Box Constraint Collections for Adhoc Constraints *

K.C.K. Chend, J.H.M. Le€, and P.J. Stuckéy

! Department of Computer Science and Engineering
The Chinese University of Hong Kong, Hong Kong SAR
{ckcheng, j | ee}@se. cuhk. edu. hk
2 Department of Computer Science and Software Engineering
University of Melbourne, Australia
pj s@s. mu. 0z. au

Abstract. In this paper, we propose a new language-independent espati®n
of adhoc constraints, called a box constraint collectiosing constructive dis-
junction, this representation achieves domain consigtaife develop an algo-
rithm to automatically generate a box constraint colletfar a given adhoc con-
straint. The result is guaranteed to be complete and coardtachieve domain
consistency. The constructive disjunction propagatotttierbox constraint col-
lection can be efficiently implemented using indexicals.§e correctness and
completeness result for our compilation scheme, and @udjtimization tech-
niques. Experiments show that our representation is simphapact, and propa-
gates efficiently.

1 Introduction

Constraint programming is a promising technique for s@wvmnany difficult combi-
natorial problems. Since real-life constraints can beadliffito describe in symbolic
expressions, or provide very weak propagation from theirtsylic representation, they
are sometimes represented in the form of the sets of sotutiorets of nogoods. This
adhoc representation provides strong propagation thrgegkralized arc consistency
techniques. However, the adhoc representation is expeirsiterms of memory and
computation, when the adhoc constraint is large.

There is interest in determining less expensive methodsuidating propagators for
adhoc constraints. The first step in this direction was thieraatic generation of prop-
agation rules pioneered by Apt and Monfroy [4]. They repnés@ adhoc constraint as
a set of simple rules of the form, = v1 A ... Az, = v, — y # a such that rule
consistency, which is weaker than domain consistencyhieaed. These rules can be
extended tar; € Sy A... Az, € S, — y # a, such that domain consistency is
achieved. They propose two algorithms to generate all ednnrdant rules for a given
adhoc constraint.

Apt and Monfroy’s work is extended by Abdennadher and Rig2tt who express
the propagation rules in CHRs [10] so that user-defined pagels are allowed. They

* We thank the anonymous referees for their constructive cemtsn The work described in this
paper was substantially supported by a grant from the Rels&arants Council of the Hong
Kong Special Administrative Region (Project no. CUHK4XBHz).

develop the PROPMINER algorithm, which generates all remindant propagation
rules based on the set of user-defined predicates. Corsteaidling rules, while ex-
pressive, are less efficient than other approaches to inguiBng constraint solvers.

Indexicals are powerful, and efficient language to definestraimt propagation. Dao
et al.[8] propose a framework and two algorithms to learn indeboparators (a subset
of the indexical operators available in GNU Prolog [9]) thahieve bounds-consistency
for adhoc constraints. They require that the indexicalstmasdelete a solution of the
original constraint, and at the same time they try to minerttze cases that a nogood
is wrongly classified as a solution. Under this formulatithve output indexicals are
correct (i.e. they will not remove a solution), but may beomplete (i.e. they may not
detect all nogoods). However, they show that indexicall @iod pruning power can
often be discovered. Bartak [5] gives an efficient filteraigorithm as the basis of the
implementation of a binary tabled constraint by clustetting tuples into boxes, but
does not discuss how to find the boxes.

In this paper, we propose a hew language-independent sgyiegi®n for adhoc con-
straints, theébox constraint collectionThe idea is to break up an adhoc constraint into
pieces and cover these pieces using constraintss tiles. With the aid of constructive
disjunction and a suitable choice of forms of constraintde im the collection, our new
representation achieves domain consistency. We can ol representation using
the indexical language provided by SICStus Prolog, to pleeifficient propagators for
adhoc constraints.

We describe an algorithrbccFinder, that automatically generates a box constraint
collection for an adhoc constraint. The output representas guaranteed to be com-
plete, correct, and achieve domain consistency. We alsgestig compilation scheme
which generates efficient indexicals for box constraintestions, and outline opti-
mization techniques. Experiments confirm the compactnkssrorepresentation and
efficiency in propagation.

2 Propagation Based Constraint Solving

In this section we give our terminology for constraint datition problems, and prop-
agation based constraint solving.

An integer valuatiord is a mapping of variables to integer values, writfen —
dy,...,z, — d,}. We extend the valuatiofi to map expressions and constraints in-
volving the variables in the natural way. Leirs be the function that returns the set of
(free) variables appearing in a constraint or valuation.

A domainD is a complete mapping from a fixed (countable) set of varg@abléo
finite sets of integers. Aalse domainD is a domain withD(z) = () for somez. A
domainD; is strongerthan a domairD, written Dy T Ds, if D1 (z) C Do(x) for all
variablesr.

In an abuse of notation, we define a valuatibto be an element of a (non-false)
domainD, writtené € D, if 6(x;) € D(z;) for all z; € vars(8).

We are also interested in the notion of iaitial domain denoted byD;,,;;. The
initial domain gives the initial values possible for eachiable.

A constraintc over variables:y, . . ., x,,, written asc(z1, . . ., x,,), restricts the val-
ues that each variable, can take simultaneously. Asdhocconstrainte(z1, . ..,)
is definedextensionallyas a set of valuatior over the variablesy, ..., x,. We say
0 € cis asolutionof c. For any valuatiod on variables:y, . . ., z,,, with ¢ ¢, we call
anogoodof c.

Often we define constraintstensionallyusing some well understood mathematical
syntax. For an intensionally defined constraintve have that € c iff vars(d) =
vars(c) A Z ¢ ¢, whereZ is the integers. For example the constraint= z + 1
whereD;,it(x1) = Dinit(z2) = {1,2,3} defines the solution s€f{z; — 2,25 —
1}, {1'1 = 3,562 = 2}}

Two constraintg; andc, areequivalento each other, denoted lay = c,, if they
define the same set of solutions.

A constraint satisfaction problef€SP) [15] consists of a set of constraifis, . . ., ¢ }
over a set of variable§r, . . ., z,, }, where each variable; can only take values from
its domainD;,,;:(x;), a set of integers. Solving a CSP requires finding a valuedohn e
variable from its domain so that no constraint is violategl all constraints are satisfied.

We adopt the notion gfropagation solvefrom Schulte and Stuckey [14]. prop-
agator f is a monotonically decreasing function from domains to diasiaA prop-
agation solverfor a set of propagatorg and current domaitD, solv(F, D), repeat-
edly applies all the propagators in starting from domairD until there is no further
change in resulting domain. We say two sets of propagé&toesnd I, areequivalenif
solv(Fy, D) = solv(Fy, D) forall D C Djy.

Define thegeneralized arc consistent propagai@r equivalently thedlomain con-
sistent[14] propagator) for a constraintas

dom(c)(D)(z) = {6(z) | 6 € D andd € c(that isé is a solution ofc) }

3 Box Constraint Collections

Formally, anadhoc constraint over variables, . .., =, is a set of valuations i,,,;;
representing the solutions of Adhoc constraints are usually implemented as tabled
constraints by listing all the solutions or nogoods, inmgispace and time overhead.

Example 1.The adhoc constraint, .. overz andy for D;,;:(x) = Dinit(y) =
{1,2,3,4,5} shown in Fig. 1(a) can be represented by the set of solufjofis3),
(2, 2) (2,3), (3,1), (3,2), (3,4), (3,5), (5,3) } or the set of nogood§ (1, 1) (1,2),
51,43,}0,5), (2,1), (2,4), (2,5), (4,1), (4,2), (4,3), (4,4), (4,5, (5,1, (5,2), (5. 4),
5,5) }.

Often we represent a constraint in an adhoc manner becaissdifficult (or un-
wieldy) to describe it using a symbolic expression. Howgitanay be easier to find
symbolic expressions if we examine part of the solution ep@berefore, we propose
representing an adhoc constraigl,.. with a set of simple constraints in DNF. The
idea is similar to the use of Karnaugh-Veitch-diagrams [fb8]finding prime impli-
cants.

a b 0N P

a b~ 0N P

1 2 3 45 x 1 2 3 4 5 x
(@) (b)

Fig. 1. (a) An adhoc constraint, 4».c, and (b) broken into a box constraint collection

The core idea is to use a disjunction of constraints as "tilescover the solu-
tion space of an adhoc constraint. By carefully choosingsttepes of the tiles we can
achieve domain consistency using constructive disjuncfloiangles and rectangular
boxes are good tile shapes for filling grids.

A boxB = [[;_, [If..u}] is ann-dimensional hyper-cube, whefé’..u”] is a
interval of integersl]B andujB. If c(21,...,r,)is aconstraint on variables, . . ., z,,,
then\7_, 17 < aj < uf A c(z1,...,2,) is abox constraintwhich we write as
B = c¢. We restrict the form of constraintgo two templatesEitherc is true and then
B = cis simply the boxB, or cis of the form}_7_; a;z; < ag, then we callB = ca
triangle. A box constraint collectiofBCC) is simply a disjunction of box constraints.

We represent an adhoc constraipi,.. over variablesey, ..., z, as a collection

of m box constraints

Cadhoc(T1, .. &n) = \/BZ- = c¢i(T1,...,Tn)- (D)

=1
Example 2.A box constraint collection representation of the adhocst@mtc,qpoc
shown in Fig. 1(a) is

[3..3] x|
V [5..5] x|

4.5] = true VvV [1.2] x [2.3]| = x4+y >4

3..3] = true V [3..3] x [1..2] = true

The box constrainfl..2] x [2..3] = x + y > 4 represents the conjunctidn< z <
2N2<y<3Ax+y >4 The BCC representation faf,.. is shown in Fig. 1(b).

Representing a constraint using a box constraint colledianore compact than
a set of solutions. However, disjunctive constraints dousatally propagate as effec-
tively as other representations. But disjunctions of bomst@ints can be propagated
effectively, achieving generalized arc consistency.

Lemma 1. If each constraint; in (1) is implemented by generalized arc consistent
propagator dom(c;), then using constructive disjunction [16] on this repretsgion
achieves generalized arc consistencydgf,oc-

a b~ 0N P
a b~ 0w N P
a b~ 0N P

1 2 3 45 x 1 2 3 45 x 1 2 3 45 X
@) (b) (©

Fig. 2. Freeing the representation by adding “dont care” tuples, .. for (a) x = 4 and (b)
x =3 Ay = 3, and (c) the resulting box constraint collectiap;.

4 Separable Nogoods

We can improve the description of an adhoc constraint by acbagtraint collection by
determining parts of the constraint which can be represesgparately without losing
generalized arc consistency of the resulting set of prapaga

Example 3.Considerc,gno defined in Fig. 1(a). Since # 4 is implied by cqanoc
we can extract this as a separate constraint, we are themofreedel the remainder
of cqanoc bY filling in some boxes in the = 4 column and this will not change the
propagation behavior. Fig. 2(a) showg.. with “dont care” annotations in the = 4
column.

Similarly the remaining nogood (3,3) is such that unle¢g) is assigned t8, it will
not remove the valug from the domain of; (x). In this situation, we can represent this
nogood with an extra constrain{z = 3 A y = 3) without changing the propagation
behavior. Fig. 2(b) shows, 45, With “dont care” annotationat = 3 A y = 3.

Note that now we can represeni;,.. by the conjunction of constraints = 4,
—(xz = 3 Ay = 3) andey,; defined as the box constraint collection

1.3 x[L.3]=z4+y>4 V [3.5]x[3.5]=z+y<8

We obtain the same propagation behavior. The represemiatgmaller in terms of the
number of box constraints and propagates more efficiently.

These two observations for separability of nogoods in thevatexample can be
formalized as follows.

Lemma?2. Letc be an adhoc constraint such that— « # d for somez € wvars(c)
andd € D,;,i:(z). LetS be a set of solutions fafars(c) wherez = d. Then{dom (z #
d), dom(cU S)} and{dom(c)} are equivalent.

Lemma 3. Letc be an adhoc constraint on variablés,, . .., x,,) with nogood ¢ C
such that there are no other nogooffs¢ ¢ and1 < i < n wheref(z;) = ¢'(x;).
Then{dom((x1,...,zn) # (0(x1),...,0(xy))), dom(c U {6})} and {dom(c)} are
equivalent.

5 Building Box Constraint Collections

In this section, we describe a greedy algoritthogFinder, which computes a com-
pact box constraint collection for a given adho@ry constraint, .. with solutions
solutions and nogoodsaogoods. Before we find the set of box constraints, we remove
the set of separable nogoods fregy.., by adding extra constraints as discussed in
Section 4. This leaves a description of the constraint iriagl three kinds of tuples:
solutions, nogoods, and “dont cares” which may be includeabt since they will be
removed by other constraints. Then, we repeatedly find bastcaints for the remain-
ing uncovered solutions. A valuati@ris coveredby the constraint if 6 € c; otherwise,

it is uncoveredFig. 3 shows the pseudo-codelmicFinder.

Since we would like to reduce the number of box constraintiéncollection, we
want each box constrairl® = ¢ to cover as many uncovered solutions as possible.
Although finding the optimal collection is in practice in&#ale, we can find a relatively
large boxB by greedily growing one, until we cannot find any correspagdi where
c is an instantiation of one of our templaigs For the code shownt is always of the
form of Z?Zl a;jz; < ag since such constraints are straightforward to find, and have
generalized arc consistency propagators which are effigieomputable [14].

To find B = ¢, we randomly pick an uncovered solution and put it into thatju
box B and initializeC, the constraints on the coefficients to true. As a result, each
a; is unconstrained. Then, we iteratively try to enlafgean each dimensiory. We
first reduce the lower bounif® until either the lower bound af; is reached, or no
enlargement is possible. Then we try to increase the uppmdmf.

Let B’ be the enlarged. The procedurepdate is called so that for each valuation

6 € B’ — B ofthe formf = {1 — d1,...,z, — d,} we either (a) add the constraint
Z;;l a;d; < ag if 0 € solutions to ensurd is included in the box constraint, or (b)

add the constraint_’_, a;d; > ay if 6 € nogoods. Thisupdate procedure is an exact
version of an algorithm by Anthony and Frisch [3] for consttanduction.

If the constraints are satisfiable, there exist values f@nd we continue expanding
the box. If the constraints are unsatisfiable, we first renatiie constraints added in
the last expansion and try expanding in a different directitventually every expansion
leads to failure (or we have covered the entire space). Atstisige we simply choose a
value for eachy; that satisfies the current constraints. In our implememmatve solve
for a;’s with the SICStus Prologl p(Q constraint-solving library [1].

We have created a single box constraint. We add this to olgatimn, and move all
the solutions covered by this box constraintinto the “d@met category. This continues
until there are no solutions remaining (which are not “daatef). We then simplify
the resulting collection if possible, by replaci@?=1 a;jr; < ag by true if B —
> =1 a;2; < ao and removing box constraints which are subsumed by other box
constraints.

A box constraint collection with only boxe$3(=- true) can be found similarly,
except thatB stops expanding along a particular dimensioBfifcontains at least one
nogood.

becFinder(n,solutions,nogoods) update(C,B’,B,solutions,nogoods)

cp = false for eachd € B’ — B
¢s 1= constraints for separable nogoods if 0 € solutions
separable ;= nogoods ots C=CAh Z?:l a;f(z;) < ao
nogoods = nogoods — separable elseif § € nogoods
while (360 € solutions) C:=CAh Z?:l a;0(x;) > ao

B :=aunit box equal t@ endif

C =true endfor

for j:=1ton if C is satisfiable

while (7 > min(Dinit(z;))) return C
B’ := B with lf/ =17 -1 elsereturn false

C' .= update(C, B’, B, solutions, nogoods)
if (C' is not satisfiablebreak
B=B
C=c
solutions := solutions — B
endwhile
while (u? < maz(Dinit(z;)))
B’ := B with ufl = u? +1
C' .= update(C, B’, B, solutions, nogoods)
if (C' is not satisfiablebreak
B =B
c=c
solutions := solutions — B
endwhile
endfor
let ¢ be a solution of”
cg:=cpV (B = Z?:l o(az)z; < ¢(ao))
endwhile
simplify cg
returncg A cs

Fig. 3. Pseudo-code diccFinder

The box constraint collection being returned is always eajant to the given adhoc
constraint, because whégcFinder terminates, all solutions will be covered, while all
nogoods will remain uncovered.

The bccFinder algorithm always terminates because each while loop remave
least one valuatiorgj from solutions.

Although in worst casel p(Q takes exponential time to solve for the coefficients
of ct, our experiments confirm that obccFinder algorithm is capable of returning a
box constraint collection for an adhoc constraint in a reabte amount of time.

There are many possible improvements to the simple algorghown here. For
example we should not examine an expansion where all thetahs inB’ — B are
in nogoods, and we should find large rectangular boxes first beforeistathe box
expansion.

Table 1. The (partial) indexical grammar and its semantics in SIG®uolog

Rule | Semantics
r — don(y) Yo
r—t1..1s {ieZ:tlogigtgo}
r—{t,...,tn} {t1i,y- sty }
r—ril\ ro ri, Nra,
r—ri\/l ro ri, Urs,
r—r1?7rs @ if r1, = 0; 72, otherwise
t — integer t
t —inf —00
t—sup 400
t—mn(y) minimum value ofy,
t — max(y) maximum value of/,
t—t1 4+t t1, +t2,
t—t1 —t2 ti, — t2,

6 Compilation of box constraint collection

In this section, we will explain how a box constraint colleatcan be compiled into
indexicals. The constraint system FD [7, 16] is based on doeanstraints and func-
tional rules calledndexicals Indexicals provide an efficient approach to implementing
propagators for constraints.

A domain constrainis an expression € I, wherel is a finite set of integers.
A storeo is a set of domain constraints. The expressigndenotes the intersection
I, Nn...Nn1I, for all constraints: € I, in o, wherel < k < n. If & does not contain a
constraintr € I, z,, is the setZ of integers. A variable: is determined irv if x, is a
singleton set.

An indexicalhas the forme i n r, wherer is arangegenerated by in Table 1.
Thevalueof z in rincisz € r,, Wwherer, is the value of- in o, a set of integers.
A range may consist of other ranges or termsent is generated byin Table 1. The
value oft in o, t,, is an integer. Table 1 summarizes how the values,adndt, are
computed.

6.1 Basic Compilation
We illustrate the compilation process with the followingexple.

Example 4.The representation ef,.; from Example 3 is a disjunction of two box con-
straints

[1.3]x[1.3]=z+y>4 2
V[3.5] x[3.5]=x+y<8 (3)
The indexicaldfor (2) and (3) are respectively

3 The syntax of SICStus Prolog, shown in teletype font, rexirriables to be in upper case.
Upper and lower case variables of the same name should bestoat®interchangeably.

Xin ((4-mx(Y))..3) Xin (3..(8-nin(Y)))
Yin ((4-max(X))..3) Yin (3..(8-nin(X))

These maintain generalized arc consistency [14].
We can create an indexical fot for the box constraint collection by combining
these indexical rules as follows:
Y13 in {0} \/ (dom(Y) /\ (1..3))
Y35 in {6} \/ (dom(Y) /\ (3..5))
Xin ((dom(Y) /\ (1..3)) ? ((4-max(Y13))..3)) \/
((dom(Y) /\ (3..5)) ? (3..(8-nmn(Y35))))

Y13 records the maximum value &fin the interval[1..3]. The additional valu® is
added to the domain of13 to ensure it is always non-empty (and thus does not cause
failure). We call this additional valuedummy valuand the constraint betweéhand

Y13 a confinement constrainSimilarly Y35 records the minimum value of in the
interval [3..5]. The rule forX joins the constraints together, using ti&3 or Y35 to

give the appropriate value &ffor the box of interest.

We can automatically map the indexical expressions fortcaimsc; (z1, . . .,)
to create indexical expression for a disjunction of box t@istsVv™ | B; = ¢;(x1, ..., Ty)
such that if each indexical faf; (x4, ..., x,) maintains generalized arc consistency,
then so does this indexical.

Let B; = [ai1..bi1] X -+ X [a;n..bin] then define the indexicals

NHX»;]' in {aijfl} \/ (dOI'T(XJ) /\ (aij..bij))
M Ngj in {b”—f—l} \/ (dOTT(X7) /\ (a”b”))

M n;; andMax;; are called theonfinement variablesf X; over B;. The indexical

expression fok;, for a single box constraii®; = ¢;(x1,...,x,) is then
wherer/, is the indexical;;, for X, and constraint;(z1, ..., z,) with max(X;) re-

placed bymax(Max;;) , m n(X;) replaced byri n(M n;;) anddon(X;) replaced

bydon(X;) /\ (asj..bi;) . We call eactdon(X;) /\ (as;..b;;) aguardfor ;..
The indexical expression fof;, for the disjunction of box constraintg , B, =

c¢i(x1,...,xy,) is obtained by unioning the expressions for each box cansta X

Theorem 1. The indexical for box constraint collection

m n

c= \/(/\ aij < x5 <bij A ci(x,...,2n))

i=1 j=1

achieves generalized arc consistency if each indexicat;fachieves generalized arc
consistency.

This guarantees that, by choosing the constraiptsarefully, the box constraint
collection of an adhoc constraint achieves generalizedamsistency.

Adding termst — min(r) andt — max(r) to the indexical language would allow
the expression of constructive disjunction of trianglethaiit confinement variables.
We conjecture that this would speed up the propagation rdgrke

6.2 Optimizing Compilation

The basic compilation generates correct but inefficienexichls, because there are
many redundant operations. We can improve the computatioardinement variable
domains, as illustrated by the following example.

Example 5.The confinement indexical
Y13 in {0} \/ (dom(Y) /\ (1..3)).

is invoked whenever the domain ¥fis modified, and performs an expensive intersec-
tion operation. If we instead initialize the domain¥it3 to {0} \/ (1..3) then
we can replace this intersection. So we replace the sindkxinal by

Y13 in {0} \/ (1..3)
Y13 in {0} \/ dom(Y).

Furthermore oncdon(Y) and1l. . 3 are disjoint, the domain 0f13 cannot change.
We can add (using SICStus Prologs extended indexicals)ck ¢hat removes the sec-
ond indexical ifyl3 in {0}.

Since set operations are expensive,agdami X) /\ (L..U ? rshouldbe
removed or replaced with a more efficient indexical operatitienever possible. We
can remove the guard if. . Uis the initial domain ofX, or » becomes empty for any
values indom(X) outsideL. . U. In both situations the guard is redundant.

Example 6.Consider the indexical foXin Example 4. IfY13 takes its dummy value 0,
then((4 - max(Y13)).. 3) isthe empty domain. Similarly for the other disjunct.
Hence the following indexical is equivalent

X in ((4 - max(Y13))..3) \/ (3..(8-min(Y35)))

By suitably choosing the dummy values, all guards for indabsil nf . . b and
a. . Sup can be removed, whei@ andb are constants andnf andSup are terms
involvingm n(Y) andmax(Y) of other variable¥.

For the remaining guards, we canrepldoar(X) /\ (L..U) withmn(X)..U
if L is the lower bound of the initial domain &f because if its domain intersetts. U,
the minimum value in its domain must be smaller tharSimilarly, we can replace a
guard withL. . max(X) if Uis the upper bound of its initial domain.

Also, we can remove. . Ufromr /\ (L..U) if r is always inside the range.

Other optimization techniques include combining indelscaemoving confine-
ment variables and rearranging the execution order of icdésx However, due to space
limitations, they will not be discussed further.

7 Experiments

In this section, we compare the efficiency of two BCC represéns (box and tri-
angle) and another approach to representing adhoc cartstmaiSICStus Prolog. We

10

[x [1a] 22] 3.3] 5.5

v J23] [v [s3] [v | 12] a5

true

Fig.4. A DAG representation of,qn.. from Fig. 1.

implement thebccFinder algorithm and conduct the experiments using SICStus Pro-
log 3.9.1 on a Sun Blade 1000 with 2GB of memory (our largesthemark consumes
around only 20MB).

SICStus Prolog introduced in release 3.9.0 a new consticaste, for encoding
arbitraryn-ary adhoc constraints. To use thase constraint, users must first obtain a
directed acyclic graph (DAG) from the list of solutions o&thonstraint. In the DAG,
each node: is either the special leaf nodeue or includes a variable,, and a disjoint
set of range$,,;..u,; each with a pointer to the next nodsg. A tuple ¢ satisfies the
relation defined by the graph rooted by nodi n is the leaf noderue, or there exists
j such that,,; < 6(z,) < u,; andd satisfies the relation defined by graph rooted at
nj.

Thecase constraint is a built-in global constraint equipped withediiicient filter-
ing algorithm [6] to traverse the DAG for maintaining geriemed arc consistency. In
other words, thease technology consists of two parts: the DAG representatiah an
the filtering algorithm. It is thus appropriate to compare #ipace and time tradeoffs
of the BCC and the DAG (expanded into a fegepresentations when both are com-
piled into indexicals. We give also the results of usingadhs e constraint for reference
purposes. We envisage the possibility of an efficient fittgdlgorithm for maintaining
generalized arc consistency of a BCC.

Example 7.A case constraint defining:,qnoc is given by the DAG show in Fig. 4.
The indexical representation of the tree of the DAG is

X in ((dom(Y) /\ (2..3)) ? (2..2)) \/
((dom(Y) /\ (3..3)) ? ((1..1) \/ (5..5))) \/
((dom(Y) /\ ((1..2)\/(4..5))) 2 (3..3)),

Yin ((dom(X) /\ (1..1)) ? (3..3)) \/

((dom(X) /\ (2..2)) ? (2..3)) \/

((dom(X) /\ (3..3)) ? ((1..2) \/ (4..5))) \/
((dom(X) /\ (5..5)) ? (3..3)).

We compare the propagation efficiency amdmng (indexicals for boxes only),
tri- box (indexicals for triangles and boxes);s (DAG in the case constraint), and

4 Actually the definition is slightly different but effectilyeequivalent.
5 The filtering algorithm treats the DAG like a tree. The DAG negentation is simply more
compact.

11

Table 2. Performance comparisons on random 3-dimensional conMegdnstraints

cas/dag| box tri- box W =10 W =20

B gen| B gen|T B gen || cas dag box tri-box| cas dag box tri-box
6025448 1.14294 27.2%52 18 15.7(037.85 71.12 62.73 35.2245.05 117.43 111.26 67.2
4754324 0.70205 19.7441 18 13.6423.07 49.27 41.78 24.8929.35 81.78 75.18 50.3¢
7086385 1.80287 42.7157 23 15.6%37.52 60.31 59.98 36.6737.87 94.20 109.72 75.64
7302347 1.67278 57.8750 18 24.4718.40 58.97 64.94 34.285.69 94.87 113.07 71.4
5598339 1.18262 29.2047 24 14.1635.76 50.17 56.68 28.9737.08 88.31 98.60 61.5¢

D —~PP
S—C0—=10

Table 3. Performance comparisons on ternary non-linear inequeditgtraints

cas/dag| box tri- box W =10 W =20

B gen| B gen |T B gen || cas dag box tri-box| cas dag box tri-box
24591225 8.48224 186.814 32 101.74 7.99 21.93 25.15 9.70|12.76 36.65 43.67 16.54
20987489 8.66309 142.397 59 81.37|{10.60 41.83 31.20 18.0716.46 69.05 50.79 31.9]
19671471 8.76215 122.368 47 90.83(11.56 39.86 24.34 17.3421.46 65.05 44.35 31.9}
17886699 8.3(0271 109.504 87 65.12(11.51 56.31 27.66 21.7721.78 94.43 46.47 37.1}
21938499 7.32238 134.0715 10 94.38|10.50 44.12 24.94 10.1917.04 73.34 42.87 21.5]

N

oo —1=—

dag (DAG in indexicals). The first three experiments simply test propagation. For
each variabler in the constraint, we repedt/ times picking a subsef C D+ (x)
where|S| = W, and adding the constrainis# v for eachv € S. These constraint
additions are then removed, and the next$&t selected.

We restrict our attention to benchmarks with structurehsas convex hull and
non-linear inequality constraints, since BCC is desigr@déal-life constraints with
meaning and thus reasonable patterns. Our experiment damaconstraints show that
BCC performs worse thamase constraints, as expected.

In the first experiment, the adhoc constraint in each prolitestance is defined by
the convex hull generated by 15 random points chosen froi@ainiesian product space
of the variable domain..30. Table 2 gives the resultsv is the number of solutions,
B andT are the number of boxes and triangles respectivelygands the generation
time (in seconds). Fatas anddag, we consider each path from root to leaf in the DAG
as a box. We use the same DAG for betlz anddag, so that they share the sarBeand
gen. The columngas, dag, box andtri- box report the execution time (in seconds) of
the propagation test whed = 5000, andiW = 10 or W = 20.

The second experiment deals with non-linear inequalitieseformaz? + by> +
ez + dryz + ex + fy + gz < h, where the integer coefficientsto » are generated
randomly from the/—9..9]. The initial domain for each variable is.30. Results are
summarized in Table 3.

We observe from the two experiments that bétlr and ¢ri- box, in particular
tri- box, use many fewer tiles thatus/dag for covering the same set of solutions.
The representation af-i- box is much more compact so that it is always faster than
dag andboz. The built-in filtering algorithm allowsas to be almost two times more
efficient tharéri- box in some cases, despite the size disadvantage in représentat

12

Table 4. Performance comparisons on structured 3-dimensionahpdhpn constraints

N cas/dag| box tri- box W =10 W =20

B gen| B gen|T B gen| cas dag box tri-box| cas dag box tri-box
4229437 1.1%437 39.178 0 68.2434.26 57.39 73.92 4.22/138.44 84.51 112.68 8.56
4858468 1.3(0440 38.8%22 6 48.1430.53 70.46 87.19 17.4437.91 113.54 152.76 35.7
4526240 1.16 30 10.5928 2 27.2625.17 30.38 11.69 17.4730.52 50.48 22.29 34.5
2759380 0.46 30 5.65|29 5 10.3233.07 58.63 11.70 24.3%40.23 94.66 24.67 51.5
956|348 0.1153 1.92|65 12 2.3623.49 50.80 13.31 44.5932.51 79.04 26.32 95.8]

0O

To study further the speed comparison, we conduct the tixipgérément on struc-
tured polyhedrons including dipyramids and sheared rgctian boxes, which are gen-
erated manually to investigate how the number of triangteslzoxes affect the effi-
ciency of BCC. Results are presented in Table 4.

We found thatri- box fares very well againstag, since the representation advan-
tage oftri- box becomes more apparent in polyhedrons with good structlitessize
of the cas/dag representation remains in the same order of magnitude &g iprevi-
ous two experiments. The last three benchmarks exhibit mae regular structure so
that they can be covered well also with boxes. In those casess the fastest since
the indexicals for implementing boxes lack the overheadhefdonfinement variables.
This dependency on the number of boxes and triangles is nresuét of the indexical
implementation, but not the representation scheme.

Our last experiment is an application of our method to modeéuction [12], the
outcome of which is a CSP consisting of only adhoc conssailfe study four different
formulations (or models) of the Langford’s problem (liseesd‘prob24”in CSPLib [11]):
My, My*, Myni(f=1, My) andM; ni(f~1, Ms)*. Model M; is a hand-crafted model
originally with symbolic constraints, but we turn the syniba@onstraints into table
form. Model M * is the same ad/; except solutions of constraints of the same sig-
nature are intersected to form one constraint, which wecoalstraint mergingModel
M, ni(f~, Ms) is a model constructed from mod#f; plus constraints generated
from model induction, while modelf; Ni(f =1, My)* is modelM; Ni(f~1, My) with
constraint merging. For more details see [12].

Table 5 summaries the results. The coluimst contain the problem instances (in
terms of problem size) andodel contains the CSP models. Besides giving the number
of unary and binary constraints in theandb columns respectively, we give also the
number ofdistinct unary and binary constraints that are learned in columnand
bq. Two constraints are distinct if they have different setsi0fjoods.V is the total
number of solutions for the problem, while columaiss, dag, box andtri- box give
the CPU time in seconds to search for all solutions. Varighte chosen using the first-
fail heuristic. It isimportantto note that the search trees of the same problem using
different constraint representations are the same sincergkzed arc consistency is
enforced in all cases.

In this applicationtri- box is significantly better than everus for modelsM;,
M;*, andM; Ni(f~t, Ms). Itis because all constraints in the hand-crafted madgl
are disequality constraints of the form# y + k for differentk. Such constraints have a

13

Table 5. Performance comparisons on different models of LangfdPdablem

| inst | model || u| b |ud| by |N|| cas | dag | box |tri- bom|
M, 0/369|0|10|6| 456 | 488 | 7.86| 0.51
My* 0[351|0(10|6| 425|451 | 7.21| 0.48

M, ﬂi(ffl,Mg) 9720|9361 6| 5.85| 9.63 |12.39| 4.34
M, ﬂi(f_l,Mz)* 9(351|9(3426| 2.75| 6.33| 6.97| 4.02
0 0

0 0

3.9)

M, 455[0 11[10] 19.09]20.92| 34.12| 1.97

My * 435|0111|10/ 18.06| 19.40| 31.41| 1.86

My Ni(f~1, Ms) ||10| 890|10|44610|| 24.49| 42.08| 54.63| 16.62
My Ni(f~t, M2)*||10| 435|10{42510|| 11.43| 28.19| 31.46| 15.52
M, 0[550[0]12[0][101.78110.87182.27 9.59

(3.11 M* 0|528|0|12|0|| 95.82|102.92168.50 9.01
T My ni(fh, M) ||11]107811(540 O (|144.059241.05312.26 92.00
My Ni(f~1, M2)*||11| 528|11|517 0 || 60.56|151.29167.48 82.38

(3,10

high percentage of connected solutions, allowing the éogef the solutions by only a
few triangles and boxes. Ih/; * this connectedness and structure are destroyed by con-
straint merging which removes some solutions from the caimgt In My Ni(f~1, My),
constraints generated from model induction are not astsiredt, but model; is still
the backbone. The representation advantageiebox degrades fon/; Ni(f~1, My)*
since the original constraints i, are merged with the unstructured constraints from

model induction.

8 Concluding Remarks

We have proposed a new language-independent represantagdox constraint col-
lection, for adhoc constraints. With constructive disjume, our new representation
achieves generalized arc consistency, if all constramsigié the collection do. We have
developed a greedy algorithta¢cFinder, to compute the box constraint collection of
an adhoc constraint. It creates simple and compact repeggrrs of adhoc constraints,
in a reasonable amount of time. We have shown how to implebe@ntonstraint col-
lections as indexicals, and illustrated there efficienppigation on a number of exam-
ples. They are significantly more efficient than the DAG reprgation implemented by
indexicals @ag).

Box constraint collections can be implemented in other whga using indexicals.
For binary constraints represented as boxes only (no teahdartak [5] gives an ef-
ficient arc consistency algorithm. For the more general,Gsénplementation similar
to thecase constraint seems quite plausible.

We conjecture that the difference in performance betwegrand dag is mainly
because theas implementation propagates on all variables simultangpuslile the
indexical representation runs each indexical separatdyse, in the indexical repre-
sentationsdag, box, andtri- box), when the indexical reduces the domaimgfoe-
cause of a change in;, then all the indexicals are re-executed singdias changed.
But this re-execution can never find new information. Thexeeution does not occur

14

usingcase (according to our limited understanding). An internal ieyplentation of
the BCC constraint (like thease constraint) could avoid these overheads, and should
lead to similar speedupddg/cas) over the indexical representation.

We restrict our experiments to binary and ternary adhoctcaings. The BCC idea
works forn-ary constraints in general, where> 0. ThebccFinder algorithm, how-
ever, needs improvement to be practical on higher dimeabkmnstraints. This is an
interesting topic for further study.

References

1. Sicstus Prolog 3.9.1 manual

2. S. Abdennadher and C. Rigotti. Automatic generation @ppgation rules for finite domains.
In Principles and Practice of Constraint Programmirzpges 18-34, 2000.

3. S. Anthony and A.M. Frisch. Generating numerical literdiiring refinement. 1HLP97,
pages 61-76, 1997.

4. K.R. Apt and E. Monfroy. Automatic generation of consttgdropagation algorithms for
small finite domains. IfPrinciples and Practice of Constraint Programmirgages 58-72,
1999.

5. R. Bartak. Filtering algorithms for tabular constrainin Proceedings of Collogium on Im-
plementation of Constraint and Logic Programming Systet€(OPS 2001)pages 168—
182, 2001.

6. N. Beldiceanu. Global constraints as graph propertiestrmctured networks of elementary
constraints of the same type. Technical Report T2000-G2SS2000.

7. B. Carlson and M. Carlsson. Compiling and executing digjons of finite domain con-
straints. Inint. Conf. on Logic Programmingages 117-132, 1995.

8. T.B.H. Dao, A. Lallouet, A. Legtchenko, and L. Martin. kxdcal-based solver learning. In
Principles and Practice of Constraint Programmimages 541-555, September 2002.

9. D. Diaz and P. Codognet. Design and implementation of tR&J ®rolog system.Journal
of Functional and Logic Programmin@001(6), 2001.

10. T. Fruhwirth. Theory and practice of constraint hamglliules. Journal of Logic Program-
ming 37(1-3):95-138, October 1998.

11. I. Gent and T. Walsh. CSPLib: A benchmark library for deaigts. In Principles
and Practice of Constraint Programmingages 480-481, 1999. Available at http:/www-
users.cs.york.ac.uk/ tw/csplib/.

12. Y.C. Law and J.H.M. Lee. Model induction: a new source s model redundancy. In
Proceedings of the 18th National Conference on Artificia¢ligence (AAAI-2002)pages
57-71, 2002.

13. M. M. Mano and C. R. KimeLogic and Computer Design FundamentaRrentice Hall,
second edition, 1999.

14. C. Schulte and P.J. Stuckey. When do bounds and domaiagation lead to the same
search space. 18rd Int. Conf. on Principles and Practice of Declarative Bramming
pages 115-126, 2001.

15. E. TsangFoundations of Constraint SatisfactioAcademic Press, 1993.

16. P. Van Hentenryck, V. Saraswat, and Y. Deville. Desigmplementation, and evaluation of
the constraint language cc(FD)ournal of Logic Programming37(1-3):139-164, 1998.

15

