
A Real-Time Agent Architecture: Design,
Implementation and Evaluation

J.H.M. Lee and L. Zhao

Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong SAR, China

fjlee,lzhao g@cse.cuhk.edu.hk

Abstract. The task at hand is the design and implementation of real-time agents
that are situated in a changeful, unpredictable, and time-constrained environment.
Based on Neisser’s human cognition model, we propose an architecture for real-
time agents. This architecture consists of three components, namely perception,
cognition, and action, which can be realized as a set of concurrent administrator
and worker processes. These processes communicate and synchronize with one
another for real-time performance. The design and implementation of our archi-
tecture are highly modular and encapsulative, enabling users to plug in different
components for different agent behavior. In order to verify the feasibility of our
proposal, we construct a multi-agent version of a classical real-time arcade game
“Space Invader” using our architecture. In addition, we also test the competitive
ratio, a measure of goodness of on-line scheduling algorithms, of our implemen-
tation against results from idealized and simplified analysis. Results confirm that
our task scheduling algorithm is both efficient and of good solution quality.

1 Introduction

The task at hand is that of the design and implementation of real-time agents, such as
those used in military training systems. Such systems are situated in a changeful, un-
predictable, and time-constrained environment. We definereal-time agentas a proactive
software entity that acts autonomously under time-constrained conditions by means of
real-time AI techniques. The requirement of real-time AI provides the agent with the
ability of making quality-time tradeoff, either discretely or continuously. Besides shar-
ing all common characteristics of intelligent agents, real-time agents should possess
also specific features for survival in real-time environments:

– Automation: Real-time agents are autonomous. It means we can realize real-time
software agent with separate processes/threads.

– Reaction: Agents must be able to react to different events, expected or not. The
more urgent a situation is, the more quickly the agent should respond to it.

– Real-Time AI: Real-time agents must be able to consider time’s effect in the system.
From knowledge or experience, agents must know how to control resources to meet
various hard and soft timing-constraints and perform quality-time tradeoff. This
calls for real-time AI techniques, which are approximate processing and algorithms
of two main types: anytime algorithm and multiple (approximate) methods [4].



2 J.H.M. Lee, L. Zhao

– Perception: Because of the data distribution of environments, real-time agents must
be able to collect data from environments as correctly and completely as possible.
Any data may be useful. The extent that this can be achieved is greatly influenced
by the agents’ sensory capability and the buffer size we set.

– Selectivity: Since agents try to perceive as much data as they can, they cannot
process all data in time (data glut). Agents must be able to select useful data (or
data which agents think useful) from received data. Unprocessed data can remain
in buffer, and can be flushed by new arriving data.

In this paper, we develop a real-time agent architecture from Ulric Neisser’s hu-
man cognition model [12]. In our architecture, a real-time agent is composed of a set
of concurrent components. These components communicate and synchronize with one
another for real-time performance. Our architecture has two distinct features: plugga-
bility and dedicated task scheduling. First, components in our architecture are highly
encapsulated with well-defined interfaces, so that components of different characteris-
tics, functionalities, and implementations can be plugged in to form real-time agents for
specific real-time applications. Second, our architecture ismetain the sense that we can
plug in some existing agent architectureX, such as the subsumption architecture [2],
to makeX more real-time respondent while maintaining the characteristic behavior of
X, especially in overload situation. This is achieved by the task scheduling component,
which is designed to deal with tasks and requests arriving at unexpected time points and
being of various urgency and importance.

Our on-line task scheduling mechanism, relying on the cooperation of a greedy and
an advanced scheduling algorithms, take the multiple method approach for quality-time
tradeoff. The greedy algorithm aims at catering for urgent events but sacrificing qual-
ity, while the advanced algorithm can provide optimal (or sub-optimal) solutions. To
demonstrate the effectiveness and efficiency of our proposal, we construct a multi-agent
version of a classical real-time arcade game “Space Invader” using our architecture. In
addition, we also test the competitive ratio, a measure of goodness of on-line scheduling
algorithms, of our implementation against results from idealized and simplified analy-
sis. Results confirm that our task scheduling algorithm is both efficient and of good
solution quality.

This paper is organized as following. In Section 2, we motivate and introduce the
logical design of our real-time agent architecture. Section 3 explains the physical real-
ization of our architecture on the QNX real-time platform. We also present a brief ac-
count of a multi-agent implementation of a real-time arcade game. Section 4 describes
in details the task scheduling mechanism, theoretical analysis and experimental results,
followed by related work in Section 5. Last but not least, Section 6 gives concluding
remarks and shed light on possible direction of further work.

2 Logical Architecture

Neisser [12] views human cognition as a perpetual process, which keeps working as
long as we are awake. Figure 1 illustrates different parts and their relations in human
cognition. In this model, human acquires samples by exploring outer environment (Ex-



A Real-Time Agent Architecture 3

Fig. 1. The Perpetual Cycle

ploration). These samples bring useful information of the world (Object available infor-
mation). By modifying the information, human makes decisions and plans (Schema),
which guide us to explore the new world and obtain further information. These three
parts work concurrently, and function the same from neonatal children to world leaders.

In the wake of Neisser’s model, we develop a real-time agent architecture since hu-
man is the best example of a real-time agent. In our architecture, a real-time agent is
composed of three subsystems: perception, cognition, and action. These three subsys-
tems work concurrently and synchronously to acquire from and respond to the envi-
ronment via real-time AI reasoning. These subsystems work autonomously and indi-
vidualistically. None of them have the superiority to control the other two subsystems.
Figure 2 gives the overall structure and detailed implementation of our architecture.

2.1 Perception

Similar to the object-available-information part in Neisser’s model, theperceptionsub-
system observes the environment and collects all possible information. The scope of
this information is decided by the techniques of observation.

In a real-time environment, a serious problem is data glut—the environment feeds
more data than an agent can process [9]. The perception subsystem is thus responsible
for information selection/filtration in addition to preprocessing and summarizingraw
signalsinto semantically meaningfulevents, which describe the states of the environ-
ment and are for subsequent consumption by the cognition subsystem.

2.2 Cognition

Thecognitionsubsystem is the kernel of a real-time agent. It makes decisions or plans
from the events collected by the perception system. These decisions and plans are dis-
patched in the form oftasks, which consist of a recipe of actions and their corresponding
sequencing constraints. A task is sent to the action subsystem once generated.

Various cognitive mechanisms can be used in the cognition subsystem. If we are
more interested in reactive behavior, we can use the subsumption architecture [2], the



4 J.H.M. Lee, L. Zhao

Environment


Environment


Sensor Workers


Sensor

Administrator


Cognition Workers


Task

Administrator


Scheduler

Worker


Executor Workers


Real-time Agent


Digested message

in agent


Environment I/O


Worker


Administrator


Subsume Output


Cognition

Subsystem


Perception

Subsystem


Action Subsystem


Fig. 2. Real-Time Agent Architecture

dynamic subsumption architecture [11], or even simply a set of reaction rules for map-
ping events to tasks directly and efficiently; if intelligence is more important, we can
use a world model with a set of goal directed rules (or logical formulae) [13].

2.3 Action

As the exploration part in Neisser’s model, theaction subsystem dispatches and per-
forms tasks to explore and react to environment. The knowledge of how to perform
these tasks is owned by the action subsystem. Neither the perception nor the cognition
subsystem need to know this knowledge. The cognition subsystem needs only to gener-
ate tasks with digested information which can be understood by the action subsystem.

The action subsystem also stores and manages tasks, and chooses the most impor-
tant and urgent task to perform first. An efficient on-line scheduling algorithm is thus
central in the functioning of the action component.

3 Physical Architecture

We have given a logical architecture of real-time agents. This architecture is composed
of three collaborating subsystems, which can be implemented naturally as concurrently



A Real-Time Agent Architecture 5

running processes. While these subsystems have individual responsibilities and goals,
they must cooperate to act as a collective whole. A good inter-process communication
mechanism is needed. We also note that such a mechanism can also be used for effec-
tive synchronization purposes. The following characteristics are desirable for a good
communication mechanism:

– Simple: a complicated mechanism may increase the complexity of the agent archi-
tecture, making the agents harder to understand and construct.

– Efficient: the volume of data exchanges among these subsystems is high in practice,
demanding extreme efficiency especially in a real-time environment.

– Autonomous: the communication must be performed without central monitoring or
supervision.

– Robust: message transmission should incur little errors.

In the following, we study a particular form of message passing, which satisfies
the above criteria, before giving a process structure design of an implementation of our
real-time agent architecture. We conclude this section by presenting a brief account of
a mult-agent implementation of the “Space Invader” real-time game.

3.1 Message Passing

Gentleman [5] designs a set of message passing primitives with special blocking se-
mantics for efficient inter-process communication and process synchronization. Based
on these primitives, different processes, each class with different functionalities, can
be defined, enabling the design and implementation of deadlock-free and efficient real-
time systems. This philosophy is subsequently adopted in the construction of the com-
mercial real-time OS, QNX [7], which has been deployed in numerous mission critical
and embedded system. There are three primitives:

– Send(): for sending messages from a sender process to other processes.
– Receive(): for receiving messages from other processes.
– Reply(): for replying to processes that have sent messages.

In a collaborating relationship, agents cannot work away without synchronizing
with partners’ progress. Communication is a means for informing others of work progress,
but a properly designed protocol can be used to effect synchronization behavior. In
many occasions, a process must suspend its execution to wait for the results/response
of a partner process. We say that that the waiting process isblocked. Semantics of block-
ing in a communication protocol must be carefully designed so that good programming
style can be defined to avoid deadlock behavior. A process will be blocked in one of the
following three conditions:

– Send-blocked: the process has issued aSend() request, but the message sent has
not been received by the recipient process yet.

– Reply-blocked: the process has issued aSend()request and the message has been
received by the recipient process, but the recipient process has not replied yet.

– Receive-blocked: process has issued aReceive()request, but no message is re-
ceived yet.



6 J.H.M. Lee, L. Zhao

When processA sends a message to processB, the following steps take place:

1. ProcessA sends a message to processB by issuing aSend() request to the ker-
nel. At same time, processA becomesSend-blocked, and must be blocked untilB
finishes processing the message.

2. ProcessB issues aReceive()request to the kernel.
(a) If there has been a waiting message from processA, then processB receives

the message without block. ProcessA changes its state intoReply-blocked.
(b) If there are no waiting messages from processA, then processB changes

its state intoReceive-blocked, and must wait until a message fromA arrives,
in which case processA becomesReply-blockedimmediately without being
Receive-blocked.

3. ProcessB completes processing the received message fromA and issues aRe-
ply() to A. TheReply() primitive never blocks a process, so thatB can move on
to perform other tasks. After receiving the reply message fromB, processA is
unblocked. Both processA and processB are ready now.

Gentleman’s message passing primitives enable us to define two kind of processes:
administratorsandworkers. An administrator owns one or more workers. Administrator
stores a set of jobs and workers perform them. Once a worker finishes a job, it sends a
request to its administrator. Upon receiving the request, the administrator replies to the
worker with a new job assignment. Administrators do only two thing repeatedly: receive
task and job requests, and reply to workers with job assignments. Thus administrators
are never blocked, since they never issueSend()messages, allowing administrators to
attend to various events and requests instantly. This is in line with the behavior of top
management officials in a structured organization: a manager must be free of tedious
routine work, and allowed time to make important decision and job allocations to her
inferiors. On the other hand, lowly workers can only be either performing job duties or
waiting for new assignments.

3.2 Overall Physical Architecture

We outline an implementation of our architecture on the QNX platform. An agent is
composed of a set of workers and administrators. They work concurrently and syn-
chronously, communicating with each other and cooperating to react to the environ-
ment. Figure 2 reveals also the detailed implementation of the architecture. A real-time
agent consists of the following components: the sensor administrator, sensor workers,
cognition workers, the task administrator, the task scheduler worker, and executor work-
ers. We describe each component in the rest of this section.

3.3 Sensor Workers and the Sensor Administrator

The sensor administrator and sensor workers constitute the perception subsystem. The
sensor administrator receives messages from other agents and environment signals de-
tected via the sensor workers. The administrator also preprocesses the input messages
and signals, and translate them to events which can be utilized by the cognition subsys-
tem. The administrator contains an event queue for storing received events, just in case



A Real-Time Agent Architecture 7

the cognition subsystem is busy. When the cognition subsystem requests for new events,
sensor administrator can reply with events in this queue. If there are no new events, the
cognition subsystem simply blocks. An event stored in the sensor administrator will be
removed if this event is past its deadline, or has been viewed by all cognition workers
in the cognition subsystem.

The sensor administrator owns more than one sensor workers to detect different
kinds of environment signals. In some cases, sensor workers are not necessary. For
example, an agent only receives messages from other agents. In that case, we have
specially designedcouriers, a type of workers, for delivering messages between admin-
istrators. Sensor workers are designed to monitor particular environment signals and
report them to the sensor administrator. A sensor worker may contain some particular
resources, such as a keyboard or a communication port. Other processes do not need to
know the details of the resource.

Once we assign a sensor worker to monitor some signals, we do not need to control
this sensor worker any more. This sensor worker automatically repeats monitoring sig-
nals and issuing reports to the sensor administrator, which only needs to wait for new
requests/reports.

Ideally a sensor administrator may have many sensor workers. As long as the sensor
administrator knows how to preprocess these messages and signals captured by the
workers, we can add/drop any workers without reprogramming the administrator. If we
want to add some workers for new signals, we only need to add some new preprocessing
rules in the administrator.

3.4 The Cognition Workers

The cognition workers are responsible for mapping events to tasks. Suppose we want to
adopt Brooks’s subsumption architecture [3] in the cognition component. We can use
more than one cognition worker, connected in parallel between input and output. Every
cognition worker can be seen as a set of rules or a finite state machine implementing a
layer, with the lower layers governing the basic behavior and the upper layers adding
more sophisticated control behavior. If a cognition worker is free, it sends a request to
the sensor administrator for new events. After receiving a reply message, the cognition
worker maps the received event to a set of tasks, which are sent to the task administrator,
and moves on to process other events, if any.

The cognition workers determine the cognition level of an agent. If reaction rules
are used for mapping events, then we get a reactive agent. We can also design a rational
agent by building a world model in these cognition workers (or some of them) and
perform reasoning on them. However, there is time consideration in deciding the level
of reasoning that the cognition workers should perform.

3.5 The Task Administrator, the Scheduler Worker and Executor Workers

The action subsystem consists of the task administrator, the scheduler worker and ex-
ecutor workers. These components cooperate with one another to dispatch and execute
tasks as efficiently as possible, while adhering to the timing and priority constraints. In



8 J.H.M. Lee, L. Zhao

many real-time applications, tasks have differentpriorities, which indicate how impor-
tant a task is. If an agent is also in overload state, which means it is impossible to finish
all tasks in time, the agent must be able to handle and complete as many high priority
tasks as possible. To achieve this end, we employ on-line scheduling algorithms for task
dispatching.

The task administrator receives tasks generated by the cognition workers and stores
them in atask queue. The administrator contains also a greedy scheduling algorithm to
schedule the received tasks. This greedy algorithm must have the following two char-
acteristics. First, the algorithm must be efficient, since an administrator cannot afford
to perform heavy computation, deterring its response to important events. Second, the
algorithm should be able to produce reasonable quality, albeit sub-optimal, schedules.
When the scheduler worker cannot respond in time with a better scheduling result, the
action subsystem will have to rely on results of this greedy algorithm to ensure contin-
uous functioning of the subsystem and also the agent as a whole.

The scheduler worker maintains a task queue which is synchronized with that in the
task administrator. This worker should employ an advanced scheduling algorithm to try
to achieve global optimal scheduling results, and sends the result back to task admin-
istrator. While efficiency is still a factor, the more important goal of the worker is in
producing good quality scheduling result, perhaps, at the expense of extra computation
time. Once the task administrator receives results from the scheduling worker, it will
combine the results with those of its own greedy algorithm and allocate the queued tasks
to the executor workers for actual deployment. More details of the combined scheduling
mechanism are introduced in following section.

An agent can have one or more executor workers, each in charge of a different
execution duty. Similar to the sensor workers, executor workers enjoy full autonomy in
terms of task execution without intervention from the task administrator. After finishing
a task, an executor worker sends a request to report to the task administrator and wait for
new assignment. Executor workers can encapsulate resources, such as a printer or the
screen. The task administrator does not need to know the details of these resources and
how they are handled. The administrator allocate tasks according to only the task nature
(and which executor work can handle such tasks) and the priority (including deadline).
Thus we can easily add/drop executor workers.

3.6 An Agent-Based Real-time Arcade Game

To demonstrate the viability of our proposal, we construct a multi-agent implementation
of the real-time arcade style game “Space Invader.” In this game, a player uses the key-
board to control a laser gun on the ground to defend against flying space invaders. The
game implementation consists of five real-time collaborating agents: input agent, game
environment agent, game administrator agent, timer agent, and screen agent. Figure 3
illustrates the system architecture of the demonstration game.

The input agent controls the keyboard input, the timer agent controls time events,
and the screen agent controls output to screen. These are system agents responsible for
common game tasks (low level I/O and devices). They can be reused in all real-time
game implementations.



A Real-Time Agent Architecture 9

Timer

Agent


Input Agent


Game

Environm-

ent Agent


Game

Administra-


tor Agent


Screen

Agent


System Clock


Keyboard Input


Screen Display


Fig. 3. Architecture of the Demonstration Game

The game administrator agent stores the world model and determines the interac-
tions in the world. The game environment agent controls all time-triggered events in the
world, such as the movement of enemies.

We build these agents as reactive agents. The cognition subsystem of every agent is
controlled by a set of reaction rules. For example, the rules in the game administrator
agent are:

– Rule 1: if user input received then update the model.
– Rule 2: if time-triggered event message received then update the model.
– Rule 3: if model updated then check its rationality.

† Rule 3.1: if laser beam hits the enemy then the enemy and the laser beam
vanished, model changed.

† Rule 3.2: if bomb hits the laser gun then the laser gun and the bomb vanished,
model changed, and game ends.

† Rule 3.3: if laser beam and bomb hit each other then laser beam and bomb
vanished, model changed.

– Rule 4: if model changed then send model change message to the game environ-
ment agent.

– Rule 5: if model changed then output new model to screen agent.

Such a set of if-then rules is enough for a simple game. In more complicated applica-
tions, user may need a finite state machine or a set of reasoning rules to control the
cognition of agents.

4 Task Scheduling in Real-time Agents

As we have introduced in Section 3, we combine two different on-line scheduling al-
gorithms in the action subsystem to schedule tasks. The greedy scheduling algorithm,
usually simple and fast, used in the task administrator opts for efficiency, but there is no
guarantee on the quality of the scheduling results. An example is theEarliest-Deadline-
First (EDF) algorithm. The complexity of greedy algorithms are usually linear in nature,
so that they work well also in heavy load situation.



10 J.H.M. Lee, L. Zhao

On the other hand, the advanced algorithm in scheduler worker opts for solution
quality. An example is local search algorithm for finding a suboptimal performing tasks
order. These algorithms, however, usually suffer from at least a quadratic complexity.
They might not be able to respond in a timely manner in a heavily loaded real-time
environment. The idea is to combine the greedy and the advanced algorithms so that
they can supplement each other.

The task administrator maintains a task queue for undispatched tasks. Once a new
task arrives, the administrator runs the greedy algorithm to insert this task into proper
position of task queue, while preserving the results last sent by the scheduler worker.
Once an executor worker finishes a task, the task administrator first checks if the result
given by scheduler worker has any job for this executor. If there is no such task, the
administrator runs the greedy algorithm to find the next task.

The scheduler worker maintains a task queue which is synchronized with the task
queue in the task administrator. Once the scheduler worker finishes scheduling, it sends
the scheduling result to the task administrator, which in turn replies with newly arrived
tasks and other information. The scheduler worker uses these information to update its
task queue, and runs the advanced algorithm again.

If tasks arrive sparsely, the scheduler worker would have enough time to complete
executing its advanced algorithm, producing good quality results. Even if scheduler
worker cannot return a result on time, the greedy algorithm in the task administrator
can still provide substitute service temporarily. Therefore, the continuous functionality
of the agent will not be disrupted.

4.1 Theoretical Analysis

We can model this combined scheduling mechanism as a quadruple(T; A; S; W ), where
T describes the task list,A provides details of the task administrator,S contains descrip-
tion of the scheduler worker, andW field is the executor worker set.

Task listT is composed of a sequence of tasksT = (T1; T2; T3; : : : ; Tn), stored
stored in the task queue in the task administrator and the scheduler worker. Both the
scheduler worker and the task administrator run scheduling algorithms to select tasks
from T . We further partitionT into TG andTA, whereTG = TG1 ; TG2 ; : : : ; TGSG

is the
task list selected by the greedy scheduling algorithm, andTA = TA1 ; TA2 ; : : : ; TASA

is
the task list selected by the advanced algorithm.

Scheduling is difficult in general. The added complexity to on-line scheduling is
that there is no way to know the exact arrival patterns of the tasks in advance. If the
future is known, the problem is reduced to off-line scheduling, in which a globally
optimal solution can be computed. A well adopted measure of the goodness of on-
line scheduling algorithms iscompetitive ration, which is a ratio between the off-line
optimal solution and the on-line solution:

r =
Profit of On-line Algorithm Solution

Profit of Optimal Solution

In our scheduling mechanism, we assume that the competitive ratio of the greedy
algorithm and the advanced algorithm isc:r:g andc:r:a respectively. For taskTi, we



A Real-Time Agent Architecture 11

usepi to denote theprofit of Ti. There can be various notion of profits. Here, we are
interested in the weighted (by priority) percentage of the tasks that can be completed
before their respective deadline. The target of any scheduling algorithm is to achieve as
high a profit as as possible. We can then define the competitive ratio of our mechanism
c:r: as follows:

c:r: =
on-line profit
optimal profit

=

SAP
i=1

pAi
+

SGP
j=1

pGj

SA + SG
=

SA ¢ c:r:a:+ SG ¢ c:r:g:

SA + SG
(1)

We only discuss this formula when the system is in overload state. In non-overload
state, even a greedy scheduling algorithm can give optimal results. For example, the
EDF algorithm is optimal in non-overload state [8]. In overload state, the performance
of the mechanism is determined by two parameters: task scheduling timetscheduling

and task performing timetperforming, wheretscheduling is the time that the sched-
uler worker used to run the advanced algorithm to give a result andtperforming is
the time that the task administrator used to finish tasks given by scheduler worker. If
tscheduling • tperforming, then the task administrator needs not run the greedy algo-
rithm. In this case, the result quality of the combined mechanism is the same as that of
the advanced scheduling algorithm. In the following analysis, we consider only the case
whentscheduling > tperforming.

The greedy algorithm only works when the advanced scheduling algorithm cannot
give a scheduling result in time. Once the scheduler worker gives new scheduling re-
sults, the task administrator stops running the greedy algorithm and uses these results.
In this case, the scheduler worker repeats running the advanced algorithm without any
delay. It also means that the time used by the task administrator to perform all tasks
given by the greedy algorithm and the advanced algorithm should be equal to the time
used by scheduler worker in scheduling. We definetiexe

to be the execution time of task
Ti.

SAX

i=1

tAiexe
+

SGX

j=1

tGjexe
= Scheduling Time ofTA (2)

For a given scheduling algorithm and task list, it is possible to estimate the time the
algorithm used in scheduling this task list. For example, if we use an algorithm which
has the complexity ofO(n logn) to schedule a task setTA1 ; TA2 ; : : : ; TASA

, then we
can estimate the upperbound of the scheduling time asSA logSA. Let fi = logSA, so
we have:

Scheduling Time ofTA • SAfi (3)

Similarly, we can definefi for any given scheduling algorithm and task list. So (3) is
valid in all cases.

For TA andTG, we definetavgA andtavgG as the average execution time of tasks
in TA andTG respectively. From (2) and (3), we have:

SG ¢ tavgG + SA ¢ tavgA • SAfi ! SG • SA
fi ¡ tavgA

tavgG
(4)



12 J.H.M. Lee, L. Zhao

Combining (1) and (4), we get

c:r: = SA¢c:r:a+SG¢c:r:g
SA+SG

=
SA(c:r:a+c:r:g

fi¡tavgA
tavgG

)

SA(1+
fi¡tavgA

tavgG
)

• c:r:a¡c:r:g

1+
fi¡tavgA

tavgG

+ c:r:g = c:r:a ¡ c:r:a¡c:r:g

1+
tavgG

fi¡tavgA

(5)

From (5), we can see the parameters that can affect the performance of the system.
The chosen greedy and advanced algorithms determinesc:r:a andc:r:g respectively.
The advanced algorithm fixes alsofi. The quantitiestavgA and tavgG depend on the
distribution of the execution time of tasks. Simplifying this model further, we assume
thattavgA = tavgG = tavg.

c:r: • c:r:a ¡ c:r:a¡c:r:g

1+
tavgG

fi¡tavgA

= c:r:a ¡ (c:r:a: ¡ c:r:g)
fi¡tavg

fi

= c:r:g + (c:r:a: ¡ c:r:g)
tavg

fi

(6)

4.2 Experimental Results

We have implemented a simulation system to test the combined scheduling mechanism
against our theoretical prediction. The simulation system uses a random process task
generator to generate different task lists. The generated tasks are stored and sent to the
task administrator during simulation. This system is implemented on QNX.

In following experiments, we choose EDF of orderO(n) as the greedy algorithm
and aIgnorealgorithm [6] of orderO(n2) as the advanced algorithm. As we mentioned
before, we consider only the cases when the system is in overload state. We define
a overload factorfoverload to measure how overloaded a system is. For example, if
foverload = 2, that means the system has twice the amount of tasks that the system
can handle. The higher the overload factor is, the longer time the algorithm takes to
schedule the tasks.

Table table:time gives the average scheduling time (inms) for different states. We

Table 1.The average scheduling time of tasks (ms) in different algorithms and different overload
states.tavg = 500ms

Overload 1.0 2.0 3.0 4.0 5.0 6.0

EDF 9 16 25 37 47 56
Ignore 41 170 366 672 1102 1503
Combined 13 181 380 446 325 230

can see that although the advanced algorithm can give better quality scheduling results
in general, its efficiency is worsen dramatically when there are too many tasks in the



A Real-Time Agent Architecture 13

system. Assuming an average performing time500ms, the advanced algorithm would
fail to respond in time. On the other hand, the greedy algorithm works well within the
timing constraint; so is the combined algorithm.

Figure 4 compares the competitive ratio of the combined mechanism against those
of the individual algorithms. The estimated theoretical upperbound of the mechanism,

c
o

m


p

e
t


i
t
i

v
e


 
r

a

t
i
o




f
overload


1.0
 2.0
 3.0
 4.0


100


75


50


25


0


Ignore


EDF


5.0


Estimated Upperbound


6.0


Hybrid


7.0
 8.0


Fig. 4. Competitive ratio of different algorithms

according to (6), is also displayed in the figure.

Whenfoverload • 1:0, the system is in non-overload state, all algorithms are opti-
mal. Whenfoverload ‚ 1:0, the quality of the algorithms begins to drop, most notice-
ably that of the EDF algorithm as expected. Whenfoverload ‚ 3:8, the performance of
the combined mechanism is dropped under the performance of the greedy algorithm.
Whenfoverload ‚ 4:9, the performance of the advanced algorithm is lower than the
combined mechanism and drops quickly. With the overload factor increases, the ad-
vanced algorithm cannot give any results in time. But even in this case, the performance
of the combined mechanism is still similar with the greedy algorithm’s advantage. It is
important to note that the curve of the combined algorithm stays very close to that of
the estimated theoretical upper bound, which is in turn very close to the curve of the
Ignorealgorithm. First, our theoretical analysis is fairly accurate. Second, the solution
quality of the combined mechanism is very close to the sub-optimal returned by the
Ignorealgorithm.



14 J.H.M. Lee, L. Zhao

5 Related Work

There have been other approaches towards real-time agents. Brooks’s subsumption ar-
chitecture [3] is composed of different layers in which higher layer can subsume lower
layer functions. Lower layers have basic functions and higher layers have more human-
like behavior. Through adding a new layer at the top, user can change the behavior of
the system.

In the subsumption architecture, the relations among layers are fixed. The dynamic
subsumption architecture [11], in which the layers are dynamically reconfigured during
runtime, is more flexible than the original subsumption architecture.

Bonasso’s 3T architecture [1] is another real-time robot control architecture. This
architecture separates the general robot intelligence problem into three interacting lay-
ers or tiers (3T): a reactive skill layer, a sequencing layer, and a deliberation layer. 3T
has a powerful planning mechanism, and ability to react to time-critical events.

Another real-time agent architecture is the InterRAP architecture described by Müller
[10]. This architecture is a layered control architecture which is also composed of three
layers: a behavior layer, a local planning layer, and a cooperative planning layer. The
InterRAP architecture extends the planner-reactor architecture by adding a cooperation
layer. The cooperative planning layer is specifically for multi-agent activities.

These various architectures generate tasks and actions, which are usually executed
as soon as they are generated. Even when some architectures, such as InterRAP, re-
arrange the order of the tasks before execution, the main consideration is not on the sat-
isfaction of timing constraints. In addition, each of the above architectures is designed
for different real-time or robotic application with specific characteristic behavior. Our
meta architecture can serve to enhance the responsiveness of these architectures,espe-
cially in overload situations, using our efficient hybrid on-line task scheduling algo-
rithm. An important advantage is that our architecture works well in different real-time
environments. The hybrid on-line scheduling mechanism guarantees our architecture’s
performance in different overload states. We can estimate the bounds of the perfor-
mance through theoretical analysis.

6 Concluding Remarks

In summary, our real-time agent architecture contains a set of administrators and work-
ers. These components rely on specially designed communication primitives to main-
tain inter-process communication and synchronization. The details of knowledge are
hidden in individual processes, which communicate via a well-defined message inter-
face. For example, if an agent wants to send a message to another agent, the cognition
subsystem only needs to know the identifier of the recipient. The cognition worker do
not need to know where the recipient is or how to send a message to it. This knowledge
is maintained by the particular executor worker which will perform this task. Thus we
can modify a component without changing another component, as long as the original
functionality and communication interface are retained.

Another advantage of the architecture is flexibility. By changing the cognition meth-
ods in the cognition workers, we can realize different kinds of real-time agents. Since



A Real-Time Agent Architecture 15

every component has its fixed function, it is possible to generate an agent from a set
of rules and data structures automatically. What we have essentially designed is a tem-
plate for real-time agents. By instantiating the components with different algorithms
and data, such as the scheduling algorithms, we can get a particular kind of real-time
agents.

We also study the task scheduling mechanism in our real-time agent in details. We
adopt the real-time AI multiple method approach and combine two different scheduling
algorithms: a greedy scheduling algorithm used in the task administrator and an ad-
vanced algorithm used in the scheduler worker. Theoretical analysis and experimenta-
tion confirms that our combined mechanism inherits the best of both worlds: efficiency
and good solution quality.

For future work, we suggest to try to give more performance analysis of different
combination of scheduling algorithms and test them with different real world cases.
It is also interesting to see construct a real-time agent builder platform based on our
proposed architecture.

References

1. R.P. Bonasso, D. Kortenkamp, D. Miller, and M. Slack. Experiments with an architecture
for intelligent, reactiveagents.Intelligent Agents II, Lecture Notes in ArtificialIntelligence,
pages 187–202, 1995.

2. R.A. Brooks. A robust layered control system for a mobile robot.IEEE Journal of Robotics
and Automation, 2(1):14–23, 1986.

3. Rodney A. Brooks. Intelligence without reason. In Ray Myopoulos, John; Reiter, editor,
Proceedings of the 12th International Joint Conference on Artificial Intelligence, pages 569–
595, Sydney, Australia, 1991. Morgan Kaufmann.

4. B D’Ambrosio. Resource bounded-agents in an uncertain world. InProceedings of the
Workshop on Real-Time Artificial Intelligence Problems (IJCAI-89, Detroit), 1989.

5. W. Morven Gentleman. Message passing between sequential processes: the reply primitive
and the administrator concept.Software-Practice and Experience, 11:435–466, 1981.

6. M. Grotschel, S.O. Krumke, J. Rambau, T. Winter, and U. Zimmermann. Combinatorial
online optimization in real time. In Martin Grotschel, Sven O. Krumke, and Jörg Rambau,
editors,Online Optimization of Large Scale Systems—Collection of Results in the DFG-
Schwerpunktprogramm Echtzeit-Optimierung groser Systeme (803 pages). Springer, 2001.

7. D. Hildebrand. An architectural overview of QNX. InProceedings of the Usenix Worshop
on Micro-Kernels & Other Kernel Architectures, Seattle, U.S.A., April 1992.

8. C. Liu and J. Layland. Scheduling algorithms for multiprogramming in hard real time envi-
ronment.Journal of the ACM, 20(1):46–61, 1973.

9. Jane W.S. Liu, editor.Real-Time Systems. Prentice-Hall, 2000.
10. J.P. Muller.The Design of Intelligent Agents: A Layered Approach. (LNAI Volume 1177).

Springer-Verlag: Berlin, Germany, 1997.
11. H. Nakashima and I. Noda. Dynamic subsumption architecture for programming intelligent

agents. InProceedings of the International Conference on Multi-Agent Systems, pages 190
– 197. AAAI Press, 1998.

12. Ulric Neisser.Cognition and Reality: Principles and Implications of Cognitive Psychology.
W.H. Freeman, 1976.

13. Gerhard Weiss, editor.Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. The MIT Press, 1999.


