1+← tt ;

select P(t) from P(1−t);

alter_new (P(t));

evaluate (P(t));

P(t) = survive P(t) and P(1−t);

}

 if (all constraints satisfied)

return { | 1, 2, , }=a K

i i
x s i n where { }=

ix id s ;

 else

 return unknown;

}

Figure 6. Figure 6. Figure 6. Figure 6. An outline of the Canonical GAn outline of the Canonical GAn outline of the Canonical GAn outline of the Canonical Geeeenetic netic netic netic
Algorithms SolverAlgorithms SolverAlgorithms SolverAlgorithms Solver

during evolution. Thus, the converged value is used to

suggest GCS/GA for variable instantiation. Note that

GA_Solver is also terminated when the maximum

number of iteration is reached that ensures the termina-

tion of the entire algorithm.

Value Suggestion to GCS with GA

When GCS request a value suggestion for a particu-

lar variable, the function

val_suggestion_from_other_solver() is called, the GA

solver returns a value which is the most popular in the

latest population with respect to the corresponding

gene. For example, Figure 7 shows a GA population

pool with ten chromosomes, the GA solver is being

requested for value suggestion for variable V3. In this

case, the GA solver returns value “4” as the value sug-

gestion to GCS, since it is the most popular one in the

population.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Chromosome0:[1][2][0][1][4][2][5][3][4][5]

Chromosome1:[1][2][4][3][2][3][5][4][4][5]

Chromosome2:[1][2][4][1][5][5][0][3][4][5]

Chromosome3:[1][2][4][4][5][3][5][3][4][5]

Chromosome4:[1][2][4][4][1][4][5][3][0][5]

Chromosome5:[1][2][4][5][2][4][5][7][4][0]

Chromosome6:[1][2][4][4][3][2][5][3][0][5]

Chromosome7:[1][2][1][3][2][2][5][3][4][0]

Chromosome8:[1][2][4][3][2][1][0][3][4][5]

Chromosome9:[1][2][4][3][3][2][5][3][4][5]

Population

Figure 7Figure 7Figure 7Figure 7. . . . An example of GA populationAn example of GA populationAn example of GA populationAn example of GA population

Examples

We built a prototype implementation of GA and

GCS/GA with constraint programming library JSolver

[2] and JDK version 1.3.1 on a Sun Blade 1000 UNIX

workstation. Two test cases are used to examine the

GCS/GA algorithm, which are the N-Queen problem

and graph coloring problem. The following results are

median result in 20 runs and each one is limited to 15

minutes.

The N-Queen Problem

The N-Queen problem is the problem of placing N

queens on an N × N chessboard so that no queens can

take any other. A queen attacks another queen when

both of them are placed on the either same row, column

or (+ve/-ve) diagonal. We have applied TS, GA and

GCS/GA algorithms on a set of N-Queens problem

instances from N=10 to 150, and the computation per-

formance and the number of fails are shown in Fig-

ure 7. The TS algorithm works well up to a hundred

queens, but it does not work for the problem thereafter

within the time limit. However, the GCS/GA can obtain

solution consistently, since least backtracking occurred

in the search. And the overhead is due to the computa-

tion of fitness in GA_Solver.

 Runtime (sec) Number of fails

 TS GA GCS/GA TS GA GCS/GA

N=10 0.04 0.55 0.18 7 n/a 3

N=20 0.08 5.2 0.57 29 n/a 5

N=30 0.1 39.21 1.07 29 n/a 1

N=40 0.11 264.01 2.44 19 n/a 2

N=50 0.73 --- 4.08 479 n/a 2

N=60 0.73 --- 7.61 400 n/a 4

N=70 0.13 --- 12.94 1 n/a 11

N=80 0.2 --- 16.89 20 n/a 4

N=90 1.05 --- 22.36 335 n/a 0

N=100 0.29 --- 34.5 21 n/a 5

N=110 --- --- 46.51 --- n/a 6

N=120 --- --- 59.19 --- n/a 2

N=130 --- --- 81.17 --- n/a 21

N=140 --- --- 89.13 --- n/a 1

N=150 --- --- 113.94 --- n/a 2

Table Table Table Table 2.2.2.2. CoCoCoComparison among TS, Genetic Algmparison among TS, Genetic Algmparison among TS, Genetic Algmparison among TS, Genetic Algo-o-o-o-
rithms and GCS/GA on rithms and GCS/GA on rithms and GCS/GA on rithms and GCS/GA on NNNN----QueenQueenQueenQueen problemsproblemsproblemsproblems

Graph Coloring Problem

The task of solving graph coloring problem is to

paint all regions in the graph such that no neighbor-

hood region is sharing the same color. The problem

instance we have chosen is appeared in [19]. It is a

110-region graph and the goal is to paint it with four

colors; the search space of this problem is 1.68E+66.

Wong et al. [19] have designed a specific variable and

value ordering heuristics that dedicated for solving this

particular problem. In this case, GCS/GA algorithm

takes less then 1.1 seconds and visited 36 choice-points

to obtain a solution. Although Wong’s algorithm takes

less then a second to obtain a solution, it has to visit 48

choice-points. When the domain knowledge has been

known and transformed as heuristic to guide the con-

straint solving, it could be very efficient. However, our

algorithm have visited less choice-points to reach the

solution, which implies that the GCS/GA is more effi-

cient than Wong’s, in term of number of backtracking.

It can be realized that the guidance provided by GA

solver is good enough to direct the search of TS solver

to reach a solution.

4.3. GCS/MIP

The GCS/MIP algorithm needs to maintain two

models, namely a CSP model and a linear model, dur-

ing the search process. The linear model is obtained by

the transformation methods which will be discussed in

the following subsection. It is to map each value in a

variable domain into a 0-1 variable. Complete tree

search (TS) is applied on the CSP model, while MIP

techniques are applied on the linear model. The two

search trees are explored in parallel. The solution of the

linear relaxation problem is used to guide the value

selection of the tree search. At each choice point, from

those 0-1 variables corresponding to the current do-

main of the active variable, we choose the first one

with the largest solution value, i.e. nearest to one, and

use the value corresponding to this variable as the val-

ue selection heuristics for the tree search.

It is expensive to solve a linear relaxation problem

at every node. A possible improvement is to reduce the

number of times that value selection is guided by linear

relaxation solutions. Instead of invoking the value se-

lection heuristics at every node, it is invoked only when

tree search’s default value ordering heuristics proves to

fail to find a promising value. Such situation can be

identified by a deep backtrack in the tree search.

When using the default variable ordering heuristics,

and using deep backtrack as a need-suggestion signal

for the cost-reducing framework, we get the GCS/MIP

variant, which is denoted by GCS/MIP*.

Linear Formulation of CSP Models

The key point left is how to transform a CSP model

into a linear model. The main idea of the transforma-

tion method is to map each value in a variable domain

into a 0-1 variable. We use axv = to represent the varia-

ble corresponding to a value a in the domain of a varia-

ble x. Here, vx=a = 1 if x = a, and vx=a = 0 if xa ∉ . The

domain constraint)(xDx ∈ is transformed to a linear

constraint
()

1=∈
=∑ x aa D x

v , where }1,0{∈=axv . In this

way, we restrict one and only one of such 0-1 variables,

which correspond to the same original finite domain

variable, to be equal to 1. In general, we work on in-

compatible tuples to construct the linear formulation of

a constraint. Suppose the constraint involves n va-

riables x1,…,xn, with an incompatible tuple (a1,…,an),

we add one linear constraint
1

1==
≤ −∑ i i

n

x ai
v n to the

linear model. It achieves the same effect as the original

constraint by prohibiting the participating variables

from taking corresponding values in an incompatible

tuple simultaneously. For some specific kinds of con-

straints, for example, linear constraint, alldifferent con-

straint, cardinality constraint, element constraint, etc.,

better transformation method is available. Please refer

to [15] for details and replace those non 0-1 variables

by the linking constraint
() =∈

= ×∑ x aa D x
x a v .

Example: Magic Square

A system has been implemented on the top of ILOG

CPLEX 8.0 [11] / Solver 5.2 [12] on a Sun Ultra 5/400

UNIX workstation. Experiments are conducted on

magic square problems with orders from 3 to 10. The

result is listed in Table 3. For TS, we use smallest do-

main first as the variable ordering heuristics and smal-

lest value first as the value ordering heuristics. For MIP,

the model is built from the CSP model by the transfor-

mation methods discussed. We use primal simplex al-

gorithm to solve the linear relaxation problems at every

node. For GCS/MIP and GCS*/MIP, the variable or-

dering heuristics is the same as that of TS. For

GCS*/MIP, the default value ordering heuristics is the

same as that of TS. We use primal simplex algorithm to

solve the linear relaxation problems of the hybrid algo-

rithm, too.

From the experiment results, the GCS/MIP algo-

rithms perform better than both TS and MIP approach

in general. And GCS*/MIP outperforms the basic

GCS/MIP either in terms of fails or in terms of time.

5. Conclusions and Future work

This paper describes a complete and robust hybrid

framework for guided complete search for solving gen-

eral constraint satisfaction problems. To reduce the

communication cost between solvers during search, the

GCS framework provides various degree of collabora-

 Runtime (sec) Number of fails

 TS MIP GCS/MIP GCS*/MIP TS MIP GCS/MIP GCS*/MIP

3 × 3 0 0.13 0.02 0 1 n/a 1 1

4 × 4 0 125.85 0.43 0 7 n/a 97 7

5 × 5 0.11 --- 15.41 0.2 702 n/a 1382 53

6 × 6 10.47 --- 78.06 2.42 57246 n/a 3522 377

7 × 7 --- --- 648.64 18.92 --- n/a 8292 515

8 × 8 --- --- 496.35 24.69 --- n/a 2606 329

9 × 9 --- --- --- 109.34 --- n/a --- 397

10 × 10 --- --- --- 235.26 --- n/a --- 376

Table 3.Table 3.Table 3.Table 3. Comparison among TS, MIP, GCS/MIP and GCSComparison among TS, MIP, GCS/MIP and GCSComparison among TS, MIP, GCS/MIP and GCSComparison among TS, MIP, GCS/MIP and GCS****/MIP on Magic Square pro/MIP on Magic Square pro/MIP on Magic Square pro/MIP on Magic Square probbbblemslemslemslems

tion between solvers. Under the GCS framework, solv-

ers exchange information during search, which en-

hances the performance of each others. The main con-

tribution of GCS is the operations of a tree search

based solver are coordinated with those of another

solver, which maintain the soundness and completeness

of the whole hybrid scheme. And the value commit-

ments made by the tree search based solver, as well as

other information such as the results of constraint prop-

agation, help the collaborating solver to reduce the

problem size in order to speed up the whole search

process.

Three different CSP solvers: Las Vegas Solver, Ge-

netic Algorithms and Mixed Integer Programming have

been employed by the GCS framework yielding

GCS/LV, GCS/GA and GCS/MIP. The experimental

evident show that the guidance provided by the other

solver is promising and directs the search toward a first

solution. Furthermore, the results show that GCS is

able to solve certain hard problems without specific

prior design or domain knowledge, which outperforms

complete tree search and the other solver standalone

execution.

For future work, the proposed framework can be ex-

tended to solve constraint optimization problem (COP)

by implementing branch-and-bound algorithm. Even-

tually, a generic framework for solving CSP/COP

would be obtained.

Acknowledgement

The work described in this paper was partially sup-

ported by a grant from the Research Grants Council of

the Hong Kong Special Administrative Region, China

(Project No. CUHK4211/01E).

References

[1] B.M.W. Cheng, J.H.M. Lee and J.C.K. Wu, “A Nurse Roster-

ing System Using Constraint Programming and Redundant

Modeling”, In IEEE Transactions on Information Technology

in Biomedicine, 1, 1997, pp. 44-54.

[2] H.W. Chun, “Constraint Programming in Java with JSolver”,

In Proceedings of the First International Conference and Ex-

hibition on The Practical Application of Constraint Technolo-

gies and Logic Programming, London, 1999.

[3] H.W. Chun and H.C. Chan, “The Design of a Multi-Tiered Bus

Timetabling System”, In Proceedings of the Twelfth Interna-

tional Conference on Industrial & Engineering Applications

of Artificial Intelligence & Expert Systems, Cairo, 1999.

[4] H.W. Chun and R.W.T. Mak, “Intelligent Resource Simulation

for an Airport Check-in Counter Allocation System”, In IEEE

Transactions on Systems, Man, and Cybernetics - Part C: Ap-

plications and Reviews, Vol. 29, No. 3, 1999, pp. 325-335.

[5] S.K.L. Fung and H.W. Chun, “Implementing Virtual Path

Assignment Using a Heuristic-Driven CSP Algorithm”, In

Proceedings of the 4th Systemics, Informatics and Cybernetics,

Orlando, July 2000.

[6] C.P. Gomes and D. Shmoys, “Completing quasigroup or latin

squares: A structured graph coloring problem”, In Prodeeings

of Computational Symposium on Graph Coloring and Genera-

lizations, 2002.

[7] C.P. Gomes and D. Shmoys, “The promise of LP to boost CSP

techniques for combinatorial problems”, In Proceedings of the

Fourth International Workshop on Integration of AI and OR

Techniques in Constraint Programming for Combinatorial

Optimisation Problems (CP-AI-OR'02), Le Croisic, France,

March 25-27, 2002, pp. 291-305.

[8] J.N. Hooker, H. Kim, and G. Ottosson, “A declarative model-

ing framework that integrates solution methods”, Annals of

Operations Research, Vol. 104, 2001, pp.141-161.

[9] J.N. Hooker and M.A. Osorio, “Mixed logical-linear program-

ming”, Discrete Applied Mathematics, 96-97(1-3), 1999,

pp.395-442.

[10] J.N. Hooker, G. Ottosson, E.S. Thorsteinsson, and H. Kim,

“On integrating constraint propagation and linear program-

ming for combinatorial optimization”, In Proceedings of the

Sixteenth National Conference on Artificial Intelligence

(AAAI-99), AAAI, The AAAI Press/The MIT Press, July 1999,

pp. 136-141.

[11] ILOG Inc., S. A., Gentilly, France. ILOG CPLEX 8.0, User

Manual, 2001.

[12] ILOG Inc., S. A., Gentilly, France. ILOG Solver 5.2, User

Manual, 2001.

[13] J.H.M. Lee, H.F. Leung, P.J. Stuckey, V.W.L. Tam, and H.W.

Won, “Using Stochastic Methods to Guide Search in CLP: a

Preliminary Report”, 1996 Asian Computing Science Confe-

rence, Springer-Verlag, LNCS 1179, Singapore, 1996, pp. 43-

52.

[14] A. Mackworth, “Consistency in networks of relations”, Artifi-

cial Intelligence, 1977, 8(1), pp. 99-118.

[15] P. Refalo, “Linear formulation of constraint programming

models and hybrid solvers”, In Proceedings of the Sixth Inter-

national Conference on Principles and Practice of Constraint

Programming (CP-00), volume 1894 of Lecture Notes in

Computer Science (LNCS), Springer-Verlag, 2000, pp. 369-

383.

[16] M.C. Riff, “Evolutionary Algorithms for Constraint Satisfac-

tion Problems”, In Proceedings of XVIII International Confe-

rence of the Chilean Computer Science Society SCCC'98,

1998.

[17] V. Tam and P. Stuckey, “An efficient heuristic-based evolutio-

nary algorithm for solving constraint satisfaction problems”, In

Proceedings of 3rd IEEE Symposium on Intelligence in Neural

and Biological Systems (INBS), Washington DC, May, 1998.

[18] C.J. Wang and E.P.K. Tsang, “Solving constraint satisfaction

problems using neural-networks”, In Proceedings of the IEE

Second International Conference on Artificial Neural Net-

works, 1991, pp.295-299

[19] G.Y.C. Wong and H.W. Chun, “CP Heuristics: MWO/FFP

Hybrid and Relaxed FFP”, In Proceedings of the 4th Systemics,

Informatics and Cybernetics, Orlando, July 2000.

[20] D.E. Goldberg, “Genetic Algorithm in Search, Optimization

and Machine Learning,” Addison-Wesley Pub. Co., Inc., 1989.

[21] S. Minton, M.D. Johnston, A.B. Philips and P. Laird, “Mini-

mizing Conflicts: A Heuristic Repair Method for Constraint

Satisfaction and Scheduling Problems”, In Artificial Intelli-

gence, Vol. 58, 1992, pp. 161-205.

[22] M. Dincbas, P. V. Hentenryck, H. Simonis, A. Aggoun, T.

Graf, and F. Berthier, “The Constraint Logic Programming

Language CHIP”, In Proceedings of the Fifth Generation

Computer Systems, 1988, pp. 693-702.

