
Model Induction: a New Source of CSP Model Redundancy

Y.C. Law and J.H.M. Lee
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong SAR, China

{yclaw,jlee}@cse.cuhk.edu.hk

Abstract

Based on the notions of viewpoints, models, and channeling
constraints, the paper introduces model induction, a system-
atic transformation of constraints in an existing model to con-
straints in another viewpoint. Meant to be a general CSP
model operator, model induction is useful in generating re-
dundant models, which can be further induced or combined
with the original model or other mutually redundant models.
We propose three ways of combining redundant models using
model induction, model channeling, and model intersection.
Experimental results on the Langford’s problem confirm that
our proposed combined models exhibit improvements in effi-
ciency and robustness over the original single models.

Keywords: CSP, Problem Formulation, Model Redundancy

Introduction
The task at hand is to tackle Constraint Satisfaction Prob-
lems (CSPs) (Mackworth 1977), which are, in general, NP-
hard. Much CSP research effort focuses on designing gen-
eral efficient (systematic or local) search algorithms for solv-
ing CSPs, and exploiting domain-specific information to
solve particular applications efficiently. A recent important
line of research in the community investigates how problem
formulation and reformulation affect execution efficiency of
constraint-solving algorithms. Freuder (1997) lists problem
modeling among the seven most important future directions
of constraint research.

Selecting the most appropriate formulation or model for
a problem is difficult in general. In fact, no objective and
general notions of the “best” formulation exist to date. Dif-
ferent formulations of a problem do not compete. Cheng et
al. (1999) introduce channeling constraints and present how
these constraints can be used to connect mutually redun-
dant CSP models to enhance constraint propagation in tree
search. In this paper, we give another use of channeling con-
straints, namely to use them in generating additional model
of a CSP through a process called model induction. Before
we can present model induction, we define CSP models for-
mally based on the notion of CSP viewpoints. We differenti-
ate two different kinds of mutually redundant models, those
sharing and those not sharing the same viewpoint. We give

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

three ways of combining the newly generated induced model
with their redundant counterparts. To demonstrate the fea-
sibility of our proposal, we compare our combined models
against (1) the original models and (2) the redundant models
proposed by Cheng et al. (1999) using the Langford’s prob-
lem, which can be formulated as a Permutation CSP. We
demonstrate improvement in terms of execution efficiency,
number of failures, and robustness.

From Viewpoints to CSP Models
There are usually more than one way of formulating a prob-
lem P into a CSP. Central to the formulation process is to
determine the variables and the domains (associated sets of
possible values) of the variables. Different choices of vari-
ables and domains are results of viewing the problem P from
different angles/perspectives. We define a viewpoint1 to be a
pair (X, DX), where X = {x1, . . . , xn} is a set of variables,
and DX is a function that maps each x ∈ X to its associated
domain DX(x), giving the set of possibles values for x.

A viewpoint V = (X, DX) defines the possible assign-
ments for variables in X . An assignment in V (or in U ⊆ X)
is a pair 〈x, a〉, which means that variable x ∈ X (or
U) is assigned the value a ∈ DX(x). A compound as-
signment in V (or in U ⊆ X) is a set of assignments
{〈xi1 , a1〉, . . . , 〈xik

, ak〉}, where {xi1 , . . . , xik
} ⊆ X (or

U) and aj ∈ DX(xij) for each j ∈ {i1, . . . , ik}. Note the
requirement that no variables can be assigned more than one
value in a compound assignment. A complete assignment
in V is a compound assignment {〈x1, a1〉, . . . , 〈xn, ak〉} for
all variables in X .

When formulating a problem P into a CSP, the choice of
viewpoints is not arbitrary. Suppose sol(P) is the set of all
solutions of P (in whatever notations and formalism). We
say that viewpoint V is proper for P if and only if we can
find a subset S of the set of all possible complete assign-
ments in V so that there is a one-one mapping2 between S

1Geelan (1992) used the notion of viewpoint loosely and infor-
mally without actually defining it.

2A problem can contain identical objects, in which case we have
to apply artificial markings to the objects to help differentiating
these objects before we can model the problem as a CSP. We as-
sume that the problem objects are already appropriately marked, if
necessary, before we talk about such a mapping.

54 AAAI-02

and sol(P). In other words, each solution of P must corre-
spond to a distinct complete assignment in V . We note also
that according to our definition, any viewpoint is proper with
respect to a problem that has no solutions.

A constraint c in V has two attributes. The signature
sig(c) ⊆ X defines the scope of c, while rel(c) is the re-
lation of c. For the purpose of this paper, we assume that
rel(c) is stored explicitly as a set of incompatible assign-
ments in sig(c). Suppose sig(c) = {xi1 , . . . , xik

}. An in-
compatible assignment {〈xi1 , a1〉, . . . , 〈xik

, ak〉} for c is a
compound assignment in sig(c) that makes c false. Other-
wise, it is a compatible assignment. It has the logical mean-
ing that ¬((xi1 = a1) ∧ . . . ∧ (xik

= ak)). Therefore a
constraint check amounts to a set membership check against
rel(c). We abuse terminology by saying that the incompat-
ible assignment {〈xi1 , a1〉, . . . , 〈xik

, ak〉} also has a signa-
ture: sig({〈xi1 , a1〉, . . . , 〈xik

, ak〉}) = {xi1 , . . . , xik
}.

A CSP model M (or simply model hereafter) of a prob-
lem P is a pair (V, C), where V is a proper viewpoint of P
and C is a set of constraints in V for P . Note that, in our
definition, we allow two constraints to be on the same set of
variables: ci, cj ∈ C and sig(ci) = sig(cj). We can project
a compound assignment θ in U onto U ′ ⊆ U using:

πU ′(θ) = {〈x, a〉 |x ∈ U ′ ∧ 〈x, a〉 ∈ θ}.

A solution of M = (V, C) is a complete assignment θ in
V so that πsig(c)(θ) �∈ rel(c) for each c ∈ C. Since M is
a model of P , the constraints C must be defined in such a
way that there is a one-one correspondence between sol(M)
and sol(P). Thus, the viewpoint V essentially dictates how
the constraints of P are formulated (modulo solution equiv-
alence).

Suppose M1 and M2 are two different models of the same
problem P . By definition, there exists a one-one mapping
between sol(M1) and sol(M2). We say that M1 and M2

are mutually redundant models. As we shall see, it is possi-
ble for mutually redundant models M1 and M2 to share the
same viewpoint. In that special case, it is easy to verify that
sol(M1) = sol(M2).

Model Induction
In this section, we introduce model induction: a method
for systematically generating a new model from an existing
model, using another viewpoint and channeling constraints.
The resulting model is called an induced model. The core
of model induction is a meaning-preserving transformation
for constraints, both implicit and explicit, from one model
to constraints in another viewpoint. In the following, we de-
scribe channeling constraints, construction and properties of
induced models, and a detailed example.

Channeling Constraints
Given two models M1 = ((X, DX), CX) and M2 =
((Y,DY), CY). Cheng et al. (1999) define a channeling
constraint c to be a constraint, where sig(c) �⊆ X , sig(c) �⊆
Y , sig(c) ⊆ X ∪ Y , and c �∈ CX ∪ CY . Thus, c relates
M1 and M2 by limiting the combination of values that their
variables can take. Cheng et al. show how a collection of

channeling constraints can be used to connect two mutually
redundant models of the same problem to form a combined
model, which exhibits increased constraint propagation and
thus improved efficiency.

We note in the definition that the constraints in the two
models are immaterial. Channeling constraints relate actu-
ally the viewpoints of the models. In other words, channel-
ing constraints set forth a relationship between the possible
assignments of the two viewpoints. Not all arbitrary sets
of channeling constraints can be used in model induction.
Given viewpoints V1 = (X, DX) and V2 = (Y,DY). A
necessary condition is that the set of channeling constraints
between V1 and V2 must collectively define a total and injec-
tive function f from the possible assignments in V1 to those
in V2:

f : {〈x, a〉 |x ∈ X ∧ a ∈ DX(x)}
→ {〈y, b〉 | y ∈ Y ∧ b ∈ DY (y)}

In other words, f maps every assignment in V1 to a unique
assignment in V2.

Induced Models
Given a model M = ((X, DX), CX), a viewpoint (Y,DY),
and a set of channeling constraints defining a total and injec-
tive function f from the possible assignments in (X, DX) to
those in (Y, DY). We note that a CSP M contains two types
of constraints: the explicit constraints as stated in CX and
the implicit constraints on variable assignments. The lat-
ter type of constraints can be further broken down into the
restriction that (1) each variable must be assigned a value
from its associated domain and (2) each variable cannot be
assigned more than one value from its domain. The idea
of model induction is to transform the constraints in model
M , both implicit and explicit, using f to constraints CY in
viewpoint (Y, DY), yielding the induced model i(f,M) =
((Y,DY), CY). We show further that if M is a model for
problem P and (Y, DY) is also a proper viewpoint of P ,
then M and i(f, M) are mutually redundant.

• Stated Constraints The first type of constraints to trans-
form is the constraints stated in CX . Recall that a con-
straint c consists of a signature and a relation, which is
simply a set of incompatible assignments for c. We apply
f on the assignments in each incompatible assignments of
all constraints in CX , and collect the transformed assign-
ments in a set SY :

SY = {{f(〈xi1 , a1〉), . . . , f(〈xik
, ak〉)} |

c ∈ C ∧ {〈xi1 , a1〉, . . . , 〈xik
, ak〉} ∈ rel(c) ∧

cmpd({f(〈xi1 , a1〉), . . . , f(〈xik
, ak〉)}, (Y,DY))}

where the predicate cmpd ensures that the set of assign-
ments θ = {f(〈xi1 , a1〉), . . . , f(〈xik

, ak〉)} forms a com-
pound assignment in (Y,DY). It is indeed possible for θ
not being a compound assignment with, say, f(〈xiu , au〉)
and f(〈xiv , av〉) being 〈y, bu〉 and 〈y, bv〉, where y ∈ Y
and bu �= bv . Since we are transforming incompatible as-
signments from (X, DX), the information conveyed in θ,
including the restriction that the variable y cannot be as-
signed values bu and bv simultaneously, is correct. In fact,

AAAI-02 55

this information is already satisfied implicitly in view-
point (Y,DY) so that we can ignore/discard θ.

• No-Double-Assignment Constraints Implicit in a CSP
formulation, each variable should be assigned exactly one
value. Part of this restriction can be translated to the re-
quirement that no variables can be assigned two values
from its domain at the same time. This corresponds to
a set of (invalid) incompatible assignments of the form
{〈x, a〉, 〈x, b〉} for all x ∈ X and all a, b ∈ DX(x),
which is satisfied implicitly and not represented in M .
Their transformed counterparts, however, are needed in
(Y, DY). We apply f on all these assignment sets, and
collect the transformed assignments in a set NY :

NY =
⋃

x∈X {{f(〈x, a〉), f(〈x, b〉)} |
a, b ∈ DX(x) ∧ a �= b ∧
cmpd({f(〈x, a〉), f(〈x, b〉)}, (Y,DY))}

• At-Least-One-Assignment Constraints The other part
of the implicit variable constraint in M can be trans-
lated to the requirement that each variable must be as-
signed at least a value from its domain. This corresponds
to the constraints

∨
b∈DX(xi)

xi = b for all xi ∈ X ,
which are satisfied implicitly and not represented in M .
The other problem is that this unary constraint does not
have any incompatible assignments. For each variable
xi ∈ X , we first apply f to every possible assignment
of xi. Suppose DX(xi) = {b1, . . . , br}, f(〈xi, b1〉) =
〈yk1 , v1〉, . . . , f(〈xi, br〉) = 〈ykr , vr〉. These assign-
ments form the compatible assignments of a constraint in
{yk1 , . . . , ykr}. Using the closed world assumption, we
compute the incompatible assignments by collecting all
compound assignments θ with signature {yk1 , . . . , ykr

}
such that every individual assignment in θ is not equal to
〈ykj

, vj〉 for all j ∈ {1, . . . , r}:

AY =
⋃

x∈X {θ |DX(x) = {b1, . . . , br} ∧
∀j ∈ {1, . . . , r} · [f(〈x, bj〉) = 〈ykj , vj〉]
∧ θ = {〈yw1 , a1〉, . . . , 〈yws

, as〉} ∧
cmpd(θ, (Y,DY)) ∧
sig(θ) = {yk1 , . . . , ykr} ∧
∀i ∈ {1, . . . , s},∀j ∈ {1, . . . , r} ·

[〈ywi , ai〉 �= 〈ykj , vj〉]}

We note that the incompatible assignments in a constraint
c ∈ CX may be transformed to contribute to the incom-
patible assignments of more than one constraint in (Y,DY).
Thus SY ∪NY ∪AY consists of all the induced incompatible
assignments with different signatures in (Y,DY). The next
step is to extract incompatible assignments with the same
signature from SY ∪ NY ∪ AY and group them into a con-
straint in (Y,DY). Thus,

CY = {c | sig(c) ⊆ Y ∧ rel(c) = σsig(c)(SY ∪NY ∪AY) �= ∅},
where σU (Θ) = {θ | θ ∈ Θ ∧ sig(θ) = U}.

Due to limitation of space, we state without proof an
important consequence of model induction: the transforma-
tion of incompatible assignments is meaning-preserving. In

other words, if M is a model for problem P and the view-
point of the induced model is proper with respect to P , then
the induced model is also a model for P .

Theorem 1 If M = (V1, C1) is a model for problem P , and
V2 is a proper viewpoint of P , then M and i(f,M) are mu-
tually redundant models for all total and injective functions
f (defined by channeling constraints connecting V1 and V2)
mapping from possible assignments in V1 to those in V2.

Corollary 1 If M1 = (V1, C1) and M2 = (V2, C1) are mu-
tually redundant models of P , and f is a total and injective
function mapping from possible assignments in V1 to those
in V2, then sol(M2) = sol(i(f, M1)).

Corollary 2 If M = (V1, C1) is a model for problem P ,
V2 is a proper viewpoint of P , and f is a total and bijec-
tive function (i.e., f−1 exists) mapping from possible as-
signments in V1 to those in V2, then sol(i(f−1, i(f, M))) =
sol(M).

Example
We illustrate the construction of induced model using the
simple 4-queens problem, which is to place four queens on
a 4 × 4 chessboard in such a way that no two queens can
attack each other.

We give a textbook model M = ((X, DX), CX) of
the 4-queens problem. We use four variables X =
{x1, x2, x3, x4} and their associated domain function DX .
Each xi denotes the column position of the queen on row
i and DX(xi) = {1, 2, 3, 4} for i ∈ {1, 2, 3, 4}. The con-
straints CX enforce that no two queens can be on the same:

• column: xi �= xj for all 1 ≤ i < j ≤ 4, and

• diagonal: |xi − xj | �= i − j for all 1 ≤ i < j ≤ 4.

Next, we consider a 0-1 viewpoint (Z,DZ) with sixteen
variables Z = {zij | i, j ∈ {1, 2, 3, 4}} and associated do-
main function DZ . The assignment 〈zij , 1〉 denotes the
fact that square position (i, j) (row i and column j) con-
tains a queen; and 〈zij , 0〉 denotes otherwise. Therefore,
DZ(zij) = {0, 1} for all i, j ∈ {1, 2, 3, 4}. The set of chan-
neling constraints xi = j ⇔ zij = 1 for all i, j = 1, . . . , 4
defines the total and injective function

g(〈xi, j〉) = 〈zij , 1〉 for all i, j ∈ {1, 2, 3, 4}.

We first transform the stated constraints in CX . The
incompatible assignments for the diagonal constraints in
M have the form {〈xi, k〉, 〈xj , k ± (i − j)〉} for all
i, j, k ∈ {1, 2, 3, 4}, i < j, and 1 ≤ k ± (i − j) ≤
4. Hence, the induced incompatible assignments are
{〈zik, 1〉, 〈zj,k±(i−j), 1〉}. For example, the constraints
|x1 − x2| �= 2 − 1 generates the incompatible assignments
{〈z11, 1〉, 〈z22, 1〉}, {〈z12, 1〉, 〈z23, 1〉}, {〈z13, 1〉, 〈z24, 1〉},
{〈z12, 1〉, 〈z21, 1〉}, {〈z13, 1〉, 〈z22, 1〉}, {〈z14, 1〉, 〈z23, 1〉}
for inclusion in SZ . The column constraints can be trans-
formed similarly.

The No-Double-Assignments constraints for (Z, DZ) in-
clude incompatible assignments transformed from the im-
plicit constraints that each xi ∈ X cannot be assigned two

56 AAAI-02

different values. Thus:

NZ =
⋃

xi∈X

{{g(〈xi, j1〉), g(〈xi, j2〉)} | j1, j2 ∈ {1, . . . , 4}

∧ j1 < j2}
= {{〈zij1 , 1〉, 〈zij2 , 1〉} | i, j1, j2 ∈ {1, . . . , 4} ∧ j1 < j2}

For example, the implicit requirement for x1 ∈ X
will generate the following incompatible assignments
{〈z11, 1〉, 〈z12, 1〉}, {〈z11, 1〉, 〈z13, 1〉}, {〈z11, 1〉, 〈z14, 1〉},
{〈z12, 1〉, 〈z13, 1〉}, {〈z12, 1〉, 〈z14, 1〉}, {〈z13, 1〉, 〈z14, 1〉}
to ensure that no more than one queen will be placed on
row i of the chessboard.

Last but not least, we need to take care of the At-
Least-One-Assignment constraints AZ , which are obtained
from the implicit constraints “each xi ∈ X must be as-
signed at least one value” in M . Applying g to the as-
signments 〈xi, 1〉, . . . , 〈xi, 4〉 for each xi ∈ X suggests
that the incompatible assignments in (Z, DZ) are among
variables zi1, . . . , zi4. The incompatible assignments are
those {〈zi1, q1〉, . . . , 〈zi4, q4〉} such that q1 �= 1, . . . , q4 �=
1. Since the domain of all variables zij is only {0, 1},
{〈zi1, 0〉, . . . , 〈zi4, 0〉} is the only incompatible assignment
needed. Thus:

AZ = {{〈z11, 0〉, 〈z12, 0〉, 〈z13, 0〉, 〈z14, 0〉},
{〈z21, 0〉, 〈z22, 0〉, 〈z23, 0〉, 〈z24, 0〉},
{〈z31, 0〉, 〈z32, 0〉, 〈z33, 0〉, 〈z34, 0〉},
{〈z41, 0〉, 〈z42, 0〉, 〈z43, 0〉, 〈z44, 0〉}}.

The intuitive meaning of these incompatible assignments is
that there cannot be no queens in row i of the chess board.

The induced model i(g, M) = ((Z,DZ), CZ) can be
formed by extracting and grouping incompatible assign-
ments of the same signatures to form constraints in CZ . By
Theorem 1, i(g, M) and M are mutually redundant, and are
both models of the 4-queens problem.

Exploiting Redundancy from Model Induction
Although model induction is an interesting and general
model operator in its own right, we leave the study of its
algebraic properties and interaction with other model opera-
tors as a topic of another paper. In this section, we focus our
interest on induced models which are mutually redundant to
their original models. We propose three ways of combining
the redundant models so as to utilize the redundant informa-
tion in enhancing constraint propagation.

Combining Redundant Models
Given a problem P , M1 = ((X1, DX1), CX1) and M2 =
((X2, DX2), CX2) are mutually redundant models of P with
different viewpoints. Suppose there is a set Cc of channeling
constraints connecting variables in X1 and X2. Following
the redundant modeling approach (Cheng et al. 1999), we

can form a combined model M = M1
Cc
�� M2 = (V, C),

where

• X = X1 ∪ X2 and V = (X, DX),

• for all x ∈ X ,

DX(x) =

{
DX1(x) if x ∈ X1 ∧ x /∈ X2

DX2(x) if x /∈ X1 ∧ x ∈ X2

DX1(x) ∩ DX2(x) otherwise

• C = {c | c′ ∈ CX1 ∪ CX2 ∪ Cc} with sig(c) = sig(c′)
and rel(c) = {θ | θ ∈ c′ ∧ cmpd(θ, V)}.

The following theorems about the modeling channeling op-
eration are straightforward to verify.

Theorem 2 M1
Cc
�� M2 = M2

Cc
�� M1

Theorem 3 M1, M2, and M are mutually redundant to one
another.

When we are given two mutually redundant models that
share the same viewpoint, the situation is simpler. We pro-
pose model intersection as a means to combine the models
into one. Suppose M1 = (V,C1) and M2 = (V, C2). We
can form M = M1 ∩ M2 = (V, C1 ∪ C2). Again, we have
the following theorems for model intersection.

Theorem 4 M1 ∩ M2 = M2 ∩ M1.

Theorem 5 sol(M1) = sol(M2) = sol(M).

When intersecting two models, we have the option of
merging constraints with the same signature into one con-
straint by taking the union of the constraints’ sets of in-
compatible assignments. For example, suppose sig(c1) =
sig(c2), we can construct a merged constraint c′ to replace
c1 and c2 such that sig(c′) = sig(c1) = sig(c2) and
rel(c′) = rel(c1) ∪ rel(c2). The resultant constraint c′,
having a more global views on the variables in sig(c′), can
potentially provide more constraint propagation than the in-
dividual constraints c1 and c2 when used separately. Note
that constraint merging is applicable, not just in the context
of model intersection, whenever we have more than one in-
dividual constraint with the same signature in a CSP.

Three New Forms of Model Redundancy
A viewpoint can greatly influence how a human modeler
looks at a problem. Each viewpoint provides a distinct
perspective emphasizing perhaps a specific aspect of the
problem. Therefore, the modeler will likely express indi-
vidual constraints differently under different viewpoints, al-
though the constraints under each viewpoint should collec-
tively give the same solutions to the problem being modeled.
In particular, a constraint expressed for one viewpoint might
not even have an (explicit) counterpart in the other view-
point, and vice versa.

Suppose M1 = (V1, C1) and M2 = (V2, C2) are mutually
redundant models with different viewpoints handcrafted by
human modeler. We also have a set Cc of channeling con-
straints defining a total and injective function f from possi-
ble assignments of V1 to those of V2. Model induction essen-
tially translates constraint information expressed in V1 to V2

via channeling constraints f . The transformed constraints
express in V2 the constraint information of the problem as
viewed from V1. These transformed constraints are likely
different from constraints expressed directly using V2 by the

AAAI-02 57

human modeler. Therefore, i(f,M1) and M2 are redundant
and yet complementary to each other.

Model channeling and intersection give various possibili-
ties to combine M1, M2, and models induced from the two
models. Model channeling is “collaborative” in nature. It
allows the sub-models to perform constraint propagation on
its own, and yet communicate their results (variable instan-
tiation and domain pruning) to the other sub-models to pos-
sibly initiate further constraint propagation. Furthermore,
model channeling allows constraint propagation to explore
different variable spaces (viewpoints). Model intersection is
“additive” in that it merges constraints to form stronger con-
straints, which is the source of increased constraint propaga-
tion.

Assuming f−1exists, we propose three classes of inter-
esting combined models.

• i(f, M1) ∩ M2 and M1 ∩ i(f−1, M2)

• M1
Cc
�� i(f,M1) and M2

Cc
�� i(f−1, M2)

• (i(f, M1) ∩ M2)
Cc
�� (i(f−1, i(f, M1) ∩ M2)) and

(i(f−1, M2) ∩ M1)
Cc
�� (i(f, i(f−1, M2) ∩ M1))

We note that f−1 always exists for Permutation CSPs (Gee-
len 1992; Smith 2000; 2001). In a Permutation CSP
((X, DX), C), we always have DX(xi) = DX(xj) for all
xi, xj ∈ X , and |DX(xi)| = |X|. In addition, any solution
{〈x1, k1〉, . . . , 〈xn, kn〉} of a Permutation CSP must have
the property that ki �= kj ⇔ i �= j.

Example
We give an example application where such application of
model induction and model redundancy are possible. The
Langford’s problem, listed as “prob024” in CSPLib (Gent
& Walsh 1999), can be modeled as a Permutation CSP hav-
ing all the desired properties for experimenting with model
induction and redundant modeling.

In the Langford’s problem, there is an m × n-digit se-
quence which includes the digits 1 to n, with each digit oc-
curs m times. There is one digit between any consecutive
pair of digit 1, two digits between any consecutive pair of
digit 2, . . . , n digits between any consecutive pair of digit n.
The Langford’s problem, denoted as (m, n) problem, is to
find such a sequence (or all sequences).

Smith (2000) suggests two ways to model the the Lang-
ford’s problem a CSP. We use the (3, 9) instance to illus-
trate the two models. In the first model M1, we use 27
variables X = {x0, . . . , x26}, which we can think of as
11, 12, 13, 21, . . . , 92, 93. Here, 11 represents the first digit
1 in the sequence, 12 represents the second digit 1, and
so on. The domain of these variables are the values that
represent the positions of a digit in the sequence. We use
{0, . . . , 26} to represent the domain. Hence, we have the
viewpoint V1 = (X, DX), where DX(xi) = {0, . . . , 26}
for i ∈ {0, . . . , 26}. Due to space limitation, we skip the
description of constraints.

In the second model M2, we again use 27 variables Y =
{y0, . . . , y26} to represent each position in the sequence.
Their domains are {0, . . . , 26}, whose elements correspond

to the digits 11, 12, 13, 21, . . . , 92, 93. Hence, we have the
viewpoint V2 = (Y,DY), where DY (yi) = {0, . . . , 26} for
i ∈ {0, . . . , 26}.

We can write the channeling constraints Cc connecting V1

and V2 as xi = j ⇔ yj = i for all i, j = 0, . . . , 26. These
constraints define a total and bijective function f where
f(〈xi, j〉) = 〈yj , i〉 for all valid i, j. With M1, M2, and
f , we can construct the three proposed classes of combined
models. We note that, for the special case of the Langford’s
problem:

• i(f,M1 ∩ i(f−1, M2)) = i(f,M1) ∩ M2 and

• i(f−1, i(f,M1) ∩ M2) = M1 ∩ i(f−1, M2).
It is thus only necessary to consider

(M1 ∩ i(f−1, M2))
Cc
�� (i(f,M1) ∩ M2)

for the third class of combined models.

Experiments
To verify the feasibility and efficiency of our proposal, we
realize and evaluate the various models for the (3, 9) and
(3, 10) instances of the Langford’s problem using ILOG
Solver 4.4 (1999) and running on a Sun Ultra 1/170 work-
station with 512M of memory. We use the IlcTableCon-
straint function (ILOG 1999) to create constraints from sets
of incompatible assignments. Full arc consistency is en-
forced in constraint propagation. Variables are chosen using
the smallest-domain-first variable-ordering heuristic. Con-
straints are merged whenever possible, so that every con-
straint in a model has a different signature.

Table 1 shows our comparison results. Column 1 gives the
models. In models with more than one viewpoint, it suffices
to search/label variables of either viewpoint, although one
may choose to search on both. In column 2, we give also
the search variables. Columns 3 and 4 report the execution
results of solving for only the first solution of the (3, 9) and
(3, 10) instances respectively, while columns 5 and 6 report
the results of solving for all solutions. Each cell contains
both the number of fails and CPU time in sec (in bracket) of
an execution. A cell labeled with “-” means that execution
does not terminate within 20 minutes of CPU time. We also
highlight in bold the best result of each column.

Each row corresponds to a particular model. We divide
the models into five groups, the first two of which are used
as control in the experiment. The first group consists of in-
dividual models, while the second group consists of com-
bined models constructed using the redundant modeling ap-
proach (Cheng et al. 1999). The remaining groups corre-
spond to our three proposed classes of combined models.

In analyzing the results, attention is sought not just on the
CPU time, but also on the number of fails. In fact, the latter
is more important and accurate as a measure of the robust-
ness of a model. Combined models are bigger in size, and
higher execution overhead is expected. The idea of com-
bining redundant models is to spend more time in constraint
propagation in the hope that the extra effort can result in sub-
stantial pruning of the search space. A model that gives more
pruning has a higher possibility in solving problems that

58 AAAI-02

Search First Solution All Solutions
Models Variables (3, 9) (3, 10) (3, 9) (3, 10)

M1 X 192 (5.46) 569 (19.02) 938 (25.54) 3114 (101.83)
i(f,M1) Y - - - -

M2 Y - - - -
i(f−1, M2) X - - - -

M1
Cc
�� M2 X 63 (6.49) 193 (18.80) 310 (25.73) 1109 (98.24)

M1
Cc
�� M2 Y 44 (4.44) 20 (4.25) 322 (25.28) 980 (88.05)

M1
Cc
�� M2 X ∪ Y 39 (4.93) 104 (13.47) 225 (20.21) 697 (71.26)

M1 ∩ i(f−1, M2) X 105 (4.87) 313 (14.34) 524 (18.31) 1650 (71.46)
i(f,M1) ∩ M2 Y - - - -

M1
Cc
�� i(f,M1) X 73 (6.36) 207 (19.98) 401 (29.88) 1221 (112.14)

M1
Cc
�� i(f,M1) Y 47 (4.19) 21 (3.21) 338 (27.91) 1021 (96.85)

M1
Cc
�� i(f,M1) X ∪ Y 42 (4.69) 113 (13.58) 239 (21.52) 730 (76.76)

M2
Cc
�� i(f−1, M2) Y 589 (54.60) 475 (51.73) 1462 (126.45) 5547 (578.26)

M2
Cc
�� i(f−1, M2) X 115 (14.49) 340 (48.73) 561 (62.51) 1812 (249.37)

M2
Cc
�� i(f−1, M2) X ∪ Y 113 (14.23) 338 (48.42) 550 (61.79) 1788 (246.65)

(M1 ∩ i(f−1, M2))
Cc
�� (i(f,M1) ∩ M2) X 38 (6.53) 132 (17.80) 195 (22.49) 745 (84.91)

(M1 ∩ i(f−1, M2))
Cc
�� (i(f,M1) ∩ M2) Y 31 (5.15) 9 (5.12) 217 (22.27) 665 (78.57)

(M1 ∩ i(f−1, M2))
Cc
�� (i(f,M1) ∩ M2) X ∪ Y 29 (5.72) 83 (14.18) 156 (19.04) 514 (65.74)

Table 1: Comparison Results Using the Langford’s Problem

are otherwise computationally infeasible when expressed in
weaker models.

The first and fifth groups of models represent the two ends
of a spectrum, which indicates the amount of model redun-
dancy utilized in the models. The single models in the first
group use no redundancy, and thus performs the worst in
terms of the number of fails. Their execution times are not
among the worst since these models are the smallest in size,
incurring the least execution overhead in constraint propaga-
tion. Note also that model M2 is a poor model. Any model
involving M2 as a base model is bound to perform poorly,
both in terms of CPU time and number of fails. In the fol-
lowing, we focus on only models using M1 as a base model.

The second group makes use of only model channeling,
which helps M1 and M2 share pruning and variable instan-
tiation information. Constraint propagation also takes place
in both viewpoints. Another advantage of this approach is
that constraints in M1 and M2, constructed under different
viewpoints, are complementary to each other. These charac-
teristics are the source of increased constraint propagation,
and thus drastic cut in the number of fails as compared to the
models in the first group.

The third group of models uses only one viewpoint, but
model intersection combines the constraints from the two
models to form stronger constraints, thus entailing again
more constraint propagation. We note, however, that the re-
duction in the number of fails is not as substantial as the case
in the second group of models.

The fourth group of models employs both model induc-

tion and model channeling. The models inherit the good
characteristics of model channeling, except that the con-
straints in both models are essentially from M1. These mod-
els are deprived of the chance to share constraint information
from M2. Therefore, the performance of the fourth group
is consistently and slightly worse than that of the second
group.

The model in the fifth group enjoys the best of both
worlds. Each of the sub-models is a combined model, en-
compassing strengthened constraints obtained from model
intersection. The combined models are then connected via
model channeling to take advantage of the sharing of prun-
ing information and constraint propagation in different view-
points. That explains why models in this group always give
the lowest number of fails in all benchmarks. Their timings,
although not the fastest, are also respectable compared to
the fastest time of the respective benchmark, although these
models are the largest in size.

Related Work
Rossi et al. (1990) propose a new definition of equivalence
of CSPs, based on the concept of mutual reducibility. They
believe that it is reasonable to consider two CSPs equiva-
lent if it is possible to obtain the solution of one CSP from
that of another, and vice versa. Geelen (1992) introduces
two improved problem-independent value and variable or-
dering heuristics for solving CSPs. He also introduces a
“dual-viewpoint” approach for Permutation CSPs. This ap-
proach allows suitable extensions to many heuristics includ-

AAAI-02 59

ing those introduced in his paper. Jourdan (1995) works on
multiple modeling, in which models representing different
but redundant views of the same problem are synchronized
using the communication mechanisms of constraint logic
programming and concurrent constraint languages. Weigel
et al. (1998) introduces an algorithm to transform a CSP
into its boolean form which is then used to find its refor-
mulations. Reformulations differ with each other only in
redundant constraints, and one can allow pruning in some
situations which is not possible in other. Cheng et al. (1999)
formally introduces redundant modeling. Two models of the
same problem are combined together using channeling con-
straints. They show increased constraint propagation and
efficiency by using this approach. Smith (2000; 2001) in-
troduces the idea of minimal dual models for Permutation
CSPs. It is similar to redundant modeling but the constraints
in the second model is dropped. She shows that for the Lang-
ford’s problem, the amount of propagation of the minimal
dual model is equal to that of redundant modeling. How-
ever, it is not clear whether the same result can be transferred
to Permutation CSPs in general. Walsh (2001) conducts an
extensive theoretical and empirical study on using different
models and combined models using channeling constraints.
Smith and Walsh’s works concentrate on the effect of dif-
ferent levels of constraint propagation on the constraints to
ensure a permutation in Permutation CSPs.

Conclusion
Model induction gives a systematic way of generating alter-
nate model in a different viewpoint from an existing model.
Hand-crafting CSP model is an unamiable task performed
daily by human modelers, who should find model induction
a useful tool. An interesting application of model induc-
tion is to generate redundant models, which can be com-
bined using modeling channeling and intersection. Bench-
mark results using the Langford’s problem confirm that the
proposed combined models are robust and efficient, both in
terms of CPU time and number of fails.

Model redundancy is a relatively new concept. We take
the work reported in this paper as a means to open up new
possibilities to study, understand, and apply model redun-
dancy in constraint satisfaction. There is plenty of scope
for future work. First, model induction is applicable to
general CSPs, although our empirical results are developed
for only the Langford’s problem. It will be interesting to
check if the same techniques can be applied/generalized to
other, not necessarily binary and/or Permutation, CSPs to
obtain useful redundancy information. Second, we conjec-
ture that our approach, as in the case of redundant model-
ing, is useful mainly for tight and highly connected CSPs.
This property can be verified, perhaps, with the help of ran-
domly generated CSPs. Third, model induction is defined
in terms of extensional representation of constraints. There
is no reason why we have to solve the resultant CSPs also
in the extensional form. It would be worthwhile to study
how the intensional (symbolic) representation of a constraint
can be learned from its extensional counterpart. Fourth, it
is also important to characterize the extra amount of con-
straint propagation provided by combining mutually redun-

dant models.

Acknowledgements
We had fruitful discussions about minimal dual models,
channeling constraints, and proper viewpoints with Barbara
Smith. We thank also the anonymous referees for their con-
structive comments which help improve the quality of the
paper. The work described in this paper was substantially
supported by a grant from the Research Grants Council of
the Hong Kong Special Administrative Region (Project no.
CUHK4183/00E).

References
Cheng, B. M. W.; Choi, K. M. F.; Lee, J. H. M.; and Wu, J.
C. K. 1999. Increasing constraint propagation by redundant
modeling: an experience report. Constraints 4(2):167–192.
Freuder, E. 1997. In pursuit of the holy grail. CON-
STRAINTS 2:57–62.
Geelen, P. A. 1992. Dual viewpoint heuristics for binary
constraint satisfaction problems. In Proceedings of the 10th
European Conference on Artificial Intelligence, 31–35.
Gent, I., and Walsh, T. 1999. CSPLib: A benchmark library
for constraints. In Proceedings of Principles and Practice
of Constraint Programming (CP), 480–481. Available at
http://www-users.cs.york.ac.uk/˜tw/csplib/.
ILOG. 1999. ILOG Solver 4.4 Reference Manual.
Jourdan, J. 1995. Concurrent constraint multiple models in
CLP and CC languages: Toward a programming method-
ology by modelling. Ph.D. Dissertation, Denis Diderot Uni-
versity, Paris VII.
Mackworth, A. 1977. Consistency in networks of relations.
AI Journal 8(1):99–118.
Rossi, F.; Petrie, C.; and Dhar, V. 1990. On the equivalence
of constraint satisfaction problems. In Proceedings of the
9th European Conference on Artificial Intelligence, 550–
556.
Smith, B. M. 2000. Modelling a permutation problem. Re-
search Report 2000.18, School of Computer Studies, Uni-
versity of Leeds.
Smith, B. M. 2001. Dual models in permutation prob-
lems. In Proceedings of Principles and Practice of Con-
straint Programming (CP), 615–619.
Walsh, T. 2001. Permutation problems and channelling
constraints. In Proceedings of Logic for Programming, Ar-
tificial Intelligence and Reasoning (LPAR), 377–391.
Weigel, R., and Bliek, C. 1998. On reformulation of con-
straint satisfaction problems. In Proceedings of 13th Euro-
pean Conference on Artificial Intelligence, 254–258.

60 AAAI-02

	Return to Main Menu
	================
	Next Page
	Previous Page
	================
	Search CD-ROM
	Search Results
	Print

