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Abstract 
 

Systematic tree search augmented with constraint 

propagation has been regarded as the de facto stan-

dard approach to solve constraint satisfaction prob-

lems (CSPs). The property of completeness of tree 

search is superior to incomplete stochastic local 

search, even though local search approach is more 

efficient in general. Many heuristics techniques have 

been developed to improve the efficiency of the tree 

search approach. In this paper, we propose a frame-

work for combining and coordinating a complete tree 

search solver and a different solver in order to pro-

duce a complete and efficient CSP solver. Four differ-

ent instances of the framework have been suggested, 

which include combining complete tree search with 

stochastic search, mathematical programming ap-

proach respectively. The experimental results show 

that this highly integrated hybrid scheme greatly im-

prove the efficiency of constraint solving process in 

terms of both computation time and number of back-

tracking. 

 

1. Introduction 
 

Research into Constraint Satisfaction Problems 

(CSPs) [14] is an active research area in the realm of 

artificial intelligence. CSPs find numerous practical 

applications in the real life, including resource alloca-

tion [4], rostering [1], scheduling, timetabling [3], net-

work design [5] and so on. Different solvers for CSPs 

have been proposed, which can be roughly divided into 

two main categories. On the one hand, tree search 

based solvers systematically explore virtually the whole 

search space. These solvers, though relatively less effi-

cient, are complete in the sense that all solutions can 

eventually be found. On the other hand, stochastic 

solvers, such as artificial neural networks (ANNs) [18], 

evolutionary algorithms (EAs) [16] and Genetic Algo-

rithms (GA) [17], are usually practically faster by or-

ders of magnitude, but they do not guarantee to find 

any solutions even if solutions exist. 

Heuristics is commonly employed to improve the ef-

ficiency of CSP solvers. For examples, value ordering 

and variable ordering heuristics can often significantly 

improve the efficiency of tree search based solvers. 

Occasionally, domain specific heuristics, such as the 

Least-Loaded Routing (LLR) strategy [5] for maximiz-

ing the network throughput, are sometimes available.. 

We observe that some solvers are able to demon-

strate obvious favor of particular values of some va-

riables in the process of searching for solutions, even 

before any solution is found. These favored values of-

ten turn out to constitute (part of) the solutions even-

tually found.  For example, when applying Genetic 

Algorithms (GAs) to solve CSPs, it is almost always 

the case that most members of the surviving population 

favor particular values of the variables. 

In this paper, we propose a hybrid scheme for solv-

ing CSPs. In the proposed scheme, the operations of a 

tree search based solver are coordinated with those of 

another solver that demonstrate favor for particular 

value(s) of variables in the process of CSP solving. The 

favored values are made use of by the tree search based 

solver as value ordering heuristics. Meanwhile, value 

commitments made by the tree search based solver, as 

well as other information such as the results of con-

straint propagation, help the collaborating solver to 

reduce the problem size. The hybrid solver as a whole 

is a complete solver. Experiments show that, with a 

suitable choice of the collaborating solver, this highly 

integrated hybrid scheme greatly improve the efficien-

cy of constraint solving process.  

Solver collaboration in solving CSPs has been re-

ported in the literature. In 1996 Lee et al. [13] pro-

posed that the derivation in constraint logic program-

ming (CLP) could be guided by GENET [18], a sto-

chastic search based solver for binary constraint satis-



faction problems. In a nutshell, their approach consists 

of employing a GENET solver at each choice point. 

Before the sub-trees rooted at the choice point are ex-

plored, the GENET solver is invoked to solve. Hooker 

et al. [8,9,10] proposed MLLP that makes use of condi-

tionals to link discrete and continuous elements of the 

problem, and brings the idea of integration of a checker 

with a solver. Gomes et al. [6,7] proposed randomized 

backtrack search which employs linear programming.  

The paper is organized as follows. In the next sec-

tion, we describe the background of the CSPs. The 

Guided Complete Search (GCS) framework is pre-

sented in section 3. After that, various GCS schemes 

and experimental results are presented. Finally, we 

conclude the paper and give the direction our future 

work. 

 

2. Background 
 

The definition of constraint satisfaction problems 

(CSP) and the incorporated search algorithm will be 

described in this section. 

 

2.1. Constraint Satisfaction Problems 
 

A constraint satisfaction problem [14] is a three-

tuple , ,X D C , where 
1

{ , , }
n

X x x= K  is a finite set 

of n variables, 
1

{ , , }
n

D d d= K  where 
i

d  is the domain 

of variable 
i

x , and 
1

{ , , }
m

C c c= K  a finite set of m 

constraints over the variables in X. Each domain 

i
d D∈ , 1 i n≤ ≤ , is a finite and discrete set of con-

stants, and each constraint 
i

c C∈ , 1≤ i ≤ m, is a rela-

tion over a finite subset of X. 

An assignment A of variables is an n-tuple 

1 1
, ,

n n
A x a x a= a K a  where 

i i
a d∈ , 1 i n≤ ≤ . 

An assignment A is a solution to a constraint satisfac-

tion problem if and only if all constraints in C are satis-

fied by A after replacing the occurrences of variable 
i

x  

by 
i

a , that is, 
iX iA c↓ ∈ , where 

iXA ↓  denotes the as-

signment A projected to the subset Xi ⊆ X of variables 

that appear in 
i

c . It is required that the satisfiability of 

each constraint be decidable. It is well known that find-

ing a solution to a CSP is an NP-complete problem. 

 

2.2. Complete Search Methods for Solving 

Constraint Satisfaction Problems 
 

There are two main approaches to solving constraint 

satisfaction problems. The traditional approach is to 

employ a tree search method to find the solution(s) to a 

CSP. The basic idea of tree search based approaches is 

easy to understand. In a nutshell, we first select a vari-

able, and create a choice point on it so that the values 

in its domain can be tried one after another. For each of 

these values being tried, we select another variable and 

create a new choice point on it. This process continues 

until all variables are exhausted. In this way a search 

tree is formed, with each of its leaves corresponding to 

either a solution or a failure. In the case of a failure, the 

search will continue at the next available node. We call 

such a process as a backtracking. Figure 1 shows a 

sample search tree for a simple CSP with three va-

riables 
1

x , 
2

x  and 
3

x   associated with domains 

1
{1,2}d = , 

2
{2,3}d =  and 

3
{1,2,3}d = , and three 

constraints 
1 2

x x< , 
2 3

x x=  and 
1 3

1x x+ = . A tick in 

the leaf indicates that a solution is found, and a cross 

indicates a failure. 

 
Many heuristics have been proposed to improve the 

efficiency of tree search approaches, which can be clas-

sified into three main categories. First, variable-

ordering heuristics aim to select appropriate variable to 

be instantiate at each choice point, so that the size of 

the search tree might be reduced by earlier failures. On 

the other hand, value-ordering heuristics aim to identify 

and try the most promising values first at each choice 

point, so that the first (or the next) solution can hope-

fully be found earlier. Finally, constraint propagation, 

such as node- and arc-consistency algorithms [14], can 

be employed at each choice point to reduce the sizes of 

the variable domains, and thus also the size of the 

search tree as some of the branches are pruned in the 

process. 

A general framework that incorporates these heuris-

tics is outlined in Figure 2. “⊥” indicates a failure. 

Note that for clarity purpose we only show the solver 

that finds the first solution. This framework is the basis 

Figure 1Figure 1Figure 1Figure 1. . . . A search tree for the example CSPA search tree for the example CSPA search tree for the example CSPA search tree for the example CSP    
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of many commercially available tree search based 

complete search solvers, such as CHIP [22], ILOG 

Solver [12] and JSolver [2]. 

 

3. Guided Complete Search 
 

Applying value-ordering heuristics is a common and 

important approach to speed up constraint solving, 

which can guide the constraint solver to reach the first 

solution more directionally. However, it is difficult to 

know what value-ordering heuristics is suitable for dif-

ferent problems, as the effectiveness of value-ordering 

heuristics is domain-dependent, or sometimes even 

problem-dependent. The min-conflicts [21] value-

ordering heuristics is one of the successful general 

guidance for complete tree search.  

In this section, the Guided Complete Search (GCS) 

framework for solving CSPs is presented, which coor-

dinates the collaboration of complete tree search (TS) 

and a collaborating solver in order to produce a com-

plete and efficient CSP solver. In the framework, from 

the viewpoint of TS, the collaborating solver acts as an 

“oracle” that generates heuristics for value ordering. 

Meanwhile, TS narrows the search space for the colla-

borating solver by constraint propagation after each 

value commitment. The information exchange opera-

tion improves the performance for both solvers in the 

framework. As a result, a more efficient hybrid solver 

can be obtained.  

A general framework of Guided Complete Search 

(GCS) is shown in Figure 3. The function 

the_other_solver_returns() is actually an interface to 

combine TS and the collaborating CSP solver (“the 

other solver”), which returns a solution A, a failure 

(“⊥”), or an unknown. Note that the situation of return-

ing unknown in the collaborating solver usually refers 

to the case of reaching a pre-set resource limit, such as 

time limit, maximum number of iterations, etc. In such 

a case the collaborating solver should demonstrate a 

favor of values of some variables.  Hence, the function 

val_suggestion_from_other_solver() is called, and the 

variable labeling procedure proceeds in TS. Eventually, 

solution can be found either in TS or in the collaborat-

ing solver.  

 

 
The cost of employing the collaborating solver to 

obtain a promising value for a variable might be expen-

sive. A possible way to reduce the cost is shown in 

Figure 4. We modify the GCS algorithm to provide 

flexibility for different degree of integration. The func-

tion need_suggestion() determines whether there is a 

need to invoke the other solver, and the function up-

date_the_other_solver() can perform a partial update 

(from “no-op” to full update) to the other solver in or-

GCS(X, D, C) { 

 , ,X D C′  = constraint_propagation( , ,X D C ); 

 if ( [ ]d d D d∃ ∈ → = ∅ ) return ⊥ ; 

 if ( [ | | 1]d d D d∀ ∈ → = )  

return { | 1, 2, , }=a K

i i
x s i n , where { }=

ix id s ; 

 update_the_other_solver( , ,X D C′ ); 

 R = the_other_solver_returns(); 

 if (R=A) return A; 

 if (R= ⊥ ) return ⊥ ; 

 v = var_ordering_heuristics (X); 

 repeat { 

  a = val_suggestion_from_other_solver(); 

  update_the_other_solver( , , { }X D C v a′ ∪ = ); 

  if (the_other_solver_returns()=A) return A; 

  if (not the_other_solver_returns()= ⊥ ) { 

   A=GCS( , , { }X D C v a′ ∪ = ); 

   if ( ≠⊥A ) return A; 

   } 

  \ { }′ ′=v vD D a ; 

  } until ′ = ∅vD ; 

 return ⊥ ; 

} 

 

FigureFigureFigureFigure    3. A framework of 3. A framework of 3. A framework of 3. A framework of GCSGCSGCSGCS    solvers for solvers for solvers for solvers for 
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Solve(X, D, C) { 

 , ,X D C′  = constraint_propagation( , ,X D C ); 

 if ( [ ]d d D d∃ ∈ → = ∅ ) return ⊥ ; 

 if ( [ | | 1]d d D d∀ ∈ → = )  

return { | 1, 2, , }=a K

i i
x s i n , where { }=

ix id s ; 

 v = var_ordering_heuristics(X); 

 repeat { 

  a = val_ordering_heuristics( ′
vD ); 

  A=Solve( , , { }
i

X D C v a′ ∪ = ); 

  if ( ≠⊥A ) return A; 

  \ { }′ ′=v vD D a ; 

  } until ′ = ∅vD ; 

 return ⊥ ; 

} 

 

Figure 2. A general framework of tree search Figure 2. A general framework of tree search Figure 2. A general framework of tree search Figure 2. A general framework of tree search 
based solvers for CSPs, which finds the first sbased solvers for CSPs, which finds the first sbased solvers for CSPs, which finds the first sbased solvers for CSPs, which finds the first so-o-o-o-
lllluuuutiontiontiontion    



der to reduce the communication cost between solvers. 

Intuitively, the tree search can seek suggestion for val-

ue selection whenever a deep backtrack occurs, which 

implies the default value-order has not been successful 

and has led to failure. 

The search tree built from the GCS framework is 

basically a search tree of canonical complete tree 

search. The only difference locates at the variable labe-

ling procedure, which is guided by the results returned 

by the function the_other_solver_returns(). The colla-

borating solver acts as the value ordering heuristics 

function to determine which value to instantiate next. 

Provided the function the_other_solver_returns() al-

ways returns within a finite period of time, the GCS 

framework is sound and complete. This result is shown 

in the following theorem. 

Theorem 1. The GCS framework is sound and 

complete if the function the_other_solver_returns() 

always returns in a finite time period. 

 

4. GCS Schemes 
 

In this section, we first present various GCS 

schemes and their performance figures. We use GCS/X 

to denote the cooperation of TS and an X solver, and 

GCS*/X refers to the cost-reducing version of GCS. 

Note that we use smallest domain first variable-

ordering heuristics in all experiments. 

 

4.1. GCS/LV 
 

A Las Vegas (LV) method is a randomized algo-

rithm, which can be regarded as an incomplete CSP 

solver. The idea of Las Vegas solver is simple.  It ran-

domly takes sample points in the search space of a 

problem and validates it. It always returns a correct 

answer to the problem, but does not guarantee a solu-

tion to be found within a time limit. An outline of the 

Las Vegas solver is shown in Figure 5. If the Las Vegas 

solver returns unknown, the GCS/LV then asks for a 

value suggestion by calling the function 

val_suggestion_from_other_solver() for a particular 

variable, and the LV_Solver returns the current value 

of the corresponding variable. 

 

 
Example: Latin Square  

To demonstrate the performance of GCS/LV, we 

built a prototype implementation with constraint pro-

gramming library JSolver [2] and JDK version 1.3.1 on 

a Sun Blade 1000 UNIX workstation. The Latin square 

problem is used to examine the algorithm. A Latin 

square problem of order n is to find an ×n n  matrix 

that consists of n sets of the numbers 1 to n arranged in 

such a way that no orthogonal (row or column) con-

tains the same number more than once. The results 

shown in Table 1 are the median timing results and 

number of fails in 20 runs and each run is limited to 15 

minutes. A “---” indicates that the problem cannot be 

solved within the time limit using the undergoing algo-

rithm. The bold figures are the best results among TS, 

LV and GCS/LV.  

LV_Solver(X, D, C) { 

  while (not all constraints satisfied and not timeout) { 

  Generate a random assignment  

   
1 1

, ,
n n

A x a x a= a K a  where 
i i

a d∈ ; 

     } 

 if (all constraints satisfied) 

return { | 1, 2, , }=a K

i i
x s i n  where { }=

ix id s ; 

 else   

return unknown; 

} 

 

Figure 5. Figure 5. Figure 5. Figure 5. An outline of the Las Vegas SolverAn outline of the Las Vegas SolverAn outline of the Las Vegas SolverAn outline of the Las Vegas Solver    

GCS*(X, D, C) { 

 , ,X D C′  = constraint_propagation( , ,X D C ); 

 if ( [ ]∃ ∈ → = ∅d d D d ) return ⊥ ; 

 if ( [ | | 1]d d D d∀ ∈ → = )  

return { | 1, 2, , }=a K

i i
x s i n , where { }=

ix id s ; 

 v = var_ordering_heuristics(X); 

 repeat { 

  if (need_suggestion()) 

   a = val_suggestion_from_other_solver() 

  else 

   a = val_ordering_heuristics( ′
vD ); 

  update_the_other_solver( , , { }X D C v a′ ∪ = ); 

  R = the_other_solver_returns(); 

  if (R=A) return A; 

  if (R≠ ⊥ ) { 

   A=GCS*( , , { }X D C v a′ ∪ = ); 

   if ( ≠⊥A ) return A; 

   } 

  \ { }′ ′=v vD D a ; 

  } until ′ = ∅vD ; 

 return ⊥ ; 

} 

 

Figure 4. A costFigure 4. A costFigure 4. A costFigure 4. A cost----reducing framework of reducing framework of reducing framework of reducing framework of GCSGCSGCSGCS    
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Surprisingly, in general, the GCS/LV algorithm out-

performs both TS and LV standalone execution in this 

particular problem both in terms of runtime and num-

ber of fails. Besides, it is able to solve all problem in-

stances in this experiment, while the LV cannot. 

 

 Runtime (sec) Number of fails 

 TS LV GCS/LV TS LV GCS/LV 

2 × 2 0.06 0.01 0.06 0 n/a 0 

4 × 4 0.07 101.18 0.07    0 n/a 0 

6 × 6 0.11 --- 0.11 0 n/a 0 

8 × 8 0.23 --- 0.22 0 n/a 0 

10 × 10 0.34 --- 0.32 1 n/a 0 

12 × 12 0.75 --- 0.5 15 n/a 1 

14 × 14 0.86 --- 0.58 20 n/a 0 

16 × 16 1.11 --- 0.78 21 n/a 0 

18 × 18 1.44 --- 1.12 34 n/a 2 

20 × 20 7.62 --- 1.27 153 n/a 2 

22 × 22 2.71 --- 1.51 86 n/a 1 

24 × 24 2.59 --- 1.82 46 n/a 7 

26 × 26 8.53 --- 2.13 314 n/a 2 

28 × 28 61.94 --- 2.5 2003 n/a 8 

30 × 30 4.7 --- 2.83 55 n/a 2 

 

Table Table Table Table 1.1.1.1.    Comparison among TS, Las Vegas Comparison among TS, Las Vegas Comparison among TS, Las Vegas Comparison among TS, Las Vegas 
solver and GCS/LV on Latin Square problemssolver and GCS/LV on Latin Square problemssolver and GCS/LV on Latin Square problemssolver and GCS/LV on Latin Square problems    
 

4.2. GCS/GA 
 

The schema theory and building blocks hypothesis 

[20] of Genetic Algorithms (GA) explain that key 

building blocks are preserved from generation to gen-

eration during the genetic search. In GCS/GA, a build-

ing block of GA can be interpreted as a branch of sub-

tree in TS. In addition, the TS and GA processes share 

the same problem context (variables, domains and con-

straints), therefore when the domain size is reduced by 

constraint propagation in TS, it also narrows the search 

space in GA. Basically, The GA solver in GCS/GA is 

performing a canonical genetic algorithm procedure as 

shown in Figure 6. Five essential components are spe-

cified in GCS/GA, they are: chromosome structure, 

population initialization, fitness evaluation, chromo-

some alteration, and termination condition. 

 

Chromosome Structure, Initialization and Fitness 

Evaluation 

In order to solve CSP with genetic algorithm, the 

problem has to be encoded in the chromosome form. 

The value of each variable xi ∈ X in the CSP is 

represented by a gene in the GA, which is an element 

of di. Each chromosome is a sequence of genes corres-

ponding to a valuation for all the variables. If X = 

{x1,…,xn}, then a chromosome s1s2 … sn represents the 

variable assignment, where si ∈ di. 

A small size of population is initialized, for example 

less than 20 chromosomes, in order to let the popula-

tion converge faster. Besides, for those bounded va-

riables, the corresponding genes are pre-set with a val-

ue assigned to the variable in TS, and randomly gener-

ate a value for the rest genes. Note that the generated 

value must be in domain. 

Solving CPSs can be rewritten as an optimization 

problem that minimizes the number of constraint viola-

tions [16]. Thus, min-conflicts heuristics [21] can be 

used to guide the generic search in GA_Solver. 

 

Alteration and Termination 

Crossover and mutation are the main genetic opera-

tors in GA_Solver. A simple n-point crossover is 

adopted for the information swapping (local search), n 

can be determined by the length of chromosome, say 

n=5 for 50-gene chromosome. The mutation operator is 

slightly different from the canonical one. It does not 

mutate the gene that its corresponding variable has 

been bounded. It is similar to the initialization proce-

dure. 

One of the objectives of GA_Solver is to determine 

which value for a particular variable is better (which 

sub-tree potentially contains solution). Therefore, the 

GA_Solver is terminated when a particular gene among 

the population is converged, that means all genes in the 

population which represent the same variable are equal 

to same value. This termination criteria obey the prin-

ciple of survival-of-fittest, good genes are preserved 

GA_Solver(X, D, C) { 

0←t ; 

initialize_new (P( t ), Z, D); 

evaluate (P( t ), C);  // conflicts counting 

while (not Termination-condition) { 

1+← tt ; 

select P( t ) from P( 1−t ); 

alter_new (P( t )); 

evaluate (P( t )); 

P( t ) = survive P( t ) and P( 1−t ); 

} 

 if (all constraints satisfied) 

return { | 1, 2, , }=a K

i i
x s i n  where { }=

ix id s ; 

 else 

  return unknown; 

} 

 

Figure 6. Figure 6. Figure 6. Figure 6. An outline of the Canonical GAn outline of the Canonical GAn outline of the Canonical GAn outline of the Canonical Geeeenetic netic netic netic 
Algorithms SolverAlgorithms SolverAlgorithms SolverAlgorithms Solver    



during evolution. Thus, the converged value is used to 

suggest GCS/GA for variable instantiation. Note that 

GA_Solver is also terminated when the maximum 

number of iteration is reached that ensures the termina-

tion of the entire algorithm. 

 

Value Suggestion to GCS with GA 

When GCS request a value suggestion for a particu-

lar variable, the function 

val_suggestion_from_other_solver() is called, the GA 

solver returns a value which is the most popular in the 

latest population with respect to the corresponding 

gene. For example, Figure 7 shows a GA population 

pool with ten chromosomes, the GA solver is being 

requested for value suggestion for variable V3. In this 

case, the GA solver returns value “4” as the value sug-

gestion to GCS, since it is the most popular one in the 

population. 

 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Chromosome0:[1][2][0][1][4][2][5][3][4][5] 

Chromosome1:[1][2][4][3][2][3][5][4][4][5] 

Chromosome2:[1][2][4][1][5][5][0][3][4][5] 

Chromosome3:[1][2][4][4][5][3][5][3][4][5] 

Chromosome4:[1][2][4][4][1][4][5][3][0][5] 

Chromosome5:[1][2][4][5][2][4][5][7][4][0] 

Chromosome6:[1][2][4][4][3][2][5][3][0][5] 

Chromosome7:[1][2][1][3][2][2][5][3][4][0] 

Chromosome8:[1][2][4][3][2][1][0][3][4][5] 

Chromosome9:[1][2][4][3][3][2][5][3][4][5]

Population

 
Figure 7Figure 7Figure 7Figure 7. . . . An example of GA populationAn example of GA populationAn example of GA populationAn example of GA population    

 

Examples 

We built a prototype implementation of GA and 

GCS/GA with constraint programming library JSolver 

[2] and JDK version 1.3.1 on a Sun Blade 1000 UNIX 

workstation. Two test cases are used to examine the 

GCS/GA algorithm, which are the N-Queen problem 

and graph coloring problem. The following results are 

median result in 20 runs and each one is limited to 15 

minutes. 

 

The N-Queen Problem 

The N-Queen problem is the problem of placing N 

queens on an N × N chessboard so that no queens can 

take any other. A queen attacks another queen when 

both of them are placed on the either same row, column 

or (+ve/-ve) diagonal. We have applied TS, GA and 

GCS/GA algorithms on a set of N-Queens problem 

instances from N=10 to 150, and the computation per-

formance and the number of fails are shown in Fig-

ure 7. The TS algorithm works well up to a hundred 

queens, but it does not work for the problem thereafter 

within the time limit. However, the GCS/GA can obtain 

solution consistently, since least backtracking occurred 

in the search. And the overhead is due to the computa-

tion of fitness in GA_Solver.  

 

 Runtime (sec) Number of fails 

 TS GA GCS/GA TS GA GCS/GA 

N=10 0.04 0.55 0.18 7 n/a 3 

N=20 0.08 5.2 0.57 29 n/a 5 

N=30 0.1 39.21 1.07 29 n/a 1 

N=40 0.11 264.01 2.44 19 n/a 2 

N=50 0.73 --- 4.08 479 n/a 2 

N=60 0.73 --- 7.61 400 n/a 4 

N=70 0.13 --- 12.94 1 n/a 11 

N=80 0.2 --- 16.89 20 n/a 4 

N=90 1.05 --- 22.36 335 n/a 0 

N=100 0.29 --- 34.5 21 n/a 5 

N=110 --- --- 46.51 --- n/a 6 

N=120 --- --- 59.19 --- n/a 2 

N=130 --- --- 81.17 --- n/a 21 

N=140 --- --- 89.13 --- n/a 1 

N=150 --- --- 113.94 --- n/a 2 

 

Table Table Table Table 2.2.2.2.    CoCoCoComparison among TS, Genetic Algmparison among TS, Genetic Algmparison among TS, Genetic Algmparison among TS, Genetic Algo-o-o-o-
rithms and GCS/GA on rithms and GCS/GA on rithms and GCS/GA on rithms and GCS/GA on NNNN----QueenQueenQueenQueen    problemsproblemsproblemsproblems    

 

Graph Coloring Problem 

The task of solving graph coloring problem is to 

paint all regions in the graph such that no neighbor-

hood region is sharing the same color. The problem 

instance we have chosen is appeared in [19]. It is a 

110-region graph and the goal is to paint it with four 

colors; the search space of this problem is 1.68E+66. 

Wong et al. [19] have designed a specific variable and 

value ordering heuristics that dedicated for solving this 

particular problem. In this case, GCS/GA algorithm 

takes less then 1.1 seconds and visited 36 choice-points 

to obtain a solution. Although Wong’s algorithm takes 

less then a second to obtain a solution, it has to visit 48 

choice-points. When the domain knowledge has been 

known and transformed as heuristic to guide the con-

straint solving, it could be very efficient. However, our 

algorithm have visited less choice-points to reach the 

solution, which implies that the GCS/GA is more effi-

cient than Wong’s, in term of number of backtracking. 

It can be realized that the guidance provided by GA 

solver is good enough to direct the search of TS solver 

to reach a solution. 

 

4.3. GCS/MIP 
 

The GCS/MIP algorithm needs to maintain two 

models, namely a CSP model and a linear model, dur-

ing the search process. The linear model is obtained by 

the transformation methods which will be discussed in 



the following subsection. It is to map each value in a 

variable domain into a 0-1 variable. Complete tree 

search (TS) is applied on the CSP model, while MIP 

techniques are applied on the linear model. The two 

search trees are explored in parallel. The solution of the 

linear relaxation problem is used to guide the value 

selection of the tree search. At each choice point, from 

those 0-1 variables corresponding to the current do-

main of the active variable, we choose the first one 

with the largest solution value, i.e. nearest to one, and 

use the value corresponding to this variable as the val-

ue selection heuristics for the tree search. 

It is expensive to solve a linear relaxation problem 

at every node. A possible improvement is to reduce the 

number of times that value selection is guided by linear 

relaxation solutions. Instead of invoking the value se-

lection heuristics at every node, it is invoked only when 

tree search’s default value ordering heuristics proves to 

fail to find a promising value. Such situation can be 

identified by a deep backtrack in the tree search.  

When using the default variable ordering heuristics, 

and using deep backtrack as a need-suggestion signal 

for the cost-reducing framework, we get the GCS/MIP 

variant, which is denoted by GCS/MIP*. 

 

Linear Formulation of CSP Models 

The key point left is how to transform a CSP model 

into a linear model. The main idea of the transforma-

tion method is to map each value in a variable domain 

into a 0-1 variable. We use axv =  to represent the varia-

ble corresponding to a value a in the domain of a varia-

ble x. Here, vx=a = 1 if x = a, and vx=a = 0 if xa ∉ . The 

domain constraint )(xDx ∈  is transformed to a linear 

constraint 
( )

1=∈
=∑ x aa D x

v , where }1,0{∈=axv . In this 

way, we restrict one and only one of such 0-1 variables, 

which correspond to the same original finite domain 

variable, to be equal to 1. In general, we work on in-

compatible tuples to construct the linear formulation of 

a constraint. Suppose the constraint involves n va-

riables x1,…,xn, with an incompatible tuple (a1,…,an), 

we add one linear constraint 
1

1==
≤ −∑ i i

n

x ai
v n  to the 

linear model. It achieves the same effect as the original 

constraint by prohibiting the participating variables 

from taking corresponding values in an incompatible 

tuple simultaneously. For some specific kinds of con-

straints, for example, linear constraint, alldifferent con-

straint, cardinality constraint, element constraint, etc., 

better transformation method is available. Please refer 

to [15] for details and replace those non 0-1 variables 

by the linking constraint 
( ) =∈

= ×∑ x aa D x
x a v . 

 

Example: Magic Square  

A system has been implemented on the top of ILOG 

CPLEX 8.0 [11] / Solver 5.2 [12] on a Sun Ultra 5/400 

UNIX workstation. Experiments are conducted on 

magic square problems with orders from 3 to 10. The 

result is listed in Table 3. For TS, we use smallest do-

main first as the variable ordering heuristics and smal-

lest value first as the value ordering heuristics. For MIP, 

the model is built from the CSP model by the transfor-

mation methods discussed. We use primal simplex al-

gorithm to solve the linear relaxation problems at every 

node. For GCS/MIP and GCS*/MIP, the variable or-

dering heuristics is the same as that of TS. For 

GCS*/MIP, the default value ordering heuristics is the 

same as that of TS. We use primal simplex algorithm to 

solve the linear relaxation problems of the hybrid algo-

rithm, too.  

From the experiment results, the GCS/MIP algo-

rithms perform better than both TS and MIP approach 

in general. And GCS*/MIP outperforms the basic 

GCS/MIP either in terms of fails or in terms of time. 

 

5. Conclusions and Future work 
 

This paper describes a complete and robust hybrid 

framework for guided complete search for solving gen-

eral constraint satisfaction problems. To reduce the 

communication cost between solvers during search, the 

GCS framework provides various degree of collabora-

 Runtime (sec) Number of fails 

 TS MIP GCS/MIP GCS*/MIP TS MIP GCS/MIP GCS*/MIP 

3 × 3 0 0.13 0.02 0 1 n/a 1 1 

4 × 4 0 125.85 0.43 0 7 n/a 97 7 

5 × 5 0.11 --- 15.41 0.2 702 n/a 1382 53 

6 × 6 10.47 --- 78.06 2.42 57246 n/a 3522 377 

7 × 7 --- --- 648.64 18.92 --- n/a 8292 515 

8 × 8 --- --- 496.35 24.69 --- n/a 2606 329 

9 × 9 --- --- --- 109.34 --- n/a --- 397 

10 × 10 --- --- --- 235.26 --- n/a --- 376 

Table 3.Table 3.Table 3.Table 3.    Comparison among TS, MIP, GCS/MIP and GCSComparison among TS, MIP, GCS/MIP and GCSComparison among TS, MIP, GCS/MIP and GCSComparison among TS, MIP, GCS/MIP and GCS****/MIP on Magic Square pro/MIP on Magic Square pro/MIP on Magic Square pro/MIP on Magic Square probbbblemslemslemslems    



tion between solvers. Under the GCS framework, solv-

ers exchange information during search, which en-

hances the performance of each others. The main con-

tribution of GCS is the operations of a tree search 

based solver are coordinated with those of another 

solver, which maintain the soundness and completeness 

of the whole hybrid scheme. And the value commit-

ments made by the tree search based solver, as well as 

other information such as the results of constraint prop-

agation, help the collaborating solver to reduce the 

problem size in order to speed up the whole search 

process. 

Three different CSP solvers: Las Vegas Solver, Ge-

netic Algorithms and Mixed Integer Programming have 

been employed by the GCS framework yielding 

GCS/LV, GCS/GA and GCS/MIP. The experimental 

evident show that the guidance provided by the other 

solver is promising and directs the search toward a first 

solution. Furthermore, the results show that GCS is 

able to solve certain hard problems without specific 

prior design or domain knowledge, which outperforms 

complete tree search and the other solver standalone 

execution.  

For future work, the proposed framework can be ex-

tended to solve constraint optimization problem (COP) 

by implementing branch-and-bound algorithm. Even-

tually, a generic framework for solving CSP/COP 

would be obtained. 
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