
Box Constraint Collections for Adhoc Constraints ⋆

K.C.K. Cheng1, J.H.M. Lee1, and P.J. Stuckey2

1 Department of Computer Science and Engineering
The Chinese University of Hong Kong, Hong Kong SAR

{ckcheng,jlee}@cse.cuhk.edu.hk
2 Department of Computer Science and Software Engineering

University of Melbourne, Australia
pjs@cs.mu.oz.au

Abstract. In this paper, we propose a new language-independent representation
of adhoc constraints, called a box constraint collection. Using constructive dis-
junction, this representation achieves domain consistency. We develop an algo-
rithm to automatically generate a box constraint collection for a given adhoc con-
straint. The result is guaranteed to be complete and correct, and achieve domain
consistency. The constructive disjunction propagator forthe box constraint col-
lection can be efficiently implemented using indexicals. Wegive correctness and
completeness result for our compilation scheme, and outline optimization tech-
niques. Experiments show that our representation is simple, compact, and propa-
gates efficiently.

1 Introduction

Constraint programming is a promising technique for solving many difficult combi-
natorial problems. Since real-life constraints can be difficult to describe in symbolic
expressions, or provide very weak propagation from their symbolic representation, they
are sometimes represented in the form of the sets of solutions or sets of nogoods. This
adhoc representation provides strong propagation throughgeneralized arc consistency
techniques. However, the adhoc representation is expensive in terms of memory and
computation, when the adhoc constraint is large.

There is interest in determining less expensive methods forbuilding propagators for
adhoc constraints. The first step in this direction was the automatic generation of prop-
agation rules pioneered by Apt and Monfroy [4]. They represent an adhoc constraint as
a set of simple rules of the formx1 = v1 ∧ . . . ∧ xn = vn → y 6= a such that rule
consistency, which is weaker than domain consistency, is achieved. These rules can be
extended tox1 ∈ S1 ∧ . . . ∧ xn ∈ Sn → y 6= a, such that domain consistency is
achieved. They propose two algorithms to generate all non-redundant rules for a given
adhoc constraint.

Apt and Monfroy’s work is extended by Abdennadher and Rigotti [2], who express
the propagation rules in CHRs [10] so that user-defined predicates are allowed. They

⋆ We thank the anonymous referees for their constructive comments. The work described in this
paper was substantially supported by a grant from the Research Grants Council of the Hong
Kong Special Administrative Region (Project no. CUHK4183/00E).

develop the PROPMINER algorithm, which generates all non-redundant propagation
rules based on the set of user-defined predicates. Constraint handling rules, while ex-
pressive, are less efficient than other approaches to implementing constraint solvers.

Indexicals are powerful, and efficient language to define constraint propagation. Dao
et al.[8] propose a framework and two algorithms to learn indexical operators (a subset
of the indexical operators available in GNU Prolog [9]) thatachieve bounds-consistency
for adhoc constraints. They require that the indexicals must not delete a solution of the
original constraint, and at the same time they try to minimize the cases that a nogood
is wrongly classified as a solution. Under this formulation,the output indexicals are
correct (i.e. they will not remove a solution), but may be incomplete (i.e. they may not
detect all nogoods). However, they show that indexicals with good pruning power can
often be discovered. Barták [5] gives an efficient filteringalgorithm as the basis of the
implementation of a binary tabled constraint by clusteringthe tuples into boxes, but
does not discuss how to find the boxes.

In this paper, we propose a new language-independent representation for adhoc con-
straints, thebox constraint collection. The idea is to break up an adhoc constraint into
pieces and cover these pieces usingbox constraintsas tiles. With the aid of constructive
disjunction and a suitable choice of forms of constraint to use in the collection, our new
representation achieves domain consistency. We can compile this representation using
the indexical language provided by SICStus Prolog, to provide efficient propagators for
adhoc constraints.

We describe an algorithm,bccFinder, that automatically generates a box constraint
collection for an adhoc constraint. The output representation is guaranteed to be com-
plete, correct, and achieve domain consistency. We also suggest a compilation scheme
which generates efficient indexicals for box constraint collections, and outline opti-
mization techniques. Experiments confirm the compactness of our representation and
efficiency in propagation.

2 Propagation Based Constraint Solving

In this section we give our terminology for constraint satisfaction problems, and prop-
agation based constraint solving.

An integer valuationθ is a mapping of variables to integer values, written{x1 7→
d1, . . . , xn 7→ dn}. We extend the valuationθ to map expressions and constraints in-
volving the variables in the natural way. Letvars be the function that returns the set of
(free) variables appearing in a constraint or valuation.

A domainD is a complete mapping from a fixed (countable) set of variablesV to
finite sets of integers. Afalse domainD is a domain withD(x) = ∅ for somex. A
domainD1 is strongerthan a domainD2, writtenD1 ⊑ D2, if D1(x) ⊆ D2(x) for all
variablesx.

In an abuse of notation, we define a valuationθ to be an element of a (non-false)
domainD, writtenθ ∈ D, if θ(xi) ∈ D(xi) for all xi ∈ vars(θ).

We are also interested in the notion of aninitial domain, denoted byDinit. The
initial domain gives the initial values possible for each variable.

2

A constraintc over variablesx1, . . . , xn, written asc(x1, . . . , xn), restricts the val-
ues that each variablexi can take simultaneously. Anadhocconstraintc(x1, . . . , xn)
is definedextensionallyas a set of valuationsθ over the variablesx1, . . . , xn. We say
θ ∈ c is asolutionof c. For any valuationθ on variablesx1, . . . , xn, with θ 6∈ c, we call
θ a nogoodof c.

Often we define constraintsintensionallyusing some well understood mathematical
syntax. For an intensionally defined constraintc we have thatθ ∈ c iff vars(θ) =
vars(c) ∧ Z |=θ c, whereZ is the integers. For example the constraintx1 = x2 + 1
whereDinit(x1) = Dinit(x2) = {1, 2, 3} defines the solution set{{x1 7→ 2, x2 7→
1}, {x1 7→ 3, x2 7→ 2}}.

Two constraintsc1 andc2 areequivalentto each other, denoted byc1 ≡ c2, if they
define the same set of solutions.

A constraint satisfaction problem(CSP) [15] consists of a set of constraints{c1, . . . , ck}
over a set of variables{x1, . . . , xn}, where each variablexi can only take values from
its domainDinit(xi), a set of integers. Solving a CSP requires finding a value for each
variable from its domain so that no constraint is violated,i.e.all constraints are satisfied.

We adopt the notion ofpropagation solverfrom Schulte and Stuckey [14]. Aprop-
agator f is a monotonically decreasing function from domains to domains. A prop-
agation solverfor a set of propagatorsF and current domainD, solv(F, D), repeat-
edly applies all the propagators inF starting from domainD until there is no further
change in resulting domain. We say two sets of propagatorsF1 andF2 areequivalentif
solv (F1, D) = solv(F2, D) for all D ⊑ Dinit.

Define thegeneralized arc consistent propagator(or equivalently thedomain con-
sistent[14] propagator) for a constraintc as

dom(c)(D)(x) = {θ(x) | θ ∈ D andθ ∈ c(that isθ is a solution ofc)}

3 Box Constraint Collections

Formally, anadhoc constraintc over variablesx1, . . . , xn is a set of valuations inDinit

representing the solutions ofc. Adhoc constraints are usually implemented as tabled
constraints by listing all the solutions or nogoods, incurring space and time overhead.

Example 1.The adhoc constraintcadhoc over x and y for Dinit(x) = Dinit(y) =
{1, 2, 3, 4, 5} shown in Fig. 1(a) can be represented by the set of solutions{ (1, 3),
(2, 2), (2, 3), (3, 1), (3, 2), (3, 4), (3, 5), (5, 3) } or the set of nogoods{ (1, 1), (1, 2),
(1, 4), (1, 5), (2, 1), (2, 4), (2, 5), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 4),
(5, 5) }.

Often we represent a constraint in an adhoc manner because itis difficult (or un-
wieldy) to describe it using a symbolic expression. However, it may be easier to find
symbolic expressions if we examine part of the solution space. Therefore, we propose
representing an adhoc constraintcadhoc with a set of simple constraints in DNF. The
idea is similar to the use of Karnaugh-Veitch-diagrams [13]for finding prime impli-
cants.

3

1 2 3 4 5

1

2

3

4

5

x

y

x

y

5

4

1 2 3 4 5

1

2

3

(a) (b)

Fig. 1. (a) An adhoc constraintcadhoc, and (b) broken into a box constraint collection

The core idea is to use a disjunction of constraints as “tiles” to cover the solu-
tion space of an adhoc constraint. By carefully choosing theshapes of the tiles we can
achieve domain consistency using constructive disjunction. Triangles and rectangular
boxes are good tile shapes for filling grids.

A boxB =
∏n

j=1

[

lBj ..uB
j

]

is ann-dimensional hyper-cube, where
[

lBj ..uB
j

]

is a
intervalof integerslBj anduB

j . If c(x1, . . . , xn) is a constraint on variablesx1, . . . , xn,
then

∧n

j=1
lBj ≤ xj ≤ uB

j ∧ c(x1, . . . , xn) is a box constraint, which we write as
B ⇒ c. We restrict the form of constraintsc to two templates. Eitherc is true and then
B ⇒ c is simply the boxB, or c is of the form

∑n

j=1
ajxj ≤ a0, then we callB ⇒ c a

triangle. A box constraint collection(BCC) is simply a disjunction of box constraints.
We represent an adhoc constraintcadhoc over variablesx1, . . . , xn as a collection

of m box constraints

cadhoc(x1, . . . , xn) ≡
m
∨

i=1

Bi ⇒ ci(x1, . . . , xn). (1)

Example 2.A box constraint collection representation of the adhoc constraintcadhoc

shown in Fig. 1(a) is

[3..3] × [4..5] ⇒ true ∨ [1..2]× [2..3] ⇒ x + y ≥ 4
∨ [5..5] × [3..3] ⇒ true ∨ [3..3]× [1..2] ⇒ true

The box constraint[1..2] × [2..3] ⇒ x + y ≥ 4 represents the conjunction1 ≤ x ≤
2 ∧ 2 ≤ y ≤ 3 ∧ x + y ≥ 4. The BCC representation forcadhoc is shown in Fig. 1(b).

Representing a constraint using a box constraint collection is more compact than
a set of solutions. However, disjunctive constraints do notusually propagate as effec-
tively as other representations. But disjunctions of box constraints can be propagated
effectively, achieving generalized arc consistency.

Lemma 1. If each constraintci in (1) is implemented by generalized arc consistent
propagatordom(ci), then using constructive disjunction [16] on this representation
achieves generalized arc consistency forcadhoc.

4

1 x

y

5

2 3 4 5

1

2

3

4
���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

y

5

4

3

2

x1 2 3 4 5

1

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

3

2

1

y

5

5

4

x1 2 3 4
��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

(a) (b) (c)

Fig. 2. Freeing the representation by adding “dont care” tuples tocadhoc for (a) x = 4 and (b)
x = 3 ∧ y = 3, and (c) the resulting box constraint collectionctri.

4 Separable Nogoods

We can improve the description of an adhoc constraint by a boxconstraint collection by
determining parts of the constraint which can be represented separately without losing
generalized arc consistency of the resulting set of propagators.

Example 3.Considercadhoc defined in Fig. 1(a). Sincex 6= 4 is implied by cadhoc

we can extract this as a separate constraint, we are then freeto model the remainder
of cadhoc by filling in some boxes in thex = 4 column and this will not change the
propagation behavior. Fig. 2(a) showscadhoc with “dont care” annotations in thex = 4
column.

Similarly the remaining nogood (3,3) is such that unlessx (y) is assigned to3, it will
not remove the value3 from the domain ofy (x). In this situation, we can represent this
nogood with an extra constraint¬(x = 3 ∧ y = 3) without changing the propagation
behavior. Fig. 2(b) showscadhoc with “dont care” annotation atx = 3 ∧ y = 3.

Note that now we can representcadhoc by the conjunction of constraintsx 6= 4,
¬(x = 3 ∧ y = 3) andctri defined as the box constraint collection

[1..3]× [1..3] ⇒ x + y ≥ 4 ∨ [3..5] × [3..5] ⇒ x + y ≤ 8

We obtain the same propagation behavior. The representation is smaller in terms of the
number of box constraints and propagates more efficiently.

These two observations for separability of nogoods in the above example can be
formalized as follows.

Lemma 2. Let c be an adhoc constraint such thatc → x 6= d for somex ∈ vars(c)
andd ∈ Dinit(x). LetS be a set of solutions forvars(c) wherex = d. Then{dom(x 6=
d), dom(c ∪ S)} and{dom(c)} are equivalent.

Lemma 3. Letc be an adhoc constraint on variables(x1, . . . , xn) with nogoodθ 6∈ C
such that there are no other nogoodsθ′ 6∈ c and 1 ≤ i ≤ n whereθ(xi) = θ′(xi).
Then{dom((x1, . . . , xn) 6= (θ(x1), . . . , θ(xn))), dom(c ∪ {θ})} and {dom(c)} are
equivalent.

5

5 Building Box Constraint Collections

In this section, we describe a greedy algorithm,bccFinder, which computes a com-
pact box constraint collection for a given adhocn-ary constraintcadhoc with solutions
solutions and nogoodsnogoods. Before we find the set of box constraints, we remove
the set of separable nogoods fromcadhoc, by adding extra constraints as discussed in
Section 4. This leaves a description of the constraint involving three kinds of tuples:
solutions, nogoods, and “dont cares” which may be included or not since they will be
removed by other constraints. Then, we repeatedly find box constraints for the remain-
ing uncovered solutions. A valuationθ is coveredby the constraintc if θ ∈ c; otherwise,
it is uncovered. Fig. 3 shows the pseudo-code ofbccFinder.

Since we would like to reduce the number of box constraints inthe collection, we
want each box constraintB ⇒ c to cover as many uncovered solutions as possible.
Although finding the optimal collection is in practice infeasible, we can find a relatively
large boxB by greedily growing one, until we cannot find any correspondingc, where
c is an instantiation of one of our templatesct. For the code shown,ct is always of the
form of

∑n

j=1
ajxj ≤ a0 since such constraints are straightforward to find, and have

generalized arc consistency propagators which are efficiently computable [14].

To find B ⇒ c, we randomly pick an uncovered solution and put it into the (unit)
boxB and initializeC, the constraints on the coefficientsaj , to true. As a result, each
aj is unconstrained. Then, we iteratively try to enlargeB in each dimensionj. We
first reduce the lower boundlBj until either the lower bound ofxj is reached, or no
enlargement is possible. Then we try to increase the upper bounduB

j .

Let B′ be the enlargedB. The procedureupdate is called so that for each valuation
θ ∈ B′ −B of the formθ ≡ {x1 7→ d1, . . . , xn 7→ dn} we either (a) add the constraint
∑n

j=1
ajdj ≤ a0 if θ ∈ solutions to ensureθ is included in the box constraint, or (b)

add the constraint
∑n

j=1
ajdj > a0 if θ ∈ nogoods. Thisupdate procedure is an exact

version of an algorithm by Anthony and Frisch [3] for constraint induction.

If the constraints are satisfiable, there exist values foraj and we continue expanding
the box. If the constraints are unsatisfiable, we first removeall the constraints added in
the last expansion and try expanding in a different direction. Eventually every expansion
leads to failure (or we have covered the entire space). At this stage we simply choose a
value for eachaj that satisfies the current constraints. In our implementation, we solve
for aj ’s with the SICStus Prologclp(Q) constraint-solving library [1].

We have created a single box constraint. We add this to our collection, and move all
the solutions covered by this box constraint into the “dont care” category. This continues
until there are no solutions remaining (which are not “dont care”). We then simplify
the resulting collection if possible, by replacing

∑n

j=1
ajxj ≤ a0 by true if B →

∑n

j=1
ajxj ≤ a0 and removing box constraints which are subsumed by other box

constraints.

A box constraint collection with only boxes (B ⇒ true) can be found similarly,
except thatB stops expanding along a particular dimension ifB′ contains at least one
nogood.

6

bccFinder(n,solutions,nogoods)
cB := false
cS := constraints for separable nogoods
separable := nogoods ofcS

nogoods := nogoods − separable
while (∃θ ∈ solutions)

B := a unit box equal toθ
C := true
for j := 1 to n

while (lBj > min(Dinit(xj)))

B′ := B with lB
′

j = lBj − 1
C′ := update(C, B′, B, solutions, nogoods)
if (C′ is not satisfiable)break
B := B′

C := C′

solutions := solutions − B
endwhile
while (uB

j < max(Dinit(xj)))

B′ := B with uB′

j = uB
j + 1

C′ := update(C, B′, B, solutions, nogoods)
if (C′ is not satisfiable)break
B := B′

C := C′

solutions := solutions − B
endwhile

endfor
let φ be a solution ofC
cB := cB ∨ (B ⇒

∑n

j=1
φ(aj)xj ≤ φ(a0))

endwhile
simplify cB

return cB ∧ cS

update(C,B′,B,solutions,nogoods)
for eachθ ∈ B′ − B

if θ ∈ solutions
C := C ∧

∑n

j=1
ajθ(xj) ≤ a0

elseif θ ∈ nogoods
C := C ∧

∑n

j=1
ajθ(xj) > a0

endif
endfor
if C is satisfiable

return C
else return false

Fig. 3. Pseudo-code ofbccFinder

The box constraint collection being returned is always equivalent to the given adhoc
constraint, because whenbccFinder terminates, all solutions will be covered, while all
nogoods will remain uncovered.

The bccFinder algorithm always terminates because each while loop removes at
least one valuation (θ) from solutions.

Although in worst caseclp(Q) takes exponential time to solve for the coefficients
of ct, our experiments confirm that ourbccFinder algorithm is capable of returning a
box constraint collection for an adhoc constraint in a reasonable amount of time.

There are many possible improvements to the simple algorithm shown here. For
example we should not examine an expansion where all the valuations inB′ − B are
in nogoods, and we should find large rectangular boxes first before starting the box
expansion.

7

Table 1. The (partial) indexical grammar and its semantics in SICStus Prolog

Rule Semantics

r → dom(y) yσ

r → t1..t2 {i ∈ Z : t1σ
≤ i ≤ t2σ

}
r → {t1, . . . , tn} {t1σ

, . . . , tnσ
}

r → r1 /\ r2 r1σ
∩ r2σ

r → r1 \/ r2 r1σ
∪ r2σ

r → r1 ? r2 ∅ if r1σ
= ∅; r2σ

otherwise
t → integer t
t → inf −∞
t → sup +∞
t → min(y) minimum value ofyσ

t → max(y) maximum value ofyσ

t → t1 + t2 t1σ
+ t2σ

t → t1 − t2 t1σ
− t2σ

6 Compilation of box constraint collection

In this section, we will explain how a box constraint collection can be compiled into
indexicals. The constraint system FD [7, 16] is based on domain constraints and func-
tional rules calledindexicals. Indexicals provide an efficient approach to implementing
propagators for constraints.

A domain constraintis an expressionx ∈ I, whereI is a finite set of integers.
A storeσ is a set of domain constraints. The expressionxσ denotes the intersection
I1 ∩ . . . ∩ In for all constraintsx ∈ Ik in σ, where1 ≤ k ≤ n. If σ does not contain a
constraintx ∈ I, xσ is the setZ of integers. A variablex is determined inσ if xσ is a
singleton set.

An indexicalhas the formx in r, wherer is a rangegenerated byr in Table 1.
Thevalueof x in r in σ is x ∈ rσ, whererσ is the value ofr in σ, a set of integers.
A range may consist of other ranges or terms. Atermt is generated byt in Table 1. The
value oft in σ, tσ, is an integer. Table 1 summarizes how the values ofrσ andtσ are
computed.

6.1 Basic Compilation

We illustrate the compilation process with the following example.

Example 4.The representation ofctri from Example 3 is a disjunction of two box con-
straints

[1..3] × [1..3] ⇒ x + y ≥ 4 (2)

∨ [3..5] × [3..5] ⇒ x + y ≤ 8 (3)

The indexicals3 for (2) and (3) are respectively

3 The syntax of SICStus Prolog, shown in teletype font, requires variables to be in upper case.
Upper and lower case variables of the same name should be understood interchangeably.

8

X in ((4-max(Y))..3) X in (3..(8-min(Y)))
Y in ((4-max(X))..3) Y in (3..(8-min(X)))

These maintain generalized arc consistency [14].
We can create an indexical forX for the box constraint collection by combining

these indexical rules as follows:

Y13 in {0} \/ (dom(Y) /\ (1..3))
Y35 in {6} \/ (dom(Y) /\ (3..5))
X in ((dom(Y) /\ (1..3)) ? ((4-max(Y13))..3)) \/

((dom(Y) /\ (3..5)) ? (3..(8-min(Y35))))

Y13 records the maximum value ofY in the interval[1..3]. The additional value0 is
added to the domain ofY13 to ensure it is always non-empty (and thus does not cause
failure). We call this additional value adummy valueand the constraint betweenY and
Y13 a confinement constraint. Similarly Y35 records the minimum value ofY in the
interval [3..5]. The rule forX joins the constraints together, using theY13 or Y35 to
give the appropriate value ofY for the box of interest.

We can automatically map the indexical expressions for constraintsci(x1, . . . , xn)
to create indexical expression for a disjunction of box constraints∨m

i=1
Bi ⇒ ci(x1, . . . , xn)

such that if each indexical forci(x1, . . . , xn) maintains generalized arc consistency,
then so does this indexical.

Let Bi = [ai1..bi1] × · · · × [ain..bin] then define the indexicals

Maxij in {aij − 1} \/ (dom(Xj) /\ (aij ..bij))
Minij in {bij + 1} \/ (dom(Xj) /\ (aij ..bij))

Minij andMaxij are called theconfinement variablesof Xj overBi. The indexical
expression forXk for a single box constraintBi ⇒ ci(x1, . . . , xn) is then

(dom(X1) /\ (ai1..bi1)) ? · · · ? (dom(Xn) /\ (ain..bin)) ? (r′ik /\ (aik..bik))

wherer′ik is the indexicalrik for Xk and constraintci(x1, . . . , xn) with max(Xj) re-
placed bymax(Maxij), min(Xj) replaced bymin(Minij) anddom(Xj) replaced
by dom(Xj) /\ (aij ..bij). We call eachdom(Xj) /\ (aij ..bij) a guard for r′ik.

The indexical expression forXk for the disjunction of box constraints∨m
i=1

Bi ⇒
ci(x1, . . . , xn) is obtained by unioning the expressions for each box constraint for Xk.

Theorem 1. The indexical for box constraint collection

c ≡
m
∨

i=1

(
n
∧

j=1

aij ≤ xj ≤ bij ∧ ci(x1, . . . , xn))

achieves generalized arc consistency if each indexical forci achieves generalized arc
consistency.

This guarantees that, by choosing the constraintsci carefully, the box constraint
collection of an adhoc constraint achieves generalized arcconsistency.

Adding termst → min(r) andt → max(r) to the indexical language would allow
the expression of constructive disjunction of triangles without confinement variables.
We conjecture that this would speed up the propagation markedly.

9

6.2 Optimizing Compilation

The basic compilation generates correct but inefficient indexicals, because there are
many redundant operations. We can improve the computation of confinement variable
domains, as illustrated by the following example.

Example 5.The confinement indexical

Y13 in {0} \/ (dom(Y) /\ (1..3)).

is invoked whenever the domain ofY is modified, and performs an expensive intersec-
tion operation. If we instead initialize the domain ofY13 to {0} \/ (1..3) then
we can replace this intersection. So we replace the single indexical by

Y13 in {0} \/ (1..3)
Y13 in {0} \/ dom(Y).

Furthermore oncedom(Y) and1..3 are disjoint, the domain ofY13 cannot change.
We can add (using SICStus Prologs extended indexicals) a check that removes the sec-
ond indexical ifY13 in {0}.

Since set operations are expensive, a guarddom(X) /\ (L..U) ? r should be
removed or replaced with a more efficient indexical operation whenever possible. We
can remove the guard ifL..U is the initial domain ofX, or r becomes empty for any
values indom(X) outsideL..U. In both situations the guard is redundant.

Example 6.Consider the indexical forX in Example 4. IfY13 takes its dummy value 0,
then((4 - max(Y13))..3) is the empty domain. Similarly for the other disjunct.
Hence the following indexical is equivalent

X in ((4 - max(Y13))..3) \/ (3..(8-min(Y35)))

By suitably choosing the dummy values, all guards for indexicalsInf..b and
a..Sup can be removed, wherea andb are constants andInf andSup are terms
involvingmin(Y) andmax(Y) of other variablesY.

For the remaining guards, we can replacedom(X) /\ (L..U)with min(X)..U
if L is the lower bound of the initial domain ofX, because if its domain intersectsL..U,
the minimum value in its domain must be smaller thanU. Similarly, we can replace a
guard withL..max(X) if U is the upper bound of its initial domain.

Also, we can removeL..U from r /\ (L..U) if r is always inside the range.
Other optimization techniques include combining indexicals, removing confine-

ment variables and rearranging the execution order of indexicals. However, due to space
limitations, they will not be discussed further.

7 Experiments

In this section, we compare the efficiency of two BCC representations (box and tri-
angle) and another approach to representing adhoc constraints in SICStus Prolog. We

10

1..1 2..2 3..3 5..5X

Y Y Y

true

2..3 3..3 1..2 4..5

Fig. 4. A DAG representation ofcadhoc from Fig. 1.

implement thebccFinder algorithm and conduct the experiments using SICStus Pro-
log 3.9.1 on a Sun Blade 1000 with 2GB of memory (our largest benchmark consumes
around only 20MB).

SICStus Prolog introduced in release 3.9.0 a new constraint, case, for encoding
arbitraryn-ary adhoc constraints. To use thecase constraint, users must first obtain a
directed acyclic graph (DAG) from the list of solutions of the constraint. In the DAG,
each noden is either the special leaf nodetrue or includes a variablexn and a disjoint
set of rangeslnj ..unj each with a pointer to the next nodenj . A tuple θ satisfies the
relation defined by the graph rooted by noden if n is the leaf nodetrue, or there exists
j such thatlnj ≤ θ(xn) ≤ unj andθ satisfies the relation defined by graph rooted at
nj .4

Thecase constraint is a built-in global constraint equipped with anefficient filter-
ing algorithm [6] to traverse the DAG for maintaining generalized arc consistency. In
other words, thecase technology consists of two parts: the DAG representation and
the filtering algorithm. It is thus appropriate to compare the space and time tradeoffs
of the BCC and the DAG (expanded into a tree5) representations when both are com-
piled into indexicals. We give also the results of using thecase constraint for reference
purposes. We envisage the possibility of an efficient filtering algorithm for maintaining
generalized arc consistency of a BCC.

Example 7.A case constraint definingcadhoc is given by the DAG show in Fig. 4.
The indexical representation of the tree of the DAG is

X in ((dom(Y) /\ (2..3)) ? (2..2)) \/
((dom(Y) /\ (3..3)) ? ((1..1) \/ (5..5))) \/
((dom(Y) /\ ((1..2)\/(4..5))) ? (3..3)),

Y in ((dom(X) /\ (1..1)) ? (3..3)) \/
((dom(X) /\ (2..2)) ? (2..3)) \/
((dom(X) /\ (3..3)) ? ((1..2) \/ (4..5))) \/
((dom(X) /\ (5..5)) ? (3..3)).

We compare the propagation efficiency amongbox (indexicals for boxes only),
tri-box (indexicals for triangles and boxes),cas (DAG in thecase constraint), and

4 Actually the definition is slightly different but effectively equivalent.
5 The filtering algorithm treats the DAG like a tree. The DAG representation is simply more

compact.

11

Table 2. Performance comparisons on random 3-dimensional convex hull constraints

cas/dag box tri-box W = 10 W = 20
N

B gen B gen T B gen cas dag box tri-box cas dag box tri-box

6025448 1.14294 27.2552 18 15.7037.85 71.12 62.73 35.2245.05 117.43 111.26 67.28
4754324 0.70205 19.7441 18 13.6423.07 49.27 41.78 24.8929.35 81.78 75.18 50.38
7086385 1.80287 42.7157 23 15.6237.52 60.31 59.98 36.6737.87 94.20 109.72 75.64
7302347 1.67278 57.8750 18 24.4718.40 58.97 64.94 34.2325.69 94.87 113.07 71.48
5598339 1.18262 29.2047 24 14.1635.76 50.17 56.68 28.9737.08 88.31 98.60 61.56

Table 3. Performance comparisons on ternary non-linear inequalityconstraints

cas/dag box tri-box W = 10 W = 20
N

B gen B gen T B gen cas dag box tri-box cas dag box tri-box

24591225 8.48224 186.814 32 101.74 7.99 21.93 25.15 9.70 12.76 36.65 43.67 16.54
20987489 8.66309 142.397 59 81.37 10.60 41.83 31.20 18.0716.46 69.05 50.79 31.91
19671471 8.76215 122.368 47 90.83 11.56 39.86 24.34 17.3421.46 65.05 44.35 31.92
17886699 8.30271 109.504 87 65.12 11.51 56.31 27.66 21.7721.78 94.43 46.47 37.12
21938499 7.32238 134.0715 10 94.38 10.50 44.12 24.94 10.1917.04 73.34 42.87 21.51

dag (DAG in indexicals). The first three experiments simply testraw propagation. For
each variablex in the constraint, we repeatM times picking a subsetS ⊆ Dinit(x)
where|S| = W , and adding the constraintsx 6= v for eachv ∈ S. These constraint
additions are then removed, and the next setS is selected.

We restrict our attention to benchmarks with structure, such as convex hull and
non-linear inequality constraints, since BCC is designed for real-life constraints with
meaning and thus reasonable patterns. Our experiment on random constraints show that
BCC performs worse thancase constraints, as expected.

In the first experiment, the adhoc constraint in each probleminstance is defined by
the convex hull generated by 15 random points chosen from theCartesian product space
of the variable domain1..30. Table 2 gives the results.N is the number of solutions,
B andT are the number of boxes and triangles respectively, andgen is the generation
time (in seconds). Forcas anddag, we consider each path from root to leaf in the DAG
as a box. We use the same DAG for bothcas anddag, so that they share the sameB and
gen. The columnscas, dag, box andtri-box report the execution time (in seconds) of
the propagation test whenM = 5000, andW = 10 or W = 20.

The second experiment deals with non-linear inequalities of the formax3 + by3 +
cz3 + dxyz + ex + fy + gz ≤ h, where the integer coefficientsa to h are generated
randomly from the[−9..9]. The initial domain for each variable is1..30. Results are
summarized in Table 3.

We observe from the two experiments that bothbox and tri-box, in particular
tri-box, use many fewer tiles thancas/dag for covering the same set of solutions.
The representation oftri-box is much more compact so that it is always faster than
dag andbox. The built-in filtering algorithm allowscas to be almost two times more
efficient thantri-box in some cases, despite the size disadvantage in representation.

12

Table 4. Performance comparisons on structured 3-dimensional polyhedron constraints

cas/dag box tri-box W = 10 W = 20
N

B gen B gen T B gen cas dag box tri-box cas dag box tri-box

4225437 1.15437 39.17 8 0 68.2434.26 57.39 73.92 4.22 38.44 84.51 112.68 8.56
4858468 1.30440 38.8522 6 48.1430.53 70.46 87.19 17.4437.91 113.54 152.76 35.79
4526240 1.16 30 10.5928 2 27.2625.17 30.38 11.69 17.4730.52 50.48 22.29 34.50
2755380 0.46 30 5.65 29 5 10.3233.07 58.63 11.70 24.3840.23 94.66 24.67 51.53
956 348 0.11 53 1.92 65 12 2.3623.49 50.80 13.31 44.5932.51 79.04 26.32 95.87

To study further the speed comparison, we conduct the third experiment on struc-
tured polyhedrons including dipyramids and sheared rectangular boxes, which are gen-
erated manually to investigate how the number of triangles and boxes affect the effi-
ciency of BCC. Results are presented in Table 4.

We found thattri-box fares very well againstdag, since the representation advan-
tage oftri-box becomes more apparent in polyhedrons with good structures.The size
of thecas/dag representation remains in the same order of magnitude as in the previ-
ous two experiments. The last three benchmarks exhibit evenmore regular structure so
that they can be covered well also with boxes. In those cases,box is the fastest since
the indexicals for implementing boxes lack the overhead of the confinement variables.
This dependency on the number of boxes and triangles is more aresult of the indexical
implementation, but not the representation scheme.

Our last experiment is an application of our method to model induction [12], the
outcome of which is a CSP consisting of only adhoc constraints. We study four different
formulations (or models) of the Langford’s problem (listedas “prob24” in CSPLib [11]):
M1, M1

∗, M1∩i(f−1, M2) andM1∩i(f−1, M2)
∗. ModelM1 is a hand-crafted model

originally with symbolic constraints, but we turn the symbolic constraints into table
form. ModelM1

∗ is the same asM1 except solutions of constraints of the same sig-
nature are intersected to form one constraint, which we callconstraint merging. Model
M1 ∩ i(f−1, M2) is a model constructed from modelM1 plus constraints generated
from model induction, while modelM1∩ i(f−1, M2)

∗ is modelM1∩ i(f−1, M2) with
constraint merging. For more details see [12].

Table 5 summaries the results. The columninst contain the problem instances (in
terms of problem size) andmodel contains the CSP models. Besides giving the number
of unary and binary constraints in theu andb columns respectively, we give also the
number ofdistinct unary and binary constraints that are learned in columnsud and
bd. Two constraints are distinct if they have different sets ofnogoods.N is the total
number of solutions for the problem, while columnscas, dag, box andtri-box give
the CPU time in seconds to search for all solutions. Variables are chosen using the first-
fail heuristic. It is important to note that the search trees of the same problem using
different constraint representations are the same since generalized arc consistency is
enforced in all cases.

In this application,tri-box is significantly better than evencas for modelsM1,
M1

∗, andM1 ∩ i(f−1, M2). It is because all constraints in the hand-crafted modelM1

are disequality constraints of the formx 6= y+k for differentk. Such constraints have a

13

Table 5. Performance comparisons on different models of Langford’sProblem

inst model u b ud bd N cas dag box tri-box

M1 0 369 0 10 6 4.56 4.88 7.86 0.51
M1* 0 351 0 10 6 4.25 4.51 7.21 0.48(3,9)

M1 ∩ i(f−1, M2) 9 720 9 361 6 5.85 9.63 12.39 4.34
M1 ∩ i(f−1, M2)* 9 351 9 342 6 2.75 6.33 6.97 4.02

M1 0 455 0 11 10 19.09 20.92 34.12 1.97
M1* 0 435 0 11 10 18.06 19.40 31.41 1.86(3,10)

M1 ∩ i(f−1, M2) 10 890 10 446 10 24.49 42.08 54.63 16.62
M1 ∩ i(f−1, M2)* 10 435 10 425 10 11.43 28.19 31.46 15.52

M1 0 550 0 12 0 101.78110.87182.27 9.59
M1* 0 528 0 12 0 95.82 102.92168.50 9.01(3,11)

M1 ∩ i(f−1, M2) 11 1078 11 540 0 144.05241.05312.26 92.00
M1 ∩ i(f−1, M2)* 11 528 11 517 0 60.56 151.29167.48 82.38

high percentage of connected solutions, allowing the covering of the solutions by only a
few triangles and boxes. InM1

∗ this connectedness and structure are destroyed by con-
straint merging which removes some solutions from the constraint. InM1∩i(f−1, M2),
constraints generated from model induction are not as structured, but modelM1 is still
the backbone. The representation advantage oftri-box degrades forM1∩i(f−1, M2)

∗

since the original constraints inM1 are merged with the unstructured constraints from
model induction.

8 Concluding Remarks

We have proposed a new language-independent representation, the box constraint col-
lection, for adhoc constraints. With constructive disjunction, our new representation
achieves generalized arc consistency, if all constraints inside the collection do. We have
developed a greedy algorithm,bccFinder, to compute the box constraint collection of
an adhoc constraint. It creates simple and compact representations of adhoc constraints,
in a reasonable amount of time. We have shown how to implementbox constraint col-
lections as indexicals, and illustrated there efficient propagation on a number of exam-
ples. They are significantly more efficient than the DAG representation implemented by
indexicals (dag).

Box constraint collections can be implemented in other waysthan using indexicals.
For binary constraints represented as boxes only (no triangles), Barták [5] gives an ef-
ficient arc consistency algorithm. For the more general case, an implementation similar
to thecase constraint seems quite plausible.

We conjecture that the difference in performance betweencas anddag is mainly
because thecas implementation propagates on all variables simultaneously, while the
indexical representation runs each indexical separately.Worse, in the indexical repre-
sentations (dag, box, andtri-box), when the indexical reduces the domain ofxi be-
cause of a change inxj , then all the indexicals are re-executed sincexi has changed.
But this re-execution can never find new information. The re-execution does not occur

14

usingcase (according to our limited understanding). An internal implementation of
the BCC constraint (like thecase constraint) could avoid these overheads, and should
lead to similar speedups (dag/cas) over the indexical representation.

We restrict our experiments to binary and ternary adhoc constraints. The BCC idea
works forn-ary constraints in general, wheren > 0. ThebccFinder algorithm, how-
ever, needs improvement to be practical on higher dimensional constraints. This is an
interesting topic for further study.

References

1. Sicstus Prolog 3.9.1 manual.
2. S. Abdennadher and C. Rigotti. Automatic generation of propagation rules for finite domains.

In Principles and Practice of Constraint Programming, pages 18–34, 2000.
3. S. Anthony and A.M. Frisch. Generating numerical literals during refinement. InILP97,

pages 61–76, 1997.
4. K.R. Apt and E. Monfroy. Automatic generation of constraint propagation algorithms for

small finite domains. InPrinciples and Practice of Constraint Programming, pages 58–72,
1999.

5. R. Barták. Filtering algorithms for tabular constraints. InProceedings of Colloqium on Im-
plementation of Constraint and Logic Programming Systems (CICLOPS 2001), pages 168–
182, 2001.

6. N. Beldiceanu. Global constraints as graph properties onstructured networks of elementary
constraints of the same type. Technical Report T2000-01, SICS, 2000.

7. B. Carlson and M. Carlsson. Compiling and executing disjunctions of finite domain con-
straints. InInt. Conf. on Logic Programming, pages 117–132, 1995.

8. T.B.H. Dao, A. Lallouet, A. Legtchenko, and L. Martin. Indexical-based solver learning. In
Principles and Practice of Constraint Programming, pages 541–555, September 2002.

9. D. Diaz and P. Codognet. Design and implementation of the GNU Prolog system.Journal
of Functional and Logic Programming, 2001(6), 2001.

10. T. Frühwirth. Theory and practice of constraint handling rules.Journal of Logic Program-
ming, 37(1–3):95–138, October 1998.

11. I. Gent and T. Walsh. CSPLib: A benchmark library for constraints. In Principles
and Practice of Constraint Programming, pages 480–481, 1999. Available at http:/www-
users.cs.york.ac.uk/ tw/csplib/.

12. Y.C. Law and J.H.M. Lee. Model induction: a new source of csp model redundancy. In
Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-2002), pages
57–71, 2002.

13. M. M. Mano and C. R. Kime.Logic and Computer Design Fundamentals. Prentice Hall,
second edition, 1999.

14. C. Schulte and P.J. Stuckey. When do bounds and domain propagation lead to the same
search space. In3rd Int. Conf. on Principles and Practice of Declarative Programming,
pages 115–126, 2001.

15. E. Tsang.Foundations of Constraint Satisfaction. Academic Press, 1993.
16. P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation, and evaluation of

the constraint language cc(FD).Journal of Logic Programming, 37(1–3):139–164, 1998.

15

