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Abstract. In this paper, we report the design and implementation of a constraint-based interactive train
rescheduling tool, a project in collaboration with the International Institute for Software Technology, United
Nations University (UNU/IIST), Macau. We formulate train rescheduling as constraint satisfaction and describe
a constraint propagation approach for tackling the problem. Algorithms for timetable verification and train
rescheduling are designed under a coherent framework. Formal correctness properties of the rescheduling
algorithm are established. We define two optimality criteria for rescheduling that correspond to minimizing the
number of station visits affected and passenger delay respectively. Two heuristics are then proposed to speed
up and direct the search towards optimal solutions. The feasibility of our proposed algorithms and heuristics
are confirmed with experimentation using real-life data.
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1. Introduction

The PRaCoSy (People’s Republic of China Railway Computing System) project [49]
is undertaken by the International Institute for Software Technology, United Nations
University (UNU/IIST), Macau. The aim of the project is to develop skills in software
engineering for automation in the Chinese Railways. A specific goal of the project is
to computerize the preparation and updating of the running map1 for dispatching trains
along the 600 kilometer railway section between Zhengzhou north and Wuhan south.
This section is along the busy Beijing-Guangzhou line, the arterial north-south railway
in China. The rate of running trains, both goods and passengers, of this section is high
and present management procedures are not adequate with the dramatic development of
domestic economy.
A running map [48] contains information regarding the topology of the railway, train

number and classification, arrival and departure times of trains at each station, arrival
and departure paths, etc. A computerized running map tool should read in stations and
lines definition from a descriptor file, allow segments (subsets of all stations) and time
intervals to be defined, allow train timetable to be read, and finally display graphically
the projection of the timetable against a given segment and a given interval. A sample
running map is shown in Figure 1. Train dispatchers, users of the tool, have to modify
the timetable when trains in some sections cannot run according to the map, possibly
due to accidents and/or train delays. The modification to the map should be performed
in such a way that certain scheduling rules (laid down by the local railway bureau) are
not violated. Therefore, a computer running map tool should check users’ modifications
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Figure 1. A running map tool.

against possible violation of these scheduling rules, and warn users of such violations. In
addition, the tool should also assist the user in repairing, either automatically or semi-
automatically, an infeasible timetable so that the least train service disruption is made. We
call this process rescheduling. Scheduling and rescheduling are different in two aspects.
First, while scheduling creates a timetable from scratch, rescheduling assumes a feasible
timetable and user modifications, which may introduce inconsistencies to the timetable,
as input. Second, optimality criteria used in scheduling, such as minimum operating cost,
are usually defined in the absolute sense. In rescheduling, however, the quality of the
output is measured with respect to the original timetable.
The PRaCoSy project has resulted in a running map tool capable of train timetable

verification [38]. Our task at hand is to enhance the PRaCoSy tool to perform automatic
rescheduling, which can be considered as constraint re-satisfaction. A major problem
with the PRaCoSy implementation is that constraints are used only passively to test
possible violation of scheduling rules. In view of this limitation, we decided to re-create
the running map tool from scratch using a constraint programming approach. Since the
running map tool was intended for actual deployment in the field and the duration of
the project was only one year, the chosen technology must be state of the art and, at the
same time, established and stable with good support. We have ruled out algorithms still
in its experimental stage. Around 1995, most commercial constraint programming sys-
tems available in the market were based on a combination of tree search and constraint
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propagation [31, 45]; hence our choice of technology. Our results do confirm the feasi-
bility of tree search plus constraint propagation in this particular application.
In this paper, we show how timetable verification and train rescheduling can both be

formulated as constraint satisfaction problems and give associated algorithms used in
our tool. We demonstrate that constraint programming allows us to perform constraint
checking and solving (or propagation) in a coherent framework. We study two notions
of optimality for the rescheduled timetable with respect to the original timetable. These
notions provide a measure of the quality of the rescheduling operation. We also present
two heuristics that direct and speed up the search towards optimal rescheduled timetables.
The rest of this paper, an extended and revised version of [11], is organized as follows.

Section 2 defines basic terminology, gives a tutorial on constraint satisfaction techniques,
and discusses related work. Section 3 explains the timetable verification algorithm. In
Section 4, we show how to formulate train rescheduling as a constraint satisfaction prob-
lem and give an associated algorithm. We also establish the correctness of the algorithm
formally. In Section 5, we discuss two heuristics that help to direct and speed up the
search towards optimal solutions. In Section 6, we describe our prototype implementa-
tion and sample runs of the tool. We summarize our contribution and shed light on future
work in Section 7.

2. Preliminaries

In the following, we provide definitions of necessary terminology according to Prehn
[48]. The problem statement is also given formally to facilitate subsequent discussions.
Before we review related work, we give a brief tutorial on constraint satisfaction tech-
niques and tools.

2.1. Terminology

2.1.1 A Model of Railway Topology

A running map contains information regarding the railway topology. The model of a
railway topology includes station, track, line, network and segment.
Station. A station is a place for trains to stay or pass through. Each station is associ-

ated with a unique station identifier (stid). There are one or more tracks in a station.
Track. A track is a place for a train to stay or run within a station. Each track has a

unique track identifier (trid). Tracks can have different lengths and types. Track types are
defined according to their appropriate use: LINE, SIDING, PLATFORM or FREIGHT.
LINE tracks are used by trains passing through a station. PLATFORM tracks are places
for passenger trains to reside on. Freight trains couple or decouple goods on FREIGHT
tracks. Trains which need to wait can stay on SIDING tracks. Each track has a set (flns)
of lines from which it can be reached, and another set (tlns) of lines to which a train can
move from the track.
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Line. Lines are railways which form the connection between two stations. Each line
has a unique line identifier (lnid), its length and maximum speed. No trains should exceed
a line’s maximum speed when running on it. There are 3 types of lines: UP, DOWN or
BOTH. Trains running on an UP line or DOWN line can only move along a certain
direction, while trains on a BOTH line can move in either direction. We assume that
two connected stations have only one line connecting them. In other words, there are no
parallel lines connecting two stations.
Network. A network is defined as a “consistent” pair of stations and line descriptions.

In other words, lines must connect known stations, in a manner which is consistent with
the tracks of all stations described. For example, if a line lnid connects two stations S1
and S2, lnid must be contained in the tlns of S1 and the flns of S2.

Segment. A segment is a sequence of two or more stations, in which adjacent stations
are connected in the network.

2.1.2 A Model of Traffic

The traffic condition of a train are described by journeys. A journey is the sequence
of station visits by a train. A station visit consists of a station identifier, arrival and
departure times, the track used by the train within the station, (optional) departure line,
and arrival and departure train length.

2.1.3 A Model of Timetable

A timetable is an association from train identifiers to journeys to be made. Each train
identifier contains a train number and a date which indicates the starting date of that
train.
Scheduling rules are a set of temporal constraints to restrict the arrival time and

departure time of each visit in order to prevent undesirable events such as a train crash.
A timetable is valid (or feasible) in a network if it conforms with the network topology

and no scheduling rules are violated under the associations. Otherwise, the timetable is
invalid (or infeasible).
Given a feasible timetable with n station visits, which is represented by a set of

assignments (or equality constraints) of the form ATi = tai and DTi = tdi , where ATi and
DTi denote the arrival and departure time respectively for the ith station visit (1≤ i≤ n).
User modifications are replacement of some assignments ATj = taj (or DTj = tdj ) by
ATj = t′aj (or DTj = t′dj ), for j ∈ �1 � � � n and some t′aj (or t

′d
j ). Given an infeasible

timetable, rescheduling is the process of modifying the timetable so as to make the
timetable feasible. The rescheduling process, however, only attempts to adjust the values
of the unmodified arrival and departure times. The rescheduling process replaces some
assignments of the unmodified times ATj = taj (or DTj = tdj ) by ATj = t′aj (or DTj = t′dj )
for some t′aj ≥ taj (or t

′d
j ≥ tdj ) and j ∈ �1 � � � n. In other words, the process can only

delay the arrival times or departure times of unmodified station visits.
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Note that user modifications may violate the scheduling rules in two possible respects:

1. the modified arrival and departure times violate the scheduling rules directly; or

2. the modified arrival and departure times do not violate any scheduling rules, but they
conflict with some unmodified arrival and departure times.

In the first case, the modifications have conflicts among themselves. Rescheduling can
never succeed since, by definition, rescheduling should only attempt to adjust the unmod-
ified arrival and departure times. User modifications must be respected since they are
intended and produced by experienced train dispatchers. A rescheduling tool should just
inform users of such conflicts. In the second case, there are no direct conflicts among the
modifications. We can invoke rescheduling to attempt repairing the infeasible timetable.

2.2. Problem Statement

There are six types of scheduling rules [48] in our railway system: the speed rule, the
station occupancy rule, the station entry rule, the station exit rule, the line time rule, and
the stopover rule. Let there be two trains 1 and 2 and two adjacent stations A and B. The
variables ATXY and DTXY denote train Y ’s arrival and departure time at/from station X
respectively. The above scheduling rules can be modeled using the following scheduling
constraints.
The Speed Constraint

�lng/�ATA1−DTB1��≤ sp

The constant lng denotes the distance between station A and station B. This constraint
enforces that the average train speed when traveling between the two stations cannot
exceed sp.
The Station Occupancy Constraint

�DTA2+ ctr ≤ ATA1�∨ �DTA1+ ctr ≤ ATA2�

This constraint enforces that there are at least ctr time units between two trains’ occu-
pancy of a track.
The Station Entry Constraint

�ATA1−ATA2 ≥ cen�∨ �ATA2−ATA1 ≥ cen�

This constraint enforces that there are at least cen time units between two trains’ entrance
to a station via a line.
The Station Exit Constraint

�DTA1−DTA2 ≥ cex�∨ �DTA2−DTA1 ≥ cex�

This constraint enforces that there are at least cex time units between two trains’ departure
from a station via a line.
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The Line Time Constraints

��DTB1 <DTB2�∧ �ATA1 < ATA2��∨ ��DTB1 >DTB2�∧ �ATA1 > ATA2��

ATB1 < �DTB2− cenx�∨ATA2 < �DTA1− cenx�

The line time rule is split into two constraints. The first constraint enforces that no train
overtakes another train if they are traveling in the same direction on a line. The second
constraint enforces that if there are two journeys on a line in opposite directions, the line
must be unoccupied for at least cenx time units.
The Stopover Constraint

DTA1−ATA1 ≥ cst

This constraint enforces that a train stays in a station for at least cst time units.
Rescheduling. Due to unanticipated events, users of the running map tool might want

to modify the original valid timetable. Our work is to first check the feasibility of the
modified timetable. If it is feasible, the previous timetable is replaced by the modified
one. Otherwise, we reschedule the infeasible modified timetable to generate a feasible
new timetable. Note that efficiency should be a critical concern in designing the veri-
fication and rescheduling algorithms since in real-life situations, rescheduling must be
performed in a timely manner. The notion of “efficiency” may vary according to situa-
tions. Ten minutes, however, should be a tolerable bound in general [20].
Optimal solutions are not required usually. In most cases, it is impractical to generate

optimal solutions within a given (usually small) time bound. Criteria for optimality,
however, should be defined. Such definitions can serve as guidelines for designing various
variable-ordering and value-ordering heuristics to generate “good” answers. A precise
notion of optimality also enables us to measure the “quality” of the rescheduled timetable.
In the following, we present two optimality criteria.
A rescheduled timetable is minimum-delay optimal with respect to the original time-

table if the longest delay among all train visits is minimum. Let the tuples 
AT1�DT1� � � � ,
ATn�DTn� and 
AT ′

1�DT ′
1� � � � �AT

′
n�DT ′

n� denote the infeasible and the rescheduled
timetables respectively. The goal of this criterion is to minimize the following expression:

max�AT ′
1−AT1�DT ′

1−DT1� � � � �AT
′
n−ATn�DT ′

n−DTn��

Figure 2 shows three trains T1, T2� and T3 staying in the same station on three
different tracks. Suppose T1, T2� and T3 leave the station at 12:05, 12:10, and 12:15,
respectively. If the constant cex of the station exit rule is 5 minutes, the timetable does
not violate the station exit rule. However, if a user modifies the departure time of T1
to 12:10, then the station exit rule is violated and rescheduling is needed (Figure 3).
Figure 4 shows a minimum-delay optimal solution. The timetable does not violate the
station exit rule because no two trains would leave the station within any 5 minute
interval. Both T2 and T3 have been delayed 5 minutes. Therefore, the maximum delay
is 5 minutes in this case. To keep the station exit rule valid, it is obvious that we can
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Figure 2. Comparison of two optimal criteria: Original timetable.

find no other solutions in which all trains are delayed for less than 5 minutes. Hence,
Figure 4 has shown the minimum-delay optimal solution for this case.
With the minimum-delay optimal criterion, the maximum delay time is minimized but

more journeys will be affected. Users would prefer this criterion if they are concerned
more on minimizing the maximum delay time. Passengers may not mind the small delay
although more passengers are affected.
A rescheduled timetable is minimum-change optimal with respect to the original

timetable if the least number of station visits are modified. Figure 5 shows the minimum-
change optimal solution for the modification in Figure 3. The new timetable does not

Figure 3. Comparison of two optimal criteria: After modification.
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Figure 4. Comparison of two optimal criteria: Minimum-delay optimal.

violate the station exit rule because no two trains would leave the station within 5 minutes.
Since only one train T2 is delayed, the number of journeys changed is minimized.
This criterion can be satisfied easily in general since, in most cases, we can simply

delay the trains in question to the latest possible time. The resulting timetable, however,
may introduce unreasonably long delays to some train visits. Thus this criterion should
usually be applied with other criteria limiting the maximum delay.
The aims of these two criteria could contradict each other and represent the extremes

of a spectrum of other possible definitions of optimality.

Figure 5. Comparison of two optimal criteria: Minimum-change optimal.
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2.3. Constraint Programming

Real-world scheduling problems are combinatorial in nature. In its simplest form, schedu-
ling problems are no different from classical combinatorial problems such as graph color-
ings, N-queen puzzles and crypt-arithmetic problem. All of the problems involve solution
searching from a large search space under various kind of constraints [58]. These class of
problems are collectively called constraint satisfaction problems (CSPs). In this section,
we give a brief introduction to CSP, an overview of the constraint programming approach
to solving CSPs, and the available tools.

2.3.1 Features of Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is defined as a 3-tuple �Z�D�C�, where

• Z is a finite set of variables x1� x2� � � � � xn,

• D is a function mapping each variable x ∈ Z to a finite set of possible values called
the domain of x, and

• C is a finite set of constraints, each of which acts on a subset of variables in Z
restricting the possible combination of values that these variables can take.

A solution to a CSP is a consistent variable assignment so as to make all constraints sat-
isfied simultaneously. A naive solution for CSP is generate-and-test but it is grossly inef-
ficient. A more efficient approach is backtracking tree search, which essentially performs
a depth-first search [30] of the space of the potential CSP solutions. The performance of
backtracking, although better than generate-and-test, is still poor due to its thrashing [24]
behavior.
Constraint propagation, based on node/arc/path consistency techniques [2, 16, 39, 40,

42, 59], is a more sophisticated approach to tackle CSPs. In this approach, variables are
represented by nodes in a graph and binary constraints are represented by edges. During
constraint propagation along the edges, values are removed from the domains of the
nodes until each arc (constraint) is individually satisfiable. However, global satisfiability
is not guaranteed and searching is needed. Different constraint satisfaction algorithms are
obtained by combining tree searching and different degrees of constraint propagation [15,
23, 24, 26, 41, 44, 50].
Given a CSP, we first use a constraint propagation algorithm, such as the well-known

arc consistency algorithm AC-3 [39] as explained above, to attain a desired level of con-
sistency. If no solution or inconsistency is found, then one of the variables with domain
size larger than 1 is selected and a new CSP is created for each possible assignment
of this variable. These new CSPs become the successor of the current CSP. Repeating
this constraint propagation and domain enumeration process for each new CSP results in
possibly more new CSPs. All newly generated CSPs can be organized conveniently in
the form of a search tree with the original CSP as the root node. A standard backtracking
algorithm can be used to visit these nodes to search for solutions.
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We have two choices in the above tree search process: variable-ordering and value-
ordering. These orderings can affect the efficiency of the search strategies significantly.
Variable-ordering concerns which variable to instantiate next; whereas value-ordering
sets the order in which values in the domain of the chosen variable are tried. Variable-
ordering can greatly affect the branching factor and hence also the size of the resulting
search space. Value-ordering affects the ordering of branches in the search tree. This is
important when users are interested in obtaining the first solution of a CSP fast using
some form of depth-first search strategy. Therefore, various variable- and value-ordering
heuristics [4, 26], such as the first-failed principle, have been devised to speed up solving
of particular CSP instances. These heuristics are, however, usually problem and domain
specific.

2.3.2 Constraint Programming Tools

There are a wide variety of constraint programming languages and tools, such as Prolog
III [13], CLP(�) [28], and CHIP [19, 58]. These languages and tools, each differing in
its constraint domain and serving in different areas of applications, offer an expressive
and flexible language for problem specification and heuristics programming, allowing
rapid program development for complex problems and enabling programs to be easily
modified and extended. CSP-solving and scheduling are most related to CHIP and ILOG
SOLVER [52], the uniqueness of which come from their finite domain constraint-solving
capabilities. The idea underlying CHIP is to enhance Prolog with constraint propagation
techniques [39], which prunes the search space before performing tree search. ILOG
SOLVER [52] is a constraint programming language that merges constraint propaga-
tion techniques [39] and object-oriented programming. ILOG SOLVER is realized as a
C++ library that embodies such constraint logic programming concepts as logical vari-
ables, incremental constraint satisfaction, and backtracking. ILOG SCHEDULE [32],
built on top of ILOG SOLVER, is a library of specialized constraints for constraint-
based scheduling. CHIP and ILOG SOLVER have been applied successfully to solving
such industrial applications as car sequencing, disjunctive scheduling, graph coloring,
and firmware design. A fuller account of their applications can be found in [1, 17, 18,
33, 46, 47, 51, 58].

2.4. Related Work

Rescheduling is different from traditional scheduling in the sense that the possible solu-
tions of rescheduling are restricted by the original schedule. Zweben et al. [61] tackle
this problem using constraint-based iterative repair with heuristics. The resultant GERRY
scheduling and rescheduling system is applied to coordinate Space Shuttle Ground Pro-
cessing. Carey [6, 7] and Carey and Lockwood [8] tackle the problem using mathe-
matical programming techniques. Tsuruta and Matsumoto [57] and Schaefer [54] use a
knowledge-based approach and apply expert system technologies. Cheng [9] proposes a
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hybrid method of the network-based simulation and the event-driven simulation for effi-
ciently resolving resource conflicts in train traffic rescheduling in major automatic-block
districts of double-track railway lines.
Our work is also related to repair and rescheduling in other domains. Tsukada and

Shin [56] study the use of agent negotiation to recover from a disruption in a distributed
plan. The idea is to resolve, as much as possible, locally the problem of finding a res-
ponse to a disruption, in such a way that it will be least disruptives to other agents.
Wu et al. [60] formulate one-machine rescheduling as a multiple criteria optimization
problem. Sauer and Bruns [53] develop a generic framework using a knowledge-based
approach for building practical scheduling systems. The framework has been applied
to serious real-life problems in the manufacturing domain and an application in the
medical domain. Goldman and Boddy [25] introduce the constraint envelope scheduling
technique, a least-commitment and approximate reasoning approach to constraint-based
rescheduling. The least-commitment nature enables schedules to be updated more eas-
ily. However, the scheduler can no longer construct a single timeline representing, for
example, the change in resource availability over time. Instead, only the bounds on the
system’s behavior are computed. Crews_ns [43] is a system that addresses the long-
term scheduling of train crews at the Dutch Railways. The system adopts the white-box
approach, in the sense that the planner can perceive what is going on, can interact with
the system by proposing alternatives or querying decisions, and can adapt the behavior
of the system to changing circumstances. Crews_ns also uses extensive AI techniques,
such as abstraction to reduce problem details, a modified version of beam search [3]
with heuristics to explore the state space, and constraint satisfaction to reduce the state
space and to guide search. Our work is unique in that we formulate rescheduling also as
a constraint satisfaction problem and use simple variable-ordering heuristics to achieve
optimality.
Somewhat related to our work is train scheduling. Komaya and Fukuda [29] propose a

problem solving architecture for knowledge-based integration of simulation and schedul-
ing. Two train scheduling systems are designed in this architecture. Fukumori et al. [22]
use the tree search and constraint propagation technique with the concept of time belt
in their scheduling system. This approach is claimed to be suitable for double-track line
and continuous time unit. Recently, Chiang and Hau [10] have attempted to combine
repair heuristics with several search methods to tackle scheduling problems for general
railway systems.
There are two on-going projects that aim at automating train scheduling for real-

life railway ministries. Our work is a direct outgrowth of the PRaCoSy project [49] at
UNU/IIST. The latest PRaCoSy running map tool prototype uses constraints only pas-
sively to test for constraint violation in their verification engine. The Train Scheduling
System (TSS) designed for Taiwan Railway Bureau (TRB) [37] is a knowledge-based
interactive train scheduling system incorporating both an automatic and a manual sched-
uler. Users and the computer system are thus able to bring complementary skills to the
scheduling tasks.
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Figure 6. The timetable verification algorithm.

3. Timetable Verification

Timetable verification is the process of examining whether a given modified timetable is
valid with respect to the set of scheduling rules. Timetable verification is invoked in two
occasions. First, when a (modified) timetable is read into the system, it is verified to see
if any scheduling rules have been violated. Second, a user might invoke verification any
time after he has modified a timetable.
In the following, we describe a timetable verification algorithm, which examines if a

given timetable is valid with respect to a set of scheduling constraints. Violated schedul-
ing rules (or constraints) in an invalid timetable will be located and displayed to the user.
The algorithm, shown in Figure 6, assumes the existence of a sound propagation-based
constraint solver [39] propagate().
The input timetable T can be viewed as a set of constraints of the form X = a, where

X is a variable, denoting either an arrival or a departure time of a station visit, and a
is a constant. The verification algorithm considers each of the scheduling constraints in
turn and identifies the violated constraints by making use of the propagate() routine.
Since all variables in T are ground, the verification process propagate(T ∪�c) virtually
becomes a simple substitute-and-test process. Note that we have the assumption that the
timetable before user modification is feasible; hence, only the constraints which are
related to the modified journeys can possibly be violated. These constraints usually form
a very small subset of C. As an optimization, only these constraints will be checked in
line 6.

4. Rescheduling as Constraint Satisfaction

Scheduling is a well-known instance of constraint satisfaction problems. In the following,
we show that rescheduling can also be formulated as a constraint satisfaction problem.
Given a timetable T , users modify T by adjusting its arrival and departure times, obtain-
ing a new timetable T ′. If T ′ is invalid, the rescheduling process attempts to repair T ′

to make it feasible. By repairing, we mean adjusting only the values of the unmodified
variables so that (1) the timetable becomes valid again and (2) the new timetable T ′

is reasonably “close” to the original timetable T . By being close to T , we mean that
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the new timetable should cause the least service disruptions. Example optimality criteria
are given in Section 2. Note that user-modified variables must be kept fixed during the
rescheduling process since the modifications represent the dispatcher’s requirements.
Given the task of rescheduling, we can construct a constraint satisfaction problem

as follows. The variables are the arrival and departure times of the new timetable T ′.
Each of these variables has the integer domain �0� � � � �1439.2 There are four types of
constraints in the rescheduling problem, namely:

1. Scheduling constraints: the scheduling constraints set forth in Section 2.

2. Stopover-maintenance constraints: for the arrival time AT and departure time DT of
each station visit, we have the constraint DT −AT ≥ OWT , where OWT denotes
the waiting time of the station visit in the old timetable before rescheduling. These
constraints enforce that every train will stay in the station no less than its original
waiting time.

3. Modification constraints: for each arrival or departure time X modified by user to
new value t, we have the equality constraint X = t. This constraint enforces the user
modifications to stay fixed during rescheduling.

4. Forward-labeling constraints: for each unmodified variable X with value t in the
original timetable T , we have the constraint X ≥ t. This constraint is necessary to
ensure that we can only delay arrival or departure time.

Rescheduling is equivalent to finding a solution to the constraint satisfaction problem as
specified. A solution is optimal if the solution is “closest” to the original timetable.
We are now ready to present the rescheduling algorithm, shown in Figures 7 and 8.

The algorithm can be divided into three phases. In phase one (line 4), we post and prop-
agate all scheduling constraints to prune infeasible values in the variables. The pruned
constraint network is then saved in S0. Actual rescheduling takes place in the procedure
modify() (lines 17–47). In the second phase (lines 20–36) of rescheduling, information

Figure 7. The train rescheduling algorithm.
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Figure 8. The train rescheduling algorithm (continued).

is extracted from user modifications and the original timetable to post and propagate
the modification constraints (lines 23–28) and the forward-labeling constraints (lines
29–36). If inconsistency is found, rescheduling is halted and failure is reported. In the
third phase (lines 37–47), variables that are not modified by the users (extracted by
the vars() function) are enumerated using some form of variable- and value-ordering
heuristics (embedded in the labeling() function) to speed up and direct the search
towards an optimal solution.
There are two situations in which user modifications can lead to a non-repairable

timetable T ′. First, since user-modified variables must be kept fixed during rescheduling,
it is impossible to repair other variables to make the timetable valid if the user mod-
ifications are self-contradicting. Second, if user modifications are not self-conflicting,
there might still be no room for other variables to adjust to make the timetable valid.
Constraint propagation algorithms are well-known to be incomplete [39]. Thus, phase
two of the rescheduling algorithm can detect some, but not all, of this kind of con-
flicts. Theoretically speaking, the enumerating procedure in phase three can guarantee
to detect inconsistency but it would usually take impractically long to do so. In cases
when the rescheduling algorithm fails to return an answer within “a few” minutes, users



A CONSTRAINT-BASED INTERACTIVE TRAIN RESCHEDULING TOOL 181

are advised to abort the current computation, re-adjust the modifications, and restart the
rescheduling process. The meaning of a few minutes usually depends on the patience
of the particular train dispatchers and the urgency of the situations although, as stated
before, a good upper bound for each run is ten minutes [20]. This iterative adjustment
process appears to be a trial-and-error approach, but an experienced train dispatcher can
usually finish the process within the allowed time limit.
The correctness of the rescheduling algorithm can be concluded by proving both the

algorithms in Figures 7 and 8 correct. The formal proofs appear in [12]. We give the
informal reasoning as follows. The goal of the algorithm in Figure 7 is to accept user
modifications, which are in turn passed to the algorithm in Figure 8 for revising the
timetable if possible. The algorithm in Figure 7 consists of a propagate() function
and a non-terminating loop (lines 7–16). The propagate() function, which performs
constraint propagation, is for improving efficiency and does not affect the correctness of
the algorithm. The while-loop serves the purpose of accepting user modifications and
passing them to the core procedure modify().
The procedure modify() takes as input a feasible timetable T , a propagated constraint

store S0 of the scheduling constraints C, and a user modification U . It either returns a
rescheduled timetable R satisfying all the constraints C and U as well as the forward-
labeling constraints, or R= fail if no such rescheduled timetable exists. Recall that T
is a set of constraints over all variables and is in solved form (that is, in the form of
X = t where X is a variable and t a constant, and no variable appears in more than one
constraint).
Now consider the rescheduling algorithm in Figure 4. The routine reschedule()

takes as input a set C of rescheduling constraints and a solution T to C. It repeatedly
accepts user modifications and reschedules the timetable accordingly. In a sense the user
modifications are “accumulated” in successive rescheduling.

5. Heuristics

Since the rescheduling problem is NP-hard in general, generating optimal solutions is
usually too time-consuming to afford. We are thus interested in sub-optimal solutions
which have few service disruptions. In this section, we present two variable labeling
heuristics, which are designed to yield rescheduled timetables in the minimum-delay and
the minimum-change optimal sense respectively.

5.1. Smallest-First Principle

The smallest-first principle is designed towards generating a minimum-delay optimal
timetable. Variables are first sorted in ascending order using the lower bound of their
respective domains as key. Variables are then labeled according to the sorted order. Note
that this is a static variable selection strategy since sorting is performed only once before
labeling process begins. In labeling a variable, values are chosen using the standard
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smallest-value-first ordering. This principle is founded on the assumption that a short
delay on a train visit will cause a short delay on the subsequent one. In other words,
delays are propagated in a monotonic fashion.
Figure 9 shows a valid timetable before rescheduling. A user modifies a journey

(Figure 10) and some variables violate the scheduling rules. The timetable becomes
invalid. Rescheduling with the smallest-first principle, variables are instantiated in ascen-
ding order of its value (Figure 11). In this case, eight variables of four journeys need to
be changed. All of them need to be delayed 3 minutes (Figure 12). Therefore, the maxi-
mum delay is 3 minutes in this case. The smallest-first principle gives the minimum-delay
optimal solution in this case.
Experimental results confirm that, using actual timetables from PRaCoSy, this heuris-

tic usually helps to generate solutions that are minimum-delay optimal efficiently. We
construct below an unrealistic artificial example that defeats the heuristic.
Figure 13 shows a small segment of four journeys on a railway running map. The

three journeys A, B, and C share the same track in Nanjing station, while the two
journeys C and D take the same line in traveling from Nanjing to Longtan. Suppose a
train dispatcher modifies journeys A and D (indicated by thick lines). Suppose further
the station occupancy and the station exit rules enforce that at least ten minutes among
each of the three points A, B, and C, and sixty minutes between the points C and D
respectively. The dispatcher’s modifications make the timetable infeasible since there is
now insufficient time lag between journeys A and B.

Figure 9. Smallest-first principle: Original timetable.
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Figure 10. Smallest-first principle: After modification.

Figure 11. Smallest-first principle: Rescheduling.
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Figure 12. Smallest-first principle: Result generated.

Figure 14 shows the rescheduled timetable obtained using the smallest-first principle.
The rescheduling starts from moving point B ahead in time to achieve the ten-minute
requirement between points A and B. The movement in turn causes another conflict
between points B and C. Point C is thus forced to move. However, there is no feasible
location for point C to move between points B and D since point D is fixed by the user.
Therefore, we have to move point C one-hour ahead of point D. The maximum delay in
this case is two hours. This solution is not optimal since a better solution can be obtained
by simply moving point B twenty minutes ahead in time, as shown in Figure 15.

Figure 13. A non-optimal solution by smallest-first heuristic: Before rescheduling.
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Figure 14. A non-optimal solution by smallest-first heuristic: After rescheduling.

5.2. Consistent-Assignment-First Principle

This heuristic aims to maintain as many variables with its original value as possible.
First, variables are partitioned into two groups: non-conflicting variables and conflicting
variables. Non-conflicting variables (nonCONF) are the ones whose values in the original
timetable do not contradict the modifications imposed by the users directly. The other
variables are conflicting (CONF). The partitioning process is performed by examining
each variable in turn and testing whether the variable conflicts with the user modifica-
tions. For efficiency reason, we further classify the non-conflicting variables into two
groups. The first group nonCONFshare contains variables that share journeys with one
of the conflicting variables. The second group nonCONFnoShare contains the rest of the
non-conflicting variables.
The consistent-assignment-first heuristic suggests labeling variables in the following

order: (1) the nonCONFnoShare variables, (2) the CONF variables, and (3) the nonCONFshare

variables. Within each of the three groups, variables are sorted into ascending order and
labeled according to the lower bound of their respective domains, as in the smallest-first
heuristic. Again, partitioning and sorting are performed only once before labeling begins.
The idea of the heuristic is to label first those variables that can be instantiated with

its time value in the original timetable, and backtrack into these variables last. The
nonCONFnoShare variables are the most plausible to retain their values in the original
timetable. Although the nonCONFshare variables are also non-conflicting, they are likely
to have their values changed since they share journeys with CONF variables, the values
of which must be changed. Thus, if the nonCONFshare variables are labeled early, a large
amount of backtracking will be induced when the CONF variables are labeled. Since the
new values of the CONF variables will directly affect the new values of the nonCONFshare

variables, we label the CONF variables before the nonCONFshare variables.

Figure 15. A smallest-delay-optimal solution.
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Again, in labeling a variable, values in the variable domains are enumerated using
the standard smallest-value-first ordering. This heuristic directs searching towards a
minimum-change optimal solution. Note that a non-conflicting variable may still be
instantiated with a value other than its original value eventually if the conflicting vari-
ables have tried all possible combination of time values and no solution is found.
Figure 16 shows the modified timetable before rescheduling. Note that this timetable

is the same as that in Figure 10. The rescheduling process first divides all variables into
three groups. All variables on journeys K3�K4 and K5 are in nonCONFnoShare. Therefore,
they should be instantiated first. This step tries to minimize the number of journeys
moved, and thus moves towards a minimum-change optimal solution. There is only one
conflicting (CONF) variable, the arrival time at Danyang of K2. All other variables on the
journey K2 are in nonCONFshare sharing the same journey with the conflicting variable.
Therefore, we first instantiate the conflicting variable. Unfortunately, the earliest position
that it can be placed without violating the scheduling rules is 5:40. Once the conflicting
variable is instantiated to 5:40, all other variables on the same journey should also be
delayed. From this example, we can see that backtracking is required if we instantiate
the non-conflicting variables of K2 before the conflicting variable. And thus, our variable
ordering can improve the efficiency in this case. From Figure 17, we can see that the
solution generated by the consistent-assignment-first principle delays just one journey. It
is obvious that this is the minimum-change optimal solution. Note, however, that there
is no guarantee for the heuristic to generate an optimal solution in every test case.

Figure 16. An optimal solution by consistent-assignment-first heuristic: Before rescheduling.



A CONSTRAINT-BASED INTERACTIVE TRAIN RESCHEDULING TOOL 187

Figure 17. An optimal solution by consistent-assignment-first heuristic: After rescheduling.

Again, we apply this heuristic to reschedule the infeasible timetable in Figure 13.
Recall that points A and D are fixed by the users. We classify the variables associated
with point B and point C as conflicting and non-conflicting respectively. Thus point C
is labeled first to retain its original position in the map and point B is forced to move
until it reaches the location ten minutes ahead of point C. In this specific case, the
minimum-change optimal solution coincides with the minimum-delay optimal solution.
This example also shows that, in general, the two heuristics give different first solutions.

5.3. Comparison with Standard Heuristics

We compare our heuristics with two commonly used variable labeling heuristics: small-
est-domain-first and most-constrained-first, both of which are direct application of the
fail-first principle [26]. The smallest-domain-first heuristic selects the variable with the
smallest domain at every labeling step; while the most-constrained-first heuristic picks
the variable that is in the most number of constraints. For the small example in Figures 9
and 10, both the smallest-domain-first and the most-constrained-first heuristics produce
the same answer as the consistent-assignment-first principle coincidentally. Using real
timetables and more complex user-modifications, however, the smallest-domain-first and
most-constrained-first heuristics almost always give worse answers than our proposed
heuristics in both the minimum-delay and minimum-change optimal senses. In only a
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small number of cases, these commonly used heuristics give the same answers as one
of our heuristics, but the behavior is unpredictable. For example, the smallest-domain-
first heuristic gives the same answer as our smallest-first heuristic in one case and gives
the same answer as our consistent-assignment-first heuristic in another. These results
can be expected since the smallest-domain-first and the most-constrained-first heuristics
are designed for increasing search efficiency but not for achieving solution stability in
any sense. In terms of search efficiency, we observe no substantial discrepancy between
the two classes of heuristics although the fail-first heuristics are sometimes quicker in
finding a solution. To conclude the comparison, we analyze the characteristics of the four
heuristics in the following.
The smallest-first principle orders the variables using the chronology of station visits.

The idea is to label the station visits in time-increasing order. Thus, variables of station
visits with original time (lower bound of variable domains) immediately after the user
modifications are labeled earlier. This heuristic has no direct relationship with variable
domain size or constrainedness of variables. Given the fact that variables corresponding
to station visits later in the day usually3 have smaller domain size. The smallest-first
principle can be approximated by the largest-domain-first heuristic, which always labels
variables with the largest domain first. However, the smallest-first principle, employing
only a static variable ordering, is more efficient than the largest-domain-first heuristic,
which incurs overhead in maintaining variable ordering dynamically at every labeling
step.
The consistent-assignment-first principle orders variables according to the degree of

conflict of the variables’ original values with the user modifications. The partitioning of
variables depends on the distribution and the number of user modifications in the train
timetable, as well as the scheduling constraints of the problem. Again, this heuristic has
little relationship with variable domain size or constrainedness of variables.
The smallest-domain-first heuristic depends only on the size of the variable domains.

As stated, variables corresponding to station visits later in a day usually have a smaller
domains (although a variable corresponding to an arrival time usually has a smaller
domain than the variable corresponding to the arrival time of the same station visit due
to the stopover constraint). Thus, the smallest-domain-first heuristic labels variables in
almost the opposite order of the smallest-first principle does.
The most-constrained-first heuristic depends on the number of constraints that each

variable is involved in. In the rescheduling problem, each unmodified variable must be
involved in a stopover-maintenance constraint, a forward-labeling constraint, a speed
constraint, and a stopover constraint. Variables can be in different number of station
occupancy constraints, station entry/exit constraints, and line time constraints. These
constraints exist only if two trains share either a line or a track in a station. Effectively,
the most-constrained-first heuristic order variables using the topology of train routing. It
has no direct relationship with either the scheduling constraints or the user modifications.
In addition, both our heuristics enforce a static ordering of variables, which is deter-

mined at the start of the labeling process. The most-constrained-first heuristic adopts
also a static ordering but it depends on the topology of the constraint graph of the CSP
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being solved. In the smallest-domain-first heuristic, variable ordering changes dynami-
cally according to the change in variable domain sizes effected by constraint propagation,
which incurs a higher cost.
In conclusion, the standard fail-first heuristics described are designed as a generic

heuristics for efficiency and takes no specific features of the rescheduling problem into
account, while our heuristics are designed towards achieving the optimality criteria. The
two classes of heuristics differ in purposes and thus also in behavior.

6. Prototype Implementation

In order to demonstrate the feasibility of our algorithms, we have re-constructed and
enhanced the PRaCoSy running map tool prototype [38] with rescheduling capability.
The prototype consists of a constraint-based scheduler and a user-interface. The former
is implemented in C++ with ILOG Solver library 2.0 [27] while the latter is built using
Microsoft Visual Basic 3.0.
In the following, an overview of the running map tool is presented. We then give

a sample session of our tool using a segment of the China railway. The rescheduled
timetables generated by the two heuristics are explained. Two examples, to which our
tool fails to respond in a timely manner, are shown.
The running map display (Figure 18) consists of six columns (regions). Column one

and column four show the abbreviated identifiers of stations. Column two shows the

Figure 18. The running map tool.
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number of arrival and departure lines of stations. Column three is the main window for
presenting the graphical representation of a timetable, with time and locations as the X
and Y axes respectively. Column five shows the cumulative distance from the first station.
Column six shows the distance between the current station and the previous station. In
the cases where a timetable is too large to fit into the main window, two scrollbars are
enabled.
A user can click-and-drag any lines to modify the corresponding train visits on the

map. The modified timetable is validated using the verification algorithm when the
“Check” button is pressed. If it is infeasible, a warning window, such as that shown
in Figure 19, will pop up to display all constraint violations. At this point, the user can

Figure 19. A warning window.
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either invoke the rescheduling algorithm by pressing the “Reschedule” button, correct
the modifications manually, or restore the original feasible timetable.
Figure 20 shows the segment from Nanjingxi to Shanghai of a China railway timetable,

which amounts to 3307 constraints and 604 variables. Due to an accident, we have to
delay the train departing from Zhenjiang at 0:03 to 3:30, yielding the map shown in
Figure 21. The user-modified departure time (pointed by an arrow) and all the subsequent
train visits on the journey (the highlighted segment) are then fixed immediately by the
running map tool. This user movement incurs seven constraint violations between the
modified journey and its left adjacent journey. We reschedule the infeasible timetable
with our two heuristics. Both of them succeed in generating a feasible timetable within
ten seconds. Figures 22 and 23 show the rescheduled timetable generated using the
smallest-first principle and the consistent-assignment-first principle respectively.
Applying the smallest-first principle, we process all visits on the map from the left

(earliest) to the right (latest). For each visit, if its associated arrival (or departure) time
does not violate any scheduling constraints, we preserve the current value. Otherwise,
we move the time ahead as little as possible to eliminate the inconsistencies. Thus
some visits on a journey may be modified while others remain unchanged. This explains
why, visually, a journey is not only shifted right horizontally, but can also be “bent”
by the rescheduling process. The movement propagates in the above fashion from left
to right. Whenever no further movements are possible, backtracking takes place. In the

Figure 20. A comparison of two heuristics: Original feasible timetable.
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Figure 21. A comparison of two heuristics: Modified infeasible timetable.

Figure 22. A comparison of two heuristics: Smallest-first principle.
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Figure 23. A comparison of two heuristics: Consistent-assignment-first principle.

rescheduled timetable, two journeys have been moved and the maximum delay among
all the station visits is 90 minutes.
Instead of massaging several journeys to produce a feasible timetable, the consistent-

assignment-first principle suggests to modify as few station visits as possible. This goal
can be well approximated by first locating station visits that can remain unchanged with
respect to the user modifications. These station visits are labeled first. The conflicting
variables, having to change their original values, are labeled last. Our experiments reveal
that, in many cases, this heuristic produces a timetable which is “almost identical” to
the original timetable. As seen in Figure 23, most of the journeys retain their origi-
nal locations. Even for the right-shifted journey, its shape is mostly preserved. In the
rescheduled timetable, only one journey has been moved. The maximum delay among
all the station visits, however, is 116 minutes, which is greater than that generated by
the smallest-first-principle.
Experimental results confirm that rescheduling can usually be completed within sec-

onds. This is not always the case. Figures 24 and 25 provide two such examples. The
infeasible timetable in Figure 24 can be rescheduled using the consistent-assignment-first
principle in a few seconds, but the smallest-first principle fails to return an answer within
five minutes. Figure 25 is simply a non-repairable timetable. Neither heuristic can return
promptly to confirm the unsolvability of the problem.
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Figure 24. Poor performance examples: Infeasible timetable 1.

Figure 25. Poor performance examples: Infeasible timetable 2.
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7. Concluding Remarks

The contribution of this paper is three-fold. First, we define formally train reschedul-
ing as a constraint satisfaction problem. Algorithms for railway timetable verifications
and rescheduling are then derived respectively based on a propagation-based constraint
solver. We define two optimality criteria, which are used to measure the “quality” of the
rescheduled timetable. It is important to note that the optimality criteria are defined with
respect to the original timetable. Second, based on the domain knowledge learned from
domain analysis, we propose two heuristics to speed up and direct the search towards
minimum-delay optimal and minimum-change optimal solutions respectively. The feasi-
bility of our proposed algorithms and heuristics are confirmed with experiments using
real-life data. Third, we have re-constructed and enhanced the PRaCoSy running map
tool prototype.
Interesting future work includes studying different stochastic methods, such as GENET

[14, 55] and E-GENET [34, 35, 36], for train rescheduling. We could also look at the
possibility of accepting partial solutions [5, 21, 55] in the cases where neither heuristic
is able to provide solutions. Work is also in progress to experiment our rescheduling
method on larger-scale real-life railway timetables.

Acknowledgment

We acknowledge, with pleasure, the interaction we have had with Fellows and Staff of
UNU/IIST, the United Nations University, International Institute for Software Technol-
ogy, Macau. In particular, we are indebted to Dines Bjørner for inviting our participation
in the PRaCoSy project. We also had numerous fruitful discussion and working sessions
with Søren Prehn, Chris George, Yulin Dong, Liansuo Liu, and Dong Yang. Last but
not least, we thank the anonymous referees of the Second International Conference on
Principles and Practice of Constraint Programming and the Constraints Journal for their
constructive comments, which help to improve the final version of the paper.

Notes

1. A running map is a method of monitoring the movement of trains and rescheduling their arrivals and
departures to satisfy operational constraints.

2. There are 1440 minutes in 24 hours.

3. This is not always true since the domain size of a variable also depends on the duration of a station
stopover and the enforcement of the stopover constraint.
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