
Propagation Redundancy in Redundant Modelling�

Chiu Wo Choi1, Jimmy Ho Man Lee1, and Peter J. Stuckey2

1 Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong SAR, China

{cwchoi,jlee}@cse.cuhk.edu.hk
2 Deptartment of Computer Science & Software Engineering

University of Melbourne, 3010, Australia
pjs@cs.mu.oz.au

Abstract. Combining mutually redundant models with channelling constraints
increases constraint propagation. However, the extra computation efforts of the
additional variables and constraints may outweigh the gain of reduction in search
space. In fact, many of the constraints in redundant modelling are not only logically
redundant but also propagation redundant and hence cannot further reduce search
space. We give general theorems for proving propagation redundancy of one con-
straint with respect to channelling constraints and constraints in the other model.
We define a broad form of channelling constraints that are covered by our approach.
We illustrate, using problems from CSPLib (http://www.csplib.org/),
how detecting and removing propagation redundant constraints can significantly
speed up solving behaviour.

1 Introduction

Finding a good model of a constraint satisfaction problem (CSP) is a challenging task. A
modeller must specify a set of constraints that capture the definitions of the problem, and
the model should also have strong propagation. In other words, the model should be able
to quickly reduce the domains of the variables of the problem, and the implementation
of these propagators should be efficient, and the search space should not be too large.

A common technique to increase the propagation is to add redundant constraints,
which are logically implied by the constraints of the model.Adding redundant constraints
can be beneficial since the constraint solver may extract more information from these
redundant constraints. However, not all logically redundant constraints will contribute
additional propagation information to the constraint solver. Understanding whether the
propagator for a redundant constraint will add useful propagation information is an inter-
esting question. In this paper we show how to determine if a propagator is propagation
redundant with respect to a set of propagators, and hence will not add useful propagation
information.

� We thank the anonymous referees for their constructive comments. The work described in this
paper was substantially supported by a grant from the Research Grants Council of the Hong
Kong Special Administrative Region (Project no. CUHK4183/00E).

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 229–243, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

230 Chiu Wo Choi, Jimmy Ho Man Lee, and Peter J. Stuckey

An important source of logically redundant constraints arises in redundant mod-
elling [4].A problem can be modelled differently from two viewpoints using two different
sets of variables. By connecting the two different models with channelling constraints,
which relates valuations in the two different models, stronger propagation behaviour can
be observed. However, the additional variables and constraints impose extra computation
overhead. Since each model is complete and only admits the solutions of the problem,
each model is logically redundant with respect to the other model plus the channelling
constraints. In many cases, some of the constraints are also propagation redundant with
respect to the other constraints in the combined model.

Smith [7,8] has examined the redundant models for a number of individual problems
including n-Queens problem, Langford’s problem and the social golfers problems. She
empirically determined propagation redundancy for constraints in these problems. In this
paper we give a theoretical framework which can determine propagation redundancy a
priori.

Walsh [9] also compares the pruning behaviour of the different notions of consis-
tency over the disequations, channelling constraints, and all-different constraints for
permutation problems by introducing the measure of constraint tightness. Propagation
redundancy can be seen as a more specific form of constraint tightness, that allows us
to give generic approaches to proving better pruning behaviour, in particular about the
other constraints in permutation problems.

In order to keep the benefits of redundant modelling without paying all the costs,
we give theorems that allow us to show which constraints in a redundant model are not
giving extra propagation and can be removed. In order to prove propagation redundancy,
we introduce the notion of propagation rules which capture each possible propagation
by a constraint and channel functions which relate these actions from one model to the
other. Due to space limitations, we state the lemmas and theorems without proofs1. We
give experimental results showing the benefits of detecting and removing propagation
redundant constraints. An earlier poster [5] examines this problem when combining
redundant models with permutation channels. This paper extends the study to cover
other forms of channelling constraints.

2 Propagation Based Constraint Solving

In this paper we consider integer and set constraint solving with constraint propagation
and tree search. Boolean constraint solving is considered a special case of the integer
constraint solving.

Constraints. We consider a typed set of variables V = VI ∪ VS made up of integer
variables VI , for which we use lower case notation such as x and y, and sets of integers
variables VS , for which we use upper case notation such as S and T . We use v to denote
variables of either kind.

An valuation θ is a mapping of integer variables to integer values and set variables
to sets of integer values, written {x1 �→ d1, . . . , xn �→ dn, S1 �→ A1, . . . , Sm �→ Am}.

1 A longer version of this paper with the proofs of lemmas and theorems is available at
http://www.cse.cuhk.edu.hk/˜cwchoi/cp03long.pdf.

Propagation Redundancy in Redundant Modelling 231

We extend the valuation θ to map expressions or constraints involving the variables in
the natural way. Let vars be the function that returns the set of variables appearing in
an expression, constraint or valuation.

A primitive constraint c defines a set of valuations solns(c) each mapping the same
set of variables vars(c). We call solns(c) the solutions of c. For a primitive constraint c
defined by arithmetic expressions we define solns(c) = {θ | vars(θ) = vars(c)∧ |=θ

c}, that is the set of θ that make the constraint c hold. Primitive constraints can also be
defined directly, by giving the set (or table) solns(c).

A constraint is a conjunction of primitive constraints, by abuse of notation, we will
sometimes treat it as a set of primitive constraints. A constraint c is logically redundant
with respect to a set of constraints C if |= C → c.

Domains. A domain D is a complete mapping from a fixed (countable) set of variables
V to finite sets of integers (for the integer variables in VI) and to finite sets of finite sets
of integers (for the set variables in VS). A false domain D is a domain with D(v) = ∅
for some v. The intersection of two domains D1 and D2, denoted D1 �D2, is defined by
the domain D3(v) = D1(v) ∩ D2(v) for all v. A domain D1 is stronger than a domain
D2, written D1 � D2, if D1 is a false domain or D1(v) ⊆ D2(v) for all variables v.
A domain D1 is equal to a domain D2, denoted D1 = D2, if D1 and D2 are both false
domains or D1(v) = D2(v) for all variables v. We can understand a domain D as a
constraint in the obvious way, D ↔ ∧

v∈V
∨

d∈D(v) v = d.
In an abuse of notation, we define a valuation θ to be an element of a domain D,

written θ ∈ D, if θ(vi) ∈ D(vi) for all vi ∈ vars(θ).
We will be interested in determining the infimums and supremums of expressions

with respect to some domainD. Define the infimum and supremum of an expression ewith
respect to a domain D as infD e = inf {θ(e)|θ ∈ D} and supD e = sup {θ(e)|θ ∈ D}.

We will also use range notation: [l .. u] denotes the set {d | l ≤ d ≤ u} when l and
u are integers, while [L .. U] denotes the set of sets of integers {A | L ⊆ A ⊆ U} when
L and U are sets of integers.

We shall be interested in the notion of an initial domain, which we denote Dinit .
The initial domain gives the initial values possible for each variable. In effect an initial
domain allows us to restrict attention to domains D such that D � Dinit .

Propagators. A propagator f is a monotonically decreasing function from domains to
domains, i.e. D1 � D2 implies that f(D1) � f(D2), and f(D) � D. A propagator f
is correct for constraint c iff for all domains D

{θ | θ ∈ D} ∩ solns(c) = {θ | θ ∈ f(D)} ∩ solns(c)

This is a weak restriction since for example, the identity propagator is correct for all
constraints c.

A propagation solver for a set of propagators F and current domain D, solv(F, D),
repeatedly applies all the propagators in F starting from domain D until there is no
further change in resulting domain. In other words, solv(F, D) returns a new domain
defined by

232 Chiu Wo Choi, Jimmy Ho Man Lee, and Peter J. Stuckey

iter(F, D) = �
f∈F

f(D) and solv(F, D) = gfp(λd.iter(F, d))(D)

where gfp denotes the greatest fixpoint w.r.t � lifted to functions.

Domain Consistency and Set Bounds Consistency. A domain D is domain consistent2

for a constraint c if D is the least domain containing all solutions θ ∈ D of c, i.e, there
does not exist D′ � D such that θ ∈ D ∧ θ ∈ solns(c) → θ ∈ D′.

A set of propagators F maintains domain consistency for a constraint c, if solv(F, D)
is always domain consistent for c.

Define the domain consistency propagator for a constraint c as

dom(c)(D)(v) = {θ(v) | θ ∈ D ∧ θ ∈ solns(c)} where v ∈ vars(c)
dom(c)(D)(v) = D(v) otherwise

Example 1. Consider the constraint c ≡ x1 = 3x2 + 5x3. Suppose domain D(x1) =
{2, 3, 4, 5, 6, 7}, D(x2) = {0, 1, 2}, and D(x3) = {−1, 0, 1, 2}. The solutions θ ∈ D
of c are θ1 = {x1 �→ 3, x2 �→ 1, x3 �→ 0}, θ2 = {x1 �→ 5, x2 �→ 0, x3 �→ 1}, and
θ3 = {x1 �→ 6, x2 �→ 2, x3 �→ 0}. Hence, dom(c)(D) = D′ where D′(x1) = {3, 5, 6},
D′(x2) = {0, 1, 2}, and D′(x3) = {0, 1}. D′ is domain consistent with respect to c.

Domain consistency is prohibitive to compute for constraints involving set variables.
For that reason, set bounds propagation is typically used where a domain maps a set
variable to a lower bound set of integers and an upper bound set of integers.

We shall enforce this by restricting our attention to domains where the D(S) is a
range, that is D(S) = {A | infD(S) ⊆ A ⊆ supD(S)}. This is managed by only using
set bounds propagators, which maintain this property.

We can define the domain and set bounds propagators dsb(c) for a constraint c as
follows:

dsb(c)(D)(v) = [∩dom(c)(D)(v) .. ∪ dom(c)(D)(v)] where v ∈ vars(c) ∩ VS

dsb(c)(D)(v) = dom(c)(D)(v) otherwise

Note that as defined dsb(c) = dom(c) when vars(c) ⊆ VI . From now on we shall
restrict attention to dsb propagators.

3 Propagation Rules

In order to reason effectively about propagation, it will be useful to break down a prop-
agator into the individual propagation steps that it can perform. That is the role of
propagation rules.

An atomic constraint is one of xi = d, xi �= d, d ∈ Si or d �∈ Si where xi ∈ VI , d
is an integer, an Si ∈ VS . An atomic constraint represents the basic changes in domain
that occur during propagation, the elimination of a value from an integer domain, or
the addition of a value to a lower bound, or removal of a value from an upper bound.

2 Equivalently, hyper-arc or generalized arc consistent [3].

Propagation Redundancy in Redundant Modelling 233

Atomic constraints of the form xi = d are not strictly necessary. They are equivalent to
removing all other values from the domain.

A propagation rule is of the form C � c where C is a conjunction of atomic
constraints, c is an atomic constraint, and �|= C → c. Note our propagation rules when
restricted to integer variables are similar to the “membership rules” of [2] except we
allow equations on the right hand side.

A propagator f implements a propagation rule C � c if for each D � Dinit
whenever |= D → C, then |= f(D) → c. A propagation rule C � c defines a
propagator (for which we use the same notation) in the obvious way.

(C � c)(D)(v) = {θ(v) | θ ∈ D ∧ θ ∈ solns(c)} if vars(c) = {v} and |= D → C

(C � c)(D)(v) = D(v) otherwise

A propagation rule C1 � c1 subsumes a rule C2 � c2 if |= (Dinit ∧C2) → C1 and
|= (Dinit ∧ c1) → c2. We can characterize a propagator f in terms of the propagation
rules that it implements. Let rules(f) be the set of rules implemented by f . Then
prop(f) ⊆ rules(f) are a set of propagation rules such that every r ∈ rules(f) is
subsumed by a rule r′ ∈ prop(f). The set prop(f) can be automatically constructed
by the approach of [1].

Example 2. For the propagator f ≡ dsb(x1 �= x2) for Dinit(x1) = Dinit(x2) =
{1, 2, 3}, prop(f) is

x1 = 1 � x2 �= 1 x1 = 2 � x2 �= 2 x1 = 3 � x2 �= 3
x2 = 1 � x1 �= 1 x2 = 2 � x1 �= 2 x2 = 3 � x1 �= 3

Note that f also implements e.g. x1 �= 1, x1 �= 3 � x2 �= 2, which is subsumed by
x1 = 2 � x2 �= 2.

Example 3. For the propagator f ≡ dsb(S ⊆ T) for Dinit(S) = Dinit(T) = {∅ . . .
{1, 2}}. prop(f) is

1 ∈ S � 1 ∈ T 2 ∈ S � 2 ∈ T
1 �∈ T � 1 �∈ S 2 �∈ T � 2 �∈ S

A key result for domain and set bounds propagators dsb(c′), is that the propagation
rules implemented are exactly those C � c where c′ implies C → c.

Lemma 4. dsb(c′) implements C � c iff |= (Dinit ∧ c′) → (C → c) ��

4 Reasoning about Propagation

In this section we introduce the basic results for reasoning about propagators.
We say a set of propagators F1 is stronger than a set of propagators F2, written

F1 � F2, if solv(F1, D) � solv(F2, D) for all domains D � Dinit . We say a
set of propagators F1 is equivalent to a set of propagators F2, written F1 ≈ F2, if
solv(F1, D) = solv(F2, D) for all domains D � Dinit . A propagator f is made prop-
agation redundant by a set of propagators F if F � {f}. It is clear that a constraint
c2 that is logically redundant with respect to constraint c1 is also propagation redundant
with respect to c1.

234 Chiu Wo Choi, Jimmy Ho Man Lee, and Peter J. Stuckey

Lemma 5. If |= Dinit ∧ c1 → c2 then {dsb(c1)} � {dsb(c2)}. ��
Typically though a logically redundant constraint c2 will be made logically redundant

by a conjunction of other constraints. It is well known that in general the domain (and
set bounds) propagation of a conjunction of constraints is not equivalent to applying the
domain (and set bounds) propagators individually.

Example 6. Consider the constraint c1 ≡ x1 = 3x2, which is equivalent to c2∧c3 where
c2 ≡ x1 ≤ 3x2 and c3 ≡ x1 ≥ 3x2. If D(x1) = D(x2) = {0, 1, 2, 3, 4, 5, 6, 7}, then
D1 = dsb(c1)(D) and D2 = solv({dsb(c2), dsb(c3)}, D) where D1(x1) = {0, 3, 6}
and D2(x1) = {0, 1, 2, 3, 4, 5, 6}. Hence {dsb(c2), dsb(c3)} �� {dsb(c1)}.

But there are cases where propagation of a conjunction is equivalent to propagation
on the individual conjuncts.

Lemma 7. Let c1 and c2 be two constraints sharing at most one variable x ∈ VI , then
{dsb(c1), dsb(c2)} ≈ {dsb(c1 ∧ c2)}. ��

Note the same result clearly does not hold when the shared variable is a set variable.
Consider c1 = (S = {1} ∨ S = {2, 3}) and c2 = (S = {2} ∨ S = {1, 3}), then
solv({dsb(c1), dsb(c2), D) = D where D(S) = [∅ .. {1, 2, 3}], but dsb(c1 ∧ c2)(D) is
a false domain.

Propagation rules allow us to break up the consideration of a constraint into individual
parts. That is the domain and set bounds propagator of a constraint is equivalent to the
union of the propagation rules implemented by the propagator.

Lemma 8. {dsb(c′)} ≈ ∪C�c∈prop(dsb(c′)){C � c} ��

5 Redundant Modelling and Channelling Constraints

Redundant modelling [4] models the problem from two different viewpoints. In general,
the propagators defined for the two viewpoints act in different ways and discover infor-
mation at different stages in the search. By joining the two models using channelling
constraints, we can get the advantage of both sources of propagation. Of course, each
model is logically redundant with respect to the other model plus the channelling con-
straints. However, in this section, we show cases in which propagation caused by some
constraints in one model is subsumed by propagation induced from constraints in the
other model through the channelling constraints.

Assume we have one model of the problem MX using variables X , and another
model MY using disjoint variables Y . Channelling constraints are used to join these
two models together by relating X and Y . There is no real agreement on precisely
what channelling constraints may be yet. For the purposes of our theorems we define a
channelling constraints as follows.

Let AX be the atomic constraints for Dinit on variables X , and AY be the atomic
constraints for Dinit on variables Y . A channel function ♦ is a bijection from atomic
constraints AX to AY .

Propagation Redundancy in Redundant Modelling 235

A channelling constraint (or simply channel) C♦ is the constraint
∧

c∈AX

(c ⇔ ♦(c))

The channel propagator F♦ is the set of propagation rules inferred from the channel
function ♦.

F♦ =
⋃

c∈AX

{c � ♦(c), ♦(c) � c}

Note for channel function ♦, by definition ♦−1 is also a channel function, and C♦ and
C♦−1 , as well as F♦ and F♦−1 , are identical.

We now illustrate how common channels fit into this framework.

Permutation Channels. A common form of redundant modelling is when we consider
two viewpoints to a permutation problem. We can view the problem as finding a bipartite
matching between two sets of objects of the same size. Assume the two viewpoints have
the set of variables X = {x0, . . . , xn}, and Y = {y0, . . . , yn} respectively.

The permutation channel function � is defined as � (xi = j) = (yj = i) and
�(xi �= j) = (yj �= i). The permutation channel C� is equivalent to the conjunction of
constraints

∧n
i=0

∧n
j=0(xi = j ⇔ yj = i).

Boolean Channels. Another common redundant modelling is when we give both an
integer and Boolean model. Suppose the integer variables are X = {x0, . . . , xn}, where
Dinit(xi) = [0 .. ki], and the Boolean variables are Z = {zij | 0 ≤ i ≤ n, 0 ≤ j ≤ ki}

The Boolean channel function � is defined as �(xi = j) = (zij = 1) and �(xi �=
j) = (zij = 0). Note that the atomic constraints zij �= 1 and zij �= 0 are not needed for
Boolean variables since they are equivalent (respectively) to zij = 0 and zij = 1. The
Boolean channel C� is equivalent to the conjunction of constraints

∧n
i=0

∧ki

j=0(xi =
j ⇔ zij = 1).

Set Channels. A common form of redundant modelling is where one model deals with
integer variables, and the other with variables over finite sets of integers, and the relation
xi = j holds iff i ∈ Sj . This generalizes the assignment problem to where two or
more integer variables can take the same value. Suppose the integer variables are X =
{x0, . . . , xn}, where Dinit(xi) = [0 .. k], and the set variables are {S0, . . . , Sk}. The
set channel function {} is defined as {}(xi = j) = (i ∈ Sj) and {}(xi �= j) = (i �∈ Sj).
The set channel C{} is equivalent to

∧n
i=0

∧k
j=0(xi = j ⇔ i ∈ Sj).

5.1 Proving Propagation Redundancy Using Channels

We can now prove the fundamental theorem about propagation redundancy through
channels. The core result is that a propagation rule that is mapped by a channel function
to a rule subsumed by another propagation rule is propagation redundant. We extend
channel functions to map conjunctions of constraints in the obvious manner ♦(c1 ∧
· · · ∧ cn) = ♦(c1) ∧ · · · ∧ ♦(cn).

236 Chiu Wo Choi, Jimmy Ho Man Lee, and Peter J. Stuckey

Lemma 9. Let C � c be a propagation rule on Y variables, and C ′ � c′ be a
propagation rule on X variables. If C ′ � c′ subsumes ♦−1(C) � ♦−1(c) then
{C ′ � c′} ∪ F♦ � {C � c}. ��

We can straightforwardly lift this result to talk about propagation rules that are
subsumed by the domain and set bounds propagator for a constraint, and then lift to a
set of propagation rules implemented by some propagator.

Lemma 10. Let C � c be a propagation rule on Y variables, and cX be a constraint
on X variables. If |= (Dinit ∧ cX ∧ ♦−1(C)) → ♦−1(c), then {dsb(cX)} ∪ F♦ �
{C � c}. ��

Corollary 11. Let fY be a propagator on Y variables, and cX be a constraint on X
variables. If |= (Dinit ∧ cX ∧ ♦−1(C)) → ♦−1(c) for all C � c ∈ prop(fY), then
{dsb(cX)} ∪ F♦ � {fY }. ��

Often a single constraint does not capture all the propagation effects of a constraint
on the other side of the permutation model. In that case we may need to find for each
particular propagation rule, a constraint on the other side that causes the same propagation
to occur.

Theorem 12. Let fY be a propagator on Y variables. Suppose for each r ≡ (C � c) ∈
prop(fY), there exists constraint imp(r) on X variables where |= (Dinit ∧ imp(r) ∧
♦−1(C)) → ♦−1(c), then ∪r∈prop(fY){dsb(imp(r))} ∪ F♦ � {fY }. ��

The framework just presented is closely related to Brand’s approach [10] of identi-
fying redundant rules in the compilation of constraints into rule-based constraint pro-
grams [2]. While Brand reasons about redundancy at the rule level, we employ propa-
gation rules as an analysis tool to detect redundancy at the constraint level.

5.2 Restrictive and Unrestrictive Channel Functions

The channels themselves may actually restrict the possible solutions in one or both
models involved. We will concentrate on the X model, since the restrictions on the Y
model can be seen by examining the inverse channel function.

A channel function ♦ is restrictive (on the variables X) if �|= Dinit → ∃Y C♦, that
is not all valuations on X variables are extensible to solutions of C♦.

Example 13. The � channel function is restrictive, for example {x1 = 2, x2 = 2}
cannot be extended to be a solution of C�, since it requires y2 to take both values 1 and
2. The � channel function is unrestrictive.Any valuation on X variables can be extended
to a solution of C�. However �−1 is restrictive, for example {z11 = 1, z12 = 1} cannot
be extended to a solution of C� since it requires x1 to be both 1 and 2.

Restrictive channel function can themselves make constraints propagation redundant.
Smith [7] first observes that the permutation channel makes each of the disequations

between variables in either model propagation redundant. Walsh [9] proves this holds
for other notions of consistency.

Propagation Redundancy in Redundant Modelling 237

Lemma 14 ([9]). F� � {dsb(xi �= xk)} ��
Implicit in the Boolean channel is that each integer variable can take only one,

and must take one value. This is represented in the Boolean model as the constraint
∑ki

j=0 zij = 1. It is enforced by the restrictive channel function �−1.

Lemma 15. F� � {dsb(
∑ki

j=0 zij = 1)} for all 1 ≤ i ≤ n. ��

The channel function {}−1 is restrictive, since each variable xi ∈ X can only take
a single value j. It means that Sj ∩ Sj′ = ∅ for all 0 ≤ j < j′ ≤ m. It is clear that F{}
makes these constraints propagation redundant.

Lemma 16. F{} � {dsb(Sj ∩ Sj′ = ∅)} for all 0 ≤ j < j′ ≤ m. ��
Unrestrictive channel functions do not make any constraints (on X) propagation

redundant. Interestingly in this case we can argue about propagation redundancy simply
in terms of logical consequence.

Theorem 17. Let ♦ be an unrestrictive channel function, let cY be a constraint on Y
variables, and cX a constraint on X variables. If |= (Dinit ∧ cX ∧ C♦) → cY , then
{dsb(cX)} ∪ F♦ � {dsb(cY)}. ��

The reason the channel function must be unrestrictive for this result to hold is that
the |= (Dinit ∧ cX ∧ C♦) → cY is too weak a condition in the general case.

Example 18. The permutation channel function is restrictive. Now C ≡ x0 + x1 <
2 ∧ C� is such that |= C → y2 = 2 since the only solutions of C are {x0 �→ 0, x1 �→
1, x2 �→ 2, y0 �→ 0, y1 �→ 1, y2 �→ 2} and {x0 �→ 1, x1 �→ 0, x2 �→ 2, y0 �→ 1, y1 �→
0, y2 �→ 2}. But clearly it is not the case that x0 + x1 < 2 → x2 = 2. The problem is
that the channel C� removes solutions of x0 + x1 < 2 like {x0 �→ 0, x1 �→ 0, x2 �→ 0}
from consideration.

6 Example Problems

In the following, we give examples where the constraints in redundant modelling are
propagation redundant.

6.1 All-Interval Series

The all-interval series problem, listed as “prob007” in CSPLib, from musical composi-
tion. The problem is to find a permutation of n numbers from 0 to n − 1, such that the
differences between adjacent numbers form a permutation from 1 to n − 1.

There are two ways to model the problem. The first model, MX , consists of n vari-
ables, X = {x0, . . . , xn−1}. Each xi denotes the number in position i, and Dinit(xi) =
{0, . . . , n−1} for i ∈ {0, . . . , n−1}. We introduce auxiliary variables, {u0, . . . , un−2},
that denote the difference between adjacent numbers. The constraints are:

238 Chiu Wo Choi, Jimmy Ho Man Lee, and Peter J. Stuckey

– disequality constraints (IX1): ∀0 ≤ i < j ≤ n − 1. xi �= xj and
∀0 ≤ i < j ≤ n − 2. ui �= uj .

– interval constraints (IX2): ∀0 ≤ i ≤ n − 2. ui = |xi − xi+1| − 1.

The second model, MY , also consists of n variables, Y = {y0, . . . , yn−1}. Each yi

denotes the position for the number i, and Dinit(yi) = {0, . . . , n−1} for i ∈ {0, . . . , n−
1}. The auxilliary variables {v0, . . . , vn−2} denote the position where the difference
value of 1 to n − 1 belongs. The constraints are:

– disequality constraints (IY1): ∀0 ≤ i < j ≤ n − 1. yi �= yj and
∀0 ≤ i < j ≤ n − 2. vi �= vj .

– interval constraints (IY2): The constraints ∀0 ≤ i < j ≤ n − 1. (yi − yj = 1) ⇒
(vj−i−1 = yj) and (yj − yi = 1) ⇒ (vj−i−1 = yi) enforce that if yi and yj are
adjacent, the position for their difference must be the smaller of them.

In the second model, we observe that only y0 and yn−1 can lead to a difference value
of n − 1. Therefore, we can add the redundant constraints: (IY3) (|y0 − yn−1| = 1) ∧
(vn−2 = min(y0, yn−1)), to force y0 and yn−1 to be adjacent.

The permutation channels for this problem are more interesting because we have
two distinct kinds of variables in each model, each of which is related by a permutation
channel. The channels are xi = j ⇔ yj = i and ui = j ⇔ vj = i.

Example 19. Consider the constraint cY ≡ (yi − yj = 1) ⇒ (vj−i−1 = yj) of the
all-intervals series problem. The propagation rules for dsb(cY) have the forms

r1 yi = k + 1 ∧ yj = k � vj−i−1 = k
r2 vj−i−1 �= k ∧ yj = k � yi �= k + 1
r3 yi = k + 1 ∧ I � yj �= k

where in r3, I is any conjunction of disequations on vj−i−1 and yj , not including yj �= k
ensuring that vj−i−1 �= yj . We can show for imp(r1) ≡ imp(r2) ≡ imp(r3) ≡ (uk =
|xk − xk+1| − 1) that |= (Dinit ∧ imp(r1) ∧ xk+1 = i ∧ xk = j) → (uk = j − i − 1)
and |= (Dinit ∧ imp(r2) ∧ uk �= j − i − 1 ∧ xk = j) → (xk+1 �= i). For the
remaining propagation rules (r3), it is clear that I must contain vj−i−1 �= k since it
does not contain yj �= k and it must force the two to be different. We can show that
|= (Dinit ∧ imp(r3) ∧ uk �= j − i − 1 ∧ xk+1 = i) → (xk �= j).

Hence the constraint is propagation redundant by Theorem 12. Similarly for the other
(IY2) constraints (yj − yi = 1) ⇒ (vj−i−1 = yi). The disequality constraints (IY1)
yi �= yj and vi �= vj are propagation redundant by Lemma 14. The only non-propagation
redundant constraints in MY is (IY3) (|y0 − yn−1| = 1) ∧ (vn−2 = min(y0, yn−1)).

6.2 n-Queens Problem

In the n-queens problem, the task of which is to place n queens on an n×n chess board
so that no two queens can attack each other.

The first model, MX , consists of n variables, X = {x0, . . . , xn−1}. Each xi denotes
the column position of the queen on row i, and D(xi) = {0, . . . , n − 1}, for i ∈
{0, . . . , n − 1}. The constraints CX enforce that no two queens can be on the same:

Propagation Redundancy in Redundant Modelling 239

– column (QX1): ∀0 ≤ i < j ≤ n − 1. xi �= xj .
– diagonal (QX2): ∀0 ≤ i < j ≤ n − 1. xi − i �= xj − j, xi + i �= xj + j.

The second model, MZ , consists of n×n Boolean variables, Z = {z00, . . . , z0(n−1),
. . . , z(n−1)0, . . . , z(n−1)(n−1)}. Each zij denotes whether we have a queen at row i
column j or not. The constraints CZ enforce that no two queens can be on the same:

– row (QZ1): ∀0 ≤ i ≤ n − 1.
∑n−1

j=0 zij = 1.

– column (QZ2): ∀0 ≤ j ≤ n − 1.
∑n−1

i=0 zij = 1.
– main diagonal (QZ3):

∑n−1
i=0 zii ≤ 1, and

∑n−1
i=0 zi(n−1−i) ≤ 1.

– other diagonal (QZ4): ∀1 ≤ k ≤ n−1.
∑n−1−k

j=0 zj(j+k) ≤ 1,
∑n−1−k

j=0 z(j+k)j ≤
1,

∑n−1−k
j=0 zj(n−1−j−k) ≤ 1,

∑n−1−k
j=0 z(j+k)(n−1−j) ≤ 1.

We combine the two models using the Boolean channel xi = j ⇔ zij = 1.

Example 20. In MZ , the row constraints (QZ1)
∑n−1

j=0 zij = 1 are propagation redun-
dant using Lemma 15.

Consider the main diagonal constraint (QZ3) cZ ≡ ∑n−1
i=0 zii ≤ 1. We can show that

cX ≡ x1 �= xi−i − 1∧· · ·xi−1 �= xi−1∧xi+1 �= xi+1∧· · ·xn−1 �= xi+n−i−1 is
such that |= Dinit ∧cX ∧C� → cZ . Now dsb(cX) ≈ dsb(x1 �= xi)∪· · ·∪dsb(xn−1 �=
xi) by Lemma 7 since they share only one variable xi. Since � is an unrestrictive
channel function, by Theorem 17 we have that dsb(cZ) is propagation redundant. A
similar argument applies to all other diagonal constraints (QZ4).

Note that the column constraints (QZ2)
∑n−1

i=0 zij = 1 are not propagation redundant,
although the constraint

∑n−1
i=0 zij ≤ 1 is (using a similar argument to the main diagonal

constraints).

6.3 Balanced Academic Curriculum Problem

The problem “prob030” in CSPLib is to design a balanced academic curriculum. Fol-
lowing the description in [6], we can have both the integer model MX and set model
MS .

Given m courses, and n periods, a, b are the minimum and maximum academic load
allowed per period, c, d are the minimum and maximum number of courses allowed
per period, ti specifies the number of credits for course i, and R is a set of pairs 〈i, j〉
specifying that course i must be taken before course j.

We introduce a set of auxiliary variables lj , which is shared by both models, to
represent the academic load in period j as well as a variable u representing the maximum
academic load in any period, i.e. u = max{lj | 0 ≤ j ≤ n − 1}. The objective function
simply minimizes u. We also introduce another set of shared auxiliary variables qj to
represent the number of courses assigned to a period.

We have the following constraints that is common to both models (B1): ∀0 ≤ j ≤
n − 1. a ≤ lj ≤ b and c ≤ qj ≤ d. We also add the following redundant constraints
(B2): ∀0 ≤ j ≤ n − 1. (

∑n−1
j=0 lj) = (

∑m−1
i=0 ti) and (

∑n−1
j=0 qj) = m.

In the integer model, MX , the variable xi represents the period to which course i is
assigned The constraints for the integer model MX are:

240 Chiu Wo Choi, Jimmy Ho Man Lee, and Peter J. Stuckey

– (BX1) ∀0 ≤ j ≤ n − 1. (
∑m−1

i=0 ((xi = j) × ti)) = lj
– (BX2) ∀0 ≤ j ≤ n − 1. (

∑m−1
i=0 (xi = j)) = qj

– (BX3) ∀〈i, j〉 ∈ R. xi < xj

In the set model the set variables Sj representing the set of courses assigned to period
j. The constraints for the set model MS are:

– (BS1) ∀0 ≤ i < j ≤ n − 1. Si ∩ Sj = ∅
– (BS2) ∀0 ≤ j ≤ n − 1. (

∑
i∈Sj

ti) = lj
– (BS3) ∀0 ≤ j ≤ n − 1. |Sj | = qj

– (BS4) ∀〈i, j〉 ∈ R.∀1 ≤ k ≤ n − 1.∀0 ≤ k′ ≤ k. (i ∈ Sk) ⇒ (j �∈ Sk′)

We can use the set channels to combine the two models, xi = j ⇔ i ∈ Sj .

Example 21. The (BS1) constraint Si∩Sj =∅ is propagation redundant using Lemma 16.
For the (BS4) constraint cS ≡ (i ∈ Sk) ⇒ (j �∈ Sk′) where k′ ≤ k we can show that
|= (Dinit ∧ xi < xj ∧ C{}) → cS . Hence since {} is an unrestrictive channel function
by Theorem 17 we have that dsb(cS) is propagation redundant.

Example 22. In an abuse of notation we use the “pseudo atomic constraint”. x ≤ d to
represent the conjunction x �= d + 1, . . . , x �= supDinit

(x) and x ≥ d to represent the
conjunction x �= infDinit (x), . . . , x �= d − 1.

Consider the (BX2) constraint cX ≡ (
∑m−1

i=0 (xi = j)) = qj , the propagation rules
C � c for dsb(cX) are

qj ≤ d ∧ xi1 = j ∧ · · · ∧ xid
= j � xi �= j

xi1 = j ∧ · · · ∧ xid
= j � qj ≥ d

for all I = {i1, . . . , id} ⊆ {0, . . . , m − 1} and i ∈ {0, . . . , m − 1} − I; and

qj ≥ d ∧ xi1 �= j ∧ · · · ∧ xim−d
�= j � xi = j

xi1 �= j ∧ · · · ∧ xim−d
�= j � qj ≤ d

for all I = {i1, . . . , im−d} ⊆ {0, . . . , m − 1} and i ∈ {0, . . . , m − 1} − I . Notice
that all the atomic constraints involving qj are mapped to themselves by {}, since qj is
shared by the two models. The rules are mapped to

qj ≤ d ∧ i1 ∈ Sj ∧ · · · ∧ id ∈ Sj � i �∈ Sj

i1 ∈ Sj ∧ · · · ∧ id ∈ Sj � qj ≤ d
qj ≥ d ∧ i1 �∈ Sj ∧ · · · ∧ im−d �∈ Sj � i ∈ Sj

i1 �∈ Sj ∧ · · · ∧ im−d �∈ Sj � qj ≥ d

We have that for cS ≡ |Sj | = qj , |= (Dinit∧cS∧{}(C)) → {}(c) for all the propagation
rules above. Hence, dsb(cX) is propagation redundant using Corollary 11.

Similar reasoning applies to show that each constraint (
∑m−1

i=0 ((xi = j)× ti)) = lj
of (BX1) is made propagation redundant by (BS2) (

∑
i∈Sj

ti) = lj .

Propagation Redundancy in Redundant Modelling 241

7 Experiments

We can take advantage of the reasoning about propagation redundancy to eliminate
propagators that are propagation redundant. We then get a model with exactly the same
propagation behaviour but with less propagators. This can translate into faster propa-
gation3. In the following experiments, All the benchmarks were executed using ILOG
Solver 4.4 on Sun Ultra 5/400 workstation running Solaris 8.

7.1 All-Interval Series

We compare the different models for solving the all-interval series problem. We search
for all solutions in order to fairly compare the propagation strengths and use a first-fail
heuristic for variables selection, and least to greatest value selection heuristic.

The models under comparison include the single models: MX and MY , the full
combined model MX + C� + MY , and an optimized combined model IX2 + C� + IY3
as discussed in Example 19. Puget and Régin, in their note4, show that all the solutions
can be found more efficiently by replacing (IX1) by (IX1’)alldifferent constraints
on x and u. The pr model uses IX1′ + IX2. The pr full model is the combination of
pr and MY , IX1’ + IX2 + C� + MY . The pr opt model is the optimized combination of
pr and MY , IX1’ + IX2 + C� + IY3 since the same reasoning applies.

Table 1 gives the results of the comparison. We show the results using three sets
of search variables X , Y and X ∪ Y . Entries with a “—” mean unable to solve the
problem after one hour of execution time. Compared with the single models MX and
MY , clearly the full and pr full model reduces the number of fails significantly. The opt
model maintains the same number of fails as the full model and is the fastest for the
smaller instance 12. The pr opt model maintains the same number of fails as the pr
full model, and is the fastest for larger instances 13, 14 and 15, as the alldifferent
constraints is too expensive for the smaller instance. Note that the optimized models opt
and pr opt can solve the size 15 instance much faster than pr, and no other models can
solve this instance within the time limit.

7.2 Balanced Academic Curriculum Problem

Table 2 shows the result of finding the optimal solution and proving optimality for some
smaller instances derived from the problem instances posted in CSPLib. We use the
first-fail heuristic for the search on the integer variables X , and naive enumeration for
search on the set variables S. The table entry with value “—” means that Solver cannot
solve the problem after one hour of execution time.

The full model represents the full combined model between the integer and set model
as discussed in Section 6.3, while the opt model represents the reduced combined model
after removing the redundant propagators as discussed in Example 21 and 22, that is
B1 + B2 + BX3 + C{} + BS2 + BS3. In [6], the authors reported that it is difficult to
find the optimal solution and prove optimality with propagation based solving alone.

3 Note there is no guarantee since e.g. the number of propagation steps may have increased.
4 Available at http://www.csplib.org/prob/prob007/puget.pdf.

242 Chiu Wo Choi, Jimmy Ho Man Lee, and Peter J. Stuckey

Table 1. Comparing the different models of All-Interval Series Problem

Search n = 12 n = 13 n = 14 n = 15
Model Vars fails (sec) fails (sec) fails (sec) fails (sec)

pr X 38778 (24.32) 156251 (105.26) 674346 (530.47) 3045037 (2328.57)
MX X 880112 (260.92) 4914499 (1589.83) — — — —
full X 39241 (222.07) 158368 (1048.19) — — — —
opt X 39241 (36.34) 158368 (157.84) 685301 (770.57) — —

pr full X 38461 (236.42) 155183 (1088.91) — — — —
pr opt X 38461 (42.77) 155183 (188.94) 670045 (910.90) — —
MY Y — — — — — — — —
full Y 16280 (70.81) 62949 (303.61) 266130 (1458.74) — —
opt Y 16280 (6.36) 62949 (26.00) 266130 (108.54) 1275661 (553.45)

pr full Y 12296 (62.96) 43681 (260.90) 164841 (1127.64) — —
pr opt Y 12296 (7.91) 43681 (25.78) 164841 (101.42) 704097 (458.12)
full X ∪ Y 39195 (222.42) 158282 (1065.77) — — — —
opt X ∪ Y 39195 (36.36) 158282 (158.40) 684592 (783.01) — —

pr full X ∪ Y 38447 (230.65) 155176 (1094.61) — — — —
pr opt X ∪ Y 38447 (42.47) 155176 (198.36) 669950 (898.66) — —

Table 2. Comparing the different models for solving the balanced academic curriculum problem

Search 8 Periods 10 Periods 12 Periods
Model Variables fails (sec) fails (sec) fails (sec)

CPLEX n/a n/a (1.80) n/a (2.27) n/a (20.32)
Hybrid X 101 (0.61) 468 (2.20) 58442 (146.47)
Hybrid Boolean 219 (0.76) 277 (1.03) 315 (2.09)
MX X 101 (0.04) 468 (0.25) 33602 (11.62)
full X 101 (0.24) 470 (1.80) 33530 (192.62)
opt X 101 (0.08) 470 (0.68) 33530 (38.54)
MS S — — — — — —
full S 1577 (2.83) 323 (0.81) 882 (4.56)
opt S 1577 (0.94) 323 (0.24) 882 (0.95)

However, by adding redundant constraints (B2), we were able to solve all the problem
instances with MX alone. The row CPLEX gives the runtime for solving the problem
instances with ILOG CPLEX 8.0 using an integer linear programming (ILP) model
in [6]. The row Hybrid implements the hybrid ILP and CP model described in [6]
together with the redundant constraints (B2) using ILOG Hybrid 1.3. Clearly, the full
model is substantially better in terms of number of fails when compared with the single
model (MX or MS), The hybrid model gives the least number of fails, but suffer from
the overhead of invoking two solvers. The opt model is more efficient and can solve all
the instances in less than 1 second.

8 Conclusion

It is clear that reasoning about propagation redundancy can lead to significantly faster
models, that do not increase the search space. Although we have illustrated the use of the

Propagation Redundancy in Redundant Modelling 243

theorems herein by hand, the approach can clearly be automated. To use Theorem 12 we
can straightforwardly define the propagation rules for many constraints (parametrically in
Dinit) or construct them automatically using the approach of [1]. Given the propagation
rules, we can individually check those that are subsumed by constraints in the other
model. If we have a parametric definition, then this check can also be parametric, rather
than needing to consider every individual propagation rule. We can use Theorem 17 to
prove propagation redundancy without considering propagation rules.

There are clearly many important future directions for this line of work. Modern set
bounds propagation solvers (including ILOG Solver 4.4) implement slightly stronger
propagators than dsb(c), by including cardinality reasoning. We can model this extra
propagation using cardinality variables and propagation rules. For a set constraint c to
be propagation redundant we need to prove their redundancy too. For the examples in
this paper this is straightforward. We plan to extend the theorems for the general case.

Similarly, many integer constraint solvers use integer bounds propagation. Clearly
we can extend the notion of propagation rules to integer bounds propagators using the
atomic constraints xi ≤ d and xi ≥ d. The only complication arises in formalizing what
the bounds propagators are for an individual constraint. Usually bounds propagators do
not have a completeness property like Lemma 4.

References

1. S. Abdennadher and C. Rigotti. Automatic generation of rule-based solvers for intentionally
defined constraints. IJAIT 11(2):283–302, 2002.

2. K. Apt and E. Monfroy. Constraint programming viewed as rule-based programming. Theory
and Practice of Logic Programming, 1(6):713–750, 2001.

3. C. Bessiére and J. Régin. Arc consistency for general constraint networks: preliminary results.
In IJCAI-97 pages 398–404, 1997.

4. B. Cheng, K. Choi, J. Lee, and J. Wu. Increasing constraint propagation by redundant mod-
elling: an experience report. Constraints, 4(2):167–192, 1999.

5. C.W. Choi, J.H.M. Lee, and P. J. Stuckey Propagation Redundancy for Permutation Channels
In IJCAI-03, to appear.

6. B. Hnich, Z. Kiziltan, and T. Walsh. Modelling a balanced academic curriculum problem. In
CP-AI-OR’02, pages 121–131, 2002.

7. B. M. Smith. Modelling a permutation problem. Research Report 2000.18, School of Com-
puter Studies, University of Leeds, 2000.

8. B. M. Smith. Dual models in constraint programming. Research Report 2001.02, School of
Computer Studies, University of Leeds, 2001.

9. T. Walsh. Permutation problems and channelling constraints. In LPAR2001, pages 377–391,
2001.

10. S. Brand. A note on redundant rules in rule-based constraint programming. In Recent Advances
in Constraints, pages 109 – 120, 2003.

	1 Introduction
	2 Propagation Based Constraint Solving
	3 Propagation Rules
	4 Reasoning about Propagation
	5 Redundant Modelling and Channelling Constraints
	5.1 Proving Propagation Redundancy Using Channels
	5.2 Restrictive and Unrestrictive Channel Functions

	6 Example Problems
	6.1 All-Interval Series
	6.2 n-Queens Problem
	6.3 Balanced Academic Curriculum Problem

	7 Experiments
	7.1 All-Interval Series
	7.2 Balanced Academic Curriculum Problem

	8 Conclusion
	References

