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Abstract

We provide a reformulation of the constraint hierar-
chies (CHs) framework based on the notion of er-
ror indicators. Adapting the generalized view of
local consistency in semiring-based constraint sat-
isfaction problems (SCSPs), we define constraint
hierarchy � -consistency (CH- � -C) and give a CH-�

-C enforcement algorithm. We demonstrate how
the CH-

�
-C algorithm can be seamlessly integrated

into the ordinary branch-and-bound algorithm to
make it a finite domain CH solver. Experimenta-
tion confirms the efficiency and robustness of our
proposed solver prototype. Unlike other finite do-
main CH solvers, our proposed method works for
both local and global comparators. In addition, our
solver can support arbitrary error functions.

1 Introduction

The Constraint Hierarchy (CH) framework [Borning et al.,
1992] is a general framework for the specification and so-
lutions of over-constrained problems. Originating from
research in interactive user-interface applications, the CH
framework attracts much effort in the design of efficient
solvers in the real number domain [Badros et al., 2001;
Hosobe et al., 1996]. To extend the benefit of the CH frame-
work to also discrete domain applications, such as timetabling
and resource allocation, the paper takes a step towards a gen-
eral and efficient finite domain CH solver, based on consis-
tency techniques and tree search.

�
A more complete and detailed version of this paper can be ob-

tained from the authors.�
Part of this research has been carried out while the author was

visiting the Department of Computer Science and Engineering, The
Chinese University of Hong Kong, China

2 A Reformulation of Constraint Hierarchies

We formulate the CH framework [Borning et al., 1992] (in
particular in the definition of comparators and solution set)
using error indicators [Bistarelli et al., 1999].

We denote an error value by � , possibly with subscripts.
Let 	�
����������������������� be a poset (partially ordered set),
each element ���� of which is an error indicator. Given a
constraint hierarchy � 
����! ����������"�$#�� where % is the
number of non-required levels, and for all &!'(��)*���������"%+� ,�$,-
 ��. , � ����������. ,/�0 � with �1, being the number of con-

straints in level & . An error indicator ��32 of a valuation4
for a set of variables 5 is a tuple of error values such

that �� 2 
76869� 2  � ���������:� 2  /�;=< ���������=69� 2 # � ���������:� 2 #/�>�<8< and ?A@B'��)*�������*��%+�C�D?AE�'F�HG������������HI��H�:��2 IJ 
LK�MN. IJ 4�O if P�@HQ�R1MS. IJ O$T5 and �32 IJ 
U) if P�@HQ�R1MS. IJ O$VT 5 . Error indicators provide a
measure of the “badness” of valuations with respect to � .

The comparator predicate better in the original CH formu-
lation is redefined using a partial order, denoted by W . We
define W to be irreflexive and transitive over 	 . Hence, it
preserves the meaning of better. Intuitively, ���XYW ���X X means���X X is “better” than ���X in 	 . In general, W will not provide
a total ordering. For convenience, we define Z such that? ���XN� ���X X+'[	\� ���X]Z ���X XA^_M ���X]W ���X X O]` M ���X]
 ���X X O .

We can redefine l-b in the original formulation as a partial
order WYacb J as follows. Given any two valuations

4
and d , and

the corresponding error indicators �� 2 and ���e , W acb J is defined
as:

��32fWYacb J �� ehgjiHk�l ) such that ?A&�'m�3)\�������*� k�n G��H�?*op'q�HG��������*��� , �C�D�32 ,� 
r� e ,�s i @!'t�HG��������*��� a �H�:��e a Ivu � 2 a Is ?AEw'q�CG1�������\�"�1aN�C�D� e aJfx �32 aJ .
The intuitive meaning of ��32$WYacb J �� e is that valuation d is

locally-better than valuation
4
.



Similarly, we can define g-b W���b J , and its instances w-
s-b W���b���b J , w-c-b W���b���b J , and l-s-b Wwacb�� b J respectively.
Given any two valuations

4
and d , and the corresponding er-

ror indicators ��32 and �� e :

��32fW���b J �� ehgFiHk�l ) such that ?]&�'m�3)*�������*� k�n G�� ,	 MD6 � 2 , � ���������D� 2 ,/�0S< O 
 	 M:69��e , � ���������:��e ,/�0S< Os 	 M:6 � e a � ���������D� e a/�
N< O u 	 M:69�32 a � �������\�:�32 a/�
 < O ,
where 	 is a suitable combining function for error values.

Notice that by definition, all local/global comparators ignore
constraints in hierarchy levels greater than or equal to k .

We are now ready to define the solution set �� of a CH �
with variables 5 by:

�  
 � 4�� P1@HQ�R�M 4�O 
 5 �D� 2  , 
F) for all &+'q�HG��������*���  �1�
and �  
 � 4 '��  � ?Ad '��  � �� 2 VW ���e]� .

The following lemma gives the monotonicity of the intro-
duced comparators, which are collectively denoted by W J����������
and Z J���������� in the rest of the paper.

Lemma 1 Given any two error indicators �� X and �� X X . If for
all @���E we have � X X IJpx � X IJ , then ���X]Z J���������� ���X X .

Notice that the above lemma let us compare valuation for
both local and global comparators (because the Z J���������� order
implies all the orders induced from any specific comparator)
and for arbitrary error functions.

We also introduce the notion of a hierarchy problem which
is a CH augmented with an Error Indicator Store.

Definition 1 A hierarchy problem �_
 6:� ��	  < is a con-
straint problem, where � is a CH with variables 5 and 	� is
a set containing error indicator stores ������� for all variables! 'q5 and for all "!'�# M ! O . Each �� ���� 1 is used for keeping
an estimate of the errors of valuations involving � !�$^%"\� .
Definition 2 A valuation

4
is a solution of �j
 6:� ��	  < if (1)4

is a solution of � and (2) �� 2 Z J���������� �� ���� for all �� ���� '	& .

In other words, solutions of � 
 6 � �"	  < are solutions of �
which have a “worse” error than the estimates provided in 	  .
By the definition, the solutions of � always contain those of6 � �"	  < . Equality holds when the error estimates provided in	  fails to “filter” out any solutions of � .

Theorem 1 Consider a CH � and the associated hierarchy
problem �j
 6:� ��	' < .( �*),+-�* , and( � ) 
 �  if �� 2 Z J���������� �� �.�� for all M !/$^ " O '4�O

and
4 '0�� .

In particular, a hierarchy problem 6 � �"	  < must share the
same solution as � if all �� ���� '�	  contain only the er-
ror value 0 (i.e. no error information). This fact is useful in
ensuring the correctness of our local consistency algorithm
and the completeness of our branch-and-bound solver later.

1Note the similarity of 12&35476 in notation to 1258 which denotes the
error indicator of a valuation 9 . Here, 12&35476 is a store containing an
estimate of the error associated with valuations containing :<;=?> .

3 Summary of the Results
The notion of constraint hierarchy � -consistency (CH- � -C),
is defined using error indicators which are structures isomor-
phic to the structure of a given CH used for storing the error
information of the CH problem (similar notion was defined
by Bistarelli et al. [1999]). In particular, we give an algo-
rithm for enforcing CH-

�
-C of a CH problem. While classical

consistency algorithms [Mackworth, 1977] aim to reduce the
size of constraint problems, our CH-

�
-C algorithm works by

explicating error information that is originally implicit in CH
problems. The space complexity of the CH-

�
-C algorithm is

simply of @hMS%�A�%  % � O in the worst case where % � is the num-
ber of labeled constraints, % A is the number of variables, and%  is the size of the largest variable domain.

Incorporating a CH-
�
-C enforcement algorithm in a

branch-and-bound algorithm, we obtain a general finite do-
main CH solver, which works for arbitrary comparators.
Search space is pruned by utilizing the error information gen-
erated by the CH-

�
-C algorithm. Unlike other finite domain

CH solvers, our proposed solver is applicable to arbitrary
comparators.

We compare the performance of our proposed solver with
generate-and-test, basic branch-and-bound, and the reified
constraint approach by Lua [2000].Experiments confirm the
efficiency and robustness of our research prototype, which
brings us one step towards practical finite domain CH solv-
ing.
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