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1 Introduction
Finding a good model of a constraint satisfaction problem
(CSP) is a challenging task. A modeller must specify a set of
constraints that capture the definitions of the problem, andthe
model should also have strong propagation. In other words,
the model should be able to quickly reduce the domains of
the variables of the problem,and the implementation of these
propagators should be efficient,and the search space should
not be too large.

A problem can be modelled differently from two view-
points using two different sets of variables. In redundant
modelling [Chenget al., 1999], we connect the two differ-
ent models with channelling constraints, which relates valu-
ations in the two different models stronger propagation be-
haviour can be observed. However, the additional variables
and constraints impose extra computation overhead may out-
weigh the gain of reduction in search space.

In this paper we consider redundant models connected by
permutation channels, which commonly arise when the un-
derlying problem is some form of assignment problem. Since
each model is complete and only admits the solutions of the
problem, each model is logically redundant with respect to
the other model plus the permutation channel. In order to
keep the benefits of redundant modelling without paying all
the costs, We give a theorem which allows us to determine
when we can eliminate constraints in the mutually redundant
models that do not give extra propagation. Due to space lim-
itations, we state the theorem without proof.

2 Reasoning about Domain Propagation
We consider integer constraint solving with constraint propa-
gation and tree search.

An integer valuation θ is a mapping of variables to integer
values, written{x1 7→ d1, . . . , xn 7→ dn}. Let vars be the
function that returns the set of variables appearing in a con-
straint or valuation. Aconstraint c defines a set of valuations
solns(c) each mapping the same set of variablesvars(c). We
call solns(c) thesolutions of c. A constraintc is logically re-
dundant with respect to a set of constraintsC if |= C → c.

A domain D is a complete mapping from a fixed (count-
able) set of variablesV to finite sets of integers. Afalse do-
main D is a domain withD(x) = ∅ for somex. A domain
D1 is stronger than a domainD2, written D1 ⊑ D2, if D1

is a false domain orD1(x) ⊆ D2(x) for all variablesx. The
initial domainDinit gives the initial values possible for each
variable, allows us to restrict attention to domainsD such that
D ⊑ Dinit.

We adopt the notion ofpropagation solver and domain
consistency1 from Schulte and Stuckey [2001]. Apropaga-
tor f is a monotonically decreasing function from domains
to domains. Apropagation solver for a set of propagators
F and current domainD, solv(F, D), repeatedly applies all
the propagators inF starting from domainD until there is no
further change in resulting domain. A domainD is domain
consistent if D is the least domain containing all solutions of
c in D. Define thedomain consistency propagator dom(c)
for a constraintc such thatsolv (dom(c), D) is always do-
main consistent forc.

For all domainsD ⊑ Dinit, a set of propagatorF2 is made
propagation redundant by a set of propagatorsF1, written
F1 ≫ F2, if solv (F1, D) ⊑ solv (F2, D), and isequivalent
to F1, writtenF1 ≈ F2, if solv (F1, D) = solv (F2, D).

It is well known that in general the domain propagation of
a conjunction of constraints is not equivalent to applying the
domain propagators individually. But there are cases where
propagation of a conjunction is equivalent to propagation on
the individual conjuncts.

Lemma 1 If c1 and c2 share at most one variable x, then
{dom(c1), dom(c2)} ≈ {dom(c1 ∧ c2)}.

An atomic constraint is one ofxi = d or xi 6= d where
xi ∈ V andd is an integer. An atomic constraint represents
the basic changes in domain that occur during propagation.

A propagation rule is of the formC  c whereC is a
conjunction of atomic constraints,c is an atomic constraint
and 6|= C → c. Note our propagation rules are similar to the
“membership rules” of Apt and Monfroy [2001] except we
allow equations on the right hand side.

A propagatorf implements a propagation ruleC  c if for
eachD ⊑ Dinit whenever|= D → C, then|= f(D) → c.
We can characterize a propagatorf in terms of the propaga-
tion rules that it implements. Letrules(f) be the set of rules
implemented byf . Thenprop(f) ⊆ rules(f) are a set of
propagation rules such that everyr ∈ rules(f) is subsumed
by a ruler′ ∈ prop(f).

1Equivalently, hyper-arc or generalized arc consistent.



3 Permutation Channels
A common form of redundant modelling is when we con-
sider two viewpoints to a permutation problem. We can
view the problem as finding a bipartite matching between
two sets of objects of the same size. For notational conve-
nience, let the two viewpoints as having the set of variables
X = {x0, . . . , xn}, andY = {y0, . . . , yn} respectively.

Thepermutation channel C1 is defined by the conjunction
of constraints

∧n

i=0

∧n

j=0(xi = j ⇔ yj = i). Thepermuta-
tion channel propagator F1 maintains domain consistency of
each individual bi-implication, that is

⋃n

i=0

⋃n

j=0{dom(xi =

j ⇔ yj = i)}.
Smith [2000] first observes that the permutation channel

makes each of the disequations between variables in either
model propagation redundant. Walsh [2001] proves this holds
for other notions of consistency.

Lemma 2 (Walsh, 2001) F1 ≫ {dom(xi 6= xk)}

Related toC1 is thepermutation channel function 1 which
is a bijection between atomic constraints inX to atomic con-
striants inY , 1 (xi = j) = (yj = i), and1 (xi 6= j) =
(yj 6= i). We extend1 to map conjunctions of constraints in
the obvious manner1(C1 ∧ C2) =1(C1)∧ 1(C2).

The fundamental theorem states that a constraint inY is
propagation redundant if there exist a constraint inX when
conjuncts withC1 logically imply every propagation rules
implemented by the constraint inY . Since1 is bijective, the
theorem is valid whenX andY are reversed.

Theorem 3 Let fY be a propagator on Y , and cX be a con-
straint on X . If |= Dinit ∧ cX∧ 1 (C) → 1 (c) for all
(C  c) ∈ prop(fY ), then {dom(cX)} ∪ F1 ≫ {fY }.

Example 4 Smith [2000] suggests two ways to model the
Langford’s problem as a permutation problem and how to
combine them with the permutation channel. She points out
that the so-calledminimal combined model, which includes
only X model and the permutation channel, gives as much
pruning as the full combined model. This is proved in an ad
hoc manner by Choi and Lee [2002]. We prove this formally
using our generic approaches.2

The disequality constraints are propagation redundant by
Lemma 2. Consider the separation constraintscY ≡ yj =
3i ⇔ yj+(i+2) = 3i+ 1. The propagation rules fordom(cY )
are (r1)yj = 3i  yj+(i+2) = 3i + 1, (r2) yj+(i+2) =
3i + 1  yj = 3i, (r3) yj 6= 3i  yj+(i+2) 6= 3i + 1,
and (r4)yj+(i+2) 6= 3i + 1  yj 6= 3i. We have that for
cX ≡ x3i+1 = x3i + (i + 2), |= cX∧ 1(C) → 1(c) for all
propagation rules above. For example the first rule is mapped
to x3i = j  x3i+1 = j + i + 2. Hence the conditions of
Theorem 3 hold anddom(cY ) is propagation redundant.

Note the importance ofequational propagation rules such
asyj = 3i  yj+(i+2) = 3i + 1. If we only allowed dis-
equations on the right hand side, we would replace this with
rulesyj = 3i  yj+(i+2) 6= k, 0 ≤ k 6= 3i + 1 ≤ n. It
is impossible to prove that the translated versions are implied
by Dinit ∧ cX .

2The complete description of the two permutation models for the
Langford’s Problem can be found in[Choi and Lee, 2002].

We can similarly show that each of the constraintsc′Y ≡
yj = 3i ⇔ yj+2(i+2) = 3i + 2 are propagation redundant
usingcX ∧ c′X , wherec′X ≡ x3i+2 = x3i+1 + (i + 2) by
Theorem 3. Although modelMX does not include a domain
propagator forcX ∧c′X , we can still show propagation redun-
dancy since{dom(cX), dom(c′X)} ≈ {dom(cX ∧ c′X)} by
Lemma 1.

Similar reasoning applies to show that each constraintyj 6=
3i where0 ≤ i ≤ 8 and27 − 2(i + 2) ≤ j ≤ 26 is made
propagation redundant byx3i+1 = x3i + (i + 2) ∧ x3i+2 =
x3i+1 + (i + 2) ∧ 0 ≤ x3i+2 ≤ 26. 2

4 Conclusion
We have extend our approach to other types of channelling
constraints and lead to significantly faster models that do
not increase the search space. Although we have illustrated
the use of the theorems herein by hand, the approach can
clearly be automated. We can constructs the propagation rules
automatically using the approach of Abdennadher and Rig-
otti [2002]. We are interested in extending the work to reason
bounds propagation. Another direction is to study a weaker
notion of propagation redundancy which allows removal of
constraints without affecting the search space given a specific
search heuristic.
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